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ABSTRACT

The authors observed step by step how 11 youno students of Logo handled
five very elementary Logo programming problems. While the students overall
eliminated many bugs and achieved code about 90 percent correct, they only
achieved correctly functioning programs only about two-thirds of the time,
since even one mistake can spoil a program. Implications of this gap
between "hit rate" for lines of code and correct programs are discussed.
Genuine difficulties with understanding variables and subprocedures emerged
in a few students, but overall impaired the students' performance no more
than a number of seemingly more trivial mishaps concerning "mechanics"-
syntax, sizes of turns, and the like. We conclude that many "trivial"
elements of Logo pose genuine conceptual difficulties, a problem instruction
must face and resolve.
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Nontrivial Pursuit: The Hidden Complexity of Elementary Logo Programming

Recent research on young students of programming has shown that, very
often, they achieve only modest competence (e.g. Dalbey & Linn, 1985; Kurland,
Pea, Clement, & Mawby, 1986; Linn, 1985; Pea & Kurland, 1984a, b). Most

writings on young students' difficulties with learning to program have
highlighted the major conceptual barriers students face. Recursion, for
example, is a puzzling programming concept even to most adults. Considerable
experience with Logo may not suffice to give youngsters a sharp sense of
the distinction between recursion and iteration (cf. Pea & Kurland, 1984a).
Variables are another often-noted stumbling block. Nachmias, Mioduser,
and Chen (1986) report a study of youngsters from middle primary school
learning BASIC in which the younger participants encountered serious
conceptual problems in mastering the use of variables, while succeeding
well enough with more elementary aspects of BASIC. Even college students
commonly evince some misunderstanding of the meaning of variables (e.o.
Clement, Lochhead, & Monk, 1981), althcugh experience with programming may
actually help students.' grasp of how algebraic expressions involving
variables work (Ehrlich, Soloway, & Abott, 1982).

The use of subprocedures and structured proarammina is also an obstacle.

Students tend to write "spaghetti code," for instance programming a complex
graphics figure in Logo with a lengthy program rather than organizing it
into subprocedures. According to Kurland, Clement, Mawby & Pea (in press),
this reflects inclination as much as ability. While some students when
pressed could not proceed in a more hierarchical fashion, others proved
able to do so. Apparently, though, they did not normally feel moved to do
so. Kurland, Clement, Mawby and Pea note that, from the students' standpoint,
spaghetti programming is a straightforward strategy that minimizes cognitive
load. Why strain?

Recursion, variables, and subprocedures are unquestionably important;
they may even represent fundamental barriers to younger children's success
with programming (Nachmias, Mioduser, & Chen, 1966). But why do they
present the conceptual challenges they appear to? Presumably, complexity
and abstraction in several senses figure in their difficulty. For one
sense of complexity, some commands in certain languages have quite an
Intricate format the FOR-NEXT structure in BASIC, for example. However,

by and large, the command formats in LOGO are quite simple. For another
sense of complexity, some program elements afford a new order of complexity
by participating in larger patterns of code. For instance, variables
introduce a whole range of ways of shuffling data unavailable without
them; subprocedures permit a complex hierarchical organization of code.

A third sense of complexity occurs when expressions can be imbedded
within a particular program element. For instance, a REPEAT statement in
LOGO can take an arbitrary expression evaluating to an integer as its
first argument and any executable expression as its second. For another
example, a subprocedure in LOGO can be defined with any particular number
of arguments, and a given function call can include arbitrarily complex
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expressions to be evaluated as the arguments before executing the procedure.
There is reason tu believe that complexity in general may impair learning
through a cognitive load bottleneck as well as perhaps in other respects
(cf. Brainerd, 1983; Case, 1984, 1985; Nachmias, Mioduser, & Chen, 1986).

Abstraction also is a likely contr.ibutor to difficult elements of
programming. At least two senses of abstraction invite consideration.
First of all, some program elements have an enormous range of potential
reference, far broader than the "natural kinds" in terms of which we
usually think. For instance a variable in LOGO can stand for any number,
string, or indeed imbedded list structure. A second sense of abstraction
is that the learner may lack a mental model or "envisionment" of the
program element in question that helps to concretize it (cf. DuBoulay,
O'Shea, & Monk, 1981; Gentner & Stevens, 1983). For instance, thinking of
variables as boxes that have names and hold numbers or other data structures
may be a useful envisionment of variables that some students lack. There
is some reason to think that such mental models abet programming mastery
(Mayer, 1976, 1981). Note that such mental models do not restrict the
range of potential reference, the first sense of abstraction noted, but
they nonetheless provide a more perceptual way of thinking about the
program element. Note also that, in this second respect, how much of a
problem of abstraction there is depends on what mental moaels the learner
receives or constructs to concretize the programming element in question.

However, fundamental conceptual barriers are not the only source of
difficulty that troubles novices. There is reason to think that young
programmers often suffer from what we have previously termed a "fragile"
knowledge base (Perkins, Hancock, Hobbs, Martin, & Simmons, 1986). They
not only have gaps in their knowledge concerning very elementary aspects
of the programming language, but also possess a knowledge base problematic
in other ways. Sometimes knowledge tends to be inert for instance,
command knowledge is not retrieved on appropriate occasions but, on probino,
proves to be present. On the other hand, sometimes knowledge proves to
active commands and command elements migrate to places where they do
not belong. For instance, in BASIC the STEP subcommands from a FOR-NEXT
loop may be used in the midst of a PRINT statement. Such difficulties Q0
beyond a simply spotty knowledge base. To describe the broader character
of many novices' troubles with their knowledge base in programming, we
have introduced the term fragile knowledge, which encompasses both knowledge
gaps and other mishaps such as, those described.

