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ABSTRACT

The paper briefly explains the logic underlying the
calculations employed in canonical correlation analysis.
hypothetical data set is employed to illustrate that ca
correlation analysis subsumes both univariate and multi
parametric methods. Several real data sets are emplo
illustrate otfther themes. The paper discusses three
fallacious Iinterpretaticn practices that may lead to in
conclusions based on canonical results. The use of rotat
simplify results 1s discussed. It is suggested that ca
correlation analysis 1is a powerful analytic method
frequently best honors the complex nature of the reality

which the researcher wishes to generalize.
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Several trends 1In analytic practice are discernable as
incremental changes that are moving social z2cience zlowly toward

more productive inguiry. For exampie, researchers have

increasingly recognized that statistical significance may not be
a particularly effective criterion with which to evaluate results
(Thompson, 1987c; 1988); popular developments in meta-analysis
(Jones & Fiske, 1953; Glass, MeGaw & smith, 1981; =Rosenthal,
1984) may have compelled more researchers to recognize the
importance of effect sizes in their studies. Researchers have
also increasingly recognized that statistical control, such as
that employed in anaiysis of covariance (ANCOVA), must be used
with extraordinary caution; these methods tend to either be
unnecessary or seriously distort results (Thompson, in
press-c} and can lead to "tragically misleading analyses"
(Campbell & Erlebacher, 1975, p. 597).

However, the trend away from the use of classical analysis
of wvariance methods (Goodwin & Goodwin, 1985) may be the most
noteworthy trend of all, since the use of the methods can have
several deleterious effects (Cohen, 1968; Thompson, 1986a). Even
when analysis of wvariance methods represent good analytic
choices, regression or general linear model approaches to the
methods wusing a priori contrast coding still tend to be superior
since these approaches tend to yield greater power against Type
II error and tend to be more theorecically grounded (Thompson,
1985a; 1987hb).

The gradual shift away from the use of analysis of variance
approaches has been due in part toc an increased recognition that

all parametric univariate methods are special cases cof regression




analysis (Cohen, 1968). The shift has also been due to increased

recognition that many researchers
prefer experimental over correlational research
designs because experimental designs provide more
complete information about causality. why does this
situation contribute~ to ovaism? Because some
researchers confuse research designs with the
statistical techniques which are used to analyze
the data which the designs help to generate.
(Thompson, 1981, p. 5)

As Thompson (in press-c) notes,
The fact that OVA methods are appropriate when
predictor variables such as experimental assignment
naturally occur at the nominal level of scale has
stimulated some researchers to unconsciously [and
incorrectlyl associate the conseguences of
experimental design selection with OVA methods.

However, in reality all parametric significance tests,
including those which are muitivariate, are special cases of
canonical correlation analysis (Knapp, 1978). 1Indeed, Thompson
(1985b) 1illustrates how various univariate and multivariate
analyses can all be conducted wusing canonical correlation
analysis. Thompson (1986b) notes that the evaluation of several
hypothesis tests within a single study inflates the
experimentwise Type I error probability, wusually to a somewhat

unknown degree. The failure to use multivariate methods often

also distorts the reality about which the researcher is




attempting to generalize--the least of thege distortions oceurs
when a regearcher completes sgeveral unlvariate tests and flrds no
statistically significant results when significance would have
occurred if a multivariace test had been employed. Thompson
(1986b) presents a data set illustrating how this car occur.
These various considerations suggest that canonical correlation
analysiz mway be a powerful and important weapon in the soclal
scientist's arsenal of analytic weapons.

The purpose of the present paper is to briefly explain the
logic underlying the basic calculations employed in canonical
correlation analysis. The paper also employs a small hypothetical
data s3set to demonstrate that canonlcal correlation analysis
subsumes both univariate and multivariate parametric methods.
Three common fallacious interpretation practices that may lead to
incorrect conclusions based on canonical results are discussed.

The use of rotation iIn the canonical case is 1illustrated and

briefly discussed.

The Basic Logic of Canonical Calculations

Thompson (1983) notes that canonical correlation can be
presented in bivariate terms. This cotnceptualization has
instructional appeal because most students feel comfortable
working with bivariate correlation coefficients. The view is also
important because it forces realization that canonical analysis,
like all parametric methods, involves the creation of "synthetic"
gcores for each person. 1In regression analyses the synthetic
scores are the predicted dependent variable scores of each of the

subjects, sometimes termed "YHAT"; the correlation between the




subjects' actual dependent variable scores and synthetic
dependent. variable ("YHAT") scores is the multiple correlation
coefficient, while the sum of squares of the "YHAT" scores equals
the sum oﬁ squares explained. 1In factor analysis these synthetic
variables are the factor scores of each subject on each of the
factors. In discriminant analysis these synthetic variables are
the discriminant scores of each subject on each of the
discriminant functions.

Table 1 present3 a hypothetical data set (Thompzon, 19%87a)
that will be employed to illuatrate how 3cores of individualsz are
converted 1into the synthetic variables that are actually the

focus of a canonical correlation analysis. The data are adapted

from those presented by Harris (1987). The data set involves two
criterion wvariables, "X" and "Y," and two predictor wvariables,
"A" and "B". Since canonical correlation analysis presumes at

least <¢wo predictor and at least two criterlon wvariables, the
data set represents the simplest case for which a true canonical
analysis can be conducted. 1If a canonical analysis of a smaller
data set was conducted, most researchers would refer to the
analysis using some other name, such as multiple regression
analysis. Table 1 also presents each of the five persons' scores
on the four variables converted into their equivalent Z-score
forms. Table 2 presents the SPSS-X program used to analyze these
data; the reader may wish to replicate this analysis to reflect
in more detail on the results reported here.

INSFRT TABLES 1 AND 2 ABOUT HERE.

various analytic methods yield weights that are applied to

variables to optimize some condition--such weights include beta
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weights, factor pattern coefficlents, and discriminant function

coefflclents. These welghts are all equlvalent, but in canonical
correlation analysis the weights are usually labelled
standardized function coefficients. These weights are applied to
each individual's data to yield the synthetic variables that are

the basis for canonical analysis.

However, In canonlical analysis several sefs of welights and of

the resulting synthetic variables can be created. These canonical
functions are related to factors, are uncorrelated or orthogonal,
and can be rotated in varlous ways (Thompson, 1984). The number
of functions that can be computed in a canonical analysis eqguals
the number of variables in the smaller of the two variable sets,
as explalned hy Thompson (1984). 1In the present example, since
each variable set consisted of two wvariables, two canonical
functions could be computed. Table 3 presents the canonical
function coefficients and other selected results from the
analysis.

INSERT TABLE 3 ABOUT HERE.

