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ABSTRACT

The paper briefly explains the logic underlying the basic

calculations employed in canonical correlation analysis. A small

hypothetical data set is employed to illustrate that canonical

correlation analysis subsumes both univariate and multivariate

parametric methods. Several real data sets are employed to

illustrate other themes. The paper discusses three comrron

fallacious interpretation practices that may lead to incorrect

conclusions based on canonical results. The use of rotation to

simplify results is discussed. It is suggested that canonical

correlation analysis is a powerful analytic method that

frequently best honors the complex nature of the reality about

which the researcher wishes to generalize.



Several trends in analytic practice are discernable as

incremental changes that are moving social science slowly toward

more productive inquiry. For example, researchers have

increasingly recognized that statistical significance may not be

a particularly effective criterion with which to evaluate results

(Thompson, 1987c; 1988); popular developments in meta-analysis

(Jones & Fiske, 1953; Glass, mcGaw & Smith, 1981; Rosenthal,

1984) may have compelled more researchers to recognize the

importance of effect sizes in their studies. Researchers have

also increasingly recognized that statistical control, such as

that employed in analysis of covariance (ANCOVA), must be used

with extraordinary caution; these method? tend to either by

unnecessary or seriously distort results (Thompson, in

press-c) and can lead to "tragically misleading analyses"

(Campbell & Erlebacher, 1975, p. 597),

However, the trend away from the use of classical analysis

of variance methods (Goodwin & Goodwin, 1985) may be the most

noteworthy trend of all, since the use of the methods can have

several deleterious effects (Cohen, 1968; Thompson, 1986a). Even

when analysis of variance methods represent good analytic

choices, regression or general linear model approaches to the

methods using a priori contrast coding still tend to be superior

since these approaches tend to yield greater power against Type

II error and tend to be more theoretically grounded (Thompson,

1985a; 1987b).

The gradual shift away from the use of analysis of variance

approaches has been due in part to an increased recognition that

all parametric univariate methods are special cases of regression



analysis (Cohen, 1968). The shift has also been due to increased

recognition that many researchers

prefer experimental over correlational research

designs because experimental designs provide more

complete information about causality. Why does this

situation contribute to OVAism? Because some

researchers confuse research designs with the

statistical techniques which are used to analyze

the data which the designs help to generate.

(Thompson, 1981, p. 5)

As Thompson (in press-c) notes,

The fact that OVA methods are appropriate when

predictor variables such as experimental assignment

naturally occur at the nominal level of scale has

stimulated some researchers to unconsciously [and

incorrectly] associate the consequences of

experimental design selection with OVA methods.

However, in reality all parametric significance tests,

including those which are multivariate, are special cases of

canonical correlation analysis (Knapp, 1978). Indeed, Thompson

(1985b) illustrates how various univariate and multivariate

analyses can all be conducted using canonical correlation

analysis. Thompson (1986b) notes that the evaluation of several

hypothesis tests within a single study inflates the

experimentwise Type I error probability, usually to a somewhat

unknown degree. The failure to use multivariate methods often

also distorts the reality about which the researcher is
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attempting to generalize--the least of these distortions occurs

when a researcher completes several univariate tests and findti no

statistically significant results when significance would have

occurred if a multivariate test had been employed. Thompson

(1986b) presents a data set illustrating how this can occur.

These various considerations suggest that canonical correlation

analysis may be a powerful and important weapon in the social

scientist's arsenal of analytic weapons.

The purpose of the present paper is to briefly explain the

logic underlying the basic calculations employed in canonical

correlation analysis. The paper also employs a small hypothetical

data set to demonstrate that canonical correlation analysis

subsumes both univariate and multivariate parametric methods.

Three common fallacious interpretation practices that may lead to

incorrect conclusions based on canonical results are discussed.

The use of rotation in the canonical case is illustrated and

briefly discussed.

The Basic Logic of Canonical Calculations

Thompson (1933) notes that canonical correlation can be

presented in bivariate terms. This conceptualization has

instructional appeal because most students feel comfortable

working with bivariate correlation coefficients. The view is also

important because it forces realization that canonical analysis,

like all parametric methods, involves the creation of "synthetic"

scores for each person. In regression analyses the synthetic

scores are the predicted dependent variable scores of each of the

subjects, sometimes termed "YHAT"; the correlation between the

3
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subjects' actual dependent variable scores and synthetic

dependent variable ("YHAT") scores is the multiple correlation

coefficient, while the sum of squares of the "YHAT" scores equals

the sum of squares explained. In factor analysis these synthetic

variables are the factor scores of each subject on each of the

factors. In discriminant analysis these synthetic variables are

the discriminant scores of each subject on each of the

discriminant functions.

Table 1 presents a hypothetical data set (Thompson, 1987a)

that will be employed to illustrate how scores of individuals are

converted into the synthetic variables that are actually the

focus of a canonical correlation analysis. The data are adapted

from those presented by Harris (1987). The data set involves two

criterion variables, "X" and "Y," and two predictor variables,

II 'All and "B". Since canonical correlation analysis presumes at

least cwo predictor and at least two criterion variables, the

data set represents the simplest case for which a true canonical

analysis can be conducted. If a canonical analysis of a smaller

data set was conducted, most researchers would refer to the

analysis using some other name, such as multiple regression

analysis. Table 1 also presents each of the five persons' scores

on the four variables converted into their equivalent Z-score

forms. Table 2 presents the SPSS-X program used to analyze these

data; the reader may wish to replicate this analysis to reflect

in more detail on the results reported here.

INSERT TABLES 1 AND 2 ABOUT HERE.

Various analytic methods yield weights that are applied to

variables to optimize some condition--such weights include beta
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weights, factor pattern coefficients, and discriminant function

coefficients. These weights are all equivalent, but in canonical

correlation analysis the weights are usually labelled

standardized function coefficients. These weights are applied to

each individual's data to yield the synthetic variables that are

the basis for canonical analysis.

However, in canoni:al an3ly5i5 several 5et5 of weights and of

the resulting synthetic variables can be created. These canonical

functions are related to factors, are uncorrelated or orthogonal,

and can be rotated in various ways (Thompson, 1984). The number

of functions that can be computed in a canonical analysis equals

the number of variables in the smaller of the two variable sets,

as explained by Thompson (1984). In the present example, since

each variable set consisted of two variables, two canonical

functions could be computed. Table 3 presents the canonical

function coefficients and other selected results from the

analysis.

INSERT TABLE 3 ABOUT HERE.

Table 4 illustrates the computation of the synthetic

variables for each of the five subjects using the Function I

function coefficients: the reader may wish to compute the

corresponding values associated with the Function II results. For

a given function, two synthetic scores are produced for each

subject - -one associated with the composite of weighted criterion

variables, and one associated with the composite of weighted

predictor variables. For example, as noted in Table 4, the

criterion synthetic variable score, "CRITCOMP," for subject one

c
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was 1.29589 ((-1.44986*-1.35287) + (+1.04101*-.63850]). By the

same token, the predictor synthetic variable score for subject

LIvc was -1.21913 ((-1.58021*+1.325631 + 11.24215*+.676061).