The fragile knowledge base commonly possessed by students is significant
in several ways. For one, it warns that programming instruction cannot take
for granted aspects of programming knowledge usually considered entirely
elementary; they may baths- students a good deal. It is not that students
are less able than one might hope, but that the elementary features of
programming are actually more comp_ex than they seem from an adult perspective,
a point that must be recognized in organizing appropriate instruction.
For another concern, minor matters can do unusual mischief in a task like
programming where everything must be correct for success; in contrast, a

spelling mistake on an essay impairs the overall effect very little. On
the positive side, there is some encouragement in the point that students'
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knowledge is fragile, not just spotty. Students know more than they seem
to at first, albeit in a fragile way, a point on which instruction might
capitalize.

With the problem of fragile knowledge on our mind from prior analyses
of BASIC programming (Perkins & Martin, 1986; Perkins, Martin, & Farady,
1986), we undertook a clinical study investigating how and how well young
students of Logo handled a number of very elementary Logo problems. While

looking for difficulties with variables and the use of a subprocedure, we
also attended to difficulties in managing what might be called the routine
mechanics of Logo. The goal of the study was not so much to test a specific
hypothesis as to examine the thinking of students of Logo, to see what
problems of programming gave students difficulty and to ponder what
instructional remedies might help. The results lead us to reconceive in
ti- discussion the ways in which elements of programming are trivial or

sc trivial.

Method

Subjects

The subjects were eleven students who had completed a five week
instructional sequence in Logo. The same five problems (to be described
later) were to be given in the same order to each subject; all eleven
subjects worked problems 4 and 5, but, because two students were late to
class, only nine worked problem 1-3. The ages of the subjects ranged from
8 to 12. There were six girls and five boys of diverse ethnic backgrounds,
including three Asian, one Mideastern and three Black students. Some of
the students had had immediate mode experience with Logo prior to entering
the program, but no more than that.

The five weeks of instruction were offered by the experimenters as
part of a summer activity program at a local school. The classes were
held twice a week, for two hours in the morning and one and one half hours
in the afternoon. Each student had a computer to work with. The instruction
introduced the students to the most basic elements of Loco, including
REPEAT, variables, and subprocedures. This instruction simply provided
the occasion for the clinical inquiry reported here. The instruction was
not designed to address specifically the issues explored in this paper.
Neither does the present analysis address directly the strengths or
shortcomings of the instruction, but rather seeks to probe the nature of
the students' understanding of Logo at the end of the course. We assume that

the instruction was at least as competent as that received in most settings
of Logo instruction not a strong presumption (cf. Delclos, Littlefield,
& Bransford, 1985; Kinzer, Littlefield, Delclos, & Bransford, 1985; Pea &
Kurland, 1984; Kurland, Clement, Mawby & Pea, 1986).



Programming tasks

In the experimental sessions at the end of the course, the investigators
asked each student to attempt a series of five programming problems. Each
problem involved writing a program to do some turtle graphics, illustrated
on the problem sheet. Figure 1 shows the figures given to students to
define the problems. To avoid issues of scale, the problem sheets for
problems 1 through 4 indicated a segment length of 30 turtle steps (of
course, the top segment of Problem 3 varied, as discussed below). The
experimenters provided a subroutine for Problem 5 that settled the matter
of scale.

Insert Figure 1 about here

The problems were very short, each designed to highlight a particular
area of difficulty and not to pose other dilemmas. The areas of difficulty
chosen for emphasis included the following: judging angles, deciding on
the direction of turns, using a variable, and using a subprocedure. The
choice did not reflect any theory of what was "really" trivial or nontrivial.

Rather, the choice was motivated by our informal observations that students
seemed to be having trouble with the matters mentioned, coupled with the
received view in the field that subprocedures and variables pose problems
for students. So we prepared five "diagnostic tasks" that would probe
more formally whether students indeed were having difficulties in these
areas and just what the difficulties were.

While only problems 3-5 involved traditionally "nontrivial" elements
of programming, one should not think of problems 1-2 as the trivial problems
and 3-5 as the nontrivial problems. First of all, what is really nontrivial
and in what sense is at issue. Second, even traditionally challenging
matters like the use of variables involve many routine aspects, such as
including the variable name in a properly formatted program header. With
these general points in mind, we comment briefly on each problem in turn.

Problem 1. This problem focused on the turtle's orientation,
Incorporating a right angle tilted at 45 degrees that we suspected might
give students difficulty.

Problem 2. This problem again focused on orientation, asking the
students for a turtle path that navigated through two 90 degree and two 45
degree turns. We thought that the complexity of the path might present
difficulties.

Problem 3. This problem required the use of a variable for length.
The students were asked to write a single program that could make all four
of the illustrated figures. each with a different length for the upper segment.

O

-----------
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The figures did not indicate the exact length of the variable segment and
students were not scored wrong for using whatever lengths they cared to.

Problem 4. This problem resembled the previous, except that the
variable concerned the angle rather than the length of the upper segment.
Again, the students were not scored wrong for using whatever angles they
wished in testing their programs.

Problem 5. This problem called for the use of a subprocedure. The
experimenters provided the listing of a procedure called RECT that drew a
rectangle, along with a picture of its output. The students were challenged
to create the L shape displayed in Figure 1, using RECT twice.

Procedure

The problems were administered individually to the subjects by four
experimenters working in parallel. The students worked on either Apple
IIc or Apple IIe microcomputers, the same ones used in the instruction. At

the outset, the experimenters made clear to the participants that the purpose
of the study was to understand what aspects of programming were easy or hard
to learn. As a student worked through a problem, the experimenter watched
and took notes. Help was limited by policy: The experimenter could attempt
to clarify the task if the student appeared not to understand what he or she
was supposed to do, but could not give the answer to the problem.