Table 4 1illustrates the computation of the synthetic
variables for each of the five subjects using the Function I
function coefficients: the reader may wish to compute the
corresponding values associated with the Function II results. For
a glilven function, two synthetic scores are produced for each
subject--one associated with the composite of weighted criterion
variables, and one associated with the composite of weighted
predictor wvariables. For example, as noted in Table 4, the

criterion synthetic variable score, "CRITCOMP," for subject one

N




was 1.29589 ([-1.44986%-1.352871 + (+1.04101*%-,638501). By the
same token, the predictor synthetic variable score for subject

s
I

.

five was -1.21913 ([-1.58021*+1.325631 + [1.24215*+.67606

INSERT TABLE 4 ABOUT HERE

The canonical correlation (Rc) is nothing more (or less)
than the Pearson product-moment correlation between the synthetic
var.able scores of the subjects on a given functiop. This can be
illustrated 1in several ways using the present results. For
example, for this case, the bivariate correlation equals the sum
of the cross-produ.ts of the two variables, the sun then helng
divided by n - 1. The cross products of the synthetic variables
for each of the five subjects are presented in Table 4, as is the
sum of these cross products. The sum divided by n -1
(3.999947/4) equals, within rounding error, the actual Rc result
reported in Table 3 for Function I.

An alternative presentation is graphic. Figure 1 presents
the scattergram in which the five pairs of synthetic wvariable
scores from Table 4 are arrayed. For example, note that *the first
subject's composite scores in Table 4 indicate that this subject
is represented by the asterisk in the upper right position within
the scattergram. Figure 1 also preseats the 1least sguares
regression line best fitting these asterlisks. In the two variable
case, since the synthetic variables have means of zero, the slope
of this regression line equals a beta weight, also equals the
bivariate correlation between the synthetic wvariables, also
equals the canonical correlation coefficient, i.e., .99999.

INSERT FIGURE 1 ABOUT HERE.

Table 5 presencs computations that illustrate the meaning of




two other canonical results, structure coefficients and 1index
coefflclents. Structure coefficlents have the same meanling in a
canonical analysis as 1in other analyses, i.e., structure
coefficients are bivariate correlation ccefficients between a
given criterion or predictor variable and the synthetic wvariable
involving the wvariable set td which the variable belongs. For
example, 3lnce "ZX" was a criterion varlable, the correlatlon
between "ZX" and "CRITCOMP" is the structure coefficient for
"ZX." Note that the sum of the cross products of "7X" and
"CRITCOMP", labelled "XSTRUC" in Table 5, once divided by n - 1,
equals within rounding error the structure coefficient for "zZX"
presented 1in Table 3. An index coefficlent is the cocrelation
coefficlent between a wvarliable and the synthetic variable
consisting of wvarlables from the vaclable set to which the
varlable does not belong. Table 5 {llustrates the calculation of
the 1index coefficient for "ZX" on Function 1I. Thompson (1984)
discusses the importance of index coefficients in greater detail.

INSERT TABLE 5 ABOUT HERE.

Canonical Correlation Analysis (CCA) as a General Method

In a seminal article, Cohen (1968, p. 426) noted that ANOVA
and ANCOVA are speclal cases of multiple regression analysis, and
argued that 1in this realization "lie possibilities for more
relevant and therefore more powerful explcitation of research
data.” Since that time researchers have increasingly recognized
that conventional multiple regression analysis of data as they
were initially collected (no conversion of intervally scaled

independent wvarlables into dichotomies or trichotomies) does not




discard information or dlstort reality; conventional regreszslon
analysis can be particularly useful wher multiplicative effects
are evaluated (e.g., through the use of powered vectors or
product terms (but see Pedhazur, 1982, pp. 427-430)) or when
commonality analyses are conducted (e.g., Thompson, 198%a)).
Discarding wvariance 1is not generally good research practice
(Thompson, in press-b). As Kerlinger (1986, p. 558) explains,

...partitioning a continuous wvariable into a

dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other

variables. A good rule of research data analysis,

therefore, 1is: Do not reduce continuous variables

to partitioned variables (dichotomies,

trichotomies, etc.) unless compelled to do so by
circumstances or the nature of the data (seriously
skewed, bimodal, etc.).

OVA methods (ANOVA, ANCOVA, MANOVA and MANCOVA) do not
discard variance only when independent variables are already
nominally scaled. Even in these cases, however, the regression
implememt .ion of OVA methods using the a priori contrast coding
explained by researchers such as Pedhazur (1982, chapters 9-14)
and Loftus and Loftus (1982, chapter 15) has two important
benefits, as explained in some detail by Thompson (1987b). First,
a priori methods have more power against Type II error than do

post hoc tests (e.g., Kirk, 1968, p. 96--Thompson (1987b, pp. 10-
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11) catalogs similar statements). The exception is when all ways
or factors have only two levels--then, and only then, both a
priori and post hoc tests are superfluous since each
I statistically significant omnibus hypothesis can only have
occurred by a given pair of means being different.

Second, .the wuse planned or a priori comparisons tends to
force the researcher to he wore thoughtful in conducting
research. As Snodgrass, Levy-Berger and Haydon (1985, p. 386)
suggest, "the experimenter who carries out post hoc comparisons
often has a rather diffuse hypothesis about what the effects of
the manipulation should be." sSimilarly, Keppel (1982, p. 165)
notes that,

planned comparisons are usually the motivating
force behind an experiment. These comparisons are
targeted from the start of the investigation and
represent an interest in particular combinations
of conditions--not in the overall experiment.
Indeed, a priori tests are often employed in lieu of omnibus
tests in both univariate OVA (Hays, 1981, p. 426; Xirk, 1968, p.
73) and multivariate OVA (Swaminathan, in press) applications.

These varlous realizatlons have led to less frequent use of
JVA methods (Goodwin & Geodwin, 1985), and to more freguent use
of a priori contrast coding and regression approaches when OVA
analyses are still conducted (willson, 1982). However, canonical
correlation analysls, and not regression analysis, 1is the most
general case of the general linear model! (Baggalley, 1981, p.
129). Fornell (1978, p. 168) notes that "multiple regression,

MANOVA and ANOVA, and multiple disriminant analysis can all bDe
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shown to be speclal casea of canonical analysls. Princlpal
components analysis 1is also in the inner family circle." In an
important article, Knapp (1978, p. 41i0) dc¢monstrated this in some
mathematical detail and concluded that "virtually all of the
commonly encountered tests of significance can be treated as
special cases of canonical correlation analysis."”

Thompson (1985b) employed the data presented in Table 6 to
illustrate these identities. Varlous combinations of wvartables
were analyzed using bonth canonical correlation analysis and more
commonly used namez £for parawmetric methods (e.g., t-test, ANOVA,
MANOVA) to show that cznonical analysis can be used to yield
results from both conventional univariate and multivariate
methods. The results 1in the Thompson (1985b) report were
generated using SpPSSs verclon 9.2.

INSERT TABLE 6 ABOUT HERE.

In the present paper similar analyses were conducted using
the SaASs file presented in Table 7. SAS allows the researcher to
force the computer to analyze more results using multivariate
approaches, while SPSS-X now arbitrarily defaults to univariate
approaches to univariate data analyses. Thus, the equivalent
results produced by the SAS package allows comparisons of results
across methods with cewer steps in the comparison process. The
reader may wish to replicate these analyses in order to make a
more detailed comparison. Throughout the present paper results

are presented to the same number of decimal places yielded by the

SAS analysis.

