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INTRODUCTION

This dmument will describe the several software learning environments that our group has
developed over the past two years, in an order that parallels a reasonable sequence of use by
students. We will also describe a planned and designed, but not yet implemented, extension of
these environments from the discrete to the continuous case.

Each of the implemented environments was developed in continuous collaboration with teachers
and their students from grades 3 to 8. The story of the clinical and classroom work associated
with this development will be available as a series of papers currently in preparation. See also
(Kaput, et al, 1986; 1987) for additional empirical background.

As is described in much more detail in other reports on this Project (Kaput, 1985; Kaput, et al,
1986), a central objective of all our learning environments is to ramp students from their
concrete, situation-bound thinking about the conceptual field of multiplicative structures to more
abstract and flexible thinking. This conceptual field includes concepts beginning with
multiplication and division and increasing in complexity through proportions all the way to
vector spaces (Vergnaud, 1983). We are interested here in that portion of the conceptual field
that appears in the core school curriculum up to the solution of proportions by simple algebraic
equations.

An important, perhaps defining, characteristic of these environments is their systematic linking
of concrete representations, beginning with iconic representations, to the more abstract
representations. It is on this abstract representation that much of advanced mathematics is built,
e.g., coordinate graphs and algebraic functions. This systematic linking of computer
representations is the foundation of our strategy for building rich and flexible cognitive
representations. It is an attempt to build meaning and understanding gradually in this conceptual
field in a way that will support long term competence - computational and conceptual/
competence.

An immediate result of this long term view is the fact that these types of environments are
intended to be used over a period of several years and grade levels. We do not believe in
quick-fix technological solutions to difficult and long standing learning problems, and agree
with Vergnaud in his view that important conceptual structures take many years to develop. To
short-cut this extended meaning-building process, perhaps in the hopes of teaching near-term
procedural performance, is to invite long term disaster, precisely the disaster that is now widely
recognized as having occurred in so many nations across the world (McKnight, et al, 1987).

A second important characteristic of the learning environments is that they put students in
situations calling for actions using a particular representation, where the students are then

4. responsible for judging the adequacy or appropriateness of those actions, often by interpreting
relative to a representation different from the one in which the action was initiated. The
computer reports. the students evaluate, not the other way around!

A third characteristic of the learning environments is the assumption that all numbers involved
refer to something - numbers are used in the context of quantity. We do not engage the students
in abstract arithmetic. This is as much a property of the written materials and discussion
associated with the use of the software as of the software itself, which requires that all numbers
have units associated with them.
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Some Practical Matters

The learning environments were designed as research tools and constitute prototype software.
In their current form they are not intended for general classroom use except in situations
involving teachers experienced in the use of beta-version software. Indeed, we regard them
more as "pointers" to model uses of computers in this domain of mathematics than as examples
of such. They are available for research purposes from the Center at nominal cost. They were
written for a Macintosh in True BASIC, a Pascal-like programming environment which,
unfortunately, in an attempt to be fully transportable across very different hardware and
operating systems, does not facilitate full use of the Macintosh windowing and command
environment. Our use of multiple representations linked across different windows and our
application of icon-based calculation systems, in an ideal implementation, would be especially
well served by that environment, because the user would be able to control the size, visibility,
orientation and even choice of the different windows that are now frozen in place. The interface
would also be less cluttered and more consistent. But, as indicated, this was specifically no a
development project, but a learning research project.

Organization of the Report

We intend the Report to serve two functions, (1) as an overview of our approach to learning the
conceptual field of multiplicative structures, and (2) as a guide to the software environments
themselves. However, this document will not provide sufficient detail to serve as complete user
documentation for the software itself, especially since the software is continually evolving as
experience with it accumulates. Any potential user of these environments should obtain
updates, especially since minor changes in certain details can lead to major frustrations for a
user not aware of those changes. Furthermore, the software is used in conjunction with
substantial amounts of accompanying written materials, which, although they will be alluded to
from time to time, are not included here. Indeed, matters of pedagogy and curriculum are too
important to be covered as an ancillary matter in a software description, so will be dealt with in
separate documents. Scattered among the many screen-dumps that comprise our major display
tool will be found rationales for the design decisions taken.

The remainder of the report will be organized according to the design of the software
environments. Hence we will begin with descriptions of the icon-based calculation
environments, then move to the environment that introduces the numerical and graphic
representations, discuss the algebraic representations that extend these environments, introduce
the sampling environments, and finally introduce the transitions to the continuous environment.
Lastly we will discuss our designs of the continuous environment. Thus the bulk of the
software is centered on introducing intensive quantities in the discrete case first, because the
arithmetic is simplest, and because a reasonable conceptual distance can be maintained between
the part-part relationships associated with discrete intensive quantities and the part-whole
relationships that are at the basis of students' experience with fractions(Behr, et al, 1983).

AN OVERVIEW OF THE SOFTWARE

The existing software is organized into the top four environments indicated in Diagram 1, and
the fifth, the continuous environment, is currently being implemented.
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Multiplicative
Structures/Ratio Reasoning

Software

Icon Calculation
Environments

Linking/Incrementing
Environments ]

Missing Values
Environments

Sampling & Comparison
Environments

Continuous Environments

Diagram 1

The "software ramp" begins at the most concrete level with the icon calculation environments, of
which there are two families, as indicated in Diagram 2.

Icon Calculation
Environments

1._

Single Icon Calculations

J
(ICE-0 ICE 1 (multiplication &

icon distribution) division)
..........., N

ICE-2
(concrete
proportional

reasoning)

Diagram 2

One family, on the left of the diagram, supports calculations with single icon sets multiplication
and the two forms of division, although ICE-0 can be used as an organizer for simple calculations
of any kind ( "ICE" stands for Icon Calculation Environment."). It acts simply as a "game board"
on which one can take icons from a reservoir and freely distribute them in a rectangular array of
cells. In ICE-1, the computer provides elementary numerical information on one's actions, e.g.,
how many icons have been distributed, how many cells have been used, etc.

8
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The second family supports calculations coordinating the distribution of two sets of icons, as
occurs in concrete, iconic versions of proportion solving. In this context, proportional reasoning -
historically assumed to be a difficult reasoning process requiring substantial intellectual
development - can be accomplished using only the fundamental cognitive acts of grouping,
matching and counting.

The process of ramping upward from these concrete reasoning environments to the more powerful
mathematical representations such as coordinate graph and algebraic equations is achieved through
the application of a set of Linking environments - see Diagram 3. These support simple acts of
incrementing numbers where the student can examine at will the linked consequences of these
incrementing (and decrementing) acts in any or all of four representations: Iconic, Numeric (tables
of data), Graphic (coordinate graphs), and Algebraic (equations). There are also representations
designed explicitly to facilitate the transition from the concrete to the abstract, for example the
concrete transitional coordinate graph that stacks icons along the axes instead of simply labeling
axes with numbers.

i Linking/Incrementing
Environments

1
Iconic Representation

Numeric
(table of data)

Graphic Representation
(coordinate graph)

i 1
Algebraic Representation

(linear equations)

Diagram 3

I

Once new representations are available in which to do proportional reasoning, the student can then
explore the different forms of that reasoning process across those representations. Recall that to
solve "missing vaue problems" is to engage in the primary form of proportional reasoning: one is
given a ratio in the form of a pair of numbers, and a third number. The task is to determine a
fourth number that fits the given ratio. In the Missing Values Environments students can input
solutions in any of four representations and check the results achieved in any of the anothers. This
power is most often exercised when a student uses a more concrete representation (iconic or
numeric) to check on computations done relative to a more abstract representation (coordinate
graph or algebraic equation) - see Diagram 4.
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Missing Values
Environments

Icon Input )

-{. Numeric Input

Graphic Input

Algebraic Input

Diagram 4

Another aspect of ratios relates to their use in the describing of an internal feature or attribute of a
substance, entity, or situation - for example: density in grams per cubic centemeter, speed of a car
on a trip in miles per hour, or number of candies per child - these are sometimes referred to as
"intensive quantities." This aspect of the complex idea is addressed in the various sampling
environments - see Diagram 5 - where the matter of homogeneity of samples is also addressed,
e.g., is the density constant?