The experimenter followed a set procedure for each problem. First,

the experimenter explained the task to the student aid asked the student to
write a program away from the computer. Even though some children wanted
to go directly to the computer, the experimenter insisted on a written
program first. Then the student was allowed to go to the computer to try
out the procedure and debug any problems that appeared. Some students
chose to try out their procedures in the immediate mode first, although
the students were encouraged to enter them directly as programs. If a
student used the immediate mode, the student was then required to enter
the procedure as a program and run it successfully before counting the
student as having completed the problem.

The students had ten minutes in all to write a procedure, try it out,
and debug it. If a student did not finish within this period, the experimenter

pressed on to the next problem. Although ten minutes may not seem like much
time, it should be remembered that the procedures called for were very short
and were designed to present only one principal difficulty. Students with
good mastery of Logo oenerally finished the problems in three or four minutes,

even when needing to make a minor correction. Students having difficulty
with a problem had sufficient time to try several repairs.

10
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Data

Data collected during each session included notes taken by the
experimenter, recording each mistake and attempted repair, as well as the
code written by the students on their work sheets. All this was later
combined by the experimenter into a protocol for each student for each
problem. The scoring of the students' performances was based on these
protocols.

Coding system

The experimenters developed a coding system with two objectives in mind:
(a) to provide a measure of students' successes and errors in terms of how
many elements of a program they got correct, rather than in terms of whether
the program overall was correct; (b) to provide a bread "trace" of the
students' problem-solving efforts. Iri particular, the system recorded the
students' correct response or error and sequence of repair efforts for each
element of code of each problem. Functions and arguments were scored
separately. If an element was initially correct, it received a +, if

initially mistaken, a ("initially" refers by scoring convention to the
version of the program written on paper, prior to entry into the computer).
Each time that element was modified during the session, another + or - was
appended to the scoring string, depending on whether the modification was
correct or erroneous.

For example, suppose a RT 90 was initially rendered as a RT 60. The
student received a + for the RT and a for the 60. Now suppose that the
student modified the RT 60 to RT 80. Nothing was added to the scoring
string for the RT, because the RT had not been modified. But the scoring
string for the 60 was changed to --, standing for the initial 60 and then
the 80. Now suppose that the student corrected the RT 80 to RT 90.
Again, nothing was added to the string for RT, but the string for the
initial 60 now became --+, the + indicating a successful resolution.

This scoring system of course required that the scorers compare a
line of code in a protocol to the "ideal" line of code. For this purpose,
standard versions of each program were employed. The programs, recall,
were very simple and the students virtually always approached them in

essentially the same way. Even co, in principle ambiguities were possible.
For instance, suppose a student wrote RI 30 when, in that area of the program
a RT 90 and a FD 30 were called for. Would this count as a mistaken function
and correct argument or a correct function and mistaken argument? To deal
with such circumstances, several scoring conventions were established, as
follows. It should be emphasized that the more specialized conventions
rarely had to be applied.

1) What to score. The general rule was "one token, one score." For
instance, FD 45 would receive two score strings, one for FD, one for 45.
Revisions to the procedure were scored even if done in the immediate mode.
Screen repairs -- for instance, efforts to fix on-screen errors by shifting

11
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the oen to background color and erasing lines were not scored. Unnecessary
and erroneous PU's and PD's were not scored. The only part of a prooram
header that was scored was the input variable, if one was required. This

was scored in the handwritten plan only if the student had actually written
a header as part of the plan. Of course, many students did not write headers

until they entered their programs as procedures.

2) Line matching. When there was a choice of what line of the model
to match a line of code to, the match was made which would maximize the
student's + scores. If this principle did not cecide the issue, the

earlier line in preference to the later one was matched. If the above two

principles did not decide the issue, the function in preference to the
argument was matched. If the student used a group of lines where he or
she should have used a procedure call, the entire group was matched to the
procedure call, the student receiving a - for it.

3) Good enough. If the student typed FD 28 instead of FD 30, or ED
89 instead of FD 90, this was scored as a +. In parti:ular, distances and
angles were counted as correct if no more than 3 units off. If a student

typed FD 14 ED 14 FD 2 instead of FD 30, this was also considered as
correct and scored as a single line. However, successive lines with the
same function were not necessarily added for scoring; sometimes it made more
sense to think of each as separate.

4) Skips, transpositions. and interpolations. A skioped line was
counted as a double error, - for the function and for the argument. If

the student's version of a program did not require a line that was in the
standard program, it was, of course, not scored as omitted. A pair of
transposed lines was indicated with a single minus at the bottom of the
scoring page, apart from the normal line sequence and labelled with
the line number. If a transposition did not appear at the outset, but
only later, xt was marked +- to show the initial correctness. Besides

this, transposed lines were each scored normally for the correctness of
their content. Unnecessary interpolated lines were marked at the bottom
of the page also. These were rare and were not included in the final
tallies discussed below,

Scoring procedure

Using th7, scoring system. three scorers indeoendenti, coded all the

protocols. They checked periodically with one another after scoring a few
protocols to work toward adeouate calibration, establishing some of the
rules above as they went. Policies that could affect prior scoring were
amlied retroactively. Although disagreements in scoring were dlecussed
.-a resolved, the original codings, prior to discussion, were preserved

calculation or interjudge agreement later. After about half the data
hen coded, the scorers deemed themselves to be adequately calibrated.
r7h crosschecking continued to the end. The remainder of the coding
aged as the basis for calculating interjudoe agreement, chile all the

_c- -; was used for the data analysis in other respects, on the grounds
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that divergences had been discussed and resolved and principles applied
retroactively to the coding before the calibration point.

