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I. INTRODUCTION

HISTORICAL PERSPECTIVE

Software that links symbolic and graphical representations of function is proliferating for at
least three reasons:

There is a perceived need to increase the emphasis on graphing in the curriculum (e.g.,
Fey, 1984).

It is theoretically reasonable that appropriate visual representations help invest meaning
in, and thereby promote the learning of, the symbol system with which algebra students
must cope (Kaput, 1986; Kaput, in press).

Computer technology lends itself well to this application.

Common sense supports the notion that multiple representation can aid understanding.
Used thoughtfully, multiple linked representations increase redundancy and thus can reduce
ambiguities that might be present in any single representation. Said another way, each
well-chosen representation conveys part of the meaning best: together, they should improve
the fidelity of the whole message. Finally, translation across representations can help to
reduce the isolation of each mathematical lesson and help to provide a more coherent and
unified view of mathematical method and content. Many student errors may be directly
traceable to the use of one or another representation system in isolation, where there is no
ready "check" on the validity of actions taken (Kaput, in press).

These are reasonable theoretical argum :.nts, but until the recent proliferation of software
based on these ideas, it has been impractical to examine them clinically. Little is actually
known about the cognitive impact of multiple linked representation in algebra. While
potentially reducing ambiguity, multiple representation also presents a student with more
places to look and is potentially complicating and distracting. Introduction of visual
thinking into a subject that had relied almost solely on syntactic skills may change who the
successful students are, admitting new onesa desirable effectbut potentially excluding
some old onesan effect of dubious merit.

When we first proposed to study the effects of multiple linked representation on algebra
learning, we conceived of the research broadly as a two-part intervention study. In each
study, the intervention would consist of a teaching experiment in which students would
work with selected software and curricula.

1 One study would analyze the effects of that experience on the eradication of certain
well-known classes of algebra manipulation errors. This was to be done first, in part
because it seemed to be a straightforward, focussed, applied statistical study with a
predictable (and relatively short) time-table and, in part, because it would likely yield
data that would help to focus the second study.

2 A second study would explore the impact of this qualitatively different experience with
algebra on student mathematical thinking. When the proposal was written, this was not
specified in detail because it was neither clear what dimensions might emerge as the
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most important to consider nor even whether to focus our attention on effects that
would be visible immediately during the algebra course. After all, the experience might
plant seeds that remain essentially dormant until some future time, for example when
the student enters calculus.

Both of these are intervention questions concerning how students change under a
particular treatment. Our first two months of work brought greater definition to these early
questions, but also pointed out the great need for fundamental research into the ways that
students perceive and interpret graphs.

Our very earliest experiments showed that students often significantly misinterpreted
what they saw in graphic representations of function. Left alone to experiment, students
could induce rules that were wrong. This finding alone seemed of considerable practical
import to software developers and curriculum designers. But it also suggested to us the
need for close monitoring of individuals engaged in the tasks of interest. An intervention
study focussing on classes might well miss essential features of student interaction with
this kind of software, features that would tell us how the software or curriculum succeeded
(if it did) or why it failed (if it did).

For these reasons, we changed the course of our study, postponing our intervention-
oriented questions while we pursued this prerequisite line of investigationhow students
develop the perceptual and semantic processes they use in interpreting graphical
information. The major products of the first year are a "lay-of-the-land" view of the
graphics-related issues that come up when studying algebra in a computer context, and a
strategy for studying students' understanding of scale. The first of these is found in
section II of this report (beginning on page 5). Our strategy for studying scale underlies
next year's research. It can be found in section IV and the appendixes (p. 34 ff.).

Broadly, we hoped to gain insight into how students come to use graphical information
to give meaning to symbolic representations of function and vice versa. What, in fact, do
students attend to when they look at graphs? What are the misconceptions that they bring
with them and how do these misconceptions distort the information that they glean from the
graphs? What is the impact of these distortions on student ability to use graphs to inform
their understanding and manipulation of symbolic representations of function? How
resistant are these misconceptions to instructional correction? All of these questions derive
straightforwardly from the larger question: What is the impact of multiple representation on
the learning of algebra?

As our work progressed, however, key issues began to multiply and it began to seem
as if they were not so easily separable from the multiple-representation question. In fact,
while graphing was always around, it was not practical to use very much of it along with
symbolic representation until computers and graphing software became widely available in
schools. It is therefore not multiple-representation, but multiple-representation in a
computer environment that becomes the subject of study, and that raises a host of human
factors issues connected specifically with the computer. These will be discussed in detail
later, but it is important at the outset to Liow the range of topics that cannot be avoided
once computer graphing is part of the curriculum: students' understanding and use of scale
and scale information; issues involving concepts of discrete and continuous quantities;

7
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ways in which semantic distinctions between modeling and mapping affect students'
interpretation of functions; clarity about the role of the variable.

Out of this seemingly focused notion of the "development of the perceptual and
semantic processes students use in interpreting graphical information" a world of research
questions emerged that was vastly too broad for us to pursue and so we narrowed our
research topic even further.

One issueunderstanding of scaleis practically forced upon the student by the
realities of computer graphing. Graphing is done in a space of certain dimensions: to graph
within that space, one must choose a scale and an origin. Most classroom graphing that is
done by hand on paper begins with functions that fit the paper "window" reasonably with
little attention to scale issues. If scale must be considered, one controls it oneself and most
likely knows what one wants soon after the first or second computation of the function's
value. On the computer, things are different. If students are encouraged to explore freely
to see what the graphs of various functions look like, the likelihood of their chosen
functions fitting well in any fixed window is considerably lowered. There are two ways
out: either the computer must choose a scale on which to display the graph, or the student
must do so (perhaps with the aid of the computer). In both cases, if the student is to derive
meaning from the visual presentation, it becomes essential that the student understand the
effect of the chosen scale on that image.

For the last half of the first research year, all of our questions revolved around scale
issues, although, as will be brought out more clearly below, even then we were forced to
attend to other questions.

REVIEW OF THE STATE OF THE LITERATURE

Even having narrowed our focus to issues of scale, we could not escape paying attention to
other issues insofar as they influenced our ability to interpret what we observed about
studer t,' understanding of scale.

At th.., outset, we thought it necessary to distinguish two kinds of coordinate graphs: 1)
graphs in which the independent variable is either time itself or a function of time that is
strongly perceived as causing the change in the dependent variable; and 2) graphs in which
the relation between the variables is an arbitrary mapping. The distinction is useful because
it is so reasonable to assume that the presence or absence of real-world referential meaning
for a graph will influence the strategies that the student invokes in interpreting the graph.
Interpretation of scale may be influenced by expectations about how graphic representations
of functions that model some phenomenon (e.g., a graph of height against time) relate to
aspects of the physical reality of the phenomenon itself (e.g., a photograph of a trajectory).
For example, students may care more about how a graph looks when it represents a famili-
ar physical phenomenon than when it represents an arbitrary mapping. Furthermore, some
transformations (e.g., inverse) become meaningless when the independent variable is time.

As it turned out, this distinction did not help us much in reviewing the literature:
although there is a teaching literature, very little research is reported in either category. On
time/causality graphs tie research is sparse and on graphs of algebraic functionsthe area
of most direct relevance to our current workit is almost non-existent. In addition to those
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researchers involved directly in this project (in particular, J. Kaput, J. Schwartz, and M.
Yerushalmy), we have pursued the work of others: work done by several researchers at
The Weizmann Institute of Science (e.g., Dreyfus and Eisenberg, 1987; Zehavi, et al.,
1987); at the Shell Centre for Mathematical Education at the University of Nottingham
(e.g., Janvier, 1978; and Lit :987 curriculum unit The Language of Functions and
Graphs); at or through Technical Education Research Centers (TERC), Cambridge,
Massachusetts (e.g., Barclay, 1987; Brasell, 1986; Mokros and Tinker, 1986); and work
done by J. Clement and colleagues (e.g., Clement, 1985; Schultz, Clement and Mokros,
1986 draft); work by Dugdale and her colleagues at the University of Illinois (e.g.,
Dugdale, 1982); by Alan Osborne (personal communications); by Andee Rubin and her
colleagues ai Loh Beranek and Newman, Inc., Cambridge, Massachusetts (personal
communications); by G. J. Hitch and colleagues (e.g., Hitch, et al., 1983); and by
researchers at The University of California at Berkeley (e.g., work by Laurie Edwards and
others cited in Schoenfeld, 1987).

Of the research that we have found so far, only that done at The Weizmann Institute
deals directly with the influence of graphs on students' understandings of arbitrary
functions. Essentially all of the rest deals with time/causality graphs.

None of the research literature addresses issues of scale (though some of the develop-
ment work done by Rubin and her colleagues in the area of statistics does attack some
problems involved in teaching about scale).