Sampling &
Comparison
Environments

Sampling

Sampling/Comparing
1

Two Intensive
Quantities

fRegular/
Homogeneous

Samplesi,
Irregular Samples I)

Regular Sampling

Irregular Sampling

Diagram 5

These environments also support the comparison of intensive quantities. For example, if one
park's picnic areas have 2 trees per 3 benches, and another has 3 trees per 5 benches, which is
shadier? These environments thus engage yet a third aspect of this web of ideas, that of order.

But all of the previously mentioned software environments involved only discrete quantities,
whereas the bulk of the mathematics curriculum beyond the early grades uses continuous
quantities. Hence we have under development a series of linked representations where the
numerosity of icons is replaced by length of continuous line segments. In addition to containing
deliberate transitions from discrete to continuous representations, these environments also utilize

.10
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an interface and a command structure maximally parallel to that of the discrete world so as to
induce transfer of understanding where apprwriate and to minimize the difficulty of learning this
more complex set of ideas - see Diagram 6.

The transition from the discrete to the continuous also provides an opportunity to test in a real
curricular context the potential of delibrately manipulated interface and command structures to
support important learning, especially transfer.

Continuous
Environments

Transition From
Discrete to Continuous

Parallel Line Model

Scaling Environment

)Number-Pair
Odometer

Linking Environment

Diagram 6

Coordinate
Graph

Algebraic

Equations

1. INTRODUCING THE DISCRETE REPRESENTATIONS

Before systematically describing each of the environments, it will be useful to have an image of the
different representations and a sense of why the sequence begins where it does, with an icon
calculation environment that supports concrete multiplication and division.

In most of our software environments, the first screen the student is faced with is the menu of
icons from which to choose - by pointing and clicking, as in Figure 1. (This set of icons could, of
course, be enlarged straightforwardly, and in an ideal implementation, students would be able to
sketch their own icons.)

In several of the environments involving a discrete intensive quantity, the next step is to build a
model cell with two chosen icons by dragging replicas into a rectangular cell (which shrink upon
sliding into the cell). In order to give a sense of the "intensivity" or intensive attribute of the
collection, some of the environments flood the scicen with copies of the model cell when the
student signals completion of the cell building.

11
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Note that the student can place the icons in the cell as he/she pleases. In particular, the icons can be
arranged to reflect visually a semantic relationship among the entities represented. In the case
pictured in Figure 2 below, the story-line assumption is that

We are planning to plant trees in a park so that every two trees will shade three
people.

Hence the icons are laid out to reflect the trees-shading-people semantic relationship.
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In one of the discrete environments, the "Linking Environment," it is possible to display all four
representations simultaneously - the iconic, the numeric, the coordinate graphic, and the algebraic.
This would seldom, if ever, be done in a school setting because the different representations
involved might be introduced as many as two to four years apart.

In the environment shown below in Figure 3, all four representations are driven by the MORE and
FEWER buttons, which increment or decrement the values of the variables in each representation
as indicated (this particular screen would result after 5 clicks on MORE).

Typically, to control the amount of information on the screen several of the screen windows are
toggled off (by clicking on their boundaries) so that only one or two are visible at a time. Indeed,
this is a general convention in all the software environments:

A wide vertical boundary of a representation's window serves as a two-way toggle switch, where
the two values are Visible and Invisible (blank). When the window is visible, clickingon a wide
horizontal boundary toggles between Active and Inactive.

This rule does not apply, of course, to those representations in which the actions of the
environment are initiated.

In Figure 3 one can also choose which equation(s) to have active in this particular algebra window
by clicking on the shaded area between expressions to turn on that particular equation (note the box
in the lower right hand corner of the equation window). In the screen shown, all but one are active
where the values of the variables appear as highlighted numbers in rectangular "frames" on the
icons - matching the highlighted numbers in the table of data, ofcourse. The given numbers of the
initial ratio (2 and 3 in this case) are not highlighted.

NOre

It It ft .
Fewer 2 3

4 4 4 6

It P It New 6 9

Quit li
....

4 4
8 12

4...

t.,

It* P P
res,

U2'

Figure 3
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As a result, the intensive quantity is modeled in the coordinate graph as the slope of a line of
discrete points.

1.1 The Boxes Strategy

In order to motivate the description of the icon-based environments intended to be used prior to the
introduction of other representations, we recount a strategy spontaneously generated by a
significant number of sixth and seventh grade students when solving missing value problems,
problems such as:

How many people would be shaded by 14 trees in our park?

We observed students who had prior experience with the rectangular cell layout of the iconic
representation, in either paper-pencil or computer based activities. We refer to their approach as
the "boxes strategy." It is directly based on the rectangular cell organization of the iconic
representation of the intensive quantity "2 trees per 3 people."

"Let's see, there are 2 trees per box and so there are 7 boxes of trees. There will be 7 times 3,
that's 21 people."

This is a divide-and-then-multiply strategy based on an intermediate decomposition of the sets of
icons into subsets describable using the intensive quantities

2 trees/box and 3 people/box.

These subsets then encourage a particular sequence of computations. The first is a quotative (or
"measurement") division a division of an extensive quantity by an intensive quantity: divide the
given number of trees by the number of trees/box to get the number of boxes. Then multiply this
number of boxes by the number of people/box to get the required number of people the product
of an intensive and an extensive quantity.

The component multiplication and division operations of this strategy are instantiated in the
single-icon environment that is the first to be described in our sequence.

2. CONCRETELY BASED MULTIPLICATION AND DIVISION: ICE-0 and ICE-1.

c .
Icon Calculation Environments

Single Icon Calculations
ICE-0 (unconstrained icon distribution)
ICE-1 (multiplication & division)

Two Icon Calculations
ICE-2 (concrete proportional reasoning) /

Chart 1

After working more than a year with environments that used more than one representation to
represent ratios and which support the solving of traditional missing value problems, it became
clear that students needed more experience with the fundamental operations of multiplication and

14
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division. In particular, it was evident that students need to make conceptual distinctions between
the two types of division in order to make competent choices of operation to use in different
situations, and to provide complementary structures to the different meanings of multiplication that
occur in models involving intensive quantities. Hence we stepped backwards towards what we
feel is the conceptual bedrock that will support viable thinking patterns for the longer run.

We devised a series of Icon Calculation Environments (hence the acronym "ICE") beginning with a
single-icon calculation environment that utilizes primitive acts such as grouping, counting and
matching, on a single set of icons.These acts are active concrete versions of multiplication of
intensive by extensive quantities, and partitive and quotative division.

2.1 The Simple Object-Manipulation Environment: ICE-0

The student picks an icon to match some story situation. Let's suppose we are working on
planning for the planting of trees in the park situation as described above. Hence we pick a tree
icon from the menu in Figure 1. But rather than build a model cell as in Figure 2, we are presented
with a screen as in Figure 4 below. This is as close we come to a pure, non-numerical
object-manipulation environment, where we have a reservoir of icons to grab and drag into the
cells.

.w.n.l.w.o.c.,r;vr:Ww.....Ws...

Total
umber

Number

of
boxes

Number of :

per

Figure 4
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To ta I

limber
Number
of

boxes

Number of :

4 pert=

lear Quit

Figure 5

We signal that we want to "grab" by clicking on that command and then choose the icons to be
dragged up into the cells by clicking on a point in the reservoir and then stretching an elastic
rectangle over as many icons as we wish to move by holding the mouse button down as we stretch
the rectangle. Releasing the button fixes the set to be moved. Then by pointing to the set of
selected icons, holding the mouse button down and dragging the pointer up yard, the set of icons
can be dragged up into any of the cells above, as in Figure 5.