Tallying

The coded protocols were condensed further into a set of tallies for
each subject-problem. One set of tallies was made for function problems,
another for argument problems. For functions and arguments separately,
for each subject and problem, the following counts were made:

Initially correct (+). Single +'s represented initially correct
and never modified program elements.

Immediately corrected (-+). These strings corresponded to program
elements initially incorrect, but corrected in a single trial.

Eventually corrected (...+). These were program elements incorrect
initially or perhaps later changed to something incorrect, but
ultimately corrected. All involved at least two modifications.

Unmodified errors (-). These were program elements initially
incorrect and never modified.

Modified errors (--). These were program elements initially or
later incorrect and, although changed, never properly corrected.

Results

Interjudge agreement

Interjudge correlations were calculated to test the reliability of the
scoring procedure. In the functions category, correlations ranged from
1.0 (for several tallies) to .391 (p.001, N=24) for eventually corrected
elements. The mean correlation was .966. The correlations for the arguments
category ranged from 1.0 (for several tallies) to .688 (pe..001, N=24) for
unmodified errors. For arguments the mean correlation was .915.

Profiles of performance

Table 1 provides a profile of performance, pooled over students,
separating functions and arguments. The subtotal rows show that arguments
ge!.,erally posed more of a problem than functions. The total figures
reveal that the students as a whole did fairly well as gauged by program
eleNcnts. After debugging, only 8 percent errors remained for a percentage
correct of 92. However, their success rate as measured by percent of
programs running successfully was much lower, as one would expect: 67 percent.

13



Insert Table 1 about here

The figures also argue that the students in gereral did not become
mired in difficulties. A natural conjecture would be that students who could

not correct a difficOlty immediately might make little further progress on
it. To the contrary, the figures for "immediately corrected" and "eventually
corrected" show that the students often continued to make progress even
after an initial effort at repair had failed. The modest number of "unmodified
errors" indicates that students made attempts to repair nearly all their
errors, although not always successful ones.

Table 2 provides a profile of the students' performance student by
student, offering for each problem number of initial errors and number of
final errors, pooled over functions and arguments. As one would expect,

the table reveals a considerable difference in performance across the
students. Student 1, for example, made many initial errors and sometimes
proved able to correct some. Student 2 made far fewer initial errors but
evinced considerable difficulty in making corrections. Student 6 made
very few initial errors. These profiles reflect our experience with the
students. A couple were "whizzes," doing the problems virtually effortlessly,

while, at the opposite extreme, another couple displayed considerable
confusion.

Insert Table 2 about her-3

With this general picture in mind, we turn to a problem by problem
interpretive discussion of the difficulties students displayed.

Problem 1

The tables show this problem to be a reasonably tractable one. By

the end of the problem period, only 1 error out of 63 total functions
remained, and 7 errors out of 63 total arguments. The students, without
exception, wrote the first three lines of the program (FD 30, RT 90, ED
30) without error. However, as soon as the target image no longer followed
the lines of a normally oriented square, the difficulties began. For the

second turn of the program (LT 45), five out of nine students incorrectly
coded the angle in their plan. Three of the students coded an incorrect
direction (RT instead of LT) and two coded an incorrect angle.

The third angle, a right angle oriented askew to the horizontal

14
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Table 1

Er2111.1_21_Ettfarmanatl

Eauvdsaa_aad_Atentata_Ialllta

Problem Initially
Correct

Function Tallies

Immediately Eventually Unmodified
Corrected Corrected Errors

Modified
Errors

1 57 4 1 0 1

2 70 5 0 4 3

3 27 0 0 0 0

4 33 0 0 0 0

5 21 2 2 2

subtotal 218 12 8 4 12

Argument Tallies

1 52 4 0 4 3

2 72 2 0 2 4

3 21 7 3 0 5

4 34 0 3 0 7

5 12 5 2 0 i

auf2tatal 119 la 13 k aa

total 407 31 21 10 37
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Table 2

Uusia.a.t_Ptriarman.o.l.

initl.1_Ertsra_L_Einai_Ett2ta

Student Problem

1 2 3 4 5

1 5 / 4 8 / 7 3 / 3 2 / 2 7 / 0

2 1 / 1 1 / 1 2 / 2 2 / 0 3 / 3

3 2 / 0 2 / 0 2 / 0 1 / 0 5 / 0

4 1 / 0 2 / 0 2 / 0 0 / 0 1 / 0

5 0 / 0 0 / 0 3 / 0 2 / 2 2 / 2

6 3 / 0 0 / 0 0 / 0 0 / 0 0 / 0

7 3 / 2 0 / 0 1 / 0 0 / 0 1 / 0

8 2 / 1 5 / 5 2 / 0 0 / 0 4 / 4

9 0 / 0 2 / 0 0 / 0 0 / 0 3 / 0

10 0 /,0 5 / 0

11 3 / 3 8 / 8'
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vertical frame, posed a difficulty of argument but not function. While
six of the nine students incorrectly coded this turn, all six coded the
direction correctly; it was the angle that led to error. One student's
comments illustrated the nature of the difficulty especially well. Laurie
had originally coded the third angle as a RT 60. When she saw the picture
on the screen, she localized the problem with no difficulty, but did not know
what the number of degrees should be, stating, "Oh, I think I need 70 maybe."