METHODS

The observations and research strategies produced in the first year, and described in the
next two sections, were developed through the work of a group which included six high
school teachers from the greater Boston area, two graduate students, a mathematician spe-
cializing in algebra, the project manager, and the project leader, a specialist in mathematics
education. The group's purpose was to discuss problems students have with algebra in
general and graphs in particular, to plan research activities, to review and interpret results
of these activities, and to help guide the still evolving goals of the project. The group
served an additional and important function in providing informal and anecdotal reports of
student work, teacher biases and expectations, and teaching techniques that had been tried,
all of which shed considerable light on our planned direct observations of students' work.

Among the earliest research activities was an analysis of the work of two second-year
algebra students using an early prototype of the Function Analyzer, a component of The
Algebra Toolkit, a software series developed at Education Development Center, Inc.
(EDC). Our detailed analysis of the full transcript of the interview with these students led
us to shift the focus of our research from the impact of multiple representation software on
algebra errors to a study of how students perceive and interpret graphs, with particular
interest in three issues:

the meaning of discrete points in the graph
students' understanding and misunderstanding of the significance of scale
the interplay between visual and analytic strategies for interpreting graphs
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Follow-up studies were designed to narrow this field further. These included several
small studies of beginning algebra students (6th through 9th grades) graphing functions
and data on distorted graph papers, a larger study (roughly 130 students from 6th through
12th grades) replicating and reexamining work done by Schultz, Clement, and Mokros
(1986), and many observations both current and retrospective of student graphing errors.
All pointed to the centrality of scale issues in student misunderstanding, misperception, or
misuse of graphs.

The recollections and expectations of the thoughtful and experienced teachers in the
research group suggested observations that were then performed either by the teachers in
the course of their teaching or by the research staff in specially arranged sessions with
students. We then discussed these observations as a group. As our discussions shifted
course, influenced by the most current questions raised by our observations, we allowed
our subsequent explorations to shift course accordingly. This left us with a difficult task in
synthesizing a cohesive whole out of our observations and discussions, but was the
necessary approach at a time when it was essential that our study remain broad and
exploratory.



ETC Algebra Research 6 2/16/88, Final Technical Report

IL MATHEMATICS , METAPH ORS ,

AND HUMAN FACTORS

Mathematical, technical, and pedagogical challenges
in the educational use

of graphical representation of functions*

E. Paul Goldenberg
Education Development Center, Inc.

Newton, MA

Are graphs of functions more accessible to students than symbolic presentations?
Apparently not. Although students have spent years perceiving and drawing visual
forms before they first encounter algebraic symbols, graphs have conventions and
ambiguities of their own. Some strategies that suffice for interpreting real-world
scenes are inappropriate when dealing with the infinite and relatively featureless
objects in graphs of polynomials. To interpret graphs correctly, we need
mathematical knowledge and expectations, not just perceptual experience.
Graphing software intended for educating students who lack such mathematical
knowledge must therefore include features not normally built into graphers used
primarily for non-educational purposes.

What do students see when they look at graphs of functions? Aided by a
particularly flexible tool, the Function Analyzer, our clinical studies catalogue some
differences between student perceptions and those of mathematically
knowledgeable adults.

Two conclusions stand out. Simplistic software design or thoughtless use of
computer graphing in classrooms may further obscure some of what we already
find very difficult to teach. On the other hand, thoughtful design and use of
graphing software presents new opportunities to focus on challenging and
important mathematical issues that were always important to our students but that
were never so accessible before.

The research reported here was conducted by the Center for Learning Technology, Education Develop-
ment Center, Inc. under a subcontract from the Educational Technology Center, Harvard Graduate School
of Education, and was funded in part by the United States Office of Educational Research and Improve-
ment (Contract # OERI 400-83-0041). The author wishes to thank colleagues at EDC and ETC for their
substantial intellectual contributicns to this paper. Wayne Harvey, James Kaput, Marc Konvisser,
Philip G. Lewis, Judah Schwartz, Richard J. Umiker, Jane West, and Philip Zodhiates. I also wish to
thank EDC for allowing the research group to use an early prototype of the Function Analyzer, one
component of EDC's Algebra Toolkit, in conducting this research. The Algebra Toolkit was conceived
by Judah Schwartz and Michal Yerushalmy at EDC, and was developed by Wayne Harvey, June Mark,
Mike Pappas, and others at EDC. It will be published by Sunburst Communications.

Correspondence and requests for reprints shuuld be sent to E. Paul Goldenberg, Education Development
Center, Inc., 55 Chapel Street, Newton, MA 02160.
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Software that links symbolic and graphical representations of function is proliferating for at
least three reasons:

There is a perceived need to increase the emphasis on graphing in the curriculum
(e.g., Fey, 1984).
It is theoretically reasonable that appropriate visual representations help invest
weaning in, and thereby promote the learning of, the symbol system with which
algebra students must cope (Kaput, 1986; Kaput, in press).
Computer technology lends itself well to this application.

Common sense supports the notion that multiple representation will aid understanding.
Used thoughtfully, multiple linked representations increase redundancy and thus can reduce
ambiguities that might be present in any single representation. Said another way, each
well-chosen representation conveys part of the meaning best: together, they should improve
the fidelity of the whole message. Translation across multiple representations can help to
reduce the isolation of each mathematical lesson and help to provide a more coherent and
unified view of mathematical method and content. Many student errors may be directly
traceable to the use of one or another representation system in isolation, where there is no
ready "check" on the validity of actions taken ( Kaput, in press).

However, the fact is that very little is known about what actually takes place when
multiple linked representation software is used extensively in the algebra classroom. Until
quite recently with the proliferation of graphing software in schools, it has been impractical
to examine the effects systematically.

Our own observations and those of others convince us that there certaii.V is much
benefit to be gained from the thoughtful use of this kind of software, and that it must be
taken very seriously by teachers and curriculum developers. Proper use of visual imagery
gave students new depth and clarity in thinking about old problems. The mathematical
richness in linking graphical and symbolic representations of functions also gave students
opportunities to pose and explore new problems.

On the other hand, our research has also made it clear that graphing software that is
developed along conventional linessoftware that may seem perfectly adequate at first
can blur or obscure concepts of great importance. Furthermore, the uninformed classroom
use of any graphing software brings with it a number of pitfalls. "Thoughtful use" becomes
the key.

While potentially reducing ambiguity, multiple representation also presents a student
with more places to look and is potentially complicating and distracting. Introduction of
visual thinking into a subject that had relied almost solely on syntactic skills may change
who the successful students are, admitting new onesa desirable effectbut potentially
raelnding some old onesan effect of dubious merit. Furthermore, features not connected

idea of multiple representation but inextricably bound up in its computer
:Ion may also influence how the student learns.
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Our earliest experiments showed that students often made significant misinterpretations
of what they saw in graphic representations of function. Left alone to experiment, they
could induce rules that were misleading or downright wrong. This finding alone is of
considerable practical importance to software developers and curriculum designers. Our
later observations have generated a long list of questions which must be answered in order
to design better software and to make gcod use of it in a thoughtful curriculum.

This report illustrates and explains the issues that have arisen from our work, focussing
mostly on students' observed misinterpretations of graphs and on the potential pitfalls of

.e uninformed development or use of multiple representation software.

MAKING GOOD USE OF VISUAL IMAGERY

Sometimes, the availability of one representation can aid a student in manipulations
performed with another representation. For example, good use of graphic representations
can aid a student in performing an algebraic computation.

A common elementary algebra error is illustrated by the following reconstructed
protocol of a student's work:

Problem: Find the value of x in the equation 4x - 17 = 3x - 4 + x
Student's approach: Gather like tenns 4x - 17 = 4x - 4

Subtract like amounts -4x -4x
(intermediate result) 0 - 17 = 0 - 4
(result) -17 = -4

If a student stopped here and declared that no solution was possible, the most we might
complain about is the rigidity with which the student performed the last, unnecessary step.
But many students continue even at this point to apply the rules that they have learned.

(result) -17 = -4
Add like amounts + 4 = + 4
(result) -13 = 0

Again, there is a chance for students to stop and take note of the contradiction, but even
here, some students continue, undaunted, to conclude that "-13 is the only number left, so
that must be what x equals" ^rid they write down

(conclusion) x= -13

By contrast, in a classroom experiment that was reported to us, students who had
learned to visualize the graphic representations of each symbolic expression had no such
problems (Michal Yerushalmy, personal communication). These students had become
used to interpreting equations like

4x - 17 = 3x - 4 + x

as statements that two functions

,f(x) =4x -17 and g(x)= 4x - 4

were equal. Because these students also had a strong visual sense of these functions, they
declared the problem insoluble as soon as they saw the form 4x - 17 = 4x - 4. Their

1 3



ETC Algebra Research 9 2/16/88, Final Technical Report

explanation was straightforward: the lines representing f and g are parallel, and so there is
no point on one that is also on the other. There is, in other words, no place where the lines
cross and therefore no x at which the two function values are equal.