INSERT TABLE 4 ABOUT HERE

The canonical correlation (Rc) is nothing more (or less)

than the Pearson product-moment correlation between the synthetic

variable scores of the subjects on a given function. This can he

illustrated in several ways using the present results. For

example, for this case, the bivariate correlation equals the sum

of the cross products of the two variables, the sum then being

divided by n 1. The cross products of the synthetic variables

for each of the five subjects are presented in Table 4, as is the

sum of these cross products. The sum divided by n 1

(3.999947/4) equals, within rounding error, the actual Rc result

reported in Table 3 for Function I.

An alternative presentation is graphic. Figure 1 presents

the scattergram in which the five pairs of synthetic variable

scores from Table 4 are arrayed. For example, note that the first

subject's composite scores in Table 4 indicate that this subject

is represented by the asterisk in the upper right position within

the scattergram. Figure 1 also presents the least squares

regression line best fitting these asterisks. In the two variable

case, since the synthetic variables have means of zero, the slope

of this regression line equals a beta weight, also equals the

bivariate correlation between the synthetic variables, also

equals the canonical correlation coefficient, i.e., .99999.

INSERT FIGURE 1 ABOUT HERE.

Table 5 presencs computations that illustrate the meaning of

6
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two other canonical results, structure coefficients and index

coefficients. Structure coefficients have the: same mz.aning in a

canonical analysis as in other analyses, i.e., structure

coefficients are bivariate correlation coefficients between a

given criterion or predictor variable and the synthetic variable

involving the variable set to which the variable belongs. For

example, since "ZX" was a criterion variable, the correlation

between "ZX" and "CRITCOMP" is the structure coefficient for

"ZX." Note that the sum of the cross products of 'ZX" and

"CRITCOMP", labelled "XSTRUC" in Table 5, once divided by n 1,

equals within rounding error the structure coefficient for "ZX"

presented in Table 3. An index coefficient is the correlation

coefficient between a variable and the synthetic variable

consisting of variables from the variable set to which the

variable does not belong. Table 5 illustrates the calculation of

the index coefficient for "ZX" on Function I. Thompson (1984)

discusses the importance of index coefficients in greater detail.

INSERT TABLE 5 ABOUT HERE.

Canonical Correlation Analysis (CCA) as a General Method

In a seminal article, Cohen (1968, p. 426) noted that ANOvA

and ANCOVA are special cases of multiple regression analysis, and

argued that in this realization "lie possibilities for more

relevant and therefore more powerful exploitation of research

data." Since that time researchers have increasingly recognized

that conventional multiple regression analysis of data as they

were initially collected (no conversion of intervally scaled

independent variables into dichotomies or trichotomies) does not

7
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discard information or distort reality; conventional regression

analysis can be particularly useful when multiplicative effects

are evaluated (e.g., through the use of powered vectors or

product terms (but see Pedhazur, 1982, pp. 427-430)) or when

commonality analyses are conducted (e.g., Thompson, 1985a)).

Discarding variance is not generally good research practice

(Thompson, in press-b). As Kerliciger (1986, p. 558) explains,

...partitioning a continuous variable into a

dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other

variables. A good rule of research data analysis,

therefore, is: Do not reduce continuous variables

to partitioned variables (dichotomies,

trichotomies, etc.) unless compelled to do so by

circumstances or the nature of the data (seriously

skewed, bimodal, etc.).

OVA methods (ANOVA, ANCOVA, MANOVA and MANCOVA) do not

discard variance only when independent variables are already

nominally scaled. Even in these cases, however, the regression

implememt _ion of OVA methods using the a priori contrast coding

explained by researchers such as Pedhazur (1982, chapters 9-14)

and Loftus and Loftus (1982, chapter 15) has two important

benefits, as explained in some detail by Thompson (1987b). First,

a priori methods have more power against Type II error than do

post hoc tests (e.g., Kirk, 1968, p. 96--Thompson (1987b, pp. 10-

8
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11) catalogs similar statements). The exception is when all ways

or factors have only two levels--then, and only then, both a

priori and post hoc tests are superfluous since each

statistically significant omnibus hypothesis can only have

occurred by a given pair of means being different.

Second, .the use planned or a priori comparisons tends to

force the researcher to be more thoughtful in conducting

research. As Snodgrass, Levy-Berger and Haydon (1985, p. 386)

suggest, "the experimenter who carries out post hoc comparisons

often has a rather diffuse hypothesis about what the effects of

the manipulation should be." Similarly, Keppel (1982, p. 165)

notes that,

planned comparisons are usually the motivating

force behind an experiment. These comparisons are

targeted from the start of the investigation and

represent an interest in particular combinations

of conditions--not in the overall experiment.

Indeed, a priori tests are often employed in lieu of omnibus

tests in both univariate OVA (Hays, 1981, p. 426; Kirk, 1968, p.

73) and multivariate OVA (Swaminathan, in press) applications.

These various realizations have led to less frequent use of

JVA methods (Goodwin & Goodwin, 1985), and to more frequent use

of a priori contrast coding and regression approaches when OVA

analyses are still conducted (Willson, 1982). However, canonical

correlation analysis, and not regression analysis, is the most

general case of the general linear model (Baggalley, 1981, p.

129). Fornell (1978, p. 168) notes that "multiple regression,

MANOVA and ANOVA, and multiple disriminant analysis can all be

9
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shown to be special cases of canonical analysis. Principal

components analysis is also in the inner family circle." In an

important article, Knapp (1978, p. 410) d,zmonstrated this in some

mathematical detail and concluded that "virtually all of the

commonly encountered tests of significance can be treated as

special cases of canonical correlation analysis."

Thompson .(1985b) employed the data presented in Table 6 to

illustrate these identities. Various combinations of variables

were analyzed using both canonical co/relation analysis and more

commonly used namee for parametric methods (e.g., L-test, ANOVA,

MANOVA) to show that canonical analysis can be used to yield

results from both conventional univariate and multivariate

methods. The results in the Thompson (1985b) report were

generated using 5PSS version 9.2.

INSERT TABLE 6 ABOUT HERE.

In the present paper similar analyses were conducted using

the SAS file presented in Table 7. SAS allows the researcher to

force the computer to analyze more results using multivariate

approaches, while SPSS-X now arbitrarily defaults to univariate

approaches to univariate data analyses. Thus, the equivalent

results produced by the SAS package allows comparisons of results

across methods with sewer steps in the comparison process. The

reader may wish to replicate these analyses in order to make a

more detailed comparison. Throughout the present paper results

are presented to the same number of decimal places yielded by the

SAS analysis.

INSERT TABLE 7 ABOUT HERE.



Table 8 presents an analysis illustrating the equivalence of

t-tests and canonical correlation analysis. The a calculated

value associated with the t'est c lifferences in means on

variable Y across variable B groups ..1 ' and "1" was 0.2149. Table

8 also presents results from a canonical correlation analysis

involving variable Y related with variable B, which in this case

was also a dummy coding column. The resulting 12. calculated value

was 0.2149.

INSERT TABLE 8 ABOUT HERE.

Table 9 presents a conventional product-moment analysis of

the bivariate relationship between variables Y and A. The

correlation coefficient was computed to be 0.56643 with an

associated 2 calculated value of 0.0548. A canonical correlation

analysis yielded a Rc value of 0.566434 with an associated a

calculated value of 0.0548.

