
ED 295 618

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

PUB DATE
CONTRACT
NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

IR 013 324

Perkins, David; Martin, Fay
Fragile Knowledge and Neglected Strategies in Novice
Programmers. IR85-22.
Educational Technology Center, Cambridge, MA.
National Inst. of Education (DREW), Washington,
D.C.
Oct 85
400-83-0041
35p.; For a related report, see IR 013 327.
Reports - Research/Technical (143)

MF01/PCO2 Plus Postage.
Interviews; *Knowledge Level; *Problem Solving;
*Programing; *Questioning Techniques; Secondary
Education; *Teaching Methods
Fray le Knowledge

ABSTRACT
As part of an ongoing program of research to identify

the difficulties encountered by novice programmers and to develop
teaching strategies to help them overcome these obstacles,
researchers employed a scaffolded interview procedure with 20 high
school students enrolled in the second semester of a year-long BASIC
course. Investigators pretiented each student with a sequence of eight
programming problems, ranging from easy to difficult. They asked
questions to track student thinking and intervened in student
difficulties with graduated levels of assistance: first, general
prompts to provoke strategic thinking; second, hints, leading
questions, and bits of information; and third, exact solutions to the
immediate dilemma. Results showed that student difficulties stem from
knowledge that is fragile in several ways, i.e., partial knowledge,
inert knowledge, lack of a critical filter, misplaced knowledge, and
conglomerated knowledge. Findings indicate that novice programming
students might benefit from explicit teaching of strategies for
controlled exploration as part of their instruction in beginning
programming. Explicit teaching of strategic skills is a promising way
to help students gain control of the programming process and
appreciate the need for precision in understanding and using
programming commands. (27 references) (Author/MES)

Reproducti
*

**

ons supplied by EDRS are the best that can be made
from the original document.

**

85 22
U.S. DEPARTMENT OF EDUCATION

Office of Edt.catvsnal Research and Improvement

EDUCATIONAL RESOURCESERIC)
INFORMATION

CENTE

)(This document has been reproduced as
received horn the person or organaation
originating it

O Minor changes have been made to improve
reproduction grainy.

Pants of view or opinions stated sn this docu.
ment do not necessarily represent ofhcral
OERI position or policy

FRAGILE KNOWLEDGE AND NEGLECTED
STRATEGIEn IN NOVICE PROGRAMMERS

Teitchrlical Report

October 1985

Ellicatisad Ted= kw Ceske
Harvard Graduate School of Education

4r1v 337 Gutman Library Appian Way Cambridge MA02138

i)

2

BEST COPY AVAILABLE

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Beth Wilson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)?

FRAGILE KNOWLEDGE AND NEGLECTED STRATEGIES..

IN NOVICE PROGRAMMERS

:Technical Report

October 30, 1985

Written by:

David Perkins

Fay Martin

Programming Group:

Betty Bork
Chris Hancock
Renee Hobbs
Jack Macleod
Fay Martin
David Perkins

Marie Salah
Nancy Samaria
Paul Shapiro
Rebecca Simmons
Tara Tuck
Martha Stone Wiske

We gratefully acknowledge the collaboration with teachers and school
systems that made possible the research reported here. Preparation of this
research report was supported in part by the National Institute of
Education (contract # NIE 400-83-0041). Opinions expressed herein are not
necessarily shared by NIE and do not represent Institute policy.

Fragile Knowledge in Novice programmers 2

Abstract

Many students have great difficulty mastering the basics of programming.

Inadequate knowledge, neglect of general problem-solving strategies, or both

might explain their troubles. We report a series of clinical interviews of

students taking first year BASIC in which an experimenter interacted with

students as they worked, systematically providing help as needed in a

progression from general strategic prompts to particular advice. The results

indicate a substantial problem of "fragile knowledge" in novices knowledge

that is partial, hard to access, and often misused. The results also show

that general strategic prompts often resolve these difficulties.

Recommendations for teaching more robust knowledge and general strategies are

made. Implications for the impact of programming on general cognitive skills

are considered.

4

Fragile Knowledge in Novice Programmers 3

Fragile Knowledge and Neglected Strategies in Novice Programmers

Plentiful evidence speaks to the difficulties encountered by beginning

students of programming in primary and elementary school. Linn (1985)

reported only modest achievement in BASIC in most schools in a study ranging

over a number of school systems. Research conducted by Pea and Kurland

documented the minimal competency achieved by students learning Logo under

relatively nondirective conditions (Pea & Kurland, 1984a, Pea & Kurland,

1984b). Perkins, Hancock, Hobbs, Martin, and Simmons (in press) have

discussed patterns of behavior displayed by many novice programmers as part

of their partial mastery, patterns such as haphazard tinkering where a

student attempts to repair a buggy program by a series of almost arbitrary

changes. While reasonably successful efforts to teach youngsters programming

have been reported from time to time (Clements, 1984; Clements & Gullo, 1984;

Linn, 1985; Nachmias, Mioduser, & Chen, 1985), typical results at the primary

and secondary level seem disappointing and call for efforts to understand the

nature of the difficulties and remedy them.

One natural approach to defining the difficulties asks what students

typically know and what they do not. Do they understand the basic operations

of the computer language in question? Do they possess problem solving

strategies for managing an attack on a problem, as has proved important in

mathematical problem solving for example (Polya, 1954, 1957; Schoenfeld,

1982; Schoenfeld & Herrmann, 1982)? Do they have in their repertoires

prototypical programming plans such as nested FOR-NEXT loops or recursion for

dealing with particular types of situation, (Anderson & Reiser, 1985; Soloway

& Ehrlich, 1984)? Do they know the symptoms that signal when a particular

operation or programming plan might serve? One can speak roughly of a

5

Fragile Knowledge in Novice Programmers 4

continuum between low-level knowledge of the particular commands a language

offers and rather abstract and general tactics of problem solving. With such

a continuum in mind, is the shortfall principally in low-level knowledge or

high-level strategic repertoire?