MAKING BAD USE OF VISUAL IMAGERY

It is tempting to assume that the world of shapes and visual gestalts is much more naturally
interpretable than the world of algebraic symbols. It is especially tempting to make this
assumption of novices to algebra. After all, students have been seeing shapes and
interpreting them since they were born, and only began deaiing with the formal notational
system of algebra quite recently. Most classroom observations suggest another possibility:
namely that graphic representations of function are no more naturally interpretable than are
the symbolic representations. They have their own rhetorical conventions that students
must learn, and they contain ambiguities that are clarified only through the use of further
specifications, such as those contained in the conventional algebraic notation.

A concrete example will help to show how this can be. Two bright, successful, second
year algebra students were shown the computer screen illustrated in figure 1, and asked
discover the polynomial (-2x2 + 30x - 108) that created this graph. They were encouraged
to use whatever means they chose, including making various computer-supported
measurements on the graph and trying out various expressions and observing differences
between the graphs they created and the target at which they were aiming.

30

200

Figure 1 200

30

Although the students had never previously tried to match a target graph, they had had
some prior experience with graphing softwareexploring values and scale with an early
prototype of the Function Analyzer component of EDC's Algebra Toolkit and two
instructional sequences developed for this research projectand they had built up some
expectations about the effect of the constant term and the coefficient of x2 in the graph of a
parabola. Appropriately, their first analyses made use of these notions.
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They had a well-developed notion that something they referred to as "shape" was
controlled by the coefficient of x2. They knew that if the parabola was "upside down," the
coefficient must be negative, and after a single experiment they reasoned from the "pointi-
ness" of the parabola that the x2 coefficient might be around -2. They also had a notion of
"height" and believed that it was controlled by the constant terra. The measure of "height"
that they chose was the y-intercept, which they estimated to be about -100. Indicating that
they had no idea what to use for the coefficient of x, they arbitrarily picked 2.

Figure 2 shows the target function and the function that they designed: -2x2 + 2x - 100.
Their analysis had been excellent. Their parabola appeared to have exactly the same
"shape" and, as well as one could see at this scale, the same y-intercept as the parabola they
were trying to match. Only the x coefficient remained undiscovered. Yet, even though
they had chosen the y-intercept as the measure of "height"and that, according to that
measure, they had done quite wellthe compelling perception that their parabola is lower
than the target seduced them into redefining "height." The visual impression so dismayed
them that they capitulated and "corrected" the constant term from -100 to +4 to account for
their "error." They made this choice despite both their reasoned argument about the value
of the constant term and their outright admission that their choice for the coefficient of the
linear term was totally arbitrary. The new expression, -2x2 + 2x + 4, was in some ways
further from the target than the first, yet it was more satisfying to them because it was just
as "high" as the graph they were aiming at (figure 3).

200

-30

Figure 2 -200 -2x2+ 2x -100

30 -30

200

A
Figure 3 -200 -2x2+ 2x + 4

30

The way in which the illusion distracted them from their originally correct analysis of
the problem is reminiscent of the not-quite-conserver in the familiar Piagetian task in which
equal quantities of juice are poured into glasses that differ in width. Initially two identical
glasses are filled with identical quantities of juice and the child verifies that they are the
same. When the juice from one of these glasses is then poured into a narrower container,
its level rises higher than the level in the other original glass. Young children's thinking in
this situation seems dominated by the visual impression: the new glass must have more.
Older children and adults witnessing this experiment are guided more strongly by their
expectation that quantity remains invariant despite appearances. In between, there is an
intriguing stage when a child might well expect that after pouring from one container to the
other the amounts would be the same, but would then give in to the perceptioneven
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spontaneously expressing surprise, just as the algebra students did. Logical thinking at this
stage has developed considerably, but is not robust enough to win over perception.

In our case, the students' confusion appeared to result from a shift of attention from
one feature (the y-intercept) to another (the overall "height" as suggested by the height of
the vertex). In other cases, the confusion seems to arise from the same mechanisms that
give rise to well-known perceptual illusions. Co, *ler, for example, what happens when
these two students take the expression they have just developed and begin to change the
coefficient of x to "move it over." Figure 4 shows how the graphs appear when they have
all but the constant term correct. When the students looked at graphs like this, they knew
that they needed to adjust the constant term, but they also remarked that the inner parabola
looked more obtuse than the outer. (In this example, the target parabola appears blunter
than the upper one.) As was true of their confusion regarding the meaning of "height,"
illusions such as the one illustrated here were sometimes powerful enough to draw their
attention back to the already correct coefficient of the x2 term and cause them to change it.

30

200

er

30

Figure 4 200 2x2+ 30x + 4

A general theory of the interpretation of graphs must take context into consideration. In
our explanation of the students' difficulties, we have treated their interpretation as if it were
conditioned only by the visual presentation and some semantic processing that lumps y-
intercept in with "height." In fact, that is not the only part of the problem situation that may
have affected their approach. In their symbolic representation of the parabola, they were
required to use a specific form the unfactored polynomial, ax2+bx+c. From their
comments, it became clear that they ascribed three attributes to the graph of any parabola:

1 Its orientation (up or down)

2 Its pointiness

3 Its position, with the sub-attributes horizontal position and vertical position.

These might well have been assigned in some order to the parameters a, b, and c, but
the students were already aware that A controlled a kind of superattribute, "shape," with the
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sign controlling orientation and the magnitude controlling pointiness. That left b and c to
control position. It seems only natural to assign the two remaining parameters to the two
sub-attributes of position, which would encourage the reinterpretation of the function of c
from y-intercept to "height" and would then, by default, leave horizontal control to b. Had
the students been trying to fill in a different symbolic formin particular, had their form
been something like a(x-h)2+v (or if the variable x in the coefficient form of the polynomial
could have been replaced by ox'- 3)the parameters would have more closely fit their
expectations. In such a case, their problem solving behavior may not have appeared so
confused and their concepts may have seemed less fragile.

TOWARD A GENERAL THEORY OF INTERPRETATION OF GRAPHS

The Cartesian graph spaces we see in books and on computer screens are rectangular
sections of a plane on which some shape appears. Generally, only a portion of the shape
appears because the domain on which the function is defined is usually the entire real axis.
Through our experiences with partial views of real objects (e.g., views of things being
shifted up or down as viewed through a window) we develop working strategies for
interpreting such views. As we first learn to read graphs, we interpret what we see in them
according to strategies that have been successful for us in other realms, and we continue to
use such strategies until our new experiences teach us to do otherwise.

Our everyday strategies fail when we try to interpret objects that are infinite in size and
relatively poor in discrete, qualitative features. What we experience is often a perceptual or
attentional illusion. The student work described above gives examples of both.

Imagine a person slowly descending on a scaffold outside your office window. As the
person's feet first appear at the top of your window, you already have a very good idea of
the overall shape of the person. Assuming a constant rate of descent, you have a good idea
when that person will be fully visible. Aided in part by the availability of readily
identifiable, discrete elements in the scene (e.g., shoelaces, buttons), you have no difficulty
at all knowing which direction (down) the person is moving. Finally, because people are
not too variable in size (among other clues) you know that it is a 6-foot person descending
immediately outside your window and not a 240 foot tall person descending 40 feet away.

In the graph interpretation situation, things are very different. Overall shape,
magnitude of a translation (corresponding to the rate of descent of the person in the
window), direction of movement, and scale (corresponding to the distance of the person
viewed in the window) may all become ambiguous when the object viewed is unbounded
in size and has a smooth shape devoid of readily recognizable sub-elements like buttons
and shoelaces.

The sources of illusions

Some of the ambiguities of graphs appear to arise from processes akin to well-known
visual illusions. Included among the causes of these illusions are the interaction between
the position and orientation of the graph and the shape of its window, and the interaction
between the scale of the graph and the scale of the window.
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Consider, for example, what one sees when looking at a family of linear functions
ax±b that differ only in the value of the constant b. If we already know the algebra, we
have built up some analytic expectations. What we expect to see is that the graph of a line
moves up as b is increased, as in figures 5 and 6.

2

2 2

2 2

2 2
. 5x 1. . 5x + 1.