A double click in the destination cell deposits the icons in that cell. In the reservoir, the absence of
that set of icons is represented by gray inverse video shadows in their former positions.

By clicking on the boundary of the Data window in the lower right hand corner, this window
becomes active, displaying the number of tree icons moved, the number of boxes (cells) occupied
with icons, and the number of icons per box if the number is the same for all occupied boxes. If
not, that portion of the Data window says "number in boxes is not the same." In Figure 6 the data
concerns only the one box we have dropped icons into, so matching boxes is moot. (Another
version of this environment fills in the Data window automatically.)

It is also possible to use this free object-manipulation environment with the data table entirely
suppressed by clicking on its left side boundary. This can be useful to create a mind-set that
encourages thinking with icons rather than jumping prematurely to arithmetic and the manipulation
of numerals.
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Total
lumber

Number

of

boxes

Number of :

peril

lear Quit

Figure 6

It is clear that the only structural difference between this computer environment and common
classroom physical chip trading is the reporting or feedback provided by the computer. The other
differences have to do with the orderliness of the transactions and the stability of the results - if one
were to move several sets of icons, there is a plain record of what has been moved and where it has
been moved to. A cybernetic manipulation environment is also more acceptable to older children
than physical manipulatives, which are often regarded as "for babies."

By clicking on the Fix command, one is able to select and move any icons from any cell into any
other or back into the reservoir.

Note that even this kind of an environment can be used to engage students in complex problem
solving tasks that use the icons as indices for counting or distribution activities. For example, one
could model the number of passengers on a train after repeated stops, during which passengers get
on and off as well as switch cars. Such a task is, of course, primarily an additive exercise. Other,
more combinatoric problems can also be modeled in this kind of environment.

2.2 Multiplication and the Two Divisions: ICE-1.

This environment provides concrete means for solving the equation E' = E*I for any of its
quantity-variables when given the other two. Hence there are three problem types possible, one
for each possible missing value L.1 the equation. We have used the letters E and E' to denote
extensive quantities and Ito denote an intensive ("per") quantity. The quantity E' is instantiated as
the number of icons, E as the number of boxes, and I as the number of icons per box. Thus, with
reference to the data window in the lower right corner of Figure 6 above, providing the three
respective problem types amounts to providing numbers in two of the three positions of that
window and requesting the third. In particular,
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........ ....... ....

To ta I

Number
Number

of
boxes

Number of :

Figure 7

(1) providing the number of boxes and the number of icons/box yields a "rate" type of
multiplication problem (find E*I: the total number of icons);

(2) providing the number of boxes and the total number of icons yields a partitive (fair share)
division problem (find E'/E: the number of icons/box);

(3) providing the number of icons/box and the total number of icons yields a quotative division
problem (find E'/I: the total number of boxes).

Total Number Items Total Number of Boxes Items per Box

given given ? - partitive division

? multiplication given given

given ? - quotative division given

After picking an icon from the menu, the user is asked whether (1) the computer should generate
the problems (both the type and the values), (2) whether the user should generate the problem type
and the computer generate the numbers, or (3) whether the user should generate both the type and
the numbers. If the user chooses to generate problem type only, the user must click on the
quantities in the data window which are to be provided by the computer. The computer will
randomly generate problem numbers amenable to solution using the numbers of boxes and icons
available, and its division problems do not yield remainders. Whatever the choice, a screen
appears in the same style as in Figure 6 above.

18
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Let us now assume that the user has chosen to input both the problems and the numbers, so a
screen such as that in Figure 7 appears - but with no numbers appearing in the data or "problem"
window. (Its function changes from a problem set-up or statement window at the beginning, to a
feedback window later, in response to the Test command.)

The user chooses the quantity to be input by clicking on the appropriate quantity label-area in the
problem window. Then two arrowheads, separated by a zero, appear in the previously empty
space below that label. For each click on an arrowhead, the number increments by one if it is the
"up" arrow, or decrements if it is the "down" arrow. When the desired number is reached, the
user clicks on that number itself to fix it in place before moving on to input the second quantity.

Alternatively, the user can input using the keyboard by first hittingreturn, then typing in the
desired number after the "?" appears, and hitting return again.

After choosing two values, the user clicks in the lower left corner of the problem window.

Here in Figure 8 we have input the total number of trees and the number of boxes, so we have
defined a fair share (partitive) division problem. We thus need to determine how many trees each
of the 3 boxes will get in an equal distribution of the 21 trees. This problem can be solved by
grabbing and dragging tree-icons into the cells above, as described earlier.

However, after clicking to indicate the problem has been satisfactorily set, the user is offered help,
as indicated by the following message which will appear in the problem window, as shown in
Figure 8.

Figure 8

This important choice option determines the specific type of computer help, or scaffolding, that
will be provided for the user's actions in solving the problem. The essence of this help option is to
provide support for the component cognitive operations needed to solve the problem in this
representation. Depending on the given quantity that the user clicks on, the help will differ, and no
response will occur if the user clicks on the quantity to be determined. If the user clicks on the
Total Number quantity, then exactly the correct number of icons will be made available in the
reservoir and all the others will be deleted, as indicated in Figure 9. This helps the user by
eliminating the need to keep a running count of the total number of icons taken from the reservoir -
one is finished when the supply is exhausted. This becomes a significant help in the face of the
uncertainty that occurs in students' early experience with problems having a remainder.

..........................................

Number
of

boxes

Figure 9
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By additionally clicking on the Number of boxes quantity, the computer provides help by
eliminating all but the correct number of boxes to be filled, as in Figure 10.

Figure 10

Then, by clicking in the command area, the user begins the process of distributing the icons in the
style described in the previous subsection.

Note that the icons in the reservoir are in a 3 by 7 array, which also facilitates recognizing the
underlying factor structure of the numbers. Actually, this factor structure is likely to be seen only
after it has been tacitly used as a convenient organization for selecting icons to be dragged.

After each "deposit," the user can click on the Test command to get a readcut in inverse video in
the style of Figure 6 of the values of the quantities moved to date. (Another version provides
automatic updates after each move.) Of course, the user can determine whether the problem has
been successfully solved either by recognizing a correct fair share distribution in the icon window
or in the data window.

If the problem had been a quotative (0/1) division problem, then the task amounts to determining
the number of boxes to be filled with the given number of icons per box from the given total
number of icons. Here, if the user asks for computer help with the number of icons per box, then
the scaffolding takes the form of a constraint on the "grabbing" process. The elastic rectangle that
selects icons from the reservoir will "snap" to enclose only the given number per box. This
supports the cognitive grouping or "unit-forming" process that we feel to be central to the
conceptualization of discrete intensive quantity (Kaput, 1987). Note further that a quotative
division is the first step in the "boxes strategy" for solving missing values problems as outlined in
Section 1.1. This leads to the next level of the icon calculation environments, "ICE-2."
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3. CONCRETELY BASED RATIO REASONING: ICE-2

Before considering elaborations, let us consider an icon-based strategy for solving missing values
problems of the type considered earlier: Given that every 2 trees will shade 3 people in our park,
how many people will be shaded by 14 trees?

In Section 1 we outlined the "boxes strategy" based on the provided cellular structure of the iconic
representation for a discrete intensive quantity. While the "inking Environment" used two icons
in each cell, it was driven by representation-independent MORE and FEWER commands. In the
environment to be introduced here, the student moves the icons themselves from within the iconic
representation. The movement is an abbreviated version of the dragging used in ICE-0 and ICE-1.
The fact that there are two types of icons involved is the reason for its title, "ICE-2."