INSERT TABLE 7 ABOUT HERE.
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Table 8 presents an analysis illustrating the equivalence of

t-tests and canonlcal correlatlon analysis, The p calculated

value assoclated with the test ¢ 'ifferences in means on
variable Y across variable B groups ‘v’ and "1" was 0.2149. Table
8 also presents results from a canonical correlation analysis
involving variable Y related with variskle B, which in this case

was also a dummy coding column. The resulting p calculated value

INSERT TABLE 8 ABOUT HERE.

l

was 0.2149.
Table 9 presents a conventional product-moment analysis of

the bivariate relationship between wvariables Y and A. The

assocliated p calculated value of 0.0548. & canonical correlation

analysis yielded a Rc value of 0.566434 with an associated p

calculated value of 0,0548.

INSERT TABLE 9 ABOUT HERE.

correlation coefficient was computed to be 0.56643 with an
Table 10 presents a conventional 2x3 factorial ANOVA
involving scores on the dependent variable Y across ways defined
by wvariables APRIME and B. Table 11 presents results from four
separate canonical correlation analyses using different
combinations of the a priori contrast coding expressions of the
information 1involved 1in the wvariables APRIME and B. It s
noteworthy that the correlation ratio computed for the error
effect for the full ANOVA model presented in Table 10 was
0.426573 (61.)/143.0); the lambda value presented in Table 11
associated with all contrasts was 0.42657343. The result is not

surprising since multivariate 1lambda 1is analogous to the

univariate sum-of-squares error divided by the SOS total.

11




INSERT TABLES 10 AND 11 ABOUT HERE.

Table 12 converts the canonical 1lambda's into seperate
effects for each ANOVA omnibus effect. Smaller lambda's connote
larger effect sizes. The APRIME main effect reported in Table 10
has the largest effect size 0.391608 (56.0/143.0), thus the
smallest 1larbda reported in Table 12 (0.52136752) is associated
with the same main effect. Table 13 converts the Table 12 omnibus
effect lambda's into ANOVA F tests comparable ,to those presented
in Table 10.

INSERT TABLES 12 AND 13 ABOUT HERE.

Table 14 presents the multiple regression analysis in which
variables, X, A, and B are used to predict dependent variable Y.
Table 14 also presents results from the canonical correlation
analysis 1involving the same two variable sets. The two sets of
results are directly comparable; the only difference is that the
canonical analysis yields the equivalent results presented to
more digits to the right of the decimal. Table 15 illustrates the
converslion of beta weights into canonical function coefficients,
and wvice wversa. Thompson and Borrello (1985) discuss these
relationships in more detail.

INSERT TABLES 14 AND 15 ABOUT HERE.

Table 16 presents results from a discriminant analysis
involving use of variables Y and X to predict membership in the
three groups delineated by the wvariable APRIME. The table also
nresents results from the canonical correlation analysis

involving the variables Y and X and the dummy coding variables,

Tl and BT2, which express in a different form exactly the same




information contained in APRIME. The results are directly

comparable.

Table 17 presents the function coefficients for variables Y
and X produced by both analyses for both functions I and II. In
order to compare these results, the largest coefficient in each
function 12 set equal to unity. Tatsuoka (1971, pp. 177-183)
explains this conversion and notes that he first discussed the
equivalence of these methods 35 years ago (Tatsuoka, 1953). The
identities 1illustrated here and summarized by Knapp (1978) have
been kKnown for some time, but the 1implications of these
identities have not always been appreciated by researchers.

INSERT TABLE 17 ABOUT HERE.

Table 18 presents the results of a 2%3 factorial MANOVA
involving dependent variables ¥ and X and the classification
variables APRIME and B. Table 19 presents results from four
separate canonical correlation analyses involving the
classification wvariables expressed as the orthogonal constrasts
Al, A2, Bl, alBl, A2Bl. Table 20 presents the conversion of the
Table 19 results to lambda values associated with the omnibus
MANOVA effects presented 1in Table 18. The Table 18 and 20
lambda's are comparable. Zinkgraf (1983) provides additional

examples of these relationships.

INSERT TABLES 18, 19, AND 20 ABOUT HERE.

These comparisons should not be taken to mean that special
cases of canonical methods will always yield the same results as
the more general canonical methods. For example, the results will

be different if a researcher performs a canonical analysis with

13
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unchanged varlables as against converting scue varlables to the
nominal level of scale in order to do an OVA analysis. Canonical
correlation omnibus, simultaneous analysis of a multivariate data
set may yleld very different conclusions from several univariate
analyses of the same data set, even as regards whether results
are found to be statistically significant (e.g., Thompson,
1986b). Finally, when ways of a design have more than two levels,
use of general linear model methods and a priori contrasts can
yield different conclusions than those produced by special rases
of canonical analysis called by names such as MANOVA. 1In each of
these cases the use of canonical correlation analysis wounld be
preferable.

The comparisons do illustrate that canonical correlation
analysis subsumes other parametric methods as special cases. This
realization has heuristic value. Canonical correlation analysis
provides a framework within which other parametric methods can be
related. The realization that OVA and other methods are «cpecial
cases of canonical correlation analysis should give researchers
pause to think that the more general methods should be employed
more often to avoid the discarding of wvariance that many
researchers perform in order to conduct OVA analyses. In reality,
all studies are correlational in the sense that even studies with
both experimental design and OVA analyses are about "the Job of
stating and testing more or less general relationships between
properties of nature" (Homans, 1967, p. 7). In experimental
studies degrees of relationship are expressed as effect size

estimates such as the correlation ratio or omega-sqguared.

14
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Three Common Interpretation Fallacies
Canonlcal correlation analysis 1Is a potent analytic method.
But the difficulty of interpreting canonical results can
challenge even the most seasoned analyst. As Thompson (1280, op.
1, 16-17) notes, one
reason why the technique is rarely used involves
the dlfficultiea which can be encountered In tryling
to interpret canonical results... The neophyte .
student of canonical correlation analysis may be
overwhelmed by the myriad coefficients which the
procedure produces... [(But! canonical correlation
analysis produces results which can be
theoretically rich, and if properly implemented the
procedure can adequately capture some of the
complex dynamlcs involved in educational reality.
However, the interpretation of canonical results can he

facilitated 1f three common interpretation fallacies are avoided.

Interpretation of Function Coefficients

In an artificial world of forcad-choices, the analyst might

interpret gtructure coefficients while ignoring function

coefficients. Structure coefficients are the 1wost helpful

coefficients to consult when interpreting canonical results,
although many researchers do not interpret and some do not even
report structure coefficients. Since structure coefficients
inform the researcher of the correlation between each wvariable
i and the synthetic variables, these coefficients are what inform

the researcher regarding the meaning of what Is actually being

15




correlated in a glven analyslis.

As noted previously, structure coefficients have the same
meaning in the canonical cases as In the other analytic nethods
that the canonical methods subsume as special cases. For example,
in principal components analysls the correlatlion between the
scores on one variable and the factor scores on one factor is the
structure coeffliclent for that variable on that factor. And as
Gorsuch (1983, p. 207) notes, "the basic matrix for interpreting
the factors 1is the factor structure." Similarly, in a
discriminant analysls, the correlatlon hstween the scores on a
predictor wvariable and the discriminant function scores on a
given function is the structure coefficient for that variable on
that function.