Figure 5 Figure 6

Because an infinite line presents us with no discrete points to watch, however, it may
also appear to be moving from left to right as the constant term increases (figures 7 and 8)
or even from right to left if the line slope is positive. The way the line appears to move de-
pends on the angle it makes with the window through which you view it and on the shape

.. of that window. Though the appearance is a perceptual phenomenonnot one that any
amount of algebraic sophistication can changealgebraic sophistication can lead us to ig-
nore appearances. We may even be able to "see" that the segment of line visible in figure 7
has "moved off the top of figure 8" and a new segment, previously unseen, is now visible.
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2 2

2

2 2

2x 2

Figure 7 Figure 8

Beginners lack such algebraic sophistication and need some discrete points to watch
tic marks and labels on the graph as the mathematical version of buttons and shoelacesif

2
23c + 2

2
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they are to interpret the graph in a useful and unambiguous way. The addition of one or
more points- -e.g., f0) andiK1)helps the student trace the movement of the entire graph.
In this case,f(0) would appear at the bottom of figure 7 and the top of figure 8, providing
at least one visual cue that pulls for a bottom-to-top rather than left-to-right interpretation.

Because a novice lacks the analytic expectations that are needed to see through the illu-
sion, graphing packages that lack "button-and-shoelace" enhancements can be treacherous.
Unconstrained inductive learning experiences with such software may certainly lead
students to "correct: conclusions, but they may also lead to very complex rules like:

There are five cases that describe how the graph of a linear function
ax+b changes as b increases.

lal << 1

lal » 1, a > 0
lal » 1, a < 0
lal. 1, a <0
lal.i, a>0

the line moves up as b increases

the line moves to the left

the line moves to the right

the line moves diagonally to the northeast

the line moves diagonally to the northwest

Such complex formulations may be the stimulus for valuable mathematical thinking and
discussion, but they are certainly not what we want students to learn as "facts." Worse yet,
student propensity to choose positive integer values rather than decimals or negatives for
coefficientstherefore missing the cases where Gal < 1 means that most students develop
the left-right theory without even seeing the other movements that might lead some of them
to expect or want a simplification. Put simply, a wrong theory is the most likely result of
the casual introduction of an inductive learning experience such as this into a curriculum
that is not otherwise designed to make use of the questions such an experience raises.

There is an added complication. Even the complex rule given above assumes that x and
y are symmetric on the graph. The (visual) angle that a line makes with its "window"
depends both on the line's (mathematical) slope and on the relationship of the scales of the
two axes. In figures 5-8, the x and y axes are represented in the same scale. "figure 9
represents the same function that appears in figure 6 but, because the scale has been
changed, its graph resembles the family of functions represented in figures 7 and 8.

8

2

2

8

. 5x + 1 Figure 9
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Remarkably, even this does not fully capture the complexity of the perceptual situation.
The shape of the window is involved in the interpretation of positional relationship among
figures inside the window. The parallel lines in figure 10 appear to be one above the other,
whereas the parallel lines in figure 11 appear to lie next to one another. Furthermore, the
shape of the window has influenced our perception of the slopes of the lines: in reality all
four lines form the same angle with the horizontalbut many people perceive the lines in the
taller window to be less sloped. A similar phenomenon can be seen in figures 12 and 13.

=
Figure 10 Figure 11 Figure 12 Figure 13

Scale affects perception in other ways as well. An infinite line viewed close up (figure
14) or from afar (figure 15) appears not to change shape, though it moves "closer" to the
center of the window. This accords perfectly with our everyday experience with normal
objects: as we veiw an (ordinary) object from the same direction but at varying distances,
angles in the object are preserved but distances (in this case, the distance from the center of
the window) are not. (Of course, the line in figure 15 may equally well be perceived as
"higher," suggesting that there has been a change in the constant term.)
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Figure 14 Figure 15
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We have a very different experience with the parabola. Viewed close up (figure 16)
and from afar (figure 17), the parabola does appear to change shape. Although the portion
of the plane that we see in figure 16 is only 1/100th of that _down in figure 17, we
automatically compare the tiny chunk in figure 16 with all of figure 17, fooling our eyes
into thinking that angle has not been preserved.

2

Figure 16

x2- x - 1

-20

Figure 17

-20 x2 - x - J. _

If we compare equivalent portions, we avoid the illusion. Figure 18 shows what
portion of figure 17 is illustrated in figure 16.
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Figure 18
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Figure 19 compares figure
16 to a 90% reduction of
itself. This time, the two
parabolas appear to be the
same shape. Thus, when the
scale of the parabola changes
in a window of fixed size, the
parabola appears to change
shape. Yet, when the scale of
the window changes along
with the scale of the object in
itthat 's, when we see the
window as well as the
parabola from afarwe have
no such illusion.

Figure 19

Understanding this interaction between scale and "shape" is important because students
typically use "shape" of a parabola (on a constant scale and in a fixed-size window) to
determine the A coefficient. Thus, though they learn strategies for solving their problem,
the strategies are based on an underlying notionthat parabolas may have different
shapesthat is erroneous. The shape that they see is, in part, an artifact of scale.

Just as scale can alter our perception of the shape of a parabola, so may position. In
figures 20 and 21, the upper parabola appears blunter. Even though in both figures the
upper and lower parabolas can be superimposed through simple translation, students are
sometimes tempted to adjust the x2 coefficient as well.

3.5

-4.5

-3.5

-10

-10

10

.5z2+ 2x - 6

.5)0+ 2x - 6

Figure 20 Figure 21

As with the illusions illustrated in figures 5-13, this is a perceptual phenomenon, not a
function of one's expertise with algebra. Experts know where to look and what to ignore in
order to see beyond the illusion. For non-experts, enhancements of the graphic presenta-
tion are needed in order to reduce the ambiguity of the image. The ability to mark points on
the curve and the use of the window frame as a scale referenceare two such enhancements
mentioned above.
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Knowing that conventional graphs (e.g., ones that lack specially marked points) invite
misinterpretationand knowing even what directions the misinterpretations are likely to
takeobliges us to develop less ambiguous presentations. We can eliminate many of the
misinterpretations quite easily. We can also milk the mathematical richness of some of
these misinterpretations by providing class time for discussion of students' observations
and conjectures. However, studying these misinterpretations has turned out not to be so
straightforward. Though they may often be avoided by manipulating a single graphical
feature, they appear to be grounded in a complex interaction of student beliefs and attitudes.

Scale as a focal issue

By the time we had made these observations, it had already become apparent that we
should be focusing most of our attention on issues related to scale. We came to this
decision in part because so many of the illusions we had observed had to do with misun-
derstanding, misperception, or misuse of scale information. But there was another reason,
as well. The whole question of the use of computer software that links graphical and
symbolic representations of function practically forces the issue.

Graphing is done in a space of certain dimensions: to graph within that space, one must
choose a scale and an origin. Most classroom graphing that is done by hand on paper
begins with functions that fit the paper "window" reasonably with little attention to scale
issues. If scale must be considered, one controls it oneself and most likely knows what
one wants soon after the first or second computation of the function's value. On the
computer, things are different. If students are encouraged to explore freely to see what the
graphs of various functions look like, the likelihood of their chosen functions fitting well in
any fixed window is considerably lowered. There are two ways out: either the computer
must choose a scale on which to display the graph, or the student must do so (perhaps with
the aid of the computer). In both cases, if the student is to derive meaning from the visual
presentation, it becomes essential that the student understand the effect of the chosen scale
on that image.

Despite our early commitment to focus our attention on scale, the near total lack of
literature on scale issues and the very sparse literature on any aspects of interpretation of
linked graphical and symbolic representations of functions left us feeling a need to test our
own techniques and interpretations by getting as close as we could to those few experi-
ments and data on student graphing that had previously been reported. We began by
repeating part of an experiment devised by Schultz, Clement, and Mokros (1986), giving
some of their test items to ten classes of students from sixth through twelfth grade (about
130 students in all). The test items required students to draw or interpret graphs of familiar
phenomena, such as the speed of a bicycle going over a hill.

The total number of errors made by all of our students was very small and did not fall
clearly into the types reported in the original study, but those few errors did fit a pattern
that, once again, confirmed that scale issues were particularly confusing for students.
Many of the non-conventional representations that students used were what we came to call
"event charts," in which neither horizontal nor vertical axes were used in a strictly interval
way. In general, the horizontal axis was laid out as an ordinal scale in time: sequential, but
without necessarily evenly spaced intervals. The vertical axis was often purely nominal,
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listing events that took place over time but not treating them even as an ordinal scale, let
alone an interval scale.