The introduction to the environment is exactly like that in ICE-1, except that two icons must be
chosen from the menu at the outset. Moreover, the user is again presented with the choice of using
computer-generated problems, but here the problems generated are missing value problems. Let us
assume that the user will input the problem. As before, clicking on a quantity label area initiates
inputting a value for that quantity, and the input process is the same as before.

We will continue with our "2 trees per 3 people" intensive quantity park-planning example, so that
tree and people icons have been chosen.

Here in Figure 11, providing three, or in some cases two, of the four pieces of information in the
problem/data window (newly located in the upper right to make room for the second set of icons)
determines the type of problem that needs to be solved. Actually, under the additional assumption
that the underlying ratio of the intensive quantity is to be specified in lowest terms, two pieces of
information determine the remaining two. The software defaults to this assumption if we leave the
number of boxes blank. But, for example, we could model the planting of trees for picnic areas
where every 4 trees shade 6 people by adjusting the number of boxes appropriately see below.

Hence there are five different problem types:

Total Number 2 Total Number Y Number of Boxes Y per X
(1,,. ,. not

?- missing values given implied requested) given

given
(but not

? - missing values implied - requested) given

? multiplication ? - multipication given given

given given given ?- reduced ratio

given and/ or given ? - distribution/ given
division

21
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Two of the problem types involve determining the total number of one type of icon given the number
of the other and the intensive quantity itself. These are traditional missing value problems.

A third type of problem, a dual multiplication, involves being given the ratio and the number of
boxes, in order to determine the number of eacl; type of icon, or the total number of icons taken
together (which would need to be requested and tracked off line).

A fourth type involves being given the total number of each type of icon and the number of boxes in
order to determine the ratio in "relative reduced form" (or "relative simplified form"). If the number
of boxes is the largest common divisor of the two numbers of icons, then the underlying ratio is in
true reduced (simplified) corm.

A fifth type of problem, distribution or disivion, involves determining the number of boxes given the
ratio and either the total number of one icon or the total number of each icon.

Total
Number

Total
Number

Number

of

boxes

Number of :

per It

Figure 11

As in ICE-1, the user can get help relating to any of the given quantities. In Figure 12, the user has
requested help for the number of boxes, the number of trees, but not the number of people.

Designating which of the two icon reservoirs to act on is done by clicking on the appropriate arrow.
The arrow is pointing left in Figure 12. Selecting icons from a reservoir is done as in ICE-1. The
Fix command works essentially as before: One clicks on Fix and then on the item in a cell that one
wishes to move. Then one double clicks on the destination for that item, either another cell or the
gray area of the appropriate (home) reservoir.

However, the means for moving icons is an abbreviated version of dragging, namely, "sending."
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One merely points to the cell to which the Selected icons are to be sent and double clicks.

Total Total
Number Number

4

..111.
Number Number of :

of

boxes per

5

Figure 12

As shown in Figure 13, one may also choose to select icons from both sides before sending them.
As discussed below, different co,nitive processes can thus be accommodated in the solution
process. Note that a running account of all quantities previously used is kept in the problem/data
window. (The Test command is obviated by this convention.) Also, the "Not Equal" statement in
that window is not quite appropriate, so future versions will make that statement only when icons of
both types have been distributed into more than one cell.

More than one distribution strategy is possible in solving a traditional missing values problem,
depending in part on the conditions under which the problem is solved. For example, the "boxes
strategy" has a perfectly concrete embodiment in this context:

(1) The division step: distribate 14 trees into cells, grouped 2 per cell, yielding the layout in Figure
14,

(2) The multiplication step: match each of the groups of 2 trees with a group of 3 people,

(3) The counting step: count the number of people icons, using either the gray shadows in the people
icon reservoir or the people icons in the cells.

23
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The layout in Figure 15 is a depiction of step 2 in medics res. Note that the user had chosen the
"computer help" option for the number of trees.

Total
Number

Total
Number

Number
of

boxes

Number of

per4
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Figure 15

The different concrete primitive strategies that are possible for solving missing valms problems
amount to variations on the assembling of the three components: grouping, matching, and counting.
Moreover, the grouping component can be scaffolded using the "computer help" option. This can be
accomplished by clicking on the ratio box - the rightmost column in the problem/data window.
When this option is chosen, the grouping process is constrained so that only the "correct" number of
icons can be selected from either reservoir in a single "grab."

4. LINKING THE ICONIC, NUMERICAL AND GRAPHICAL REPRESENTATIONS

Linking/Incrementing Environments

Iconic Representation
Numeric Representation (table of data)
Graphic Representation (coordinate graph)
Algebraic Representation (linear equations)

Chart 2
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scrolling - the viewing window slides up along the line of points so as to include the point with the
largest coordinates. The boxed point in the coordinate graph always corresponds to the highlighted
pair in the table. See Figure 17. (The version shown does not include the algebraic equations.)

Figure 17

4.3 Transitions to the Coordinate Graph Representation.

For students with little or no experience with coordinate graphs, we designed a simple coordinate
graph which makes more explicit the relation between the iconic representation and the coordinate
graph. As the student clicks the MORE button, icons are deposited on the respective axes in groups
corresponding to the sets highlighted in the icon window, i.e., according to the given ratio. This is
shown in Figure 18. Of course, this graph cannot scroll. Instead, if one continues the
incrementing process, the effect is that the points "arch up and off the screen." Not implemented as
of this writing is a version that also labels the coordinates of the highlighted (boxed) point and the
axes.
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In Figure 19 we show the results of clicking on the FEWER button: The "dehighlighting" process
for the icons in the cellular representation and the table of data is paralleled in the transition
coordinate graph - but the previous points are deleted in this case.

In Figure 20 below, we illustrate the Linking Environment with the iconic representation toggled off
and all the equations active. Note that the lower left equation is the standard slope-intercept, or "y =
mx + b" form of the equation of a straight line.

The algebraic representation is the newest of our environments, hence is the least tested and least
refined. Subsequent versions will have equations that are easier to read, and will likely be able to
be turned off individually in the same style as the other representations, via a toggle on the
boundary of the subwindow. Depending on a teacher's goals, this will enable one to emphasize a
single form of the equation as well as illustrate the equivalence of all the equations by displaying the
common values of the quantities across all the equations and the expressions in those equations.

This Linking Environment has been elaborated to support separate, independent incrementing of
variable values. Thus, MORE has been replaced by MORE "X," MORE "Y," MORE BOTH.
This provides a whole new range of flexibility. For example, by incrementing the variables
alternatively and plotting the corresponding points after each increment, one is able to see explicitly
the "rise-run" process associated with changes in the respective variables. By incrementing only
one of the variables, one can see the resulting horizontal or vertical path of the points.

Figure 20
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5. MISSING VALUES PROBLEMS ACROSS REPRESENTATIONS

Missing Values Environments

Icon Input
Numeric Input
Graphic Input
Algebraic Input

Chart 3

1
In our next environment, designed specifically for posing and solving missing values problems, the
overall appearance and initial actions taken by the student to specify an intensive quantity are similar
to that of the Linking Environment. But instead of driving it from representation-independent
MORE and FEWER buttons, the user can drive it via inputs to an of the four representations. The
user can simultaneously view the consequences of such inputs in any of the other representations.
We illustrate with examples, all based on our familiar 2 trees per 3 people intensive quantity,

As in the previous problem solving environments, the user is offered a choice of whether the
computer or the user should generate the problem. However, here the choice is simply whether the
computer provides a value of one variable and the user matches it, or whether the user inputs values
of both variables. Hence if the computer generates problems, there are only two types of problems:
the computer provides the number of trees and the user determines the number of people, or
vice-versa. The numbers provided are multiples of one or the other number chosen at random of a
size that will allow an iconic representation. The user always chooses the representation in which
the input takes place.