The question has some interest not only for the pedagogy of programming

in itself but for the possibility explored by many that learning to program

might impact on the learner's general cognitive skills (e.g. Feurzeig,

Horwitz, & Nickerson, 1981; Linn, 1985; Papert, 1980). Consider two extreme

cases. Perhaps novice programmers have ample general cognitive skills for

the relatively easy problers they.face, but their mastery of the primitives

of the language is so poor that they cannot apply those skills effectively to

solve programming problems. In this case, typical instruction in programming

cannot be expected to boost learners' cognitive skills until it carries

students beyond the initial phases of learning into problems that pose higher

order challenges. On the other hand, perhaps novice programmers have the

details of the language under control but lack the general cognitive skills

required to marshall their knowledge. In this case, from the first

programming affords a natural training ground for the development of those

higher order skills, although it may be questioned whether students will

develop them without strong meaiation (Delclos, Littlefield, & Bransford,

1985; Perkins, 1985; Salomon & Perkins, this issue).

The broad issues seem clear enough. However, in pursuing them one has

to recognize a certain oversimplification in the questions: Knowledge comes

across as a "you have it or you don't" sort of thing. The student may know

some things about the language, but not other things and perhaps not enough.

However, common experience testifies that often a person does not simply

"know" or "not know" something. Rather, the person sort of knows, has some

fragments, can make some moves, has a notion, without being able to marshall

enough knowledge with sufficient precision to carry a problem through to a

6

Fragile Knowledge in Novice Programmers 5

clean solution. One might say that learners in such a state have fragile

knowledge.

Understanding in what ways students' knowledge of programming might be

fragile -- neither here nor there, reliable nor random, possessed nor lost --

could help in grasping the nature of students' difficulties and designing

instruction that affords better learning opportunities. In particular, under

the general label of fragile knowledge a number of questions can be

addressed. Do students have knowledge of operations they do not succeed in

retrieving? Is the problem of retrieval radical, or can strategic prompts

trigger retrieval? Is it that students do not have certain knowledge or do

they get confused about what knowledge to use when?

In this paper, we report on a series of clinical case studies done with

high school students taking a first year BASIC course. Working one-on-one

with a number of students, the experimeater observed and interacted in

defined ways as the students attempted to solve programming problems. While

a few students managed the problems well, most evinced considerable

difficulty at some points. We interpret the students' difficulties as

manifesting fragile knowledge of BASIC commands in four senses. Partial

knowledge is the straightforward case of an impasse due to knowledge the

student has not retained or even never learned, as revealed by clinical

probes failing to reveal signs of the knowledge. Inert knowledge refers to

situations where the student fails to retrieve command knowledge but in fact

possesses it, as revealed by a clinical probe. naniaced knowledge

designates circumstances where a studeat imports commands structures

appropriate to some contexts into a line of code where they do not belong.

Conglomerated knowledge signifies situations where a student produces code

that jams together several disparate elements in a syntactically or

semantically anomalous way in an attempt to provide the computer with the

information it needs. The four will be more sharply defined and

Fragile Knowledge in Novice Programmers 6

distinguished and their connections to the literature examined as they are

discussed in turn.

We also made tallies of certain fragile knowledge events that show to

what extent general strategic prompts helped students over their

difficulties. This, along with some features of the case studies, allows

appraising the relative contributions of fragile knowledge and lack of

general problem-solving skills to students' difficulties and points to

prospects for a better pedagogy of programming.

A Clinical Methodology'

To investigate the locus of novices' programming difficulties, we

devised a procedure that would reveal whether particular difficulties

reflected the failure of high-level problem management skills or a poor

understanding of particular commands in the programming language. The

experimenter presented a student with a choice of eight increasingly

difficult programming problems. The problems built on one another, each

preparing the way for the next. Each student selected a problem that seemed

manageable, attempted it in interaction with the experimenter until

completing it, and proceeded to the next problem, continuing this process

until the end of the session. Some details follow.

Subjects. Twenty high school subjects enrolled in the second semester

of a year-long first BASIC course participated in the study. The students

ranged from 10th to 12th graders, including 11 girls and 9 boys. Each

student participated for one 45 minute session. In our view, the instruction

at the site was quite careful and conscientious, from a teacher with a very

good understanding of BASIC in particular a-d programming in general.

Nonetheless, while some of the students had developed considerable

programming skills others displayed substantial difficulties, as will emerge.

8

Fragile Knowledge in Novice Programmers 7

Programming tasks. The sequence of eight programming tasks, ranging

from easy to difficult, centered on the FOR-NEXT loop. All the problems

asked for programs that produced patterns of stars (asterisks) on the screen.

For example, problem 1 called for a program to produce a column of ten stars;

problem 3 called for a program that would ask for a number and then print a

column with that many stars; problem 4 did the same except that the row of

stars was to be horizontal. Problem 5 required a program that asked for a

number and then produced a square of stars. For instance, with an input of 5

the program would produce:

Problem 8 called for a hollow square of stars of any size.

It should be noted that the exact character of the challenge posed by

these problems depends somewhat on the programming environment and the

commands students know. In particular, we designed the sequence knowing that

the students in our sample did not have at their disposal cursor control

commands and consequently needed to produce the patterns of stars through

print statements, line by line from the top to the bottom of the pattern.

This prevents, for example, solving the hollow square of stars problem by way

of a program that guides the cursor around the sides of the square, printing

asterisks along the way.

Procedure. The experimenter explained the purpose of the study -- to

come to understand how people learn programming, what diffiLulties they have,

and how to help people to overcome them -- and explained that the

experimenter would watch and help as the student worked some programming

problems. The experimenter introduced the student to the sequence of

problems and invited the student to choose one to begin with that would be

9

Fragile Knowledge in Novice Programmers 0

"challenging, not too easy, but not too hard."

The experimenter watched and asked occasional questions to track the

student's thinking until and if the student encountered a significant

difficulty. Then the experimenter intervened, asking questions and providing

information to help the student to overcome the difficulty. The experimenter

worked with the student until the student attained a program that performed

the task in question. Then the experimenter asked the student to attempt the

next problem, and so on until time ran out.

When the student faced an impasse, the experimenter's first questions,

called prompts, were, high-level strategic questions one might ask oneself.

By definition, prompts were questions that did not require any foreknowledge

of the true nature of the difficulty: People in principle could prompt

themselves. Some typical prompts were, "What's the first thing you need to

tell the computer to do; how would you describe the problem to yourself; what

does this (e.g., a semicolon) do?" As the examples suggest, some prompts

were phrased generally and could be used in any problem-solving situation,

even one outside of programming, while others were particularized to mention

semicolons or other elements of the programming situation. The prompts were

generated by the experimenter according to the experimenter's judgment of the

level of specificity needed.