The work shown in figure 22 is representative of these event charts. At the top of the
figure is the diagram (borrowed directly from Schultz, Clement, and Mokros, 1986) that
had been presented to the students. It shows the progress (from left to right) of a bicyclist
riding on a level, then up a hill, across the level top, down the other side, and then on
ground level again. Students were asked to use the axes below the diagram, initially blank
axes, to graph the speed of the cyclist during the time intervals indicated. One student's
work is shown on these axes. She labeled the horizontal axis with the letters a through j,
placing the a at the leftmost point and the j at the rightmost, and spacing them roughly as
they were spaced on the diagram above (preserving some of the interval character of that
scale). She labeled the vertical axis with the same descriptive terms that were used on the
diagram, but sorted these terms in some way that seemed meaningful to her. In doing this,
she created something of an ordinal scale, though the order is idiosyncratic. (Other students
performed no sorting at all, repeating labels on the vertical axis whenever they reappeared
or. the diagram!) Each heavy dot on her chart (except the last two) represent the onset of
one of the conditions described in the diagram. Thus, the dot at c marks the onset of
"constant slow speed," and the dot at d marks the onset of "speeding up." The line
segments that connect each pair of dots serve to highlight the contour and make the drawing
look like a line graph, but the segments themselves contain no information.

same constant
speed

D Z

constant up /
slowing

slow speed
nal: constantIowa spit&

same fast speed

speeding up

same constant speed

constant medium speed

stowing down
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Spleding
up

Figure 22

gams East
spec& siA,Tr-aa constant

twit ;maim
spcsa



ETC Algebra Research 20 2/16/88, Final Technical Report

Although this student has created a chart of events, her chart is not as purely qualitative
as some others. She shows evidence that she is attending to some quantitative as well as
qualitative relationships. As we already noted when we discussed her labeling of the axes,
this student creates a kind of ordinality out of the purely nominal labels she assembles
along the vertical axis. She even defers slightly to the actual speeds likely to be attained by
the cyclistthe speeding up that she represents at f is slightly higher than what she shows
at d. But her drawing shows no sense of continuous change over time. Likewise, her
horizontal axis shows an attempt to express quantitative relationships despite her ultimate
failure to do so. Her spacing of the points along the horizontal axis resembles an interval
scale, as does her insistance on spreading her representation from the first point (a) to the
last point (f), yet when she tries to use this scale, she attaches the information she is
representing to the points themselves and not to the intervals between them. The conflict
eventually requires her to compromise and leave one point floating between h and i.

Interactions as a complicating factor

Despite our decision to focus our attention on scale, it became apparent early in the course
of our work that a general theory of the interpretation of graphs would have to contend with
a variety of issues that interact in complex ways. Even in the course of investigating scale
alone, we would not be able to protect ourselves from having to attend to some of those
other issues that might confound our observations. These other matters provided a kind of
contextual support for our research that, especially in the absence of supporting literature,
was absolutely essential.

Perceptual features and cognitive coding

Earlier, we described the phenomenon of students basing a computation correctly on the y-
intercept of a graph but then using a different featurethe apparent "height" of the resulting
graphto judge the correctness of their computation. This shift of attention from one
feature to another led the students to reject their correct computation anduse another that
was farther from their goal. This confusion seems to arise from students performing one
act but coding it mentally as another and being "caught" by the most salient perceptual
feature. Students' interpretations of a graph are often inappropriately influenced by such
irrelevant perceptual features as the angle at which a linear f?anction intersects the frame of
the graph. They also have a tendency to judge the distance between two curves (and
therefore various translations from one to the other) in a direction roughly normal to the
bisector of the perceived angle between the curves, again influenced by certain features of
the frame in which the curve appears. The fact that such perceptual features can be so
misleading means that we must be thoughtful about our interpretations of failures at scaling
tasks. While such failures may certainly be indicators of conceptual weaknesses on scale
issues, perceptual distractions from the task may also be the source of some errors. Like
scale, this phenomenon appears to be unresearched.

The concept of variable

With a suitable image (e.g., a rubber-sheet), scale distortions of geometric figures or
pictures may be understandable to students, but algebraic interpretations of similar
distortions of algebraic curves require not only an understanding of the scale change, but of

ea:4,0
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the mewling of the variable and of the parameters of the function that surround it (e.g.,
coefficients in a polynomial). To the naive student, there may appear to be little difference
between the a, b, c and x in the definition f(x)= ax2 +bx +c (cf. Kuchemann, 1978, and
Wagner, 1981). They are all letters, and the level of abstraction the fact that a is used in
place of any specific value that it might assumemay even suggest that all of these letters
may assume various values. Yet when we speak of the variable in this function, we rder
only to x. Software that graphs automatically from left to right, sweeps over a domain in x
without any student involvement, and leaves the student active control only over the
function's parameters. In other words, the variable Is not variable by the student but the
constants are. In effec., then, students who explore the effects on the graph of the function
flx)=ax2+bx+c as they vary the values of a, b, and c are really studying not f(x), but some
function-valued function, fi(a,b,c), whose variables are a, b, and c, and whose value is the
graphical output. It is well attested that the coacept of variable is difficult for students to
learn, at least in static, inert media (Clement, e. al., 1981; Wagner, 1981; Cleme<1 , 1982).
Because the variable and the constants switch roles in many graphing packages, the
unthinking use of such software may further obscure rather than clarify this difficult
concept. There may also be an appropriate software design response: to make the plotting
of x values (e.g., in a table or as pairs on a graph) an explicit action that is different from
the changing of parameters.

Identifying discrete points in continuous functions

A curious phenomenon that we have not had the opportunity to study was reported to us by
one teacher and was recognized by several others.

A group of students had been taught two methods for solving simultaneous equations.
One method was strictly tabular. Students listed numerous pairs for each function and
looked for the element that was common to both tables. The second method began
similarly, but augmented the search for a common element by plotting each pair on a graph
and using the linear pattern of the two sets of points to help locate the single point that was
common to both lines. When the students could perform these procedures relWoly and it
seemed that they understood them well, their teacher taught them the slope- intercept method
a3 a shortcut for plotting a line. No longer did they have to evaluate each function several
times in order to plot the points to get a pair of lines from which they could then determine
the intersection; they could simply mark a dot representing the constant term on the y-axis
and then count one space to the right and move up or down as directed by the coefficient of
the linear term. Remarkably, this shortcut appeared to undermine the same students' ability
to identify the intersection point apparently because they had lost the sense that the visually
apparent intersection qualified as a real point! Asked wtiere the two lines intersected, they
would no longer report coordinates but rather would poilit or gesture. It appeared that
when they plotted several points and then drew a connecting line, they sensed that there
were many other points on the line that they might also have plotted. Often, the intersection
point had been among the points they plotted themselves, but even if it had not been, they
appeared to sense that it might have been. On the other hand, slope-intercept lines seemed
to be perceived as if they contained only two points, the intercept and the one othe, point
that they derived from a run-rise maneuver. This may well hark back to elementary school

''6
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geometry notions that points exist only where we have put them, and that points are dots
that we have made. Casual language in high-school geometry may suggest the same idea.

A clean understanding of the interaction between scale changes and transformations of a
function requires students to have a clear sense of how individual points move under the
transformation. (Further discussion of this issue appears below with figures 27 and 28 and
their surrounding text.) Again, graphing software that sweeps in a continuous fashion
from left to right for all graphs may obscure the rather different image one might have of a
function that maps one set of numbers to another.

Computer magic

The potential problems mentioned above all assume that the students think, even if only
naively, about the graphs. However, there is also the possibility that a novice to graphs
will dismiss graphs completely as "how the computer behaves when you type xs to it." If
the connection between the analytic representation of the function and its graphical
representation is perceived as magical or arbitrary, the two representations cannot inform
each other. As with each of the other potential problems, this one might be forestalled by
appropriate interventionsin this case, all that seems needed is to maintain the kinds of
graphing-by-hand experience students currently get and not replace all that experience with
computer graphingbut what should not be done is to assume that there is no issue here to
think about. The simple introduction of computer speed into the production of graphs is a
non-trivial intervention that is likely to have significant implications for the curriculum, or
for additional changes in the ways such graphing processes can be controlled.

A LIST OF ISSUES AiVD EXAMPLES

Function and variable

In the service of interpreting our observations of students graphing, we have looked at
some of the kinds of difficulties students experience with function and variable.

Skipping over values to ordered pairs of values

We may describe a function as a mapping that relates each element of one set (not
necessarily of numbers) to some member of another set (which may or may not be identical
with the first set). Thus, the function f(x) = x2 maps values of x (integers, ratiOnals, or
however else we may choose to limit the set) to other values (which, in this case, belong to
the same set.) Such a description suggests an image for functions that might be
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Range

Domain Figure 23

Of course, the image cannot be complete: not all the numbers will fit in the boundaries.
But the general idea is clear: each member of one set is matched to an appropriate member
of the other set. There is no implied orderliness of the members in the domain set, just a
requirement that all of them are there and all of them have arrows from them to some
member of the range set.