She began a series of steps in immediate mode to correct the error, but this
led into more difficulties. When the experimenter asked her what she was
attempting to do, she began to explain, then interrupted her own sentence
with the exclamation, "Right 90!" The experimenter asked her why she felt
it was a right 90 turn. Her response: "I looked at it this way Cshe turned
her head], and it had a 90 degree angle."

While most of the students easily identified problems of a mistaken
angle (either the 45 or the 90 degree angle), finding the correct angle was
more difficult. These students did not seem to have learned the look of
the two angles, even though the instruction had stressed the usefulness of
both. In addition, two of the students attempted corrections in ways that
showed a misunderstanding of the nature of a unit change in degrees. For
example, one student had written RI 29 instead of RT 90. She had no
difficulty in deciding that the angle needed alteration. However, her
successive corrections were 34, 27, and finally 32 degrees, at which point
her time ran out. Apparently she had little notion of the magnitude of a
degree.

Problem 2

Tables 1 and 2 show that students managed Problem 2 fairly well, with
7 errors out of 82 function elements and 6 errors out of 80 arournent
elements remaining after debugging. Besides posing more 45 and 90 degree
angles, the problem required the students to trace a path proceeding
leftward rather than rightward. The tendency of the instruction had been
to employ rightward turning paths, perhaps establishing a kind of "template"
of restricted lability. Three of the students incorrectly coded the first
turn, a LT 90, two of them indicating the RT rather than the LT function.
The third displayed an interesting twist. His first try at the turn was
LT 30. He localized the error with no difficulty but substituted RT 90,
changing both direction and degree. One could posit that, when in trouble,
he reverted to the familiar rightgoing template.

In problem 2, students seemed to have less difficulty in determining
45 and 90 degree angles, although they still confused the two and displayed
difficulties in choice of RT versus LT. In particular, in Problem 1, six
students at some point estimated an angle as something other than 45 or 90
degrees. In the second problem, only two made such misestimates, both of
them having done likewise in Problem 1. The greater attention to 45 and
90 degree angles might reflect experience with Problem 1.

It was encouraging to observe that, in Problems 1 and 2, a couple of
the students used their mathematical knowledge of angles to motivate

17



13

corrections, in contrast to many students who seemed to tinker "from the
picture." These latter students quickly modified incorrect angles, noted
the changed picture on the screen, and from that determined whether a
larger or smaller angle was needed, apparently without much reflection.
In contrast, consider one student who had written a RT 45 instead of a RT
90. Rather than replacing it with a RT 90, she inserted another RT 45 in
her program. When the experimenter asked her why she chose to add another
45 degrees she answered, "To get it another 45 down." In another instance,
a student had written a LT 45. She looked at her picture and said, "Oh,

right 45." The observer asked her how she knew it was 45 degrees, to
which she responded, "Because I knew half of 90 was 45."

Problem 3

Problem 3 focussed entirely on introducing a variable and involved
only three lines of code plus the program header. Not surprisingly,
functions proved no challenge at all; 100 percent of students chose them
correctly on their first trials. But the introduction of the variable
posed problems, yielding a final error rate of 5 out of 36 on arguments.
Only one student incorrectly estimated the RT 45 turn, even then correctly
planning it but making an error later when he began to get tripped up in
coding the variable. The distance variable posed many difficulties for
the students. The problems ranged from students who did not even understand
that the task required a variable to those who had a good grasp of the
concept of the variable and recognized the need for one in the program but
had trouble recalling the correct syntax.

For instance, consider a student who appeared not to understand the
basic concept of a variable. The experimenter explained the problem to
him, stressing that the program must be able to draw any of the four
sample outputs provided (involving a variable line length). When the
experimenter asked how he might do that, he responded, "Easy -- just go to
the editor and type them all in." He wrote three lines: ED 30, RT 45, El)

20. When again reminded that the program must be able to produce any of
the figures, the student went back to his Planning sheet and added the
following lines to his original program: ED 15, RT 45, ED 10, FD 50, RT
45, FD 30, ED 100, RT 45, ED 110. He then told the experimenter, "This is
all four programs; I'll put it in the editor," and proceeded to do so.

Some students recognized that a variable was needed but had difficulties
placing it in the program. One student called the variable SIDE end
correctly inserted it in the header but then used it for the angle rather
than the final distance. Another student originally coded the variable in
both distance commands. A third student correctly determined that the
variable should be used with the third command, involving distance.
However, when she was planning the program she said to herself, "Is it

distance or angle?...It's angle," and proceeded to call her variable ANG.
Another common mistake was to forget to put the colon before the variable.
Despite their difficulties, seven of the nine students produced entirely
correct programs by the end of the time period.
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14

Another variables task, Problem 4 showed a pattern of difficulties
and successes resembling Problem 2. Again, all the students selected
correct functions on their first trials. The final success rate on arguments

fell out nearly the same as well -- 7 out of 44 arguments. The two youngest
students proved unable even to grasp the problem. Despite repeated
instructions that one program should be able to make all three shapes,
with the experimenter breaking the rules a bit to show the students on
paper how the program should be called to produce each of the three shapes,
these two students insisted on writing separate sequences of Logo commands
for each of the three example shapes shown. One other student came very
close to solving the problem but never got her program working due to
syntax errors that she could not surmount. The remainder of the students
produced working programs with only minor difficulties, although one
student had to be reminded of the syntax for her inputs. It appears from

this that the hardest aspect in mastering input variables may concern
understanding how they might be used rather than how to implement them.
Were this not the case, we would expect to find more students at a middle
stage able to grasp the problem but unable to solve it.