If a couple of prompts did not help the student to overcome the

difficulty, the experimenter resorted to "hints." Hints by definition

reflected the experimenter's understanding of the solution, nudging the

student toward a resolution with leading questions or bits of information.

Some characteristic hints would be, "Can you think of a command to get the

computer to ask you for a number; your problem is to repeat something several

times, so do you know a command for that; why don't you try a semicolon?"

If a couple of hints did not provoke progress, the experimenter provided

an exact solution to the immediate dilemma so that the student could get on

10

Fragile Knowledge in Novice Programmers 9

with the rest of the program. These were called ''provides." Characteristic

provides were: "Write INPUT 'How many stars per side' N; use a FOR-NEXT loop;

put a semicolon after the print statement." The experimenter did not just

provide answers, of course, but also attempted to explain them.

The escalation from prompts to hints to provides not only helped the

student but served as a probe of the student's level of ,astery and

understanding. The more support the student required, the less the student

could accomplish solo. A successful prompt suggested that the student could

succeed by learning self-prompting strategies -- good questions to ask

oneself im programming situations. At the other extreme, a provide preceded

by several unsuccessful prompts and hints indicated very limited knowledge

and understanding relevant to the particular difficulty.

Although the experimenter generally attempted the progression from

prompts to provides, sometimes the experimenter moved directly to hints or

provides. This occasionally happened by mistake, but more often because the

general performance of the student and spiraling frustration suggested that

more direct help was needed to keep the student's attention and involvement.

Data collection. The data collected during a session included notes

taken by the experimenter, code written by the student and transcribed by the

experimenter, and an audiotape of the conversation. The audiotape was

transcribed later and notes and code interpolated to yield a verbatim

protocol of the session. Case studies were drawn from the protocols; a

number of examples will be discussed below. In addition, the protocols were

scored for certain events as discussed later.

We turn now to a discussion of particu.ar phenomena of fragile knowledge

that occurred frequently throughout the clinical Interviews.

Fragile Knowledge in Novi4e Programmers 10

Partial Knowledge

Knowledge might be fragile in many ways, each telling us something about

students' shortfalls of understanding and pointing t! ways to remedy them.

Perhaps the simplest sort of fragile knowledge is partial knowledge: A

student knows something about a command or other element of programming but

has minor gaps that impair the student's functioning. Since this sort of

fragility is so rZraightforward, we will not treat it extensively but simply

mention a couple of examples.

The programming tasks that asked the students to produce one or more

horizontal lines of stars of varying length an called to: the use of a

semicolon at the end of a PRINT "*" to suppress the usual carriage return.

While some students recalled this tactic spontaneously or upon prompts or

hints, others found themselves at a loss. When the experimenter provided the

semicolon, some even showed no familiarity with its function although all the

students had been exposed to it in their class.

For a more advanced example, the problems calling for multiple rows of

stars required a bare PRINT statement after the NEXT of the inner FOR loop to

force a carriage return after each line of stars. The students in their

class had used bare PRINT statements to create blank lines in formatting

output. However, apparently many associated a bare PRINT with blank lines

specit tally, not recognizing its general function of outputting a carriage

return, which could also be used to terminate a line.

In general, numerous examples suggestive of partial knowledge occtIrred

throughout the interviews. If this were the only sort of difficulty students

manife3ted, there would be little point of speaking of fragile knowledge: One

41i "st as wail refer to partial knowledge specifJcally. How4Ier, the

'Meting students generally proved more complex. To focus only on

.ledge would be both to miss much about the structure of students'

knowi and to underestimate how much knowledge they have. With this in

1.2

Fragile Knowledge in Novice Programmers 11

mind, we turn to other species of fragility.

Inert Knowledge

One particularly straightforward kind of fragility has been called

"inert knowledge." This refers to knowledge that a person has, but fails to

muster when needed. For example, Bereiter and Scardamalia (1985) discuss the

problem of inert knowledge in the context of writing. They note that

youngsters asked to write on a topic typically only manage to access a

fraction of their relevant knowledge. Conventional tactics of fluency such

as, brainstorming ideas seem to offer little help; however the strategy of

listing words that might be used in an essay considerably increases students'

retrieval of relevant information. The authors suggest that this occurs

because the bare terms activate a network of associations more effectively

than lists of points, which have a more particular nature.

Broadly speaking, the problem of inert knowledge is a problem of

transfer. Knowledge acquired on one occasion fails to bridge the slight or

substantial gap to another occasion of application. Belmont, Butterfield,

and Ferretti (1982) emphasize that knowledge often tends to remain bound to

the context of initial learning unless the learner deploys self-monitoring

strategies that help to carry the knowledge across to other applications.

Salomon and Perkins recently have presented a general theory of the

mechanisms of transfer that identifies both "high road" and "low road" ways

that transfer can occur. The former requires mindful abstraction and

application in new contexts, the latter skills practiced to near automaticity

on a variety of cases, su that new contexts spontaneously evoke the skills in

question (Perkins & Salomon, in press; Salomon & Perkins, 84; Salomon &

Perkins, this issue). In typical instructional situations, neither the

conditions for low nor high road transfer are met. Consequently, knowledge

that otherwise might serve the learner In a new context remains inert.

Fragile Knowledge in Novice Programmers 12

In sum, the phenomenon of inert knowledge occurs routinely throughout

much of learning. Identifying situations where it does mischief helps to

define what remedy to apply: Students may need their knowledge represented

more generally and better tools of retrieval and abstraction to access

knowledge and break it free from narrow contexts. But how does all this

apply to the context of programming specifically? In our methodology, an

instance of inert knowledge appears when a learner fails to respond with an

appropriate solution, but a prompt or hint triggers success, demonstrating a

problem of access as opposed to a problem of ignorance.

Consider these examples, for instance. Brenda was working on a program

to print a column of ten stars. She had coded:

10 X = "*"

20 FOR X = 1 TO 10

30 PRINT X

40 NEXT X

When she ran the program, she received the error message, "Type mismatch in

10." She asked what a type mismatch was and the experimenter directed her to

look at line 10.

E: What kind of symbol is the star, a number or a character?

Brenda: A number, no a character.

E: Okay, and what is X? What does it stand for?