2/16/88, Final Technical Report

A tabular representation has much the
same imagery. Usually, we also impose
additional structure on the table by
writing the domain elements in some
systematic, orderly way, but that is not an
essential feature.

Function machine imagery also
suggests that a single value come out for
each value put in. All of these images
suggest number-valued functions: put a
number in and get a number out.

26

S_______./2
1 -4 1

2 -. 4
3 -3 9
4 -. 16
5 -3 25
6 -+ 36
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1 234 5 6 Figure 24

By contrast, the traditional graph represents each arrow, along with its associated input
and output values, as a point. The compactness of this representation is clearly confusing
to some students. We cannot blame the arrow imagery for the kind of graph seen in figure
24, because not all students who draw this sort of representation have seen the set-to-set
arrow maps. Instead, the fact that some students seem to create this representation spon-
taneously suggests that students understand the value-to-value mapping implied by a table
and are attempting to represent that image in the graph. The conventional graph, on the
other hand, appears to represent quite a different mapping. Where we might describe the
table as associating each input number to a unique output number, graphing seems to
associate each input value and its associated output to a uttir,ye point, as if the function
were not a number-in-number-out function, but a number -in-Nair /point -out function. The
process of locating the point by an over-and-up maneuver mg tend to support an image of
mapping from a number on the x-axis to a point above it. (This relates to an observation
that, for beginning students, points seem to remain identified with the processes by which
they are located rather than assuming first class status as mathematical objects in their own
right. More will be said about this later.) Thus, students tray be viewing their graphs as if
they are mappings from numbers to points (figure 25), and may therefore be confused
because the tables from which such graphs are constructed do not resemble the table shown
in figure 26. If this does explain part of the confusion, we must then clarify for students
the variety and nature of inputs and outputs of functions and be explicit about type for each
function we use. This certainly asks for greater precision in our explanations and
examples, and suggests ideas for additional software support as well.
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Although traditional graphing may also be
seen as a visual representation of the mapping
from a single numeric value to another single
numeric value, the image it suggests is quite
different from the previous ones. It is not
uncommon to see students draw a graph like
this one (figure 24) when asked to graph
y=2x. In such a graph, the student is draw-
ing lines to connect the values, in much the
way that the arrows in figure 23 were drawn.
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Figure 26
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Graphs such as the one shown in figure 24 are sometimes explained by invoking gen-
eral theories of cognitive development: young children have more difficulty coordinating
two independent characteristics of an object than in centering their attention on one of them.
In this case, the specification of a point in terms of two orthogonal components, and the
notation of those two components as an ordered pair of numbers are new notions and are
more complex than specifying a single counting number.1

An ordered pair of numbers certainly is a more complex object than a single one of
those numbers by itself, but this may not be the source of students' difficulties. An
alternative, non-developmental explanation should be researched. It may be that the
difficulty lies not so much with ability as with expectation. Students who have played
BattleshipTM (or who have walked the streets of Chicago) may fully well recognize that a
point may be specified by two coordinates, but may not connect that notion with their
number-to-number representation of function. If this explanation holds, it would relate this
error to the already mentioned difficulty students seem to have in recognizing that there are
discrete points on a continuous line, despite knowing that they could "put" a point along
that line anywhere they might choose. This issue will recur yet again when we look at
students' need for an understanding of the infinite.

Skipping over functions to families of functions

A common goal in algebra texts is to draw the students' attention to the influence of the
constant term in polynomial functions such as f(x) = mx + b, or g(x) = axe + bx + c. If the
student is working only at an analytic level, only with the algebra and not with the graph,
the effect of the constant might most straightforwardly be described as "the value of the
function when x = 0." When graphic representation is used, the term "y-intercept" might
be introduced, though students may not necessarily recognize that "y-axis" and "x = 0"
specify the same place.

When automated graphing makes :t possible to ask students to induce the effect of the
constant by performing many graphing experiments, attention is drawn to the graph as a
whole. We speak of a function having a set of values, and the addition of a constant to that
function as raising or lowering each of those values by the same amount. The student, we
hope, shifts attention from a local feature (y-intercept) to a global one (vertical translation).

More generally, we can ask students to interpret various transformations on functions,
introducing the notion of functions of functions. Dreyfus and Eisenberg (1987), for
example, wanted their students to be able to observe a given (and perhaps even totally
arbitrary) graph of f(x) and match each of several transformations of that graph with
expressions like the following:

1 We have heard these explanations given, sometimes by teachers, but the paucity of research literatureon
graphing leaves us without any citable researcher's opinion. Arguments of this sort are, however, easily
found in the literature in other areas of matliernatical development such as proportional reasoning (e.g.,
Karplus, et al., 1983; Tourniaire & Pulos, 1985) as well as throughout cognitive development research.

30
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y = f(x) -1 Y =faxl) y = 2f(x)

y = f(x - 1) y = I f(x)I Y = ft2x)

y =f(x) + 1 y = -.Ax) y =Ii.f(x)

y = f(x + 1) Y = .A-x) Y = .Al2-x)

Y =fl -W)

We had been interested in looking at how students interpreted transformations of these
kinds. To that end, we tried to devise graphic images that students might choose among
and talk about. Images like the following seemed to be quite appropriate.

Figure 27

Figure 28

Although it may be easy enough for a student to express a personal preference about
imagery, we as researchers cannot interpret these preferences meaningfully unless we can
cast our questions in some unambiguous way. Remarkably, it turns out to be extraor-
dinarily difficult to state questions about transformations unambiguously without, in effect,
answering them. For a simple example, we would like students to see the addition of two
functions as moving points up by the value of the added function. To assess what a stu-
dent does see, we therefore might refer to the transformations on the linear function (figure
27) and ask which one best represents the movement one sees when b increases in the
function f(x) = nix + b. A student can certainly be trained to give the "correct" answer, but
it is reasonable enough to justify any of the movements shown in figure 27. To lock the
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student into a single interpretation of the question, we must specify something further like
"for any particular value of x, how does the value off change as b increases?" That is an
important improvement of language for classroom purposes, but it gives the researcher too
much influence over the student's response.

We had the same difficulty finding a sufficiently clear wording for the question about
the parabolas and initially tried this:

Each of the frames shows the graphs of the same two functions: x2 - 2 is shown with a
light line and 2x2 - 2 is shown with a darker line.

Imagine an animated movie in which you see the graphs of these functions changing
gradually from one to the other through a series of intermediate steps. Imagine further that
you could watch individual points such as (xi, xi2 - 2) on one graph as they moved to their
new locations at (xi, 2xi2 - 2). The arrows on each graph suggest three kinds of movement

you might have expected to see in such a film. Which one of these figures do you think
describes the movements of points from the function x2 - 2 to the function 2x2- 2?

Aside from the bulkiness, the problem with all such wordings is that they instruct the
student to regard x as fixed. They thereby change the entire nature of the function: it ceases
to be a function of x and becomes instead a function of the parameter.

In fact, the study of families of functions may lead to yet a third concept of function to
add to the number-valued functions and the ordered-pair-valued functions discussed above:
a graphical-object-valued function. This way of thinking about functions is reflected in our
language when we make statements like "ax2 + 5 (a > 0) generates an upward-opening
parabola with its vertex 5 units up from the origin." It is certainly a natural enough way of
thinking about functions, but it is not the same way as either of the prior two. This image
suggests not, (x) whose variable, x, is numeric and whose output is numeric, but fi(a,b,c),
whose three variables a, b, and c are numeric and whose output is a particular graphical
object, or an infinite set of numerical values, or the graphical representation of a subset of
that infinite set, or, most generally, a function such as f(x).

Done properly, this generalization of the concept of function may be exactly what we
want to be teaching in the classroom, but, because it is likely to be new to many students, it
may interfere with the interpretation of research results. Apart from ambiguities about what
function we are discussinge.g., a function f with the variable x or a function fi with the
variables a, b, and cwe may be confounding the students' all too weak understanding of
variable. As mentioned earlier, virtually all currently existing graphing software nut only
emphasizes the variability of the constants, but specifically isolates the user from the true
variable by making it sweep automatically, continuously, and "invariably" from left to right
without any user intervention.

Process versus objectpoint, slope, and function

Another way of viewing fi (a,b,c) is to regard it as a function-valued function. The concept
of a function as a first class mathematical object which may be manipulated just as a
number might bethat is, it may serve as a variable in another function or may be the
output vague of another functionis generally treated as an advanced one. Although this
may not have to be the case(perhaps a different route into mathematics than the one that
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we conventionally follow might make this notion more primitive and render some other
concept that we now consider "easy" as the advanced idea)most mathematics teaching
except at a very advanced level treats functions as procedures and not as objects. Students
naturally come to regard functions as a recipe specifying the steps to perform on some
.number (or, rarely, numbers) to get a numeric answer (Kaput, 1987). This is a standard
preliminary step in mathematical learning: the procedure of counting develops into
numbers; the operation of taking a part of gives way to fractions; students learn to
differentiatie before they acquire a sense that the differential operator and its input might be
regarded as a state of a function, an object that can be further manipulated (see Kaput, in
press; Greeno, 1983).