In the regres=ion caze, the correlatlon bhetween acoresz on a
predictor wvariable and the "YHAT" scores is the structure
coefficient for the predictor wvariable. Just as structure
coefficlents are wvitally important in Interpreting results In
other analytic cases, structure coefficients can be very
important 1in interpreting multiple regression results (Cooley &
Lohnes, 1971, pp. 54-55). Thompson and Borrello (1985) present an
explanation of thils application and an actual research example in
which the interpretation solely of beta weights rather than of
structure coefficients would concelvably have lead to Incorrect
conclusions.

Thus, with respect to cancnical analysis, Meredith (1964, p.
55) suggested that, "If the wvarlables within each set are

moderately intercorrelated the possibility of interpreting the

16
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canonical variates b, inspection of the approprlate regression
welghts [function coefficients] is practically nil." Siwmilarly,
Kerlinger and Pedhazur (1973, p. 344) argued that, "A canonical
correlation analysis also yields weights, which, theoretically at
least, are interpreted as regression [betal weights. These
weights [function coefficients] appear to be the weak link in the
canohlical correlation analysis chaln." Levine (1977, p. 20, hlsa
emphasis) is even more emphatic:

I specifically say that one has to do this

(interpret structure coefficients] since I firnly

believe as long as one wants inl{ormation about the

nature of the canonical correlation relatlonship,;

not merely the computation of the [synthetic

function] scores, one must have the structure

matrix.

The hypothetlical results presented in Table 3 1illustrate
that the interpretation of only function coefficients can lead to
seriously distorted conclusions. The standardized function
coefficients might lead the naive analyst to conclude that all
four variables contribute appreciable information to the
relationship between the two sets of synthetic variable scoregs on
Function I. 1In reality, wvariables "ZY" and "ZB" share almost rno
variance at all with the function's scores.

The reallzation that wultiple regresslon anolysis is a
special case of canonical correlation analysis suggests that
structure coefficlents may also be important aids to
interpretation 1in the regression case, as Thompson and Borrello

(1985) argued. The data reported here can also be employed to

17
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11luatrate thiz polnt. Azaume that the saynthetic wvarlable
CRITCOMP was not a synthetic variables, but a Z-score expression
of an actual measure. Table 21 presents the regression results
associated with the prediction of CRITCOMP with variables A and
B. The tabled beta welght (1.242139) should not be taken to
indicate that wvariable B shares appreciable variance with the
"YHAT" scores in this case. In fact, B only shares 0.0324% (0.018
X 0.018) of 1its variance with "YHAT", though B is wuseful 1in
creating the "YHAT" scores.

INSERT TABLE 21 ABOUT HERE.

These data involve the presence of a variable, B, that
"suppresses" the relationship between 2 and CRITCOMP. This can bhe
illustrated for these data by computing the correlation
coefficient (-0.999822) between CRITCOMP and A residualized for
the influences of B (ZARESI in the Table 2 command filej). The
comparisons of function and structure coefficients for wvariables
alerts the res=zarcher to the existence of such dynamics. 1In an
artificial forced-choice world 1in which only one coefficient
could be consulted, structure coefficients might be preeminent;
in the real world both coefficients should be consulted in
interpretation. Interpretations based solely on function

coefficients should be eschewed.

Interpretation of Redundancy Coefficients

If the squared structure coefticients for a given set of
variables are added and then the sum is divided by the number of
varlables in the set, the result informs the researcher regarding

how much of the variance in the variables, on the average, |is




contained within the synthetic scores for that function. This
result is called a variate -adequacy coefficient (Thompson, 1984).
Stewart and Love (1968) suggested that multiplying the adequacy
coefficient times the squared canonical correlation yields a
coefficient that they labelled a redundancy coefficient (Rd).
Miller (1975) developed a partial test distribution to test the
statistical s=ignificance of redundancy ceoefflcients. Cooley and
Lohnes (1976, ©p. 212) suggest that redundancy coefficients have

great utility. 1In reality, ¢the interpretation of redundancy

coefficients does not make much sense in a conventional canonical

analysis.

As Cramer and Nicewaider (1979) proved in detail, redundancy
coefficients are not truly multivariate. This is very disturbing,
because the main argument in favor of multivariate methods (for
both substantive and statistical reasons) is that these methods

simuitaneously consider all relationships during the analysis

(Thompson, 1986b).

Table 22 helps to illustrate the problem. The table presents
the adequacy, redundancy, and squared Rc's for both f nctions for
the hyprnthetical Table 1 data, as well as the pooled values. For
example, the pooled redundancy coefficient for the «criterion
variable set is 0.242783. Table 23 presents the results of four
regression analyses for various criterion variables and predictor
variable sets. The table illustrates that the average sqguared
multipie R for a variable set equals the pooled redundancy
coefficient for that variable set. The redundancy coefficient is

the average of a set of univariate results!




INSERT TABLES 22 AND 23 ABQUT HERE.

A redundancy coefficient for a given variable set on a given

ct

function eguals the adeguacy coefficient for the set times the
squared Rc for the function. The redundancy coefiicient can only
equal one when the synthetic variables for the function represent
all the variance of every variable in the set, and the squared Rc
also exactly equals one. This does not usually occur in practice.
Thus, redundancy coefficients are useful only to test outcomes
that rarely occur and which may be unexpected (Thompson, 1980, p.
16; Thompson, 1984). Furtheriwre, 1t seems contradictory ¢to
employ an analysis that use functions coefficlents to optimize
Rec, and then to interpret results not optimized as part of the
analysis, i{.e., redundancy coefficlents.

However, there are exceptions to most rules. Table 24
presents the correlation matrix associated with a concurrent
validity study cﬁnducted by Sexton, McLean, Boyd, Thompson and
McCormick (in press). Table 25 presents the results of a
canonical correlation analysis of the Table 24 data. In thia caze
variate adequate <coefficients for both variates on function I
were quite large, and the squared Rc was also remarkably large.
Thus, 1in this rather unusual case, the R4 coefficients presented
in Table 25 were impressively large on function I. It may be more
reasonable in concurrent validity studies to expect such results,
but, again, such results are not usually expected.

INSERT TABLES 24 AND 25 ABOUT HERE.

Fallure to Partition Using Canonical Commonality Anslysis

Researchers have been aware for some time that
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interpretation of regression results is often facilitated by
conducting "commonality analyses" (Newton & Spurrell, 1967;

Thompson, 1985a). These analyses partition variance to indicate

how much wvariance is unique to a given variable, and how much
variance is common to other variables. As an example analysis for
the regression case, Seibold and McPhee (1979, pp. 364-365)
present a cancer =study in which the reaults would have bheen
grossly misinterpreted 1if a commonality analysis had ot been
conducted.

Given that multiple regression is a special case of
canonical correlation analysis, it seems reasonable to expect
that the same variance partitioning procedures might also bhe
useful 1in the true canonical case. Thompson and Miller (1985)
explain the nmultivariate procedure using an actual research
example 1In which educators' perceptions of dying students and of
death were 1investiacated. The procedure may be ver? useful in
research situations in which at least one of the wvariable sets
consists of wvariables that are conceptually or theoretically

distinct. As in the regression case, the failure to employ

commonality anai/ssis can lead to less informed interpretation of

results.