Brenda: Oh, a number.

She then recoded: 10 XS = "*". So the experimenter's hint lead Brenda to

retrieve knowledge that in fact she possessed but had not accessed.

Dennis was working on the more advanced problem 5, which called for a

solid square of stars. He had coded two nested FOR loops but his output

Fragile Knowledge in Novice Programmers 13

resulted in a horizontal row of stars. Dennis pondered his output for a

while.

E: How many stars did you get?

Dennis: Twenty-five. That's the right number.

E: What do you need to do?

Dennis: Put them into a block.

E: Right.

Dennis then coded a bare PRINT after the first NEXT statement to force a

carriage return and make rows of stars. Here the experimenter's general

queries led Dennis to see through to the nature of the problem and retrieve a

command that would solve it.

These examples illustrate inert knowledge that when accessed provides

what the student needs for a solution. But another part of programming skill

invol-es a critical filter that allows the student to reject candidate

solutions. We term the activity of reading back expressions in a computer

language to discern eactly what they tell the computer to do "close

tracking" (Perkins, Hancock, Hobbs, Martin, & Simmons, in press). There is a

strategic side and a low-level knowledge side to close tracking. On the

strategic side, students need to attempt to close track in order to apply the

critical filter. On the knowledge side, even when a student tries to close

track, problems of fragile knowledge can stand in the way.

For an example of fragile knowledge, Abby began a program to print out a

column of N stars this way:

3 INPUT "How many stars do you want"; N

4 PRINT

5 N = 8

10 FOR X = 1 TO N

J5

Fragile Knowledge in Novice Programmers 14

When she ran the program with an input of 5, she could not figure out why she

got 8 stars. The experimenter then asked her to describe what the program

did line by line.

Abby: Okay, at line 3 it's going to 4nput how many stars do you

want and then it's going to stop so I can put it in. On the next

line it's going to skip a line 'cause of the print. Then on number

5 I'm telling it how many I want, the little stars. I'm telling it

how many stars I want to print out, and the next line is the loop.

Even in reading through the program, Abby did not realize that her assignment

of 8 to N would overwrite her input. Yet this would appear obvious once

pointed out. Odd as such slips may seem, they proved quite common,

preventing students from filtering out their errors by close tracking.

With these examples in mind, what appears to explain the occurrence of

inert knowledge in programming? One obvious cause is the failure to execute

certain strategic actions that Marshall particular knowledge. A programmer

may fail to close track an expression to check it, for example. On the other

hand, even when students ask themselves appropriate higher order quee-tons,

the retrieval process may fail for any number of reasons. Abby, for

instance, seemed to be answering what each line did by reading in her

intention to get N set to a reasonable value rather than thinking about the

exact actions prescribed by the code. For another instance, a student

failing to retrieve a bare PRINT to force a carriage return at the end of a

row of stars may know in principle that such a print statement outputs a

carriage return but associate the action strongly with making blank lines.

In general, one should recognize that an experienced programmer will have a

rich network of associations linking various commands and programming plans;

if retrieval does not succeed by one route, it will probably succeed by

..6

Fragile Knowledge In Novice Programmers 15

another. In contrast, the network of connections in the novice inevitably is

sparse; if retrieval by one route fails for whatever reason, there may be no

other ready way.

Misplaced Knowledge

Another phenomenon of fragility might be called misplaced knowledge.

Here, knowledge suitable for some roles invades occasions where it does not

fit. Like inert knowledge, misplaced knowledge occurs commonly in human

experience. For instance, one's steering habits lead to trouble when one's

car skids, sincethe best corrective calls for steering. with rather than

against the direction of the swerve. Toddlers frequently overgeneralize the

application of new words and individuals learning a second language

experience interference from terms and syntactic structures in their native

language (de Villiers & de Villiers,-1978). Functional fixedness, where

people have difficulty in applying an object in an unconventional way, and

the classic Einstellung effect, where problem solvers carry forward a

solution method for a series of problems to new problems allowing a much

simpler solution, offer other examples (Adamson, 1952; Luchins, 1942). As

with inert knowledge, the connection with transfer should be plain. All

these examples amount to instances of negative transfer, where the knowledge

or know-how in question impairs rather than abets performance through

application in an unsuitable context.

Misplaced and inert knowledge display another connection: The one can

cause the other. In the previous section, we limited our discussion to cases

where fairly pure problems of retrieval left knowledge inert. However, often

relevant knowledge remains inert because misplaced knowledge has intruded.

For example, Stan began working on the program to print a vertical column of

N stars. He coded a FOR loop and then paused., pondering how to handle the

print statement. When asked about his worry, he said he wanted to set up the

17

Fragile Knowledge in Novice Programmers 16

format line in order to "print out the stars the way you want it." He was

referring to formatted printing with the print using command. The

experimenter quickly steered him away from this cumbersome method.

E: "What if you didn't use a format. Is there any other way you

can think of to print a star?

Stan: Print and then just write an asterisk.

For another example, Dan was working on the program to print out a row

of N horizontal stars. He coded:

10 INPUT "How many stars do you want?"; S

15 LET S$ = "*"

20 PRINT S STEP 2

When asked howthe program would work, he explained that STEP 2 would

print across so that somehow the star would be printed S times horizontally.

Clearly Dan misplaced the STEP command from a FOR loop. Moreover, he was

unable to retrieve the FOR loop itself even after the experimenter hinted.

When the experimenter prompted him *1 think of another way to print across,

he did produce PRINT S$;, but still no FOR loop. Moreover the semicolon also

migrated inappropriately: When the experimenter directly suggested using a

FOR loop, Dave coded 12 FOR X = 1 TO S;, with the semicolon at the end of

the FOR statement.

As with inert aumaedge, we should ask what explains the occurrence of

misplaced knowledge. Overgeneralization or underdifferentiation to put it

another way provides one obvious cause. Recall how Dan had not sharply

differentiated the proper applications of STEP or the semicolon. Recency of

learning often figured in such difficulties, the students apparently feeling

that whatever they had studied lately must somehow apply: This was probably

the cause of Stan's misapplication of print using. Throughout the course of

18

Fragile Knowledge in Novice Programmers 17

data collection, we noted how different intrusions seemed to crop up as a

function of topics in class. Early in our observations, we saw print using

and read data statements appear in students' code. A few weeks later the

step command was interpreted as causing both horizontal and vertical

printing, somehow always in association with print statements rather than

loops. In the final sessions, we began to see students try to apply arrays

in coding the square designs.