While Problem 3 called for a variable to represent length, Problem 4
demanded one to represent angle. We speculated that some students might
manage Problem 3 but not Problem 4 because their understanding of inputs
was too bound to the particular case of inputs for distance. This conjecture

was not fulfilled. In fact, every student who solved problem 3 was also able

to solve problem 4. However we were intrigued by the names chosen by the
students for their input variables :a, :ang, :d (two students), :s,

:side, :step, and :x. Two of these names (:side and :step) clearly refer
to distance, and three more (the two :d's and the :s) may also refer to
distance. For at least of some of the students, then, the understanding
of inputs still appears somewhat attached to the original context of learning.

Problem 5

The only task to involve subroutines, Problem 5 also yielded the
highest error rates 9 final errors out of 50 on functions and 6 out of
28 on arguments. What difficulties did students display? One student did
not grasp the idea of using a procedure to make a chunk of a larger drawing.
She insisted on writing a single long procedure to make the "L" shape. Two

other students displayed an intermediate level of understanding. They

formulated a sequence of immediate mode steps:

RECT RT 90 FD 15 RT 90 RECT

that produced a fine "L", but they proved unable to incorporate these
steps into a superprocedure. Instead they tried editing the RECT procedure
to add more lines at the bottom (one of the two actually put a recursive RECT
call at the very bottom, below the three repositioning commands). When we
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Insisted on a separate procedure for'the "L," these students reproduced
the contents of the RECT procedure in the new L procedure.

Evidently these students had learned the first imoortant fact about
using subprocedures: "A procedure can be used to help make a bigger Picture."
But they had not learned the second one: "A procedure can call another
procedure." This is, of course, just a particular case of a more fundamental
Logo principle: "You can put into a procedure any sequence of commands
that you can execute in immediate mode." Clearly if our two students had
understood this rule fully they would not have performed as they did. It

might be argued that our class, and the students' previous Logo classes,
did not stress this principle sufficiently. We favor the interpretation that
the principle is too abstract to help most students over the hump of
calling procedures within procedures.

The seven students who succeeded in solvina the problem displayed an
interesting variety in planning. One student who appeared to understand
now to use inputs was distracted and did not complete the problem. Two
students used the definition of SECT, which we provided, to help plan
their superprocedures. They reasoned correctly from our code for RECT
that the turtle would have to turn twice and that it would have to move 15
turtle steps between turns. Two others did not use such detailed information.
They understood that RECT produced a rectangle but did not check: closely
to see the rectangle's dimensions or the turtle's final position and
orientation. Both of these students missed the fact that the turtle would
need to make an initial turn, and bot at first estimated that the turtle's
repositioning move should be 20 turtle steps. They later fixed their programs,
but by trial-and-error in Immediate mode, not by looking at the definition
of RECT. Finally, two students planned without closely checking the
definition of RECT, but returned to it when their first effort did not
work, and were able to use it well. The case of these seven students
shows a clear advantage for those students who can reason precisely about
written procedures.

Discussion

This study aimed to develop a profile of the young LOGO students' programmino
difficulties, with particular attention to "trivial" problems that might
turn out to be more sionificant than one would at first suppose. The
combination of formal scoring and interpretive analysis of individual
protocols provided a fairly sharp picture of the students. problems and
successes. Besides addressing Logo specifically, we also suggest that the
general conclusions apply to initial learning of other proarammino languages.

General effectiveness in Prooramminp and debuopina

The tabulations of results showed that the students overall were
rather effective in programming and debugging these elementary problems.
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Pooling figures for functions and arouments, the students proved initially
correct en 82 percent of the program elements (functions and arguments
combined) and gained another 10 percent through debugging for a final 92
percent elements correct, a very respectable "score."

The students taken as a whole also revealed significant powers of
working through a difficulty to a conclusion. The students were able to
correct somewhat more than half of their initial errors. One might suppose
that the students would have little chance of correcting a problem that
was not just a "quick fix." However, the tabulations show that the students
resolved about as many bugs through multiple trials as through a single
modification. Although the students displayed very different degrees of
success with the problems, all disclosed some ability to diagnose and
correct difficulties.

The "conjunctive task" effect

Although the overall success rate measured in terms of elements correct
was quite high, the students' success rate measured in terms of problems
solved correctly was much lower. In particular, the students taken together
produced correctly functioning programs 67 percent of the time. As a "hit
rate," this is not nearly so respectable as the 92 percent correct for
program elements after debugging.

The reason for the difference is transparent. Unless one is fortunate
enough to have two mistakes cancel each other, a single erroneous element
in a program prevents it from running correctly. Accordingly, one can
have quite a high accuracy rate as measured by correct elements with a
substantially lower success rate as measured by correct programs. This would
hardly be worth mentioning were it not that many tasks characteristic of
schooling do not have this property. Spelling tests, multiple choice
quizzes, and essays normally are assessed on the basis of the preponderance
of correct, or, in the case of an essay, sound, elements.

However, programming, arithmetic problems, and a few other formal
tasks such as proofs in Euclidean geometry are what might be called
"conjunctive" tasks. Conjunction is used here in the sense of the logical
"and;" a correct response to a conjunctive task depends on the correctness
of each individual response element. Any error ,poils the whole. Accord-
ingly, conjunctive tasks whether in programming or other subjects --
demand very high precision for good overall performance as measured by
number of tasks correctly completed.

One might think at first that the usual way of assessing performance
on conjunctive tasks is unfair. Imagine how much higher arithmetic scores
would be if students were graded by the number of elemental operations
correctly executed rather than the percentage of right answers! But the
fact is that, for conjunctive tasks, in the end it is the whole task that
counts. A program does not work unless it is virtually error-free; the
answer to an arithffe:tic program does ;Jot serve unless it is correct. A
flawed response to a conjunctive II is largely nonfunctional. A very
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high level of precision is required for fruitful results, and this pressure
for precision must be taken into account in comprehending students'
difficulties and designing instruction.