When the user generates the problems (usually from a story provided in written materials or a
classroom discussion), the user is responsible for inputting the given number. That inputted
number then appears in any of the representations that are active at that time, as does the second
number, the "answer number." Of course, the representational form of the inputs is not necessarliy
an alphanumeric character, but varies by representational type.

We will now assume that the user inputs problems, and we shall characterize the inputs via the
representation in which they are initiated. The choice of order of representation in which these
inputs are made will likely vary according to the interests and needs of the class.

5.1 The Table of Data.

Here the user merely types in the numbers at the bottom of the table of data as indicated in Figure
21. In this Figure as in those following we have added an overlay to emphasize which window the
inputs occurred in. Here we also circled the second number, the "answer number,"
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r04

Figure 21

Notice that the inputted values appear in each equation of the algebra window, which is active.
Note further that the second number, 8, did not yield equalities in the algebra window, but
inequalities. The other two windows are not active. If the icon window were active, the computer
would fill in as many cells as possible identical to the model cell, so an inappropriate input results in
cells that do not match the model cell, as in Figure 24 below (where the inputs were 6 and 8). Of
course, the computer merely reports the student's input - the student evaluates this report.

5.2 Algebraic Equations.

Here, one inputs in one of the algebra subwindows, designating which one by pointing and clicking
on the appropriate variable in the appropriate subwindow in Figure 22 (the upper left subwindow
in this case). The system responds with a question mark, which the user types over to input the
first number. Before any numbers are input, in place of the comparison operator (the equality or
inequality symbol) is a gray rectangle. After the first number is input a question mark appears in the
second variable of that expression to indicate that an input is expected there.

Figure 22
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When the second number is input (which must be done in that same subwindow), the appropriate
comparison symbol appears in all the active subwindows, as in Figure 21, and each of the other
active windows displays the two numbers as well.

5.3 The Icon Window.

In earlier implementations of the Missing Values environment the icon window was a primary
source of fodback regarding inputs made in the more abstract representations. Now it also receives
input from the user, so it is now read-write in nature. Here the input form is an abbreviation of that
in ICE-2. One simply identifies the icon to be deposited by clicking on that type of icon in the
command window. One then clicks in those cells where the computer is to deposit icons of that
type. The computer drops a set of that type of icon matching the set in the original model.
However, a given cell will accept only that set. Surplus clicks in a cell yield no response. One can
change the type of icon being deposited by clicking on the other icon in the command window. The
option to deposit both icon sets simultaneously is also provided. Any number of cells can be filled,
or partially filled. In particular, the user (which always potentially includes a teacher in a
teacher-centered classroom situation) could deposit icons of only a single type in order to match a
problem situation, e.g., "How many people will be shaded by 14 trees in our park?". All active
windows are continuously updated after each click in a cell.

The icon representation is not quite parallel to the other representations in the degree of input
freedom offered the user because the values of the variables being implemented are limited to
multiples of the values comprising the given intensive quantity. Beyond this, the major constraint is
on how those values are put into the representation (to match the initial pattern that was used to
input the intensive quantity at the outset), just as the style of input is constrained in any of the other
representations. The difference is that we are allowing the user to increment both variables, perhaps
alternatively, rather than incrementing a single variable at a time. This new flexibility is important
because it facilitates different strategies for solving missing values problems. Figure 23 depicts an
incorrect (or at least, incomplete) iconic input viewed in all three of the other representations.

A decision on how to deposit icons was based on the assumption that the students using this
environment had already had experience in the ICE software. If a group of students were to be
introduced to missing value problems only in this multiple representation environment, then we
would likely want to have a free-deposit mode, where the student could drop icons in cells at will,
in any order. This might occur if the software were used with a group of 6th-9th graders, for
example.
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New values

New Ratio

p Both

9

Figure 23

Note that incrementing is the only style of input that is natural in the iconic representation. While
incrementing could be achieved in the other representations, e.g., using ICE-style up-down arrows
in the table and the algebra windows, we have decided to use the input style that is conventional to
a particular representation. Recall that the Linking Environment uses incrementing across all
representations via the MORE and FEWER commands.

5.4 The Coordinate Graph.

Here the value of each variable is specified by an appropriate horizontal or vertical line: in our
example, the number of trees is specified by a vertical line and the number of people by a horizontal
line. One inputs values by sliding the intersection of the vertical and horizontal lines using the
mouse. A click serves to fix the values (position at the intersection) of both variables as in Figure
24, where the algebra window is toggled off. If the computer has generated a value, then that value
is represented by a fixed vertical or horizontal line. In that case the user has control over the other
line to fix the value of the second variable.

33
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Figure 24

5.5 Recording Results of Previous Problems.

As can be seen in most of the previous figures, there are two options after completing a given
missing values problem: either do another problem with the same intensive quantity and change the
values (by clicking on the New Values command), or change the intensive quantity (the New Ratio
command). If the latter were chosen, then the original icon-menu screen appears and one begins
anew by picking icons, etc. If the former "new values" option is chosen, then one of two things
will occur: (1' if the solution was incorrect, then the number pair will disappear from all
representations when new values are entered in any window, or (2) if the solution of the previous
problem was correct, then the number pair resulting from the solution of the immediately previous
problem will be stored in those representations admitting the simultaneous representation of more
than one value of a variable, namely the table of data and the coordinate gaph. In the table, the
number pair is stored in the body of the table, as opposed to inputs, which appear initially at the
bottom. They get "promoted" only if correct. Points are stored in the coordinate graph as bold
points, whereas "tentative" values resulting from inputs to that representation appear as less bold
points, until they are promoted. This resolves the issue of what to do with incorrect pairs.

The differences in a single representation's capacity to store and simultaneously display multipiz
values of variables turns out to be important here - neither the iconic representation nor the algebraic
comparison statements, including equations, have this capacity. Repeated copies of these
representations would be required to do this.

Of course, after several problems have been correctly done, then accumulated feedback in the
tabular and graphical representations becomes informative, especially in the coordinate graph
because of the linearity of the set of points resulting. Another option available for the table of data
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provides automatic ordering, which renders the pattern in the numerical data more salient. (Note
that a coordinate graph is "self-ordering.")

5.6 The Locus of the Reasoning/Computing Processes.

There is a subtle shift as one moves from the icon calculation environments to the missing value
environments. On one hand, the procedures executed using icons are very visibly and explicitly
instantiated. On the other hand if one is solving a missing value problem using numbers, as in the
table of data, then one's computations are done off-line -- either in the pure cognitive medium or
with extra-cortical aids, such as pencil and paper or calculator. One then reports the results of those
computations to the computer. This design is deliberate. The iconic representation is the place
where the cognitive structures guiding the computations are generated, as internalizations of those
actions on icons.

5.7 Introducing the Table of Data Using Missing Values Problems.

Another environment has been developed that supports the systematic solution of missing value
problems using either numerical or iconic representations. After picking icons from the icon menu,
one is presented with a screen such as that in Figure 25 which can be used to build a "model cell" in
a style and with a result similar to that in ICE-2: select and then send icons from the reservoirs to the
empty cell below the blank table of data. (Note that, as in ICE-2, the user has no choice in the
layout, only the numerosity of the icons, in the model cell.) This specifies the intensive quantity for
action.

Figure 25

When the intensive quantity has been specified (which is signalled by clicking on "Set" in the menu
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box), then the user can set up and solve missing values problems using either the table of data (by
first clicking on Table in the menu box in Figure 26) or the icon window.