In situations where the learner has difficulty finding a reasonable

solution, misplaced knowledge may amount to a desperation measure. Precedent

for this appears in mathematical and other problem solving contexts, where

the general point has been made that students generally try to provide some

kind of a response, even if a dubious one (Davis, 1984). For example, Alice

was having great difficulty programming the vertical column of ten stars.

She realized that she needed to print a star ten times going down, but could

not retrieve an appropriate command for doing so. Her first idea for

repeating involved the use of a GOSUB, but the experimenter steered her

toward the idea of a FOR loop. Then to take care of the printing she

suggested using READ, but realized there were no data to read. Finally, she

coded a print statement inside the loop but become stuck over whether to code

ten print statements instead of just one. Ultimately the experimenter had to

provide Alice with the correct code. It seems fairly clear that in this

instance Alice's misplaced knowledge reflected her being at a loss.

Conglomerated Knowledge

Another manifestation of fragile knowledge might be called

"conglomerated knowledge." This appears when the young programmer composes

code that expresses loosely the intent without following the strict rules

that govern how the computer actually' executes code. Dan's use of STEP in

the midst of a PRINT statement offers an example not only of misplaced but

3 9

Fragile Knowledge in Novice Programmers 18

also conglomerated knowledge.

Another example independently produced by several students concerned the

problem of printing five stars in a horizontal row. In one episode, Gail

coded:

10 INPUT "How many stars do you want"; X

20 PRINT "*"; X

Her idea was that the star would print ten times across.

This example illustrates well the peculiar character of conglomerates.

They certainly show signs of the programmer's mindful engagement in the

activity of programming; the programmer plainly has sought to encode

information the computer would need to carry out the task in question. On

the other hand, conglomerates are syntactically or semantically ill-formed.

Either they are far from being legal code in the language in question, as

with STEP in the midst of PRINT, or although accidentally legal direct the

computer to do something very different from the programmer's intent, as with

PRINT "*"; X to print a row of X stars.

Consider another more complex example. Ellie was working on the same

problerd, but she coded:

1 FOR X = 1

10 "Print how many stars do you want"; N

20 INPUT NUMBER

30 X = (*) * NUMBER

40 NEXT X

Her conglomerate aimed to multiply the asterisk times whatever number she put

in. There are several other difficulties with her program as well, of

course.

Fragile Knowledge in Novice Programmers 19

Of course, there is no sharp borderline between misplaced and

conglomerated knowledge. Many conglomerates involve misplaced knowledge --

elements from one programming construct or context showing up in the midst of

an expression from somewhere else entirely. But a broad distinction can be

drawn. Pure cases of misplaced knowledge involve knowledge intruding into

contexts without any sense of a conglomerate jammed together out of

ill - fitting parts, as in the earlier example of seeking to use a print using

statement in a situation calling for a simple print. Pure cases of

conglomerates occur when the expression in question does not show components

obviously misplaced from some other context. For instance, in the PRINT "*";

X example, one does not particularly feel that the X is misplaced from

anywhere, a FOR-NEXT loop for example. Rather, the programmer simply means

to let the computer know that X stars are required and hopes that putting the

X in the print expression will do so.

As with inert and misplaced knowledge, one ants an explanation for

conglomerates. Why do they occur? Plainly they reflect the active effort of

young programmers to solve the problem. Unsure exactly how to command the

computer, a programmer takes a stab at it, putting together code that

provides the computer with at least some of the information the computer

would need to perform the task. The remaining question asks why programmers

take such stabs rather than doing the "right thing?" Several answers seem

relevant. First of all, the "right thing" often involves knowledge inert or

not possessed at all, leaving the programmer no proper recourse. Second, the

programmer often works from an underdifferentiated knowledge base, leading to

misplacements that yield conglomerates. Third, the programmer fails to close

track tentative conglomerates or may be unable to do so with precision.

Fourth, the programmer lacks the general critical sense that one simply

cannot expect to throw things together in a programming language and have

them work. That is, the programmer treats the programming language as much

Fragile Knowledge in Novice Programmers 20

looser, less restrictive, more expressive and more like a natural language

than in fact it is.

Prompts as a Gauge of Strategic Shortfall

One of our running themes in this paper has been the contribution to

programming of relatively high level strategic knowledge versus relatively

low level knowledge of the details of the language. Successful prompts in

particular show that a student possesses knowledge the student might have

retrieved and applied autonomously. In other words, prompts are the high

level strategic questions one might ask oneself. To the extent that a

student needs help but proves responsive to prompts, the student displays a

strategic shortfall but sufficient lower level mastery. How often this

happens will be taken up later. Here we examine effective prompts and

consider a few cases in more detail to convey their flavor.

Particularly notable is the range of prompts. Here are some samples

selected for variety: What's the first thing you need to tell the computer to

do? Are there any other ways to make the computer (print across, repeat

something, whatever)? How would you describe the problem to yourself? What

is your plan? Do you know a command for repeating (after the student has

indicated a need to repeat; otherwise this would be a hint)? What do you

need to do next? What does a semicolon do (when the student is reading back

a statement with a semicolon; otherwise this, would be a hint)? Note how much

these prompts vary in seeming generality and yet how alike they are. While

some are phrased much more specifically than others, these bind a very

general question to particular circumstances. For instance, "Wha, does a

semicolon do?" is a special case of "What does this do?" where the this might

be a symbol in an algebraic equation or a part of a carburetor. In type, the

question is a probe for the exact function of a part.

22

Fragile Knowledge in Novice Programmers 21

Of course, whether a prompt succeeds depends not just on the prompt

itself but on the accessibility and organization of the knowledge the prompt

seeks to activate. The very same prompt can succeed on one occasion and fail

on another. For example, in attempting the filled-in square program, a

number of students coded only one FOR loop and two PRINTs, one with a

semicolon "to go across" and another without "to go down." Through a series

of prompts, the experimenter usually got the students to realize that the

program needed to repeat N rows of N stars per row. But this was not always

enough. When asked, "Do you know a command that might help you repeat

something," Dennis, for example, replied, 'Oh yeah. FOR-NEXT." But Randy's

response was "GOTO."