INSERT TABLE 9 ABOUT HERE.

Table 10 presents a conventional 2x3 factorial ANOVA

involving scores on the dependent variable Y across ways defined

by variables APRIME and B. Table 11 presents results from four

separate canonical correlation analyses using different

combinations of the a priori contrast c,.)ding expressions of the

information involved in the variables APRIME and B. It is

noteworthy that the correlation ratio computed for the error

effect for the full ANOVA model presented in Table 10 was

0.426573 (61.)/143.0); the lambda value presented in Table 11

associated with all contrasts was 0.42657343. The result is not

surprising since multivariate lambda is analogous to the

univariate sum-of-squares error divided by the SOS total.

11



INSERT TABLES 10 AND 11 ABOUT HERE.

Table 12 converts the canonical lambda's into seperate

effects for each ANOVA omnibus effect. Smaller lambda's connote

larger effect sizes. The APRIME main effect reported in Table 10

has the largest effect size 0,391608 (56.0/143.0), thus the

smallest lambda reported in Table 12 (0.52136752) is associated

with the same main effect. Table 13 converts the Table 12 omnibus

effect lambda's into ANOVA F tests comparable.to those presented

in Table 10.

INSERT TABLES 12 AND 13 ABOUT HERE.

Table 14 presents the multiple regression analysis in which

variables, X, A, and B are used to predict dependent variable Y.

Table 14 also presents results from the canonical correlation

analysis involving the same two variable sets. The two sets of

results are directly comparable; the only difference is that the

canonical analysis yields the equivalent results presented to

more digits to the right of the decimal. Table 15 illustrates the

conversion of beta weights into canonical function coefficients,

and vice versa. Thompson and Borrello (1985) discuss these

relationships in more detail.

INSERT TABLES 14 AND 15 ABOUT HERE.

Table 16 presents results from a discriminant analysis

involving use of variables Y and X to predict membership in the

three groups delineated by the variable APRIME. The table also

presents results from the canonical correlation analysis

involving the variables Y and X and the dummy coding variables,

BT1 and BT2, which express in a different form exactly the same

12



information contained in APRIME. The results are directly

comparable.

INSERT TABLE 16 ABOUT HERE.

Table 17 presents the function coefficients for variables Y

and X produced by both analyses for both functions I and II. In

order to compare these results, the largest coefficient in each

function is set equal to unity. Tatsuoka (1971, pp, 177-183)

explains this conversion and notes that he first discussed the

equivalence of these methods 35 years ago (Tatsuoka, 1953). The

Identities illustrated here and summarized by Knapp (1978) have

been known for some time, but the implications of these

identities have not always been appreciated by researchers.

INSERT TABLE 17 ABOUT HERE.

Table 18 presents the results of a 2x3 factorial MANOVA

involving dependent variables Y and X and the classification

variables APRIME and B. Table 19 presents results from four

separate canonical correlation analyses involving the

classification variables expressed as the orthogonal constrasts

Al, A2, Bl, A1B1, A2B1. Table 20 presents the conversion of the

Table 19 results to lambda values associated with the omnibus

MANOVA effects presented in Table 18. The Table 18 and 20

lambda's are comparable. Zinkgraf (1983) provides additional

examples of these relationships.

INSERT TABLES 18 19, AND 20 ABOUT HERE.

These comparisons should not be taken to mean that special

cases of canonical methods will always yield the same results as

the more general canonical methods. For example, the results will

be different if a researcher performs a canonical analysis with



unchanged variables as against converting som variables to the

nominal level of scale in order to do an OVA analysis. Canonical

correlation omnibus, simultaneous analysis of a multivariate data

set may yield very different conclusions from several univariate

analyses of the same data set, even as regards whether results

are found to be statistically significant (e.g., Thompson,

1986b). Finally, when ways of a design have more than two levels,

use of general linear modea methods and a priori contrasts can

yield different conclusions than those produced by special cases

of canonical analysis called by names such as MANOVA. In each of

these cases the use of canonical correlation analysis would be

preferable.

The comparisons do illustrate that canonical correlation

analysis subsumes other parametric methods as special cases. This

realization has heuristic value. Canonical correlation analysis

provides a framework within which other parametric methods can be

related. The realization that OVA and other methods are special

cases of canonical correlation analysis should give researchers

pause to think that the more general methods should be employed

more often to avoid the discarding of vailance that many

researchers perform in order to conduct OVA analyses. In reality,

all studies are correlational in the sense that even studies with

both experimental design and OVA analyses are about "the job of

stating and testing more or less general relationships between

properties of nature" (Homans, 1967, p. 7). In experimental

studies degrees of relationship are expressed as effect size

estimates such as the correlation ratio or omega-squared.

14

17



Three Common Interpretation Fallacies

Canonical correlation analysis is a potent analytic method.

But the difficulty of interpreting canonical results can

challenge even the most seasoned analyst. As Thompson (1980, pp.

1, 16-17) notes, one

reason why the technique is rarely used involves

the diffidulties which can be encountered in tryin9

to interpret canonical results... The neophyte

student of canonical correlation analysis may be

overwhelmed by the myriad coefficients which the

procedure produces... (But: canonical correlation

analysis produces results which can be

theoretically rich, and if properly implemented the

procedure can adequately capture some of the

complex dynamics involved in educational reality.

However, the interpretation of canonical results can he

facilitated if three common interpretation fallacies are avoided.

Interpretation of Function Coefficients

In an artificial world of forced-choices, the analyst might

interpret structure coefficients while ignoring function

coefficients. Structure coefficients are the most holpful

coefficients to consult when interpreting canonical results,

although many researchers do not interpret and some do not even

report structure coefficients. Since structure coefficients

inform the researcher of the correlation between each variable

and the synthetic variables, these coefficients are what inform

the researcher regarding the meaning of what is actually being

15
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correlated in a given analysis.

As noted previously, structure coefficients have the same

meaning in the canonical cases as in the other analytic methodo

that the canonical methods subsume as special cases. For example,

in principal components analysis the correlation between the

scores on one variable and the factor scores on one factor is the

structure coefficient for that variable on that factor. And as

Gorsuch (1a83, p. 207) notes, "the basic matrix for interpreting

the factors is the factor structure." Similarly, in a

discriminant analysis, the correlation between the scores on a

predictor variable and the discriminant function scores on a

given function is the structure coefficient for that variable on

that function.

In the regression case, the correlation between P.coreE, on a

predictor variable and the "YHAT" scores is the structure

coefficient for the predictor variable. Just as structure

coefficients are vitally important in interpreting results in

other analytic cases, structure coefficients can be very

important in interpreting multiple regression results (Cooley &

Lohnes, 1971, pp. 54-55). Thompson and Borrello (1985) present an

explanation of this application and an actual research example in

which the interpretation solely of beta weights rather than of

structure coefficients would conceivably have lead to Incorrect

conclusions.

Thus, with respect to canonical analysis, Meredith (1964, p.