If the icons are used, the student merely double clicks on the cell in which icons are to be dropped
and the computer deposits the first set of icons - in our case, 2 tree icons. A second double click in
that cell drops the other set of icons 3 people icons. If the second double click were made in a
new, empty cell, then 2 tree icons would be deposited in that new cell. Surplus clicks in a cell yield
no response. This is the default order for depositing icons. One can specify the icon to be dropped
by first clicking on the appropriate type of icon in the model cell. However, the icons will be
deposited in the same position as the model cell. The decision to deposit groups of icons rather than
singletons was intended to the support of the cognitive grouping operation - grouping the 2 trees
and the 3 people into conceptual entities that can then be joined into the conceptual entity which is
the intensive quantity itself.

Whenever an icon appears in a cell, a corresponding icon is "grayed out" in the reservoir and the
entry at the bottom of the table is updated. A new version of this environment will accept inputs
from wherever the user indicates, simply by pointing and clicking. This will eliminate the need for
the Table command.

If one were to use the table, i.e., use numerical inputs, the computer deposits icons after every
entry. In Figure 26 we show the result of entering 20 in the tree column.

ea Ratio
Fix

Figure 26

After entering a number in the table, the user can finish the problem (How many people will be
shaded by 20 trees?) using the icon window. A double click in each cell with tree icons will
deposit 3 people icons, as indicated in Figure 27, where three cells have been filled using this

procedure. (There is also available, here as elsewhere in our discrete environments, an auditory
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signal - a beep - for each increment of a variable value.) Note the update in the table. This
environment provides a very efficient consolidation of the actions taken in the ICE environments. It
also provides a transition to the multiple representation missing values problem environment that
has been described in the first several parts of this section.

11111111111111

EWEN

44

EMI

20 9

Figure 27

The purpose of the iconic representation in that missing value environment is as a last accessible
link between those concrete actions and the increasingly abstract coordinate graphical and algebraic
representations.

f
6. SAMPLING ENVIRONMENTS.

Sampling and Comparison Environments

Sampling
Regular/Homogeneous Samples
Irregular Samples

Sampling and Comparing Two Intensive Quantities
Regular
Irregular

Chart 5
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6.1 The Two Other Aspects of Intensive Quantity: Homogeneity and Order.

Each of the previously described environments deals with what we have called the multiplicative
structure aspect of intensive quantity. This aspect involves the use of intensive quantities in
multiplication and division operations. Another aspect of intensive quantity is the basis of its use to
model intensive attributes of situations, entities, or substance, e.g. speed on a journey, number of
cars per household, density of grams per cubic centimeter. In particular, to describe such an
intensive attribute using a constant intensive quantity means that the attribute is possessed
homogeneously - it is constant across samples, as opposed to, say, a nut cake, whose density
varies from point to point. It is this homogeneous attribute modeling aspect of intensive quantity
that our next set of environments engages.

In the discrete world, homogeneity means homogeneity down to a minimum sample size below
which the sampling process is inappropriate. Hence, for example, in the trees-people park example
that we have been using, we know that every picnic area will have 2 trees for every 3 people that it
is to accommodate. This does not mean that every picnic area will have only 2 trees and 3 people
associated with it, a view that must be explicitly discussed with students as part of the context
setting portion of the problem. Unfortunately, this is the view encouraged by the cellular iconic
model that we have been describing. That particular iconic model has features which, while they
support a very useful set of reasoning patterns, lead one astray by providing "boundaries" that do
not necessarily correspond to boundaries in the situation being modeled. Indeed, one le_s,soir

in . otuild useful r entations foli_comulex idea in n *v en i s is h
different representations have different strengths and weaknesses, and that more than one
r r n r v 111t t omplex idea, We should mention that
these considerations led to the deletion of boundaries appearing in the highlighted sets of icons in
the linking environments. The highlighted icons appear as a solid block. (See Figures 16-18.)

Thus we have built a second type of iconic representation that addresses this issue and provides the
basis for dealing with this second aspect of intensive quantity. (For more on the complexities of
this modeling issue, see (Kaput, 1987).

One type of environment involves sampling and recording the results in tables of data. The other
involves comparing the relative size of two intensive quantities having the same units using both
tables and coordinate graphs. This latter environment engages the third aspect of intensive
quantity, order. Intensive quantities having the same units can be compared. For example, one
might ask of several tree-people intensive quantities describing different parks, which is shadiest?
That is, which has the most number of trees per person? The representation for efficiently
comparing intensive quantities is not the iconic, but rather the coordinate graph, where the
magnitude of the intensive quantity is represented by slope, a visually salient and unitary feature.
The table of data can be useful if one can find pairs that share values in a particular column, leading
to the unit rate comparison idea.

6.2 Simple Sampling Environments.

The environments described so far assume that the student is provided the underlying ratio (often,
but not necessarily in reduced form). A different icon-based environment has been constructed that
uses a window tesselated with the two kinds of icons in such a way that by stretching an elastic
rectangle to enclose portions of that window one is guaranteed of enclosing icons in a constant
ratio. The student can slide such a "sampler" around the window to effect other samples, or change
the size or shape of the sampler to obtain yet other samples. The result of each sampling act is
stored in a table, which the student can use to infer the underlying ratio as in Figure 29. Note that
the icons are not displayed in rectangular cells - the homogeneity is achieved differently.

The screen shown in Figure 29 follows the choice of ratio made in Figure 28, which is what
appears after the user makes choices from the icon-menu screen.
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USER CLICKS ON ICONS TO ESTABLISH
THE RATIO

*4 PPP

Figure 28

In this particular option, the user knows the ratio and the sampling process is entirely regular in the
sense that the stretched elastic rectangles will snap around only representative samples, i.e., they all
match the given ratio.

In Figure 29 we have stretched a single rectangle and clicked, which produced a single entry in the
table.
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Figure 30

In Figure 30, we see the results of dragging this rectangle about to four different positions (each of
which leads to the pair (4, 6)). We then used the new box command twice to generate new
samples, all of which are recorded until the "new ratio" command is invoked, which takes the user
back to a screen like that in Figure 2'7, but without the row of icons that represents the user's choice
of ratio.

Another version of this environment supports the taking of arbitrary samples of a
computer-provided ratio which the user then is to infer from samples taken, as in Figure 31. In
Figure 31, one rectangle yielded the (1, 5) pair, and then a second rectangle was slid around to four
different positions yielding different (non-constant) pairs, which indicates that the sample size is not
adequate. The aim here is to determine the smallest homogeneous sample.

Another environment provides a coordinate graph of the data points of the sample in addition to the
table, and yet another allows one to sample two different tesseiations while comparing le
respective data on a coordinate graph. We provide in Figure 32 a screen from the la;
environment, where a homogeneous sample is guaranteed.

An option in this environment allows one to sample and compare unknown intensive quantities,
where the sampling process is unconstrained. With each sample, a point is deposited on the
coordinate graph and its coordinates are highlighted in the table.
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As is evident from this set of environments and certain of the earlier ones as well, we have available
a set of representational components that can be assembled in a variety of ways to achieve a variety
of objectives with a variety of student populations. In a different programming language, the
options and windows that are fixed in position and size here could be made adjustable in both
respects. Thus, looking at the previous example in Figure 32, one could expand the coordinate
graph and shrink the tables to look at the distribution of samples on the coordinate graph, an
especially interesting exercise when the samples are not homogeneous and the points do not lie on
lines through the origin.

7. CONTINUOUS ENVIRONMENTS

e -N

Continuous Environments

Transition From Discrete to Continuous
Parallel Line Model
Scaling Environment
Linking Environment

Number-Pair Odometer
Coordinate Graph
Algebraic Equations

Chart 6

7.1 Introduction.

The bulk of the historically received mathematics curriculum beyond the first three or four grades
concerns itself with continuous mathematics, presumably to build the mathematical knowledge
needed to model the continuous aspects of quantitative experience. The conceptual issues and
representations associated with continuous mathematics are considerably more complex than those
of discrete arithmetic. It is for this reason that we chose to build conceptual structures and
reasoning strategies in the world of discrete phenomena first. The aim is then to extend these to the
continuous case using judiciously chosen transition representations and activities.