We have saved one type of prompt for separate discussion because it

occupies a pivotal position in programming: The prompt to close track, which

may be seen as a special case of the prompt to check one's work in relation

to one's objectives. As mentioned earlier, close tracking ideally functions

as a critical filter applied to candidate solutions. While some students had

difficulty close tracking with precision when prompted to do so, others

succeeded. For example, Naomi was working on a programming problem from our

sequence that asked for a triangle of stars. She wrote a program involving

nested loops but no use of the iteration variable of the first loop as the

upper limit of the second, to yield lines of increasing length. But even

before running the program she paused, pondered her program for a moment, and

realized, "It's going to end up like a square." Naomi's inclination and

ability to read back her program and forecast what it would do, rather than

presuming it would do as she intended, enabled her to reject plans and seek

other alternatives. This was relatively rare among the students.

In addition to forecasting, the critical filter of close tracking can

serve as a debugging aid. One can adopt the general strategy of close

tracking the whole program or likely segments of it not just to predict that

23

Fragile Knowledge in Novice Programmers 22

the program will do but to try to explain bugs: Why did the program misbehave

in exactly this way? Often students prompted to attempt this strategy

managed to follow through. For example, Dick was working on the filled-in

square problem with one loop and two print statements, PRINT "4"; to print

across and PRINT "s" to print down. When he ran his program he got a column

of pairs of stars. The experimenter prompted him to trace why that result

occurred. Dick spent a few moments contemplating the program and then

replied, "It prints that and that and then goes down, prints that, then that,

goes down, prints that and that." The experimenter asked what Dick needed to

get the desired result. .Dick: "Keep on printing that row. So after it

prints a row, it goes on to print the same row, that many times." Dick has

reached a sharper formulation of what must happen.

The previous examples show how gauging the effectiveness of prompts

allows appraising whether students would be helped by an enriched strategic

repertoire. But up to now we have not provided any information on how often

prompts help. We turn now to this question.

How Often Do Prompts Help?

A means of identifying and tallying prompts, hints, and provides was

developed. Whenever a student's protocol showed that the experimenter needed

to intervene significantly, a scorer assessed whether the experimenter

offered prompts, hints, and/or provides, and which led to a correct

resolution. A second scorer judged independently a subset of all the

protocols with high interscorer agreement.

As mentioned earlier, the experimenter from time to time gave a hint

without a prior prompt or a provide without a prior hint. Sometimes this

occurred by mistake but most often because the student appeared to need

immediate support. Assume for the moment that all provides and all

successful hints, even those not preceded by hints and prompts respectively,

24

Fragile Knowledge in Novice Programmers 23

were genuinely needed by students. This yields a conservative estimate of

the percentage of time prompts and hints are effective. In particular,

prompts led to a correct resolution of difficulties 32% of the time and hints

an additional 17%, leaving 52% of difficulties requiring an answer provided

by the experimenter.

Now consider only those 'provides' preceded by unsuccessful hints and

successful hints preceded by unsuccessful prompts. These data include just

the hints and provides that were surely necessary. One can then calculate a

liberal estimate . the percentage of time prompts and hints are effective.

Prompts led to a correct resolution 55% of the time and hints 16% of the

time, leaving 28% to be provided.

The ambiguity introduced by the occasions the experimenter did not

proceed regularly from prompt to hint to provide should not obscure the

central point. Plainly, prompts have a substantial impact on students'

thinking. From a third to half the time they help the student to marshall

knowledge and resolve the difficulty at hand. This suggests that young

students of programming could benefit from more strategic thinking in the

form of general strategic questions to ask themselves.

It is also worth noting that hints, although providing information

directly relevant to the difficulty, did not help that much over and above

prompts. By both ways of estimating, hints resolved a difficulty only about

15% of the time. This suggests that if the knowledge is there to be

marshalled, strategic questions usually suffice to marshall it. Finally, the

considerable percentage of provides demonstrates a substantial problesz of

partial knowledge and of inert knowledge that could not be provoked by

prompting and hinting.

These remarks apply to all the experimenter's prompting except prompts

to close track, which we isolated for separate analysis in light of the

importance of close tracking as a critical filter. When students close

5

Fragile Knowledge in Novice Programmers 24

tracked, they did so accurately about 50% of the time, forecasting a problem

or explaining a bug. However, only about 20% of the episodes of close

tracking were spontaneous; the rest had to be prompted. This almost

certainly underestimates t4-a frequency of spontaneous close tracking, since

we only tallied episodes where students were plainly close tracking; a couple

of seconds staring at the program with no tracking-like comments would not be

counted, although the student might have been close tracking rather than just

generally looking over the program. Nonetheless, the numbers suggest that

students do not spontaneously close track as often as they might bentnt from

it..

Issues of Knowledge and Strategy

We began this paper by noting the modest programming achievement

reported by other investigators and asking whether students' lack of

low-level propagating knowledge or high-level strategies was to blame. Even

in asking the question, we recognized its presumption: Both could be

implicated and lack of low-level knowledge might put too simply the nature of

students' knowledge difficulties. The case studies and generill findings

reported here suggest a perspective on novices' programming difficulties

somewhat more subtle than knowledge versus strategies. That perspective and

its implications lend themselves to discussion by way of four questions.

What characterizes novices' difficulties with programming? Are the

difficulties just a consequence of poor instruction? What are the

implications for the teaching of programming? What are the implications for

programming's impact on cognitive skills?

What characterizes novices' difficulties with programming?

The data reviewed here suggests this answer: fragile_ knowledge

exacerbating a shortfall in elementary problem-solving strategies. As to

26

Fragile Knowledge in Novice Programmers 25

fragile knowledge, both the case studies and the tallies of the effectiveness

of prompts and hints in marshalling students' knowledge demonstrated that

viewing novices' knowledge as partial was too simple. Besides problems of

partial knowledge, students displayed inert knowledge that they could not

readily muster, misplaced knowledge that migrated to inappropriate contexts,

and conglomerated knowledge that mixed together commands in syntactically or

semantically anomalous ways. The causes of such fragile knowledge seemed

varied but comprehensible. Among the factors discussed were a sparse network

of associations, underdifferentiation of commands binding of commands and

programming plans to customary contexts without recognizing their generality,

treating a programming language more like a natural language where one can

say what one means in many ways, and, of course, underuse of general

strategic questions to prompt oneself to better marshall one's knowledge.