This is akin to the process view of the point mentioned earlier, and like students' typical
treatment of slope as a run-rise maneuver or a rise-over-run computation rather than as an
attribute of a curve at a point.

There are consequences to the preference of procedural status aver object status. For
one thing, the arithmetic of vectors can remain very confusing until students stop viewing
points as the end state of actions begun at a fixed origin and start viewing them as first class
objects in their own right. In the same way, instantaneous velocity and slope at a point on
the graph can be quite mystifying concepts when they are thought of only in terms of
recipes that cannot be followed arithmetically in the world of infinitesimals.

If first-class object status is beneficial for a numerically defined ordered pair, what
about an algebraically defined ordered pair such as (x, x2-3x+1), or the set of numerical
ordered pairs that arises from such an algebraic definition? That is, would it not be equally
beneficial for a student to develop a sense of functions that treats them as first-class
objects? In a world of paper-and-pencil pedagogy, such a notion is nearly unthinkable until
an advanced level, but it appears that with computer-aided experimentation with functions
and their graphs, it may be particularly natural to regard functions in this "advanced" way
almost from the outset, or perhaps accelerate the consolidation of the two views.

On the other hand, as observed earlier, students sometimes seem to lose whatever sense
they may have had of the individual points along a line when they draw the line by the
slope-intercept method. This might argue against a pedagogy that emphasizes the gestalt
that comes with the graphical-object-valued view of a function. Alternatively, experi-
menting with the representationfinding points on the curvesmay clarify what now
remains obscure. As with each of the other issues raised, the matter is not yet researched.

How do points relate to each other?

The "mapping concept" of function suggests discrete arrows from each point in the domain
set to each point in the range set. This image or some close variation on this image is
useful in helping students to begin with the domain set each time and thus favor vertical
displacements in transformations of functions in which the common views include
horizontal displacements or displacements parallel to or normal to the curve.

But mapping is not the only way that functions are presented.

When we graph physical phenomena--e.g., objects rolling down hills, containers
being filled or drained, temperature changing over the course ol, ,i day, trajectories of
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projectileswe impose notions of causality and uni-directional time on them. These
notions influence what transformations on the graphed relationship make sense to us.
While we may reasonably ask how f(x) behaves as x decreases in a functional mapping, the
question becomes strange if x represents time: How does a car's speed behave as time rolls
backwards? Similarly, we may reasonably speak of the functions f and g as inverses if
g(f(x))=x, but if x represents time, the meaning of g becomes obscure or peculiar: how do
fluctuations in temperature affect the passage of time?

What literature there is on students' interpretation of graphs has concentrated on
experientially based meaningful situations. The clear advantage of this focus is that it
recruits students' common sense, intuition, and reality-checking strategies. A disadvantage
is that experientially based situations, in invoking causality and time-flow, exclude a large
class of graphs that may require other kinds of thinking.

It is possible that the presence or absence of real-world referential meaning for a graph
will matter in a student's interpretation of scale issues. Students may be more heavily
invested in how a graph looks when the graph represents a familiar physical phenomenon
than when it represents an arbitrary mapping.

It is also interesting to consider those contexts in which even sophisticated mathematical
thinking tends to impose causality and uni-directional time on abstract graphs of function.
For example, although we comfortably speak of approaching limits from either side, we
also use terms like "increasing" and "decreasing" which are unambiguous only if we know
the direction of movement along the x axis (Kaput, 1979).

Is there a difference between the way students understand graphs of functions as
relationships with no temporal referent and the way they understand graphs of temporal
processes? The question is interesting in its own right, but it is of especial importance to
software developers. Point by point graphing by hand can proceed in arbitrary ways, but
the conventional computer presentation of graphs sweeps smoothly from left to right,
potentially emphasizing a temporal image of the function. Alternative presentations are
possible and are, for some purposes, very clarifying.

Domain and range

Residues of carlier mathematical developmental stages

It is not uncommon for students to graph f(x) = x
5
- 1

as shown in figure 29.
Remarkably, even those who have already correctly drawn in a dotted line for the
asymptote can make this mistake. Some even handle the apparent conflict by indicating the
undefined value as a hole in the graph. The error appears to derive from at least two
sources: students' predisposition to work with integers, and a deep conviction in continuity
or, at least, connectedness (without necessarily a similarly deep understanding of these
ideas). Lamentably, many graphing packages also cross the discontinuity with a
connecting line, though not for failure to examine non-integer values for x!

In a similar way, avoidance of non-integers can cause students to flatten out the vertex
of a parabola and miss other essential features of functions (see also Bell, et al., 1984).
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Students' further predi
them into other kinds of
function moves to the left

Dole

Asymptote At x = 1 Figure 29

sposition to restrict their work to positive integers alone can lead
trouble, e.g., the common conclusion that the graph of a linear
as the constant term increases.

The illusion of finitude

When students look only at the symbolic represen-
tation of a function such as a second order polyno-
mial they often easily recognize that the domain is
unlimited: any value may be plugged in for x and a
value for y may be computed. On the other hand,
their visual impression of the graph of the same
function often takes precedence over symbolic
analysis and leads students to reason (e.g., in
performing experiments with scale) as if the
domain is iNuncled somewhere within the extremes
of the domain depicted in the graph. In a graph
such as this one (figure 30), x "looks like" it will
never grow beyond roughly ± 10.

20

-20. 20

-20
X2 X 1.

Figure 30

Even though the computer can provide easy control of scale which is essentially fixed
on other media (changeable only by redrawing the graph at great effort), some of the
comments of students and teachers with whom we have worked suggest that, at least for
them, this sense of the limitedness of the domain may be more pronounced on the computer
screen than on paper or the blackboard. Perhaps the operation of adding extra sheets of
paper or waving one's hand with a flourish beyond the limits of the blackboard feels more
familiar than somehow building onto the rigid computer screen.
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Also, scale change alone may not be convincing enough. If, in addition, a student
could drag the image one way or the other, perhaps the extent of the curve would be less
obscured. With such control over scrolling, one could pull along the curve of the parabola
and see that, though the y-position must change faster than the x-position, there is nothing
to limit the x-position.

The finite and the infinite

To interpret the effects of scale change correctly, students must come to some reasonable
understanding of infinite extent, and the meanings of arbitrarily large and arbitrarily small.
One cannot, for example, use a zooming-in technique to get a better view of the hole in the

x2 - 1
function f(x) = x - 1"

It remains invisible. Nor can one pull far enough away from a

parabola to see the whole thing.

Robert Davis (personal communication) tells a story of a student whom he challenged
with the notion that perhaps d2 did not exist. She martialled a graphic argument as proof
that it did. Drawing a graph off(x)= x2, she drew a horizontal line from 2 on the y -axis to
the parabola and then dropped a perpendicular from that point down to the x-axis. There,
she claimed, was the location of ffon the x axis. It was excellent logic to locate the value
in that way if it exists, but her argument rests on the assumption that the value exists: that
there is no hole in the parabola at that point, and that the x-axis is connected. It is interest-
ing to compare this student's expectation with the difficulty encountered by the students
who were trying to solve for x in two simultaneous linear equations plotted with the slope-
intercept method. Those students lacked the sense that a point would be where they needed
it; Davis's student implicitly assumed the existence of the point she needed.

Even some very familiar notions must be reexamined. For example, in explaining one's
everyday experience with scale change, we referred earlier to the preservation of angle but
non-preservation of distance under zoom-in/zoom-out maneuvers. The description applies
well enough to any real view we may take out of a real window, but implicitly excludes the
infinite. We cannot sensibly discuss which line is "longer": f(x) .xor g(x)=2x.

Segments may be compared as they
appear on various graphs: on a square
graph (figure 31), the less steep f appears
longer; on a tall graph (4igure 32), the
more steep g appears longer. But the
"length" of the whole line is not sensibly
defined. Even equivalent number of
points cannot be martialled as an
argument because that argument applies
equally well to the segments, which are

Figure 31 Figure 32 certainly different in length.

In a pedagogy that makes regular use of translations between graphic and symbolic
representations of function, we cannot avoid dealing with issues such as these, and yet
notions of infinity and the continuous nature of the real line are totally foreign to beginning
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algebra students. Research needs to be done to find appropriate ways of dealing with these
issues, and appropriate times to do so.