The Table 24 data can be employed to 1illustrate the
mechanics of the procedure. Let us assume (rather artificially)
that the Battelle Developmental Inventory consisted of three
conceptually or emplrically distinct sets of scales: (a) the
Social (So) scale; (b) the Adaptive (Ad) and the Motor (Mo)
scales; and (c) the Communication (Co) and the Cognitive (Cqg)

scales. Table 26 presents the squared Rc's associated with use of
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Al fferent combilnationz of the three varliable sets to predict
criterion wvariate composite scores on function I. These values
are generated by using COMPUTE statements to produce canonical
variate~ scores {see Table 2 for an illustration' and then mnsing
regression procedures to predict the synthetic composite scores
with different combinations of variables. Table 27 1illustrates
the calculation of multivariate commonality coefficients for

these data, given the results presented in Table 26.

INSERT TABLES 26 AND 27 ABOUT HERE.

Table 28 presents the coefficlents in the format typlcally
employed in reports of commonality analyses. In the present case,
the Table 28 results lndicate that almost all of the predictive
power of the three artificial sets of predictor variables |Is
Common to all three gets. Thls result 13 not surprising, glven
redundancy analysis suggesting the the variable sets are
characterized by "g" variates creating a "g" function.

INSERT TABLE 28 ABOUT HERE.

Multivariate commonality analyses can be useful when a
variable set consists of theoretically or empirically distinct
sets of variables. Several authors present the procedures for
computing commonality coefficients for different numpers of
variable sets (Cooley & Lohnes, 1976, p. 222; Seibold & McPhee,
1379, p. 358); these procedures can be generalized to the
multivariate case in the manner already illustrated. Once results
like those presented in Table 26 are available, microcomputer
"spreadsheet" =software is useful for performing the remalining

computations, but mainframe statistical packages can also be




employed. Table 29 presents an SPSS-X file like that used to
generate the Thompson and Miller (1985) analysls. The reader may

wish to replicate these computations using the program.

INSERT TABLE 29 ABOUT HERE.

A Note About Rotation

Space precludes complete discussion of the many wvariations
oh canonical methods, including methods that can be empleyed with
more than two variable sets (Horst, 1961), methods that o
optimize or at 1least consider redundancy (DeSarbo, 1981;
Johansson, 1981; Wollenberg, 1977), and methods for eliminating
variables by consulting communality (Thompson, 1984, pp. 47-51)
or other wvalues so that results will be more parsimonious and
generalizable (Rim, 1972). Space also precludes detailed
discussion of ways to estimate the sample size required for
reasonable power in a canonical correlation analysis, but Figure
2 13 presented to illustrate some possibllities for evaluating
power 1in the canonical case. The figure is part of a printout
generated by software described by Thompson (in press-a).

INSERT FIGURE 2 ABOUT HERE.

However, the linkage between canonical correlation analysis
and factor analysis suggests that rotation, which is so useful in
factor analysis, may be useful in the canonical case as well.
Some discussion of these applications 1is warranted. Thompson
(1984, pp. 31-41) provides additional discussion o¢of wvarious
rotation considerations.

Table 30 presents selected canonical results associated with

the study reported by Webber, Thompson and Berenson (1987/1988).
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This analysls represents the speclal case In which canonical
f inction and structure matrices exactly equal each other, since
orthogonal factor scores were the basis for the analysis.
Whenever all variables in a set are perfectly uncorrelated, then
function and structure matrices are equivalent.

INSERT TABLE 30 ABOUT HERE.

Rotation to the varimax or similar criteria is typically not
appropriate 1in the canonical case, because these methods ignore
the fact that canonical analysls involves two dlstinct wvarlable
sets. As Thorndike (1976, p. 4) argues,

The two sets of variables presumably have been

kept separate for a reason. If an lnvestigator is

interested in the structure of the combined sets,

then he probably should have performed a

traditional factor analysis ih che first place.
However, Bentler and Huba (1982) propose a rotation strategy that
honors membership in variable sets. Huba, Palisoc and Bentler
(1982) present a computer program that lmplements the mnmethod.
Table 31 presents a simultaneous orthogonal rotation of the Table
30 results.

INSERT TABLE 31 ABOUT HERE.

Table 32 presents the correiation coefficients among variate
scores. The post-rotation canonical correlation coefficients are
presented on the diagonal of the matrix. A comparison with the
coefficients presented 1in Table 30 indicates that the rotation
distributed some of the variance from the first two functions

onto the third function as a way of achieving a simplerx

structure.
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INSERT TABLE 32 ABOUT HERE.

The sof:ware provided by Huba, Palisoc and Bentler (1982)
2'=n ~omputes an orthogonally rotated maximum likelihood factor
analysis using canonical results. Webber, Thompson and Berenscn
(1987/1988) present these results for these data.

It 1is not yet <clear whether rotated canonical results
produce Ivterpretations that are more generalizable or leus
sample specific. Theoretically, it might be argued that results
with simpler structure are more parsimonious and therefore should
he more generalizable. Monte Carlo work i3 needed to explore this
issue. However, it should be noted that canonical analyses are
conducted to optimaliy welght variables from two variable sets so
that synthetic scores composed from the sets will be maximally
related on the first function, and next most maximally related on
each subsequent and orthogonal function. Although the sum of the
squared canonical correlations remains the same both bafore and
after rotation (-ee Thompson, 1984, pp. 33-38), rotation of
canonical results inherently violates, to some degree, the bhasic
logic of the methods, because variance is distributed across

individual functions.

Summar

The logic underlying the basic calculations employed in
canonical correlation analysis has been explained. Three common
fallacious 1interpretation practices that may lead to incorrect
conclusions based on canonical results were presented. A small
hypothetical data set was employed to make the discussion

concrete.



Notwithstanding some opinion to the contrary (Kerlinger,
1986, p. 606; Thompson, 1987d), canonical correlation analysis is
a powerful analytic method that frequently best honors the
complex nature of the reality about which the researcher wishes
to generalize. As Kerlinger (1973, p. 652) suggests, "some
research problems almost demand canonical analysis." Similarly,
Cooley and Lohnes (1971, p. 176) suggest that "it is the simplest
model that can begin to do justice to this difficult problem of
sclentific generalization."

More researchers need to recognize the value of multivariate
methods in general and of canonical correlation analysis in
particular. Tatsuoka's (1973, p. 273) previous remarks remain
telling:

The often—héarn argument, "I'm more interested in
seeing how each wvariable, in 1{ts own 1right,
affects the outcome" overlooks the fact that any
varliable taken in 1isolation may affect the
criterion differently from the way it will act in
the company of other variables. It also overlooks
the fact that multivariate analysis--preclisely by
considering all the varliables simultarneously--can
throw 1llght on how each one contributes to the
relation.
However, the potentials of canonical correlation analysis will
only be reallized if researchers understand the logic underlying
the method and 1{f some serious Interpretation pltfalls are

avolded.

Do
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Table 1
Hypothetical "Bird Beak" Data

X Y A B ZX zY ZA ZB
9.0 7.0 10.0 8.0 -1.35287 -.63850 .00000 1.0432¢
11.0 6.0 10.0 5.0 -.44490 -1.26448 .00000 -.53744
12.0 8.0 8.0 4.0 .00908 -.01252 -.81650 -1.06434
13.0 10.0 8.0 5.0 .46306 1.23944 -.81650 -.53744
14.9 9.1 14.0 8.1 1.32563 .67606 1.63299 1.09595

Table 2
SPSS-X Command File Used to Analyze the Table 1 Data

TITLE 'ANALYSIS OF RICHARD HARRIS DATA ***%*!