The range of difficulties posed by fragile knowledge might seem

dismaying, but there is another way to look at it. The phenomena of fragile

knowledge say that students know more than you might think. To be sure, that

knowledge is often inert, underdifferentiated, undergeneralized, and so on,

but at least it is there in some nascent form. Moreover, the fragile

knowledge Oherummna of misplaced and conglomerated knowledge catch students

in the midst of seeking to cope with the task in an exploratory way. If the

misplacements and conglomerates will not do the job hoped for, at least they

signal the students' efforts to muster what they know and apply it somehow.

Note that chile misplacements and conglomerates by definition will not work,

they are never nonsensical. While PRINT "*" X will not print X *'s in a row,

and a student with a good under tanding of PRINT would know that, nonetheless

one can see how such a format might perform such an action.

Now consider problem-solving strategies. The strategic shortfall

implicated by the clinical work involves rather elementary strategies.

Prompts in the spirit of "what now," "what other ways," "how can you describe

Fragile Knowledge in Novice Programmers 26

the problem," "what's the plan," "do you know a command to do that," and

"what will this command do," dominated. These concern several aspects of

problem solving -- formulating goals, generatfag solutions, evaluating

solutions, breaking set. However, they contrast with many efforts to

enumerate problem solving heuristics that emphasize somewhat more

sophisticated strategies, in effect taking such simple prompts as these

almost for granted (Polya, 1954; Polya, 1957; Schoenfeld, 1980; Wickelgren,

1974).

Why elementary problem-solving strategies come to the fore here seems

plain enough. The students' fragile .knowledge will .not sustain any very

sophisticated problem solving. On the contrary, in light of their fragile

knowledge, students' principal problem becomes how to muster that knowledge

most effectively. Elementary prompts rather than sophisticated strategies

that take much more for granted fit the bill. For this reason, we say that

the strategic shortfall exacerbates the fragile knowledge problem. It is not

enough just to conclude that students need both more robust knowledge and

more strategies as though the two were independent dimensions of programming.

One must appreciate how knowledge and strategies work together to support one

another, weaknesses in either finding partial compensation in the other.

Are the difficulties just a consequence of poor instruction?

We have already noted that in our judgment the students we studied were

taught in a careful and conscientious way by a teacher with excellent mastery

of BASIC. Yet anyone familiar with programming must be taken aback by some

of the errors students committed in our case studies. "How could any

well-instructed student think that would work?" someone might ask. On this

interpretation, one need only teach programming in the solid way we at least

sometimes teach many another subjects and the difficulties will recede. In

our view, this reading of the circumstances underestimates the difficulty of

Fragile Knowledge in Novice Programmers 27

programming and learning to program. Although programming achievement of

students certainly varies according to the ability of the students and the

expertise of the teachers (Linn, 1985), it seems to us that too many students

display substantial difficulties too often to justify attributing such

troubles solely to teaching.

Consider for a moment what a challenge programming is. Unlike most

school subjects, programming is problem solving intensive. One cannot even

come close to getting by just by knowing answers. Moreover, as the phenomena

of misplaced and conglomerated knowledge demonstrate, a freewheeling

manipulation of one's.kaoige will suffice either, as it might to some

extent in the arts or literature for instance. The demands of a computer

that cannot discern what a program means are inevitably more stringent than

the demands of a reader who not only can see through to meanings but may

appreciate exploratory and playful extrapolations and stretchings of

concepts. Moreover, programming calls for extraordinary perfection. If you

get 90% of the words right on a spelling test, you score a 90; if you make

90% good points an an essay, you probably get an A. But if you get only 90%

of your commands right in a program, it will not do adything like what it is

supposed to. Moreover, the remaining 10% may well introduce several

interacting errors that make tracking down the bugs a demanding and

frustrating task.

For these reasons and no doubt others, we suggest that normally

responsible and knowledgable instruction does not suffice to give students a

reasonable mastery of programming, particularly the students who do not show

a flair for programming. Just as programming makes extraordinary demands on

students, so does the teaching of programming make extraordinary demands on

pedagogy.

Fragile Knowledge in Novice Programmers 28

What are the implications for the teaching of programming?

With this challenge in mind, how should programming be taught? It would

be glib to suggest that the present findings can offer anything like a full

formula for so complex an enterprise. Nonetheless, three broad

recommendations follow from our observations. First of all, teach

programming_so as to reduce the problem of fragile knowledge. This general

directive translates into a number of particular objectives. One needs to

highlight the functional roles of commands in their generality to work

against inert knowledge. For instance, a FOR loop needs to be seen as a way

of repeating anything Emnumber of tines that can be calculated as the loop

is entered; PRINT needs to be seen as outputting a carriage return character

that hence either terminates a line or creates a blank line. Also, one needs

to convey an understanding of exactly what commands do. For instance, a FOR

loop does not just repeat something in a holistic sense but goes through a

particular iteration process with a particular end-test, making possible

nonstandard applications such as transferring out of a loop before it is

complete. One needs to caution students about freewheeling and treating the

computer language as though it were a natural language that could get across

an intended meaning in many ways.

Second and somewhat paradoxically, teach programming so as to preserve

the exploratory use of the language. It would be a shame to convey such a

stringent image of programming that students became fearful of making

conjectures, as indeed some students seem to be (cf. the discussion of

"stoppers" versus "movers" in Perkins, Hancock, Hobbs, Martin, & Simmons, in

press). The solution to the paradox involves what might be called

"controlled exploration," exploratory thinking filtered by a precise

appreciation of what the programming language affords. For instance, we

think this to be a good principle: "When in doubt, take a stab at a solution;

but check your stab by close tracking." This encourages students to attempt

30

Fragile Knowledge in Novice Programmers 29

cycles of invention and critical filtering from which they can learn. For

example, a couple of times a student in our clinical work proposed PRINT "*"

X or a slight variant, close tracked what would happen upon execution, and

realized it would not behave as desired. We see such episodes not as

unfortunate sidetracks but as important learning experiences wherein students

enlarge their own understanding of the language by generating possibilities

and testing those possibilities against the knowledge they already have.

However, such exploratory learning cannot go well unless the students have

enough knowledge to be able to close track well.