"Trivial" problems

The interpretive analyses of the individual protocols recorded a

number of problems with what might be considered trivial aspects of Logo.
Mix-ups between LT and RT were not uncommon. The angle of 45 degrees was
not always recognized. The angle of 90 degrees often was not recognized when
it occurred in nonstandard orientation, and once, in normal orientation,
was treated as 30 degrees. In addition, students working through such
difficulties often proceeded in a trial and error fashion, twiddling
parameters in ways that sometimes suggested little grasp of whether an
angle needed to be bigger or smaller or how large a degree was.

While variables and subprocedur-s sometime= presented serious problems,
"trivial" problems also appeared in association with them. Students
recognizing the need for a variable often had difficulty recovering the
correLt format for the header and for using the variable in the program.
While employing the subprocedure for a rectangle in a program, some students
had difficulty positioning the turtle ith intermediate moves for a successful
call of the subprocedure.

How trivial, then, were these "trivial" problems? On the one hand,
certainly many of the students had considerable success in resolving them.
In keeping with the concept of "fragile knowledge" mentioned in the
introduction, for the most part these were not matters on which the students
had no hold at all. They usually could and did take steps to remedy the
matter, revealing more knowledge than was apparent at first in their often
dismayingly elementary mistakes. On the other hand, these trivial problems
did not always go away when attended to. For instance, problems 1 and 2
involved no element of variables or subprocedures, et only 61 percent of
the programs were entirely correct after debugging efforts.

"Deep" problems

As noted in the introduction, mastery of variables and of use of
subprocedures usually are considered serious conceptual challenges for
young programmers (cf. Pea & Kurland, 1984; Kurland, Clement, Mawby & Pea,
in press; Nachmias, Mioduser, & Chun, 1986,). Students often evince
fragile knowledge here to the partial mastery, inert knowledge, and
mistaken migrations of knowledge characteristic of the fragile knowledge
syndrome. But a few of the students evinced serious problems of understanding
on the tasks involving variables and a subprocedure. In particular, they
appeared not to be able to approach the variables problems (3 and 4) by
using variables, but instead persisted in writing out code for each separate
case. On the subprocedure problem (5), one student insisted on spaghetti
coding the program even though the subprocedure was provided; two others
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could use the RECT subprocedure in immediate mode but appeared unable to
incorporate it into a procedure.

On the other hand, it should not be thought that the net effect of
these challenges was any greater than those of the "trivial" problems.
This "programs ultimately correct" figure for the variables problems was
75 percent and for the subprocedure problem 64 percent, a bit larger than
the 61 percent for problems 1 and 2, which did not involve these concepts.
Moreover, some of the difficulties students experienced in the variables
and subprocedures problems were "trivial" matters. To be sure, these
problems were, designedly, very elementary applications of variables and
subprocedures. Nonetheless, it is interesting to note that the students
as a whole did not appear to find in them challenges any more troublesome
than those posed by problems 1 and 2.

What makes an element of programming nontrivial?

The results of our study suggest that "trivial" elements of Logo
programming are not so trivial as they might seem. Because of other
research, we suggest that the same can be said for BASIC, PASCAL, and

other programming languages (cf. Perkins, Hancock, Hobbs, Martin, & Simmons,
1986; Perkins & Martin, 1986; Sleeman, Putnam, Baxter & Kuspa. 1986).

Perhaps there is a need in the psychology of programming to overhaul
notions of what is trivial and what is not. In the introduction, we noted
that complexity and abstraction in several senses helped to explain the
difficult ies posed by programming el ements such as variables and subprocedures.

These concepts might apply somehow to elements of programming usually
considered trivial. Moreover, there might be other factors that make
seemingly mechanical aspects of programming troublesome after all. We

suggest at least the following explanations for the surprising challenge
of "trivial" elements of programming.

The conlunctivity effect: Complexity in a new form. We have emphasized
already that learners' knowledoe of the mechanics of programming often is
"fragile" -- not only spotty but often inert and sometimes used in oarbled
ways (Perkins & Martin, 1986). Taken piece by piece, much of fragile
knowledge might be considered trivial; many a knowledoe can, element of
inert knowledoe, or garbled line of code would yield simply to "knowing
the facts" better. Indeed, the students' fragile knowledge notwithstanding,
many of them did quite well with the problems in our experiment.

However, the phenomena observed warn of much greater difficulties
with more complex programs. The longer a program or the more subprocedures
involved, the more amplified is the conjunctivity effect. Programs easily
can become a tangle of errors exceedingly difficult for students to sort
out. We note informally that the majority of the students at this point
in the instruction had considerable trouble getting throuoh a turtle
graphics programming activity of modest scope say, a program to draw a
tic-tac-toe design -- largely because of the erosive effects of minor
problems. Recall that complexity appeared to be one source of students'
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difficulty with challenaing concepts like variables and suLorocedures. We

see here that, although many fragile knowledge problems in themselves are
not particularly complex, complexity reenters the scene as a factor because
of the conjunctivity effect.

Elementary problem - solving strategies. Coping with the conjunctivity
effect can pose major cognitive challenges of task management. So can
other aspects of fragile knowledge and, of course, programming in General.
In research on novices' BASIC programming, we obtained results suggesting
that many novices nealect and could use with profit quite elementary
problem solvina strategies to track goals, access inert knowledge, test
candidate solutions, and deal with like matters (Perkins & Martin, 1986).
For instance, students could ask themselves questions like, "What command
do I know that does this sort of thing ?" or "What does the line of code I

just wrote really do?" While we did not investigate this question directly
in the Logo study, we see much the same phenomena of fragile knowledge as
in the BASIC study, so it is reasonable to presume that elementary problem
solving strateoies may be relevant to young Logo proarammers as well.