FILE HANDLE RJH/NAME='SWSMEP,DAT'

DATA LIST FILE=RJH/X 1-3 (1) Y 5-7 (1) A 9-11 (1) B 13-15 (1)

COMPUTE ZX=(X-11.98)/2.20273"

COMPUTE 2Y={Y-08.02)/1.59750

COMPUTE ZA=(A-10.00)/2.44949

COMPUTE ZB={(B-06.02)/1.89789

COMPUTE REGYHAT=(-1.580199%*ZA)+(1.242139%*2B)

COMPUTE ZARESI=ZA-(.774382*%ZB)

COMPUTE CRITCOMP=(-1.44986%*ZX)+(1.04101*ZY)

COMPUTE PREDCOMP=(-1.58021*ZA)+(1.24215*ZB)

COMPUTE XSTRUC=ZX*CRITCOMP

COMPUTE XINDEX=ZX*PREDCOMP

PRINT FORMATS ZX TO XINDEX(F8.5)

LIST VARIABLES=ALL/CASES=50

CONDESCRIPTIVE X TO XINDEX

STATISTICS ALL

SUBTITLE 'SHOW r's AMONG SYNTHETIC VARIABLES ARE OTHER COEFS'

PEARSON CORR X TO XINDEX

SUBTITLE 'COMPUTE R'sS TO SHOW Rd's ARE NOT MULTIVARIATE'

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/
DEPENDENT=X/ENTER A B

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/
DEPENDENT=Y/ENTER A B

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/
DEPENDENT=A/ENTER X Y .

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.C001)/
DEPENDENT=B/ENTER X Y

SUBTITLE 'COMPUTE CONVENTIONAL CANONTCAL ANALYSIS'

MANOVA X Y WITH A B/PRINT=DISCRIM(RAW, STAN, COR,ALPH2{(1.0))
SIGNIF(DIMENR EIGEN MULTIV)/DESIGN/

SUBTITLE 'PLOT SYNTHETIC VARIABLE SCORES FOR FUNCTION I'

SCATTERGRAM CRITCOMP (-€,3) WITH PREDCOMP (-3,6)

STATISTICS ALL

OPTIONS 4

SUBTITLE '**SHOW IMPORT OF STRUCTURE COEFS IN THE REG CASE'

REGRESSION VARIABLES=CRITCOMP PREDCOMP A B/DESCRIPTIVES=DEFAULTS/
CRITERIA=TOLERANCE(.0001)/DEPENDENT=CRITCOMP/ENTER A B

SUBTITLE '##FIND BETA TO RESIDUALIZE' ZA USING ZB'

REGRESSION VARIABLES=CRITCOMP PREDCOMP A B/DESCRIPTIVES=DEFAULTS/
CRITERIA=TOLERANCE(.0001)/DEPENDENT=A/ENTER B

SUBTITLE ‘'$SILLUSTRATE THAT FUNCTION COEFS REFLECT PARTIAL CORR'

REGRESSION VARIABLES=CRITCOMP PREDCOMP A B ZARESI/
CRITERIA=TOLERANCE(.0001)/DEPENDENT=CRITCOMP/ENTER ZARESI
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Table 3
Selectzd Canonical Analysis Results

Function I Function II

Stn Fun Struct Stn Fun Struct Communality
ZX -1.44986 -.69607 -.01281 .71798 1.000008
ZY 1.04101 -.00884 1.00924 .99996 .999998
ZA -1.58021 -.61831 .02918 .,78593 .999993
ZB 1.24215 .08146 .97723 .,99983 1.006295
RC .93599 .02557

Table 4
"Synthetlc" varlate Scores for Function I

ZX zY ZA ZB CRITCOMP PREDCOMP CRITXPRED

-1.35287 .63850 .00000 1.04326 1.29678 1.29589 1.680484
-.44490 -1.,26448 .00000 -.53744 -.67129 -.66758 .448139
.00908 -.01252 -.81650 -1.06434 -.02620 -.03183 .000833
.46306 1.23944 -.81650 -,53744 .61889 .62266 . 385358
1.32563 .67606 1.63299 1.09595 -1.21819 -1.21913 1.485131

Sum . : 3.999947

Note. The sum of the cross-products (3.999947) divided by n-1 (4)
1s, within rounding error, the canonical correlation.

Table 5
Calculation of Structure and Index Coefficients

ZX CRITCOMP PREDCOMP XSTRUC XINDEX

-1.35287 1.29678 1.29589 -1.75438 -1.75317
-.44490 -.67129 -.66758 .29866 .29701
.00908 -.02620 -.03183 -.00024 -.00029

. 46306 .61889 . 62266 .28658 .268833
1.32563 -1.21819 -1.21913 -1.61487 -1.61612

Sum -2.78425 -2.78424

Note. The sum of the cross-products of "2ZX" and "CRITCCMP"
2.78425) divided by n-1 (4) 1is (-.69606), within rounding
ror, the structure coefflcient of "2X" on Function I. The sum

(-
er

of the cross-products of "ZX" and "PREDCOMP" (-2.78424) divided
by n-1 (4) 1is (-.69606), within rounding error, the index
coefficient of "ZX" on Function I.




Table 6

Hypethetical Data from Thompzon
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Table 7
SAS File to Analyze Table 6 Data

TITLE '$$$ SHOW CANONICAL SUBSUMES ALL 1985 AERA ERIC #ED262073';
~ DATA MULTI;

INFILE DEM07257;
INPUT ¥ 1-2 X 4-5 A 7-8 B 10 APRIME 12 Al 14-15 A2 17-18
Bl 20-21 Al1Bl1 23-24 A2Bl1 26-27 BT1 30 BT2 32;

PROC PRINT; RUN;

TITLE 'l. CCA SUBSUMES T-TESTS KEH&UE';

PROC CANCORR ALL; VAR Y; WITH B;

PROC TTEST; CLASS B; VAR Y; RUN;

TITLE '2. CCA SUBSUMES PEARSON R #H###';

PROC CANCORR ALL; VAR Y; WITH A;

PROC CORR PEARSON; VAR Y A; RUN;

TITLE '3. CCA SUBSUMESS FACTORIAL ANOVA #i##4';

PROC CANCORR ALL; VAR Y; WITH Al A2 Bl Al1Bl1 A2Bi;

PROC CANCORR ALL; VAR Y; WITH Bl Al1Bl1 A2B1;

PROC CANCORR ALL; VAR Y; WITH Al A2 almri A2p1;

PR(*Z CANCORR ALL; VAR Y; WITH Al A2 B1;

PROC ANOVA; CLASS APRIME B; MODEL Y=APRIME B APRIME*B; RUN;

TITLE '4. CCA SUBSUMES MULTIPLE R #####"';

PROC CANCORR ALL; VAR Y; WITH X A B;

PROC REG SIMPLE; MODEL Y=X A B; RUN;

TITLE '5. CCA SUBSUMES DISCRIMINANT ##k##';

PROC CANCORR ALL; VAR BT1 BT2; WITH Y X;

PROC CANDISC ALL; VAR Y X; CLASS APRIME; RUN;

TITLE '6. CCA SUBSUMES FACTORIAL MANOVA ##4##4"';