55) suggested that, "If the variables within each set are

moderately intercorrelated the possibility of interpreting the

16
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canonical variates by inspection of the appropriate regression

weights (function coefficients] is practically nil." Similarly,

Kerlinger and Pedhazur (1973, p. 344) argued that, "A canonical

correlation analysis also yields weights, which, theoretically at

least, are interpreted as regression [beta] weights. These

weights (function coefficients] appear to be the weak link in the

canonical correlation analysis chain." Levine (1977, 17), 20, his

emphasis) is even more emphatic:

I specifically say that one has to do this

[interpret structure coefficients] since I firmly

believe as long as one wants information about the

nature of the canonical correlation relationship,

not merely the computation of the [synthetic

function] scores, one must have the structure

matrix.

The hypothetical results presented in Table 3 illustrate

that the interpretation of only function coefficients can lead to

seriously distorted conclusions. The standardized function

coefficients might lead the naive analyst to conclude that all

four variables contribute appreciable information to the

relationship between the two sets of synthetic variable scores on

Function I. In reality, variables "ZY" and "ZB" share almost no

variance at all with the function's scores.

The realization that multiple regression analysis is a

special case of canonical correlation analysis suggests that

structure coefficients may also be important aids to

interpretation in the regression case, as Thompson and Bartell°

(1985) argued. The data reported here can also be employed to



illustrate this point. Assume that the synthetic variable

CRITCOMP was not a synthetic variables, but a Z-score expression

of an actual measure. Table 21 presents the regression results

associated with the prediction of CRITCOMP with variables A and

B. The tabled beta weight (1.242139) should not be taken to

indicate that variable B shares appreciable variance with the

"YHAT" scores in this case. In fact, B only shares 0.0324% (0.018

x 0.018) of its variance with "YHAT", though B is useful in

creating the "YHAT" scores.

INSERT TABLE 21 ABOUT HERE.

These data involve the presence of a variable, B, that

"suppresses" the relationship between k and CRITCOMP. This can be

illustrated for these data by computing the correlation

coefficient (-0.999822) between CRITCOMP and A residualized for

the influences of B (ZARESI in the Table 2 command file). The

comparisons of function and structure coefficients for variables

alerts the researcher to the existence of such dynamics. In an

artificial forced-choice world in which only one coefficient

could be consulted, structure coefficients might be preeminent;

in the real world both coefficients should be consulted in

interpretation. Interpretations

coefficients should be eschewed.

based solely on function

Interpretation of Redundancy Coefficients

If the squared structure coefficients for a given set of

variables are added and then the sum is divided by the number of

variables in the set, the result informs the researcher regarding

how much of the variance in the variables, on the average, is



contained within the synthetic scores for that function. This

result is called a variate-adequacy coefficient (Thompson, 1984).

Stewart and Love (1968) suggested that multiplying the adequacy

coefficient times the squared canonical correlation yields a

coefficient that they labelled a redundancy coefficient (Rd).

Miller (1975) developed a partial test distribution to test the

5tati5tica1 significance of redundancy coefficients. Cooley and

Lohnes (1976, p. 212) suggest that redundancy coefficients have

great utility. In reality, the interpretation of redundancy

coefficients does not make much sense in a conventional canonical

analysis.

As Cramer and Nicewander (1979) proved in detail, redundancy

coefficients are not truly multivariate. This is very disturbing,

because the main argument in favor of multivariate methods (for

both substantive and statistical reasons) is that these methods

simultaneously consider all relationships during the analysis

(Thompson, 1986b).

Table 22 helps to illustrate the problem. The table presents

the adequacy, redundancy, and squared Rc's for both f nctions for

the hypothetical Table 1 data, as well as the pooled values. For

example, the pooled redundancy coefficient for the criterion

variable set is 0.242783. Table 23 presents the results of four

regression analyses for various criterion variables and predictor

variable sets. The table illustrates that the average squared

multiple R for a variable set equals the pooled redundancy

coefficient for that variable set. The redundancy coefficient is

the average of a set of univariate results!

19
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INSERT TABLES 22 AND 23 ABOUT HERE.

A redundancy coefficient for a given variable set on a given

function equals the adequacy coefficient for the s times file

squared Rc for the function. The redundancy coefficient can only

equal one when the synthetic variables for the function represent

all the variance of every variable in the set, and the squared Rc

also exactly equals one. This does not usually occur in practice.

Thus, redundancy coefficients are useful only to test outcomes

that rarely occur and which may be unexpected (Thompson, 1980, p.

16; Thompson, 1984). Furthermre, it seems contradictory to

employ an analysis that use functions coefficients to optimize

Rc, and then to interpret results not optimized as part of the

analysis, i.e., redundancy coefficients.

However, there are exceptions to most rules. Table 24

presents the correlation matrix associated with a concurrent

validity study conducted by Sexton, McLean, Boyd, Thompson and

McCormick (in press). Table 25 presents the results of a

canonical correlation analysis of the Table 24 data. In this case

variate adequate coefficients for both variates on function I

were quite large, and the squared Rc was also remarkably large.

Thus, in this rather unusual case, the Rd coefficients presented

in Table 25 were impressively large on function I. It may be more

reasonable in concurrent validity studies to expect such results,

but, again, such results are not usually expected.

INSERT TABLES 24 AND 25 ABOUT HERE.

Failure to Partition Using Canonical Commonality AnFlysis

Researchers have been aware for some time that
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interpretation of regression results is often facilitated by

conducting "commonality analyses" (Newton & Spurrell, 1967;

Thompson, 1985a). These analyses partition variance to indicate

how much variance is unique to a given variable, and how much

variance is common to other variables. As an example analysis for

the regression case, Seibold and McPhee (1979, pp. 364-365)

present a cancer study in which the results would have been

grossly misinterpreted if a commonality analysis had not b'en

conducted.

Given that multiple regression is a special case of

canonical correlation analysis, it seems reasonable to expect

that the same variance partitioning procedures might also be

useful in the true canonical case. Thompson and Miller (1985)

explain thR multivariate procedure using an actual research

example in which educators' perceptions of dying students and of

death were investiaated. The procedure may be very useful in

research situations in which at least one of the variable sets

consists of variables that are conceptually or theoretic;Illy

distinct. As in the regression case, the failure to employ

commonality analysis can lead to less informed interpretation of

results.

The Table 24 data can be employed to illustrate the

mechanics of the procedure. Let us assume (rather artificially)

that the Battelle Developmental Inventory consisted of three

conceptually or empirically distinct sets of scales: (a) the

Social (So) scale; (b) the Adaptive (Ad) and the Motor (Mo)

scales; and (c) the Communication (Co) and the Cognitive (Cg)

scales. Table 26 presents the squared Rc's associated with use of

21



different combinations of the three variable sets to predict

criterion variate composite scores on function I. These values

are generated by using COMPUTE statements to produce canonical

variate scores (see Table 2 for an illustration) and then using

regression procedures to predict the synthetic composite scores

with different combinations of variables. Table 27 illustrates

the calculation of multivariate commonality coefficients for

these data, given the results presented in Table 26.

INSERT TABLES 26 AND 27 ABOUT HERE.