Issues particularly related to the computer
The advent of so much computer software leads us to ask particularly about issues which
are related to the user interface of the software and the structure of the information provided
by it. Constraints of the screen, types of support features built in, and modes of graphic
presentation create their own environments. So do demands made on student involvement,
the speed at which graphs are constructed, and necessary scaling choices. How do these
factors affect the way students learn and investigate and their perceptions of the relationship
between algebraic rule and graph? And what new tools do we need to investigate the effect
of graphing software on students?

Features of the screen

Any physical graph, whether drawn by hand or by a computer, differs from the abstract
mathematical ideal in that its "points" are not points and its "lines" are not lines.

The distinction between a point and a dot is mathematically important and is part of a
larger idea that incorporates the inherent inaccuracy of measurement, the meaning of "sig-
nificance" in statistics, the concept of "significant digits," and even the issues of infinity
and continuity just discussed. The thickness of the blobs and swaths we casually refer to
as points and lines creates no confusion for the sophisticated graph user who recognizes
that the only mathematically important feature of these drawings is their positional
relationship to the reference frame (the Cartesian plane) on which they appear. In effect,
the experienced grapher knows what to ignore. The novicethe one for whom an
educational graphing utility is builtdoes not. Scale is the only attribute of a graph that
raises or lowers the significance of the distinction between a point and a dot. Because
computer graphing makes it possible to play with scaleand because the computer's dots
are regular and rectangular, making them easy to analyzethe computer is the ideal
medium with which to tackle this important distinction head on.

A computer represents points as lighted pixels; curvature becomes a set of rectangular
approximations. When a smooth curve occupies an entire high resolution screen, the
illusion of a continuous curve is strong. However the same curve displayed in only a small
part of the screen may no longer seem smooth, but rather like a set of boxes glued together
at the corners. Furthermore, pixels usually aren't square, creating a whole new set of
scaling issues and making some continuous graphs appear as discrete glued-together
rectangles standing on end. Some students seem to think of the same graph at different
magnifications as really being different graphs. What is the consequence of such a belief?

X -2The identifidble size of a pixel makes the hole in a graph, in f(x) . , for example,x - I
seem to have size, too. This may account, in part, for some students' apparent expectation
that they can see the hole better if they magnify it sufficiently.

The pixel problem also affects a student's investigation of points of relative maxima or
minima. If one uses a zoom-like feature on the computer to examine such a point at extreme
magnification, the point appears not to exist. Instead, the computer draws what appears to

.)1",0 1
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be a horizontal line segment. Will students with lots of computer graphing experience think
that the graphs of all parabolas have flat vertices? Or can this become an opportunity for
entering the world of calculus through visual experience and intuitive argument?

Far more seriously, at high compression, pixellation may cause a local extremum to be
missed altogether, generating a vastly misleading image. For example, figure 33 shows a
parabola with a maximum around 250. Figure 34 shows the same parabola at a different
scale. In figure 34, the vertex appears to be somewhere around -150. In fact, what has
happened is that the vertex in figure 33 is not shown at all. The curve has been squashed
horizontally to such an extent that all of the curve in the approximate neighborhood of -5 5
x 510 falls between adjacent pixels and therefore the computer is not able to represent it at
all. Although clever mathematical design can reduce the frequency of problems like this,
no amount of sophisticated software design can fully eliminate it; it is inherent in any
system that represents points in a visible (and therefore finite-sized) way.

500 500

-10

soo
Figure 33

o 500
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Figure 34
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Whether pixel approximation becomes a valuable vehicle for important mathematical
learning or, alternatively, a source of confusion and misunderstanding may depend on
some screen and software design considerations but probably depends mostly on how the
graphing software is used by and with students. Research is needed. How can software
deal with the problem of magnification and pixel approximation? How can a teacher deal
with the real issues of approximation?

New curricular choices

Pre-computer graphing was so tedious that teachers tended to allow students to move
rapidly from the process of locating a few points to constructing a continuous graph.
Sketches tended to be approximate and visual connections eccentric. However, the
computer's speed and accuracy now makes it feasible for the first time to ask the student to
use the graphs of functions to represent their rules. Through the medium of the computer,
the student can manipulate either the symbolic or the graphical representation of functions,
see the manipulations reflected in the other representation, and formulate and test
hypotheses about the structure of the mathematics behind the displays.

What this means is that there are new choices not only in method, but in the content of
the mathematics class. For one thing, as suggested earlier, it becomes possible to study

..,)Ur-,
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families of functions in a way that was not possible before. Having the choice obligates us
to make it. Research must be done to determine which way to choose.

Student involvement

Without a computer, the student must be involved at every level of producing a graph
before experiments can be performed on it or with it. With a computer, most of the work
of constructing the graphincluding not just the point plotting, but determinations of scale
and the identification of special featurescan be done automatically. What is the impact of
this on the student? Should software require students to do something significant to plot a
graph or a point on a graph? If so, what should this "something significant" be?

Factors of the presentation

Usually, a computer-drawn graph is produced quickly and has the sense of being a single,
global object. This already raises some questions.

1 Two features of computer graphing emphasize the gestalt and deemphasize the
individual points that make up the visual whole: students calculate no individual
points themselves; high speed graphing shows no point-by-point growth. Teachers
in our research group have expressed opposing expectations about the effects of
speed. Slow speed may foster a mapping image by leading students to see the
curve as a collection of individual points. On the other hand, great speed may
encourage more exploration and may, by showing the gestalt, help develop a notion
of function as object. Teachers have expressed a similar ambivr.lence about the
reduced computation. Again, it helps focus attention on the overall behavior of the
function, but teachers fear that students may need some replacement experience to
help them connect the visual gestalt with the mapping of individual points on the
number line that it represents. Experience with classes is needed in order to learn
which skills and understandings improve and which weaken.

2 In many pieces of software, the student makes parameter choices and the computer
presents the graphic output without further student involvement. There are many
alternatives to this kind of presentation. One might allow the student to mouse a
point or a continuous stretch of points on the domain and have the graph appear
only at those points that were selected. Giving the student control over the order in
which calculations are performed and points are plotted may be a suitable substitute
for the hand calculation and plotting that the student misses in conventional
computer graphing software. Allowing points to be plotted "out of order" also
returns one to the image of function-as-mapping rather than the function-as-
modeling image that is so strong in left-to-right sweeps. Further, by suppressing
the ability to get continuous stretches, the student's attention may be drawn ,ack to
questions of how to locate local features of a graphpicking a point between other
points to see how the graph behaves in that neighborhood. How would this kind of
presentation affect a student's perception of the nature of points on a graph?

3 We can also imagine that a piece of software like that described in (2) could provide
coordinates any time the mouse was clicked, forcing an association between point
and pair. Would the effect of this association be positive?
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Scale and scale information .

If software is to allow a user to experiment with a wide variety of function graphs, it must
make scaling choices to make the graphs fit. Most allow the user some choice of scale as
well: if the graph of a function seen at a distance is uninformative, one wants to zoom in to
look more closely at a section of the graph. The designer of such software must not only
decide what choices to offer, but must make choices as to the variety and style of
information presented on the screen. Clearly, if scale changes have been made, the user
must be provided with information about the scale. How should this be presented? A full
grid, like graph paper? Axes with tick-marks? Unmarked axes with values marked only at
the borders of the window? Dots at certain integer grid-points? All of these as options?

And what kinds of scale make sense to
students? Students seem to prefer symmetric
scales on their axes even when these obscure
important features of the function they are
viewing. For example, a pair of students
tried several times to change the graph shown
in figure 35 so that its axes would be
symmetric. The resulting views (figure 36)
were seriously deficient.
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Figure 36

Independence of scale on the two axes is sometimes essential just to see the graph, but
there is a mathematical significance to this independence as well. In a graph of velocity vs.
timeand in general, for any function with referents that are measured in different tv.its--
symmetric scale has no meaning.

Is the general preference for symmetric scaling merely an artifact of students' first
classroom experiences with graphing or are expectations about symmetry developed even
prior to that, perhaps by experience viewing objects as they approach or recede into the
distance? And how tenaciously do students hold to this limited view of scaling that is so
counterproductive to their efforts to make the graph more visually accessible? What tools
do students already have that can help them visualize the effects of scale changes, and what
new tools do they need?

40
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Even our language for describing scale-change operations is weak. Suppose we
renumber the x-axis without changing the size of ou- mph window: in our new scale, each
unit of space represents a field that is ten times as large as it was in the old scale. We might
think of that as expanding the scale by a factor of ten, either because we are expanding our
view or even because the numbers have grown larger. On the other hand, we might think
of it as a compression, because more territory fits into the same space: a comparison of the
same function graphed on the two scales suggests compression along the x-axis in the new
scale. We simply don't know which is the prevailing imageexpansion or