PROC CANCORR ALL; VAR Y X; WITH Al A2 Bl AlB1 A2B1;

PROC CANZORR ALL; VAR Y X; WITH Bl AlBl A2B1l;

PROC CANCORR ALL; VAR Y X; WITH Al A2 AlBl1 A2B1;

PROC _:ANCORR ALL; VAR Y X; WITH Al A2 Bl;

PROC INOVA; CLASS APRIME B; MODEL Y X=APRIME B APRIME*B;
MANOVA H=_ALL_; RUN;

Table 8
CCA Subsumes t-tests (Y by B(0,1;};

Canonical Analysis t-test analysis
Squared Rc .149184 Mean Group 0 7.83333333
Rc .386244 SD 2.78687400
lambda .85081585 Mean Group 1 5.16666667

sD 4,07021703
F 1.7534 t 1.3242
df 1/10 df 10
p calc .2149 p calc .2149
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Table S
CCA Subsumes Pearson r [Y with Al

Canonical Analysis Pearson r
squared Rc .320847
RC .566434 r .56643
lambda .67915301
F 4.7242
df 1/10
p calc .0548 p calc .0548
Table 10
Factorial ANOVA (Y by APRIME(1,3),B(0,1)]
Source 5085 af M5 F p calc
APRIME 56.00000000 2 [28.000] 2.75 0.1417
B 21.33333333 1 (21.333] 2.10 0.1976
APRIME*B 4.66666667 2 12.3331 0.23 0.8016
ERROR 61.00000000 6 10.16666667
TOTAL 143.00000000 11
Table 11
Canonical Analyses Using Four Models
Model Predictors of Y lambda
1 Al,A2,Bl1,Al1B1,A2B1 .42657343
2 Bl,Al1B1,A2B1 .81818182
3 Al,A2,Al1B1,A2B1 .57575758
4 Al,A2,Bl .45920746
Table 12
Conversion to ANOVA lambda's
Ef fect Models Conversion Result
APRIME 1/2 .42657343/.81818182 ,52136752
B 1/3 .42657343/.57575758 .74089068
APRIME*B 1/4 .42657343/.45920746 .92893401
Table 13
Conversion of lambda's toc ANOVA F's
Source ((1 - lambda) /lambdal *(df error/df effect)=F calc
APRIME ((1 - .52136752)/.521367521%( 6 / 2 )=
.91803277 * 3 =2.7541
B ((1 - .74089068)/.740890681]%*( 6 / 1 )=
.349726717 * 6 =2.0984
APRIME*B ((1 - .92893401)/.92893401]%( 6 / 2 )=
.07650272 * 3 =0,2295
Table 14
CCA subsumes Multiple Correlation [Y with X, a, B]
Canonical Analysis Regression Analysis
Squared Rc .699201 Squared R .6992
Rc .836182
lambda .30079890
F 6.1986 1 6.199
df 3/8 af 3/8
p calc .0175 p calc .0175
39
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Table 15
Funciion Coefficient and Beta Weight Conversions

Functicn Beta Function
Predictor Coefsicient *Rc (or R) = Weight/Rc {(or R)=Coefficient
X -1.1869 *,836182 = -.,9974/.836182 = -1.18%9
A 1.5463 *.836182 = 1.2930/.836182 = 1.5453
B 0.1458 *.,836182 = ,1219/.836182 = 0.145%
Table 16
CCA Subsumes Discriminant [Y, X with BT1l, BT2 or APRIME(1l,3)]

Canonical Analysis Discriminant Analysis
Function I Function I
Squared Rc .908466 Squared Rc .908466
Rc .953135 Rc .953135
lambda .08561996 lambda .08561996
F 9.6701 F 9.6701
daf 4/16 af 4/16
p calc .0004 p calc .0004
Function II Function II
Squared Rc .064608 Squared Rc .064608
Rc .254181 Rc .254181
lambda .93539214 lambda .93539214
F 0.6216 F 0.6216
df 1/9 df 1/96
p calc .4507 p calc .4507
Table 17

Conversion of Function Coefficlents for Comparison

Canonical Correlation Analysis

Func I Result Func I1I Result

Y 0.6334 / 0.7827
X 0.7827 / 0.7827

Discriminant Function Analysis

0.8093 -0.7739 -0.7739 1.0000
1.0000 0.6226 -0.7739 -0G.8045

Func I Result Func II Result

1.8938 / 2.3401
2.3401 / 2.3401

" u

> <

Note. The conversion process is illustrated in Tatsuoka
pp. 177-183).

Table 18
Factorial MANOVA {Y, X by APRIME(1l,3),B(0,1)]
Source lambda F df p calc
APRIME .0320251s 11.47 4/10 .0009
B .60902256 1.60 2/5 .2895

APRIME*B .37811816 1.57 4/10 .2572

0.8093 0.7238 0.7238 1.0000
1.0000 -0.5823 0.7238 -0.8045

(1971,




Table 19
Canonical Analyses Using Four Models

Model Predictors of Y, X lambda

1 Al,A2,Bl,Al1B1,A2B1 .02112986

2 B1,AlBl,A2B1 .659892.3

3 Al,A2,AlBl,A2B1 .03469471

4 Al,A2,31 .05588163

Table 20
Conversion to MANOVA lambda's

Effect Models Converslion Result
ATRIME 1/2 .02112986/.65989239 .03202016
B 1/3 .02112986/.03469471 .60902252

APRIME*B 174 .02112986/.05588163 .37811817

Table 21
Beta Weights and Structure Coefficients for
Regression Prediction of CRITCOMP with A and B

Predictor r with Structure
Variabls Beta CRITCOMP R Coefficient
A -1.58019% -0.618 / 0.99999 = -0.61800618
B 1.242139 0.018 / 0.99999 = 0.01800018
Table 22

Redundancy Calculations for Hypothetical Data

Struc I S0 Struc II SQ Commun Pooled RA4
-0.69607 0.484513 0.71798 0.515495 1.000008
-0.00884 0.000078 0.99996 0.999920 0.999998

o o

SUM 0.484591 1.515415 2.000006
Adequacy 0.242295 0.757707 1.000003
Redundancy 0.242290 0.000492 0.242783
-0.61831 0.382307 0.78593 0.617685 0.999993
0.08146 0.006635 0.99983 0.999660 1.006295
SUM 0.388942 1.617345 2.006288
Adequacy 0.194471 0.808672 1.003144
Redundancy 0.194467 0.000525 0.194993
Rc SQ 0.999938 0.00065
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Table 23
Alternate Calculation of Pooled Coefficlents

Criterion Predictor

Variables variables R R SQ
X A B 0.69630 0.48484
Y A B 0.02705 0.00073
SUM 0.48557 |
Mean 0.24279 |
A Xy 0.61864 0.38271
B XY 0.03153 0.0009¢
SUM 0.38370
Mean 0.19185

Table 24 -
Correlation Matrix Assocliated with Sexton et al. (in press)

Ingtrument/varliable Variable
So Ad Mo Co Cg Me
Battelle Developmental Inventory

Social (So) !
Adaptive (Ad) 730 |
Motor (Mo) 758 835 |
Communication (Co) 731 831 821 !
Cognitive (Cg) 652 846 845 850 |
Bayley Scales of Infant Development  ---------------—---~----—-—--
Mental (Me) 742 851 896 879 934 |
Psychomotor (Ps) 758 827 947 810 832 | 901

Note. Decimals omitted.