Close discrimination problems. We already noted that complexity and
abstraction of certain sorts may make elements of Loao and other programming
languages difficult for learners. Another source of difficulty seems to
be solution elements that are easily conflated and reauire careful
discrimination. For instance, a number of students in the present study had
problems differentiating left from right turns. It may seem odd to think
of left and right as in some sense close to one another, but in psycholoalcal
fact left-right discrimination tends to be troublesome in human perception:
this is not just a matter of associating the appropriate names with left
and right but of actual lability in the perceptual encodino of left versus
right (cf. for instance Kolers & Perkins, 1969a, b). Some students also
evinced difficulty in discriminating just where the turtle began in the
RECT subroutine. Certain other troubles evinced by the subjects might be
considered problems of discrimination as well.

Other familiar discrimination problems in Loao include differentiating
between iteration and recursion (cf. Pea & Kurland, 1984a, b) and between
reference and naming (:x versus 'x for example). In other Problem domains,

problems of close discrimination are frequent. Whenever two concepts have
a strona superficial similarity, students routinely and understandably
evince problems disentanglino them. Examples from physics include weight
versus mass versus density and force versus pressure. The problem of
close discrimination might be considered complexity in another guise:
however, it is not just comolexity in a loose general sense but a °articular
sort of comolexity, where two conceptual structures look superficially

alike, as in mass and weight. Therefore, problems of close discrimination
seem worth sinaling out as a distinctive cateaory of difficulty.

Domain operations versus control structures. The right-left confusions

many subjects experienced point to another interesting generalization:
Students evinced a number of problems that concerned geometry and the Logo
commands for making geometric moves, such as LT and RT. Besides the
left-right problem, some students failed to recognize a tilted right
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angle. One appeared to have little sense of the magnitude of a degree.
Several estimated angles poorly.

With such problems in mind, it is useful to distinguish roughly
between the control structures and the domain operations of a programming
language. We will consider the control structures of Logo to include
subprocedures, recursion, REPEAT, and also variables; these are all tools
to control program execution and manipulate general unspecified "objects."
The domain operations of Logo as typically taught concern the turtle
"object" and the world of turtle geometry: FD, BK, RT, LT, PU, PD, and so
on. While the control structures are quite general, the domain operations
are tuned to deal with a certain sort of domain. Of course, Logo is a
general purpose programming language and can be used to deal with other
"worlds" perfectly well. But the language is particularly tuned to turtle
geometry. Adding other primitives or packages of subroutines could tune
it to other "worlds" too. Analogously, the domain operations of BASIC
tend to focus on the manipulation of arithmetic data; BASIC is tuned to
the "world" cf numbers and number arrays.

With this loose uistinction in mind, we can make the following point.
The conceptual difficulties in programming usually are presumed to lie in
the general control structures, perhaps because they seem more complex and
abstract at first thought. However, the domain operations and the domain
itself may pose equally confounding problems of complexity, abstraction,
and close discrimination. In the present study we see many subjects
experiencing such problems with turtle geometry, and indeed one of the
signal points about Logo has always been that it might teach students some
geometry (Papert, 1980). Likewise, while FOR loops often pose problems
for students of BASIC, so do more domain-oriented matters like arrays and
the differentiation between strings of numerals and numbers, e.g. "123"

versus 123.

Summary and implications for a better pedagogy of programmina

Certain elements of programming are widely recognized to pose
difficulties, presumably because of:

Complexity in at least three senses: the element participating in more
complex program structures, the element itself having a complex structure,

and the element accommodating complex subexpressions.

Abstraction in at least two senses: the element having very broad
reference or application, and an absence of mental models that help
one to visualize or otherwise make concrete one's understanding of
the element.

%, However, the results of the present experiment, buttressed by analogous
findings in other sources (e.g. Perkins & Martin, 1986; Perkins, Hancock,
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Hobbs, Martin, & Simmons, 1986; Sleeman, Putnam, Baxter & KuFpa, 1986)

argue that other aspects of programming that mi)ht be thought to be 'trivial'
-- mere matters of 'knowing it' -- offer substantive challenges of their
own. Without any pretense of exhaustiveness, we have identified the
following concerns:

Close discrimination problems, which make certain concepts hard to
grasp.

Domain and domain opera:tion problems, which can be quite as troublesome
for learners as problems having to do with the general control resources
of the programming language.

The conjunctivity effect, which, in a high-precision endeavor like
programming, escalates difficulties that in isolation may merely be
matters of "knowing it" into a major challenge.

A shortfall in elementary problem-solving strategies, which prevents
students from making the most of their somewhat fragile knowledge
bases.

Such problems become apparent when, as in the present clinical study,
one looks closely at difficulties students have that often are considered
trivial -- mere matters of knowing left from right, remembering the syntax
of a command, and so on. Accordingly, we suggest that a aood pedaaogy of
programming depends on reconceiving what is hard and what is easy by
recognizing the greater range of ways in which something can be hard. In

particular, one cannot depend on broad formulas like "more practice" to
repair students' difficulties with supposedly elementary aspects of pro-
gramming, saving the more refined pedagogy of mental models and whatnot for
the "truly difficult" concepts like the hierarchical use of suborocedures.
Rather, there is a need to understand better the quite genuine difficulties
posed by seemingly simple matters and to design pedagogy to deal with
them. Such attention appears called for by this and other evidence urging
that the many seemingly trivial problems of elementary programming add LW
to a distinctly nontrivial pursuit.
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