Table 28 presents the coefficients in the format typically

employed in reports of commonality analyses. In the present case,

the Table 28 results indicate that almost all of the predictive

power of the three artificial sets of predictor variables is

common to all three sets. This result is not surprising, given

redundancy mnalysis suggesting the the variable sets are

characterized by "g" variates creating a "g" function.

INSERT TABLE 28 ABOUT HERE.

Multivariate commonality analyses can be useful when a

variable set consists of theoretically or empirically distinct

sets of variables. Several authors present the procedures for

computing commonality coefficients for different numbers of

variable sets (Cooley & Lohnes, 1976, p. 222; Seibold & McPhee,

1979, p. 358); these procedures can be generalized to the

multivariate case in the manner already illustrated. Once results

like those presented in Table 26 are available, microcomputer

"spreadsheet" software is useful for performing the remaining

computations, but mainframe statistical packages can also be
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employed. Table 29 presents an SPSS-X file like that used to

generate the Thompson and Miller (1985) analysis. The reader may

wish to replicate these computations using the program.

INSERT TABLE 29 ABOUT HERE.

A Note About Rotation

Space precludes complete discussion of the many variations

on canonical methods, including methods that can be employed with

more than two variable sets (Horst, 1961), methods that do

optimize or at least consider redundancy (DeSarbo, 1981;

Johansson, 1981; Wollenberg, 1977), and methods for eliminating

variables by consulting communality (Thompson, 1984, pp. 47-51)

or other values so that results will be more parsimonious and

generalizable (Rim, 1972). Space also precludes detailed

discussion of ways to estimate the sample size required for

reasonable power in a canonical correlation analysis, but Figure

2 is presented to illustrate some possibilities for evaluating

power in the canonical case. The figure is part of a printout

generated by software described by Thompson (in press-a).

INSERT FIGURE 2 ABOUT HERE.

However, the linkage between canonica] correlation analysis

and factor analysis suggests that rotation, which is so useful in

factor analysis, may be useful in the canonical case as well.

Some discussion of these applications is warranted. Thompson

(1984, pp. 31-41) provides additional discussion of various

rotation considerations.

Table 30 presents selected canonical results associated with

the study reported by Webber, Thompson and Berenson (1987/1988).
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This analysis represents the special case in which canonical

function and structure matrices exactly equal each other, since

orthogonal factor scores were the basis for the analysis.

Whenever, all variables in a set ara perfectly uncorrelated, then

function and structure matrices are equivalent.

INSERT TABLE 30 ABOUT HERE.

Rotation to the varimax or similar criteria is typically not

appropriate in the canonical case, because these methods ignore

the fact that canonical analysis involves two distinct variable

sets. As Thorndike (1976, p. 4) argues,

The two sets of variables presumably have been

kept separate for a reason. If an investigator is

interested in the structure of the combined sets,

then he probably should have performed a

traditional factor analysis in .:he first place.

However, Bentler and Huba (1982) propose a rotation strategy that

honors membership in variable sets. Huba, Palisoc and Bentler

(1982) present a computer program that implements the method.

Table 31 presents a simultaneous orthogonal rotation of the Table

30 results.

INSERT TABLE 31 ABOUT HERE.

Table 32 presents the correlation coefficients among variate

scores. The post-rotation canonical correlation coefficients are

presented on the diagonal of the matrix. A comparison with the

coefficients presented in Table 30 indicates that the rotation

distributed some of the variance from the first two functions

onto the third function as a way of achieving a simpler

structure.
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INSERT TABLE 32 ABOUT HERE.

The, sof:ware provided by Huba, Palisoc and Bentler (1982)

Tomputes an orthogonally rotated maximum likelihood factor

analysis using canonical results. Webber, Thompson and Berenson

(1987/1988) present these results for these data.

It is not yet clear whether rotated canonical results

produce interpretations that are more generalizable or less

sample specific.. Theoretically, it might be argued that results

with simpler structure are more parsimonious and therefore should

be more generalizable. Monte Carlo work is needed to explore this

issue. However, it should be noted that canonical analyses are

conducted to optimally weight variables from two variable sets so

that synthetic scores composed from the sets will be maximally

related on the first function, and next most maximally related on

each subsequent and orthogonal function. Although the sum of the

squared canonical correlations remains the same both before and

after rotation (ee Thompson, 1984, pp. 33-38), rotation of

canonical results inherently violates, to some degree, the basic

logic of the methods, because variance is distributed across

individual functions.

Summary

The logic underlying the basic calculations employed in

canonical correlation analysis has been explained. Three common

fallacious interpretation practices that may lead to incorrect

conclusions based on canonical results were presented. A small

hypothetical data set was employed to make the discussion

concrete.
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Notwithstanding some opinion to the contrary (Kerlinger,

1986, p. 606; Thompson, 1987d), canonical correlation analysis is

a powerful analytic method that frequently best honors the

complex nature of the reality about which the researcher wishes

to generalize. As Kerlinger (1973, p. 652) suggests, "some

research problems almost demand canonical analysis." Similarly,

Cooley and Lohnes (1971, p. 176) suggest that "it is the simplest

model that can begin to do Justice to this difficult problem of

scientific generalization."

More researchers need to recognize the value of multivariate

methods in general and of canonical correlation analysis in

particular. Tatsuoka's (1973, p. 273) previous remarks remain

telling:

The often-hearn argument, "I'm more interested in

seeing how each variable, in its own right,

affects the outcome" overlooks the fact that any

variable taken in isolation may affect the

criterion differently from the way it will act in

the company of other variables. It also overlooks

the fact that multivariate analysis--precisely by

considering all the variables simultaneouslycan

throw light on how each one contributes to the

relation.

However, the potentials of canonical correlation analysis will

only be realized if researchers understand the logic underlying

the method and if some serious interpretation pitfalls are

avoided.
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Table 1
Hypothetical "Bird Beak" Data

X Y A B ZX ZY ZA ZB
9.0 7.0 10.0 8.0 -1.35287 -.63850 .00000 1.04326

11.0 6.0 10.0 5.0 -.44490 -1.26448 .00000 -.53744
12.0 8.0 8.0 4.0 .00908 -.01252 -.81650 -1.06434
13.0 10.0 8.0 5.0 .46306 1.23944 -.81650 -.53744
14.9 9.1 14.0 8.1 1.32563 .67606 1.63299 1.09595

Table 2
SPSS-X Command File Used to Analyze the Table 1 Data

TITLE 'ANALYSIS OF RICHARD HARRIS DATA *****'
FILE HANDLE RJH/NAME='SWSMEP.DAT'
DATA LIST FILE=RJH/X 1-3 (1) Y 5-7 (1) A 9-11 (1) B 13-15 (1)
COMPUTE ZX=(X-11.98)/2.20273'
COMPUTE ZY=(Y-08.02)/1.59750
COMPUTE ZA=(A-10.00)/2.44949
COMPUTE ZB=(B-06.02)/1.89789
COMPUTE REGYHAT=(-1.580199*ZA)+(1.242139*ZB)
COMPUTE ZARESI=ZA-(.774382*ZB)
COMPUTE CRITCOMP=(-1.44986*ZX)+(1.04101*ZY)
COMPUTE PREDCOMP=(-1.58021*ZA)+(1.24215*ZB)
COMPUTE XSTRUC=ZX*CRITCOMP
COMPUTE XINDEX=ZX*PREDCOMP
PRINT FORMATS ZX TO XINDEX(F8.5)
LIST VARIABLES=ALL/CASES=50
CONDESCRIPTIVE X TO XINDEX
STATISTICS ALL
SUBTITLE 'SHOW r's AMONG SYNTHETIC VARIABLES ARE OTHER COEFS'
PEARSON CORR X TO XINDEX
SUBTITLE 'COMPUTE R's TO SHOW Rd's ARE NOT MULTIVARIATE'
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/