Table 25
Canonical Correlation Analysls Coefficlents

Varliable/ I Sq II Sq 2

Coefficient Func Stru Struct Func Stru Struct h
Social 0.09 0.79 62.54% -0.07 0.10 1.08% 64%
Adaptive 0.02 0.89 78.96% 0.24 -0.03 0.09% 79%
Motor 0.49 0.97 93.77% 1.85 0.24 5.62% 100%
Communication 0.11 0.90 80.73% -0.48 -0.18 3.39% 84%
Cognitive 0.36 0.94 88.71% -1.61 -0.30 8.88% 98%
ndequacy 80.94% 3.85%
Redundancy 76.23% 1.58%

2
Rc 94.17% 41.07%
Redundancy 89.36% 2.10%
Adequacy 94.89% 5.11%
Mental 0.60 0.98 96.67% -2.22 -0.18 3.33% 100%
Psychomotor 0.42 0.96 93.11% 2.27 0.26 6.89% 100%




Table 26
Predictlon of Criterion Composite Scores on Function I
wlith various Predlctor variable Combinations

Predictors 2 |
Set Variables RcC

1. So 0.58894

2. Ad, Mo 0.90295

3. Co, Cg 0.86800

4, So & Ad, Mo 0.90522

5. So & Co, Cg 0.89457

6. Ad, Mo & Co, Cg 0.93881

7. ALL 0.94173

Table 27
Calculation of variance Partitions

Partition Result
Unlque to So

-Rc 8q 6 +Rc sq 7

-0.93881 0.94173 0.00292
Unique to ad, Mo

-Rc 8q 5 +Rc s8q 7

-0.89457 0.94173 0.04716
Unigque to Co, Cg

-Rc sq 4 +Rc sgq 7

-0.90522 0.94173 0.03651
Common to So & Ad, Mo

-Rc sq@ 3 +Rc s¢ 5 +Rc sq 6 -Rc sq 7

-0.86800 0.89457 0.93881 -0.94173 0.02365
Common to So & Co, Cg

-Rc sq 2 +Rc sq 4 +Rc sq 6 -Rc sq 7

-0.90295 0.90522 0.93881 -0.94173 -0.00065
Common to A4, Mo & Co, Cg

-Rc sq 1 +Rc sq 4 +Rc sq 5 -Rc s8q 7

-0.58894 0.90522 0.89457 -0.94173 0.26912
Common to So & Ad, Mo & Co, Cg

+Rc sq 1 +Rc sq 2 +Rc s8q 3

0.58894 0.90295 0.86800
-Rc sq 4 -Rc sq 5 -Rc sq 6 +Rc sq 7

-0.90522 -0.89457 -0.93881 0.94173 0.56302
Table 28

Conventional Presentation of Varlance Partitions
Partition Set #1 Set #2 set &3
Unlique to So 0.00292
Unique to Ad, Mo 0.04716
Unique to Co, Cg 0.03651
Common to So & Ad, Mo 0.02365 0.02365
Common te¢ So & Co, Cg -0.00065 -0.00065
Common to Ad, Mo & Co, Cg 0.26912 0.26912
Common to So & Ad, Mo & Co, Cg 0.56302 0.56302 0.56302
Sum of Partitions 0.58894 0.90295 0.86800
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TITLE
DATA LI
BEGIN D

.13739

.081751
END DAT
LIST VA
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE

COMPUTE
COMPUTE
COMPUTE
COMPUTE
COMPUTE

PRINT F

Table 29
PSS-X File to Compute Canonicsl Commonality Analysis

COMMONALITY ANALYSIS FOR THOMPSON-MILLER--ERIC ED263151'

ST RECORDS=2/V1 TO V15 (7F7.5/8F7.5)
ATA }
.12727 .13157 .08959 .08600 .11204 .08290

.07668 .07807 .02122 .08142 .06569 .00673 .01820
A
RIABLES=ALL/CASES=1

UX1=v1-~-vS

UX2=v1-v4

Ux3=v1i-v3

UX4=v1-v2

CX1X2=V4+V5-V11-V1
CX1X3=V3+V5-v10-V1
CX1X4=V2+V5-V9 -Vl
CX2X3=V3+V4-V8-V1
CX2X4=V2+V4-v7-V1
CX3X4=V2+V3-76-V1
CX1X2X3=V11+V10+V8+V1-V15-V5-V4-V3
CX1X2X4=V11+V10+V74+V1-V14-V5-V4-V2
CX1X3X4=V10+V3+V6+V1-V13-V5-V3-V2
CX2X3X4=V8+VT7+V6+V1-V12-V4-V3-V2
C1234=V15+4V14+4V13+V12+4V5+V4+V3+V2
-V11-v10-V9-V8-V7-V6-V1
AGE=UX1+CX1X2+CX1X3+CX1X4+CX1X2X3+CX1X2X4+CX1X3X4+C1234
LOCUS=UX2+CX1X2+CX2X3+CX2X4+CX1X2X3+CX1X2X4+CX2X3X4+C1234
NEWREL=UX3+CX1X3+CX2X3+CX3X4+CX1X2X3+CX1X3X4+CX2X3X4+C1234
CODES=UX4+CX1X4+CX2X4+CX3X4+CX1X2X4+CX1X3X4+CX2X3X4+C1234
MULTR=UX1+UX2+UX3+UX4+CX1X2+CX1X3+CX1X4+CX2X3+CX2X4+CX3X4+
CX1X2X3+CX1X2X4+CX1X3X4+CX2X3X4+C1234

ORMATS UX1 TO Cl1234,AGE TO MULTR(F7.5)

LIST VARIABLES=UX1 TO C1234/CASES5=1

LIST VA

RIABLES=AGE TO MULTR/CASES=1

Table 30
Selected Canonical Results Assocliated with
Webber et al. (1587/1988) Report

Variable I 11 11X
MHLC
Chance .953 .244 -.178
Powerful Others -.036 .676 .736
Internal .300 -.695 .654
Rc .536  .439 343
CHLC
Chance .937 .231 -.263
Powerful others .024 .707 .707
Internal .349 -.668 .656
Since orthogonal factors scores were employed as the
varliables 1in both data sets, the structure and the
functions coefficients for this analysis were identical,
as explained in Thompson (1984, p. 23, 36).
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Table 31
Simultaneous Orthogonal Rotation of Table 30 Results

Variable I 11 II1I
MHLC
Chance .999 .026 .035
Powerful Others -.035 .010 .999
Internal -.026 .999 -.010
CHLC
Chance .999 -.026 -.035
Powerful Others .035 -.010 .999
Internal .026 .999 .010
Table 32
Inter Variate Score Correlation Coefficients
I II III
I .522 .044 .015
I1I .044 .408 -.046

III .015 -.046 .389

Note. Adjusted correlation coefficients are on the diagonal.

45

48




Flgure 1
Scattergram of Canonical Composite Scores on Function I
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Figure 2
Partlal OQutput from Program CANPOW: Actual or Expected n=70
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Note. '=' = critlcal test statistic at declared alpha.
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