In the case of the traditional tabular and coordinate graphical representations, the extension is
straightforward. In the table, we must decide on a step size and level of accuracy, but by its nature,
the table is discrete. On the other hand, the coordinate graph is more naturally continuous because
of the continuity afforded by the axes. Hence the extension in this case amounts simply to filling in
points that were already available. In algebraic representations the issues are much the same as foe
the table of data: when incrementing, what step size to use; and when displaying, what accuracy to
use. For a more detailed discussion of the features of these representations and how they match

and fail to match, see (Kaput, in press).

The major issue at hand in the transition from the discrete worlds previously constructed to the yet
to be implemented continuous environment concerns what should replace the iconic representation.
Our choice is to introduce the cont....nuous by using pairs of parallel lines and by using a command
structure analogous to that used in the discrete environments.
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The transition environments have been implemented in rough form and will be described below.
The continuous environments have been designed but will not be implementeciitested until the last
quarter of 1987. We will describe our designs below.

7.2 Transition From Discrete to Continuous Representations.

We have several different environments intended to provide a cognitive transition to the continuous
environments, all based on the discrete Linking Environment. In particular, since we will be
replacing the field of discrete object icons by a pair of parallel lines, we provide a transition to the
parallel lines in much the same style as we provided transition to the coordinate graph in Section
4.3. We support incrementing and decrementing in exactly the same style as before - by means of
MORE and FEWER buttons.

In Figure 33, we display perhaps the most elementary transition environment, where the only
change from the standard discrete Linking Environment is the replacement of the coordinate graph
with the parallel lines on which icons appear. (Note that these transition environments are modeling
discrete phenomena. We are merely introducing the representational forms to be used in the
continuous case.) In this figure, we see the results of 3 clicks on the MORE button - each click
moved the "sweep line" to the right and highlighted (in inverse video) 2 tree icons and 3 people
icons. Note the default scaling of the two parallel axes.

In Figure 34 we have replaced the table with a coordinate graph, but have maintained the icon
window. Again, we see the results of 3 clicks on MORE.

Figure 33

In figure 35, we have replaced the icon window by the coordinate graph and clicked on FEWER
twice after having clicked on MORE several times.

As seen in the Sampling Envirnoment, we can mix and vary the representations at will while
preserving their linkages.
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8. PLANNED CONTINUOUS ENVIRONMENTS

8.1 Introduction.

Our intention to complete the extension of the discrete software environments to the continuous
case is based on the extreme importance of the wide curricular implications of this kind of software
learning environment. It will provide concrete guidance for the typt. of large scale K-8 mathematics
curriculum reorganization, including considerable compression and integration of algebra and
arithmetic, that has recently been suggested in response to tIL devastating results of the Second
International Comparison Study (McKnight, et al, 1987). Our research and development plans
with respect to this portion of the software are much more modest than were our R&D activities
associated with the development of the discrete environments. In particular, we will concentrate on
the general demonstration of the import of the technology rather than on detailed cognitive research
associated with its long term use. (This latter should, of course, follow.)

As already noted, we have dealt with discrete quantity first because its conceptual underpinnings
seem simpler - acts of grouping and counting are simpler than acts of measuring, and the
arithmetical representation of those grouping and counting acts is likewise simpler. Whole
numbers are easier to deal with than rational numbers. Moreover, we have reason to believe, on
the basis of data collected during the past year, that conceptual structures developed to reason with
discrete quantity can be elaborated to reason with continuous quantity transfer can be relatively
direct. Lastly, by adhering to the modeling of discrete intensive quantities, we were able to
maintain a distance from the competing conceptual structures associated with the part-whole aspects
of rational number.

8.2 The Parallel Lines Model.

We have chosen to use a minimal model based on a pair of number lines to model a continuous
intensive quantity, one for each of the two parts of the intensive quantity, e.g., one for distance
(say, miles) and one for time (say, hours). Since this environment will be introduced after the
student has experience with the discrete environments, we have an unusual opportunity to study the
exploitation of a common command structure and screen layout in support of transfer, e.g., by
simply replacing the MORE & FEWER commands by MORE and LESS commands. Holding the
mouse button down on the MORE command will cause a line to sweep across the two parallel lines
such that the two points at its intersection with the parallel lines to slide simultaneously along the
respective lines leaving thickened trails behind them instead of leaving inverse video icons as in the
transition environment.

As in Figure 36 below (a pictorial approximation to the parallel line window), if the lower line
represents hours, the upper one miles, and the given intensive quantity represents, say a tractor
mowing grass along a road at the rate of two miles for every three hours, then the upper point
crosses the point corresponding to 2 (miles) when the lower one crosses 3 (hours), the upper
crosses 6 when the lower crosses 9, etc. Under default circumstances, the two axes will be scaled
identically, and numb Y pairs will be entered in the table of data whenever the lower point crosses
an integer.

One can make either or both lines display-active in response to the MORE and LESS or dragging
commands, so that one can pose prediction problems - asking a student to predict the location of
one point given that of the other (with the table of data turned off, of course).
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Figure 36

One can also drive the representation by dragging the sweep line as well. One points to either end
of the "handle" on the sweep line between the axes, and, with the mouse button depressed, drags
left or right. Furthermore, one can also enter pairs of numbers in the table of data by pointing to
and clicking on any point on either line.

The auxiliary sweep line is intended to serve an important role - to provide an explicit feature to
unite the two quantities being modeled on thl respective lines into a single intensive quantity. This
corresponds to the conceptual-support role ty: the rectangular cells in the discrete environments.

In support of the transition to the continuous world, and after introducing the transition
environments of the previous section, we will enable the student to declare whether the quantities
constituting the intensive quantity being modeled are discrete or continuous. The system then
responds to the sweeping action by (epositing either discretely placed points or continuous line

segments, as appropriate, with an optional auditory beep signal if discrete quantities are involved.
We should perhaps mention that many of the earlier discrete environments support a similar sound
option to reinforce various counting or grouping acts.

For example, one might model a situation such as planning for a party where we assume that every
two children drink three bottles of soda. In this case, both parts of the intensive quantity
"bottles/child" are discrete, so the system would only deposit points at integral values, as indicated
in Figure 37. (Note, however, that we would expect that only one "sweep" line would appear - the
others are offered to indicate that multiple positions of the line are possible as one drags it about.)
Moreover, we may allow students to use icons in the discrete case, as in Figure 37.
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Situations exist that are mixed discrete and continuous, such as would occur if we chose to measure
the amount of soda in terms of liters instead of bottles. Now, as pictured in Figure 38 below, the
soda axis is measured in liters and is continuous.

10 11 12 13 14 15 16 17 18 19 20

9 10 1 12 14 15 16 17 18 19 20

How many liters are needed for ten children?

LITERS

CHILDREN

Figure 38

Further, one can then address questions such as "how much soda is needed if 1C children attend
the party?" (See also the discussion below.) Depending on the mode in which the system is being
used and which option is chosen, the system could display the response as a decimal in the table of
data.

8.3 Scaling and Resealing.

Scaling and resealing will be a direct and easily accomplished matter: The student points to and
clicks on the place where the unit will be (and tic marks are immediately generated on the remainder
of the line), and then the student types in a number qt that point to indicate what the unit magnitude
will be (and the remaining tic marks are appropriately labeled). The default, of course, is 1. The
process, when repeated (i.e., when it is a resealing), leaves a "shadow of its former self' for
comparison purposes adjacent to the new the newly scaled line. (This shadow can be made to
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disappear as desired.) We feel that a rich set of scaling experiences is important at an early stage,
so it is critical to provide easy and efficient scaling opportunities.