DEPENDENT=X/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/

DEPENDENT=Y/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/

DEPENDENT=A/ENTER X Y
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.0001)/

DEPENDENT=B/ENTER X Y
SUBTITLE 'COMPUTE CONVENTIONAL CANONICAL ANALYSIS'
MANOVA X Y WITH A B/PRINT=DISCRIM(RAW,STAN,COR,ALPHA(1.0))

SIGNIF(DIMENR EIGEN MULTIV)/DESIGN/
SUBTITLE 'PLOT SYNTHETIC VARIABLE SCORES FOR FUNCTION I'
SCATTERGRAM CRITCOMP (-C,3) WITH PREDCOMP (-3,6)
STATISTICS ALL
OPTIONS 4
SUBTITLE '**SHOW IMPORT OF STRUCTURE COEFS IN THE REG CASE'
REGRESSION VARIABLES=CRITCOMP PREDCOMP A B/DESCRIPTIVES=DEFAULTS/

CRITERIA=TOLERANCE(.0001)/DEPENDENT=CRITCOMP/ENTER A B
SUBTITLE 'O#FIND BETA TO RESIDUALIZE*ZA USING ZB'
REGRESSION VARIABLES=CRITCOMP PREDCOMP A B/DESCRIPTIVES=DEFAULTS/
CRITERIA=TOLERANCE(.0001)/DEPENDENT=A/ENTER B

SUBTITLE '$$ILLUSTRATE THAT FUNCTION COEFS REFLECT PARTIAL CORR'
REGRESSION VARIABLES=CRITCOMP PREDCOMP A B ZARESI/

CRITERIA=TOLERANCE(.0001)/DEPENDENT=CRITCOMP/ENTER ZARESI



Table 3
Selected Canonical Analysis Results

Function I
Stn Fun Struct

Function II
Stn Fun Struct Communality

ZX -1.44986 -.69607 -.01281 .71798 1.000008
ZY 1.04101 -.00884 1.00924 .99996 .999998
ZA -1.58021 -.61831 .02918 .78593 .999993
ZB 1.24215 .08146 .97723 .99983 1.006295
Rc .99999 .02557

Table 4
"Synthetic" Variate Scores for Function I

ZX ZY ZA ZB CRITCOMP PREDCOMP CRITxPRED
-1.35287 .63850 .00000 1.04326 1.29678 1.29589 1.680484
-.44490 -1.26448 .00000 -.53744 -.67129 -.66758 .448139
.00908 -.01252 -.81650 -1.06434 -.02620 -.03183 .000833
.46306 1.23944 -.81650 -.53744 .61889 .62266 .385358

1.32563 .67606 1.63299 1.09595 -1.21819 -1.21913 1.485131
Sum . 3.999947

Note. The sum of the cross-products (3.999947) divided by n-1 (4)
is, within rounding error, the canonical correlation.

Table 5
Calculation of Structure and Index Coefficients

ZX CRITCOMP PREDCOMP XSTRUC XINDEX
-1.35287 1.29678 1.29589 -1.75438 -1.75317
-.44490 -.67129 -.66758 .29866 .29701
.00908 -.02620 -.03183 -.00024 -.00029
.46306 .61889 .62266 .28658 .28833

1.32563 -1.21819 -1.21913 -1.61487 -1.61612
Sum -2.78425 -2.78424

Note. The sum of the cross-products of "ZX" and "CRITCOMP"
(-2.78425) divided by n-1 (4) is (-.69606), within rounding
error, the structure coefficient of "ZX" on Function I. The sum
of the cross-products of "ZX" and "PREDCOMP" (-2.78424) divided
by n-1 (4) is (-.69606), within rounding error, the index
coefficient of "ZX" on Function I.



Table 6

Y X A

Hypothetical

B APRIME

Data

Al

from Thompson

A2 Bl A1B1

(1985b)

A2B1 BT1 BT2
1 11 5 1 2 1 -1 -1 -1 1 0 1

2 5 3 1 1 -1 -1 -1 1 1 1 0

3 2 2 1 1 -1 -1 -1 1 1 1 0

4 8 8 0 2 1 -1 1 1 -1 0 1

5 4 4 0 1 -1 -1 1 -1 -1 1 0

6 12 10 1 3 0 2 -1 0 -2 0 0

7 7 6 1 2 1 -1 -1 -1 1 0 1

8 1 1 0 1 -1 -1 1 -1 -1 1 0

9 9 12 0 3 0 2 1 0 2 0 0

10 3 7 0 2 1 -1 1 1 -1 0 1

11 6 9 0 3 0 2 1 0 2 0 0

12 10 11 1 3 0 2 -1 0 -2 0 0
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Table 7
SAS File to Analyze Table 6 Data

TITLE '$$$ SHOW CANONICAL SUBSUMES ALL 1985 AERA ERIC #ED262073';
DATA MULTI;

INFILE DEM07257;
INPUT Y 1-2 X 4-5 A 7-8 B 10 APRIME 12 Al 14-19 A2 17-18
B1 20-21 A1B1 23-24 A2B1 26-27 BT1 30 BT2 32;

PROC PRINT; RUN;
TITLE '1. CCA SUBSUMES T-TESTS #####';
PROC CANCORR ALL; VAR Y; WITH B;
PROC TTEST; CLASS B; VAR Y; RUN;
TITLE '2. CCA SUBSUMES PEARSON R #####';
PROC CANCORR ALL; VAR Y; WITH A;
PROC CORR PEARSON; VAR Y A; RUN;
TITLE '3. CCA SUBSUMESS FACTORIAL ANOVA #####';
PROC CANCORR ALL; VAR Y; WITH Al A2 B1 A1B1 A2B1;
PROC CANCORR ALL; VAR Y; WITH B1 A1B1 A2B1;
PROC CANCORR ALL; VAR Y; WITH Al A2 A1B1 A2B1;

CANCORR ALL; VAR Y; WITH Al A2 Bl;
PROC ANOVA; CLASS APRIME B; MODEL Y=APRIME B 2'0RIME*B; RUN;
TITLE '4. CCA SUBSUMES MULTIPLE R #####';
PROC CANCORR ALL; VAR Y; WITH X A B;
PROC REG SIMPLE; MODEL Y=X A A; RUN;
TITLE 'S. CCA SUBSUMES DISCRIMINANT #####';
PROC CANCORR ALL; VAR BT1 BT2; WITH Y X;
PROC CANDISC ALL; VAR Y X; CLASS APRIME; RUN;
TITLE '6. CCA SUBSUMES FACTORIAL MANOVA #####';
PROC CANCORR ALL; VAR Y X; WITH Al A2 B1 A1B1 A2B1;
PROC CANCORR ALL; VAR Y X; WITH B1 A1B1 A2B1;
PROC CANCORR ALL; VAR Y X; WITH Al A2 A1B1 A2B1;
PROC 2ANCORR ALL; VAR Y X; WITH Al A2 Bl;
PROC ANOVA; CLASS APRIME B; MODEL Y X=APRIME B APRTME*B;