Third, encourage the use of elementary problem-solving strategies. As

our data demonstrate, students would gain by prompting themselves more often

with simple strategic questions such as "what does the program need to do

next," "what command do I know that might help to do that," "what will what I

have written really do," or "how did my program get that wrong answers)" The

last two, prompts to close track, have special importance. As stressed

before, close tracking is the critical filter that allows detecting

programming errors with understanding. To be sure, running the program to

see what happens also acts as a critical filter: If the program fails, there

is something wrong. However, the critical filter of running the program

provides far less information than the critical filter of accurate close

tracking. While the former simply presents the programmer with the fact of

an error, and perhaps an error message or some anomalous output, the latter

leads the student through the program's action blow by blow.

What are the implications fur programming's impact on cognitive skills?

The present findings in no way document an impact of programming on

general cognitive skills. On the contrary, if anything they suggest that

students of programming need stronger general problem solving skills in the

first place in order to best build upon their fragile knowledge. Rather than

31

Fragile Knowledge in Novice Programmers 30

expecting programming instruction of itself to boost cognitive strategies,

one should teach cognitive strategies as part of better programming

instruction.

However, the findings do support the idea that beginning programming is

a natural arena for the development of general cognitive skills. To see this

point, consider what the present study might have found instead. High level

prompts could have proved quite ineffective. Only hints might have succeeded

in marshalling students' fragile knowledge. Such a finding would suggest

that even elementary problem-solving strategies had no very important role to

play until students. achieved a substantial mastery of the basics of the

computer language in question. However, this was not the finding. Instead,

it appears that certain general problem-solving strategies can contribute

from early on.

In sum, we suggest a distinction between programming as an arena for the

development of cognitive skills and programming as an activity whose pursuit

automatically develops cognitive skills. Our data argue for the former and

against the latter. Direct teaching or indirect encouragement of strategic

self-prompting and other tactics should help students to learn to program

better and increase the likelihood of transfer from programming as well (Cf.

Salomon & Perkins, this issue).

32

Fragile Knowledge in Novice Programmers 31

References

Adamson, R. E. (1952). Functional fixedness as related to problem solving.

Journal of Experimental Psychology, 44L 288-291.

Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10(4),

159-175.

Belmont, J. M., Butterfield, E. C., & Ferretti, R. P. (1982). To secure

transfer of training instruct self-management skills. In D. K. Detterman & R.

J. Sternberg (Eds.), How and how much can intelligence be increased? (pp.

147-154). Norwood, Nei; Jersey: Abfei.

Bereiter, C., & Scardamalia, M. (1985). Cognitive coping strategies and the

problem of inert knowledge. In S. S. Chipman, J. W. Segal, & R. Glazer

(Eds.), Thinking and learning skills Vol. 2: Current research and open

questions (pp. 65-80). Hillsdale, New Jersey: Erlbaum.

Clements, D. H. (1985, April). Effects of Logo programming on cognition,

metacognitive skills, and achievement. Presentation at the American

Educational Research Association conference, Chicago, Illinois.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on

young children's cognition. Journal of Educational Psychology, 76(6),

1051-1058.

Davis, R. B. (1984). Learning mathematics: The cognitive science approach to

mathematics education. Norwood, New Jersey: Ablex.

de Villiers, J. G., & de Villiers, P. A. (1978). Language acquisition.

Cambridge, Massachusetts: Harvard University Press.

33

Fragile Knowledge in Novice Programmers 32

Delclos, V. R., Littlefield, J., & Bransford, J. D. (1985). Teaching thinking

through LOGO: The importance of method. Roeper Review, 7(3), 153-136.

Feurzeig, W., Horwitz, P., & Nickerson, R. (1981). Microcomputers in

education (Report no. 4798). Cambridge, Massachusetts: Bolt, Beranek, &

Newman.

Linn, M. C. (1985). The cognitive consequences of programming instruction in

classrooms. Educational Researcher, 14L 14-29.

Luchins, A. S. (1942). Mechanization in problem solving. Psychological

Monographs, 54(6).

Nachmias, R., Mioduser, D., & Chen, D. (1985). Acquisition of basic computer

programming concepts imchildren (Technical report no. 14). Tel Aviv, Israel:

Center for Curriculum Research and Development, School of Education,

University of Tel Aviv.

Papert, S. (1980). Mindstorms: Children computers, and powerful ideas. New

York: Basic Books.

Pea, R. D., & Kurland, D. M. (1984a). On the cognitive effects of learning

computer programming. New Ideas in Psychology, 2(2), 137-168.

Pea, R. D., & Kurland, D. M. (1984b). Logo programming and the development of

planning skills (Report no. 16). New York: Bank Street College.

Perkins, D. N. (1985). The fingertip effect: How information-processing

technology changes thinking. Educational Researcher, 14(7), 11-17.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. (in

press). Conditions of learning in novice programmers. Journal of Educational

Computing Research.

34

Fragile Knowledge in Novice Programmers 33

Perkins, D., & Salomon, G. (in press). Transfer and teaching thinking. In

Bishop, J., Lochhead, J., & Perkins, D. (Eds.). Thinking: Progress in

research and teaching. Hillsdale, New Jersey: Erlbaum.

Polya, G. (1954). Mathematics and plausible reasoningA2 vols.). Princeton,

New Jersey: Princeton University Press.

Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd

ed.). Garden City, New York: Doubleday.

Salomon, G., & Perkins, D. N. (1984, August). Rocky roads to transfer:

Rethinking mechanisms of a neglected phenomenon. Paper presented at the

Conference on Thinking, Harvard Graduate School of Education, Cambridge,

Massachusetts.

Schoenfeld, A. H. (1980). Teaching problem-solving skills. American

Mathematical Monthly, 87t_ 794 -805.

Schoenfeld, A. H. (1982). Measures of problem-solving performance and of

problem- solving instruction. Journal for Research in Mathematics Education

13(1), 31-49.

Schoenfeld, A. H. & Herrmann, D. J. (1982). Problem perception and knowledge

structure in expert and novice mathematical problem solvers. Journal of

Experimental Psycholog/1_Learning, Memory, and Cognition, 8 484-494.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming

knowledge. IEEE Transactions on Software Engineering, SE-10(5), 595-609.

Wickelgren, W. A. (1974). How to solve problems: Elements of a theory of

problems and problem solving, San Francisco: W. H. Freeman and Co.

35