8.4 A Constructive Transition to the Coordinate Graph.

At the student's discretion, the upper of the two number lines (which consistently will be thought
of as the "dependent variable" axis) can be dragged to a position orthogonal to the lower, meeting at
their respective origins, thereby yielding the coordinate graph representation.

This constructive bridge to the coordinate graph representation is intended to tie students'
conceptual structures associated with concrete understanding of those intensive quantities as
descriptors of particular,situations, especially those based on time as a parameter, to the more
abstract coordinate graphical understanding of intensive quantities as slopes of straight lines. The
experience of moving pairs of points in the parallel lines representation provides a simple model for
continuous intensive quantities that shares features with many situations modeled by such
quantities, in particular, constant rate of change situations, where time is the tacit independent
variable.

Every scaling action in the parallel line configuration can be executed in the orthogonal
configuration, and when both configurations are present, then the default condition is for a scaling
action taken in one configuration to be reflected in the other configuration. By experimenting with
a variety of scalings of a single concrete intensive quantity such as speed in the parallel line
representation, where the model is simple and direct, we expect first that the student's cognitive
representation of that intensive quantity will be enriched. Then, via the technique of examining
analogous scalings in the coordinate graph, the student will extend that enriched understanding to
the coordinate graph representation. Moreover, the prior experience with discrete intensive
quantities is intended to provide a conceptual framework and conceptual entities to use to help
encode the new phenomena being modeled.

As with the discrete world software, there will be an algebraic representation available in the form
of a set of equations that reflect inputs in other representations as well as inputs in their own
variables (which, of course, will be reflected in the other representations on demand). The
important difference here, of course, is that the variablescan take on any rational values - not
merely whole numbers. The default assumptions are that step size when variables are incremented,
and the levels of accuracy in their algebraic display, will match those of the table of data.

8.5 Strategies and Reasoning Patterns In The Continuous Representations.

The easy-scaling feature described above allows one to rescale in such a way as to support certain
important ratio reasoning patterns: For example, if every three children drink two liters of soda at a
pally, then one can answer questions such as

"How many liters of soda will be drunk by 10 children?"

using what might be called an "alias strategy."

Given a standard unit scaling of the (upper) children line, the student can scale the liters-of-soda
line to show a tic mark at each even number directly below the multiples of three. Then the sweep
line will be vertical and will move parallel to itself. The number on the liters-of-soda-line that
corresponds to 10 on the children-line, is the answer, as in Figure 39.
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Figure 39

Note that we deposit a half-tic on the Liters axis whenever a whole number of children is swept
out, and these conspicuously mark each liter interval of length two into thirds. Hence the answer
can be recognized as represented by the point one third the distance from 6 to 8. (We should point
out that, as long as we do not attempt to construct a coordinate graph from the lines, we can put
them in any order we wish.)

Most especially, one can also ask how many bottles of soda are needed to serve 1 child - the
number corresponding to one third of 2. Indeed, this is an ideal environment in which to introduce
unit ratio strategies.

We refer to this scaling-based strategy as the "alias" strategy because tic marks at the same position
have different names on the respective lines. It can also be regarded as a continuous line version of
the "boxes" strategy - where boxes correspond to paired line segments (of length 3 on the upper
line and length 2 on the lower line) associated via the vertical alignment of the tic marks
representing values at multiples of 2 and 3, respectively. The successive computations of division
and multiplication are embedded in the sweeping of the line, and the coordination of the two is
provided by the vertical alignment and the automatic linear ordering of the values of each variable.
(In particular, looking more closely at how the existence of the rectangular cells supports that
strategy, we see that the availability of a certain single set of boxes to carry the numerosity of both
sets of icons is at the heart of the strategy: the number of icons in one icon set leads to the number
of boxes, which then, because the number of the other icons per box is attached to that box,
determines the total number of icons in the other set. This attachment is accomplished by the
sweeping line.)

Of particular, indeed critical, interest will be the ease of transfer of the boxes strategy to this new
representation. This will provide not only information about the new software environment, but
will provide important information about the quality of the cognitive structures built during
experience in the discrete environments.

9. CONCLUDING REMARKS.

9.1 What We Have Done: Cybernetic Manipulatives.

The experience of building and testing the environments described in the body of this report has
helped clarify certain powers of the computer as a representational medium. We now recognize
more clearly how different representation systems support different forms of learning and different
cognitions, and the potential for linking these in the student's mind. Further, we have clarified the
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appropriate scale on which to approach the examination of the relationship between the mathematics
curriculum and information technology.

With respect to curriculum, the appropriate unit of analysis and development is the conceptual field
(Vergnaud, 1983) rather than particular topics, grade levels, or even "topic strands." The
conceptual field we have dealt with here is the field of multiplicative structures. Such a conceptual
field develops over a period of several years and needs a coherent curricular approach. In our case,
for example, the handling of multiplication and division should be consistent with the idea of linear
relationship, which is the mathematical context for ratio and intensive quantity.

Enlargening the curricular unit of analysis to the conceptual field implies enlarging the unit of
learning environment design and application, especially with respect to the set of representations
appropriate to that conceptual field, but also including a consistent interface and pedagogical style.
Issues of fitting and actively linking representations become paramount.

Our ideals have been identified, but not fully achieved by the prototypes described earlier. A
different development system and considerably more time would be required to accomplish this.
Nonetheless,, we feel that we have achieved student-intelligible, exp!' 't links between concrete and
abstract representations which help form a smooth ramp upward ft... the concrete to the abstract.
We have done this in a pedagogical style whereby movement on that ramp is accomplished through
student-initiated actions on those representations, and where the students themselves inspect the
consequences of their actions,frequently in other representations that they deem appropriate.

Moreover, the abstract representations introduced htre support the doing of mathematical thinking
on quantitative relationships which are not linear. By design, our approach is intended to support
generalization to the wide body of mathematics that lies beyond ratio and proportion - that is,
beyond linearity.

In addition to curriculum/technology implications, there are important pedagogical implications.

At the lower ene -3f the repn,sentational ramp, we have demonstrated the use of the computational
medium i7stantiate cybernetic manipulatives. Despite the widely acknowledged value ofconcrete
manipul, 0.,s, they are not widely used in schools for two reasons:

(1` They impose a difficult classroom management problem. The fact that manipulatives are so
rarely used and used successfully despite many years of promotion and positive research findings
indicates the neight of this management barrier. And of rJurse, they are virtually never used in
mathematics classes beyond the earliest grades.

(2) They impose a difficult cognitive management problem. It is difficult to use them in ways that
adequately expose the connections between actions on the manipulativ the corresponding
actions on their formal mathematical representations, especially connections between actions on
concrete models and the formal representations that constitute the language of mathematics. The
cognitive load in managing the connections between the actions while performing the actions
themselves is too great.

Environments of the type we have been describing help solve both of these problems. But in
addition to providing the control and regularity that screen objects vs physical objects provide,
thereby suitably simplifying the actions taken, the computer is able to expose the needed link
between the concrete and the more formal representations in a time-independent way, i.e.,
displayed at the user's discretion. This provides enormous pedagogical opportunity for discussion,
cognitive conflict resolution, prediction, and so on.

9.2 What We Have Not Done.

We have not addressed the matter of building learning environments for the broader set of
constructs known as "rational number." In particular, we have not dealt with part-whole relations
or with the arithmetic of fractions. It remains to be seen how much of the approach taken here
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Of with the arithmetic of fractions. It remains to be seen how much of the approach taken here
extends or is consistent with natural approaches to these other rational number constructs.

More importantly, we have not described the curricular materials to be used in conjunction with the
learning environments we have constructed. In the course of building and testing these
environments we have produced a variety of written materials and procedures which will be
described elsewhere. We regard these materials, and the ways that they are used, as at least as
important as the software environments themselves.
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