MANOVA H=_ALL_; RUN;

Table 8
CCA Subsumes t-tests (Y by B(0,1)3

Canonical Analysis
Squared Rc .149184
Rc .386244
lambda .85081585

F 1.7534
df 1/10
p calc .2149

t-test analysis
Mean Group 0 7.83333333
SD 2.78687400
Mean Group 1 5.16666667
SD 4.07021703
t 1.3242
df 10
p calc .2149



Table 9
CCA Subsumes Pearson r CY with A]

Canonical Analysis Pearson r
Squared Rc .320847
Rc .566434 r
lambda .67915301
F 4.7242
df 1/10
p calc .0548 p calc

. 56643

. 0548

Table 10
Factorial ANOVA (Y by APRIME(1,3),B(0,1)]

Source SOS df MS F p calc
APRIME 56.00000000 2 (28.000] 2.75 0.1417
B 21.33333333 1 (21.333] 2.10 0.1976
APRIME*B 4.66666667 2 (2.3331 0.23 0.8016
ERROR 61.00000000 6 10.16666667
TOTAL 143.00000000 11

Table 11
Canonical Analyses Using Four Models

Model Predictors of Y lambda
1 A1,A2,B1,A1B1,A2B1 .42657343
2 B1,A1B1,A2B1 .81818182
3 A1,A2,A1B1,A2B1 .57575758
4 A1,A2,B1 .45920746

Table 12
Conversion to ANOVA lambda's

Effect Models Conversion Result
APRIME 1/2 .42657343/.81818182 ,52136752
B 1/3 .42657343/.57575758 .74089068
APRIME*B 1/4 .42657343/.45920746 .92893401

Table 13
Conversion of lambda's to ANOVA F's

Source C(1 lambda) /lambda] *(df error/df effect)=F calc
APRIME C(1 .52136752)/.52136752]*( 6 / 2 )=

.91803277 * 3 =2.7541
B C(1 .74089068)/.74089068]*( 6 / 1 )=

.34972677 * 6 =2.0984
APRIME *B C(1 .92893401)/.928934011*( 6 / 2 )=

.07650272 * 3 =0.2295

Table 14
CCA Subsumes Multiple Correlation (Y with X, A, B1

Canonical Analysis Regression Analysis
Squared Rc .699201 Squared R .6992
Rc .836182
lambda .30079890
F 6.1986 F 6.199
df 3/8 df 3/8
p calc .0175 p calc .0175
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Table 15
Function Coefficient and Beta Weight Conversions

Function Beta Function
Predictor Coefficient *Rc (or R) = Weight/Rc (or R)=Coefficient

X -1.1869 *.836182 = -.99-'1/.836182 = -1.1869
A 1.5463 *.836182 = 1.2930/.836182 = 1.5453
B 0.1458 *.836182 = .1219/.836182 = 0.145i)

Table 16
CCA Subsumes Discriminant CY, X with BT1, BT2 or APRIME(1,3)]

Canonical Analysis Discriminant Analysis
Function I Function I

Squared Rc .908466 Squared Rc .908466
Rc .953135 Rc .953135
lambda .08561996 lambda .08561996
F 9.6701 F 9.6701
df 4/16 df 4/16
p calc .0004 p calc .0004

Function II Function II
Squared Rc .064608 Squared Rc .064608
Rc .254181 Rc .254181
lambda .93539214 lambda .93539214
F 0.6216 F 0.6216
df 1/9 df 1/96
p calc .4507 p calc .4507

Table 17
Conversion of Function Coefficients for Comparison

Canonical Correlation Analysis
Func I Result Func II Result

Y 0.6334 / 0.7827 = 0.8093 -0.7739 -0.7739 1.0000
X 0.7827 / 0.7827 = 1.0000 0.6226 -0.7739 -0.8045

Discriminant Function Analysis
Func I Result Func. II Result

Y 1.8938 / 2.3401 = 0.8093 0.7238 0.7238 1.0000
X 2.3401 / 2.3401 = 1.0000 -0.5823 0.7238 -0.8045

Note. The conversion process is illustrated in Tatsuoka (1971,
pp. 177-183).

Table 18
Factorial MANOVA CY, X by APRIME(1,3),B(0,1)]

Source lambda F df p calc
APRIME .03202016 11.47 4/10 .0009
B .60902256 1.60 2/5 .2895
APRIME*B .37811816 1.57 4/10 .2572



Table 19
Canonical Analyses Using Four Models

Model Predictors of Y, X lambda
1 Al,A2,B1,A1B1,A2B1 .02112986
2 B1,A1B1,A2B1 .659892 3
3 Al,A2,A1B1,A2B1 .03469471
4 Al,A2,B1 .05588163

Table 20
Conversion to MANOVA lambda's

Effect Models Conversion Result
APRIME 1/2 .02112986/.65989239 .03202016
B 1/3 .02112986/.03469471 .60902252
APRIME*B 1/4 .02112986/.05588163 .37811817

Table 21
Beta Weights and Structure Coefficients for

Regression Prediction of CRITCOMP with A and B

Predictor r with Structure
Variable Beta CRITCOMP R Coefficient

A -1.580199 -0.618 / 0.99999 = -0.61800618
B 1.242139 0.018 / 0.99999 = 0.01800018

Table 22
Redundancy Calculations for Hypothetical Data

Struc I
-0.69607
-0.00884

SQ
0.484513
0.000078

Struc II
0.71798
0.99996

SQ
0.515495
0.999920

Commun
1.000008
0.999998

Pooled Rd

SUM 0.484591 1.515415 2.000006
Adequacy 0.242295 0.757707 1.000003
Redundancy 0.242290 0.000492 0.242783

-0.61831 0.382307 0.78593 0.617685 0.999993
0.08146 0.006635 0.99983 0.999660 1.006295

SUM 0.388942 1.617345 2.006288
Adequacy 0.194471 0.808672 1.003144
Redundancy 0.194467 0.000525 0.194993

Rc SQ 0.99998 0.00065



Table 23
Alternate Calculation of Pooled Coefficients

Criterion Predictor
Variables Variables R R SQ

X A B 0.69630 0.48484
Y A B 0.02705 0.00073

SUM 0.48557
Mean 0.24279

A X Y 0.61864 0.38271
B X Y 0.03153 0.00099

SUM 0.38370
Mean 0.19185

Table 24
Correlation Matrix Associated with Sexton et al. (in press)

Instrument/Variable Variable
So Ad Mo Co Cg Me

Battelle Developmental Inventory
Social (So)
Adaptive (Ad) 730
Motor (Mo) 758 835
Communication (Co) 731 831 821
Cognitive (Cg) 652 846 845 850

Bayley Scales of Infant Development
Mental (Me) 742 851 896 879 934
Psychomotor (Ps) 758 827 947 810 832 i 901

Note. Decimals omitted.

Table 25
Canonical Correlation Analysis Coefficients

Variable/ I Sq II Sq 2

Coefficient Func Stru Struct Func Stru Struct h

Social 0.09 0.79 62.540 -0.07 0.10 1.08% 640
Adaptive 0.02 0.89 78.96% 0.24 -0.03 0.09% 79%
Motor 0.49 0.97 93.770 1.85 0.24 5.62% 100%
Communication 0.11 0.90 80.73% -0.48 -0.18 3.39% 84%
Cognitive 0.36 0.94 88.71% -1.61 -0.30 8.88% 98%
ridequacy 80.94% 3.850
Redundancy 76.23% 1.58%
2

Rc 94.170 41.07%

Redundancy 89.36% 2.10%
Adequacy 94.89% 5.11%
Mental 0.60 0.98 96.67% -2.22 -0.18 3.33% 100%
Psychomotor 0.42 0.96 93.11% 2.27 0.26 6.89% 1000



Table 26
Prediction of Criterion Composite S

with Various Predictor Variable
cores on Function 1

Combinations

Predictors
Set Variables Rc
1. So 0.5
2. Ad, Mo 0.90
3. Co, Cg 0.86
4. So & Ad, Mo 0.905
5. So & Co, Cg 0.894
6. Ad, Mo & Co, Cg 0.9388
7. ALL 0.94173

2

8894
295
800
22
57
1

Table 27
Calculation of Variance Partition

Partition
Unique to So

-Rc sq 6 +Rc sq 7
-0.93881 0.94173

Unique to Ad, Mo
-Rc sq 5 +Rc sq 7
-0.89457 0.94173

Unique to Co, Cg
-Rc sq 4 +Rc sq 7
-0.90522 0.94173 0

Common to So & Ad, Mo
-Rc sq 3 +Rc sq 5 +Rc sq 6 -Rc sq 7
-0.86800 0.89457 0.93881 -0.94173 0.

Common to So & Co, Cg
-Rc sq 2 +Rc sq 4 +Rc sq 6 -Rc sq 7
-0.90295 0.90522 0.93881 -0.94173 -0.00

Common to Ad, Mo & Co, Cg
-Rc sq 1 +Rc sq 4 +Rc sq 5 -Rc sq 7
-0.58894 0.90522 0.89457 -0.94173 0.2691

Common to So & Ad, Mo & Co, Cg
+Rc sq 1 +Rc sq 2 +Rc sq 3
0.58894 0.90295 0.86800

-Rc sq 4 -Rc sq 5 -Rc sq 6 +Rc sq 7
-0.90522 -0.89457 -0.93881 0.94173 0.56302

s

Result

0.00292

0.04716

.03651

02365

065

2

Table 28
Conventional Presentation of Variance Partitions

Partition Set 41 Set 42 Set 43
Unique to So 0.00292
Unique to Ad, Mo 0.04716
Unique to Co, Cg 0.03651
Common to So & Ad, Mo 0.02365 0.02365
Common to So & Co, Cg -0.00065 -0.00065
Common to Ad, Mo & Co, Cg 0.26912 0.26912
Common to So & Ad, Mo & Co, Cg 0.56302 0.56302 0.56302

Sum of Partitions 0.58894 0.90295 0.86800
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Table 29
SPSS-X File to Compute Canonical Commonality Analysis

TITLE 'COMMONALITY ANALYSIS FOR THOMPSON-MILLER--ERIC ED263151'
DATA LIST RECORDS=2/V1 TO V15 (7F7.5/8F7.5)
BEGIN DATA
.13739 .12727 .13157 .08959 .08600 .11204 .08290
.08751 .07668 .07807 .02122 .08142 .06569 .00673 .01820

END DATA
LIST VARIABLES=ALL/CASES=1
COMPUTE UX1=V1-V5
CGMPUTE UX2=V1-V4
COMPUTE UX3=V1-V3
COMPUTE UX4=V1-V2
COMPUTE CX1X2=V4+V5-V11-V1
COMPUTE CX1X3=V3+V5-V10-V1
COMPUTE CX1X4=V2+V5-V9-V1
COMPUTE CX2X3=V3+V4-V8-V1
COMPUTE CX2X4=V2+V4-V7-V1
COMPUTE CX3X4=V2+V3-76-V1
COMPUTE CX1X2X3=V11+V1O+V8+V1-V15-V5-V4-V3
COMPUTE CX1X2X4=V11+V1O+V7+V1-V14-1.15-V4-1.12
COMPUTE CX1X3X4=V10 +V9+V6+V1-V13-V5-V3-V2
COMPUTE CX2X3X4=V8+V7+V6+V1-V12-V4-V3-V2
COMPUTE C1234=V15+V14+V13+V12+V5+V4+V3+V2

-V11-V10-V9-V8-V7-V6-V1
COMPUTE AGE= UX1+ CX1X2+ CX1X3+ CX1X4 +CX1X2X3 +CX1X2X4 +CX1X3X4 +C1234
COMPUTE LOCUS=UX2+CX1X2+CX2X3+CX2X4+CX1X2X3+CX1X2X4+CX2X3X4+C1234
COMPUTE NEWREL=UX3+CX1X3+CX2X3+CX3X4+CX1X2X3+CX1X3X4+CX2X3X4+C1234
COMPUTE CODES=UX4+CX1X4+CX2X4+CX3X4+CX1X2X4+CX1X3X4+CX2X3X4+C1234
COMPUTE MULTR=UX1+UX2+UX3+UX4+CX1X2+CX1X3+CX1X4+CX2X3+CX2X4+CX3X4+

CX1X2X3+CX1X2X4+CX1X3X4+CX2X3X4+C1234
PRINT FORMATS UX1 TO C1234,AGE TO MULTR(F7.5)
LIST VARIABLES=UX1 TO C1234/CASES=1
LIST VARIABLES=AGE TO MULTR/CASES=1

Table 30
Selected Canonical Results Associated with

Webber et al. (1987/1988) Report

Variable I II III
MHLC

Chance .953 .244 -.178
Powerful Others -.036 .676 .736
Internal .300 -.695 .654

Rc .536 .439 .343
CHLC

Chance .937 .231 -.263
Powerful Others .024 .707 .707
Internal .349 -.668 .656

Note. Since orthogonal factors scores were employed as the
variables in both data sets, the structure and the
functions coefficients for this analysis were identical,
as explained in Thompson (1984, p. 23, 36).
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Table 31
Simultaneous Orthogonal Rotation of Table 30 Results

Variable
MHLC

I II III

Chance .999 .026 .035
Powerful Others -.035 .010 .999
Internal -.026 .999 -.010

CHLC
Chance .999 -.026 -.035
Powerful Others .035 -.010 .999
Internal .026 .999 .010

Table 32
Inter Variate Score Correlation Coefficients

I II III
I .522 .044 .015
II .044 .408 -.046
III .015 -.046 .389

Note. Adjusted correlation coefficients are on the diagonal.
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Figure 1
Scattergram of Canonical Composite Scores on Function I
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Figure 2
Partial Output from Program CANPOW: Actual or Expected n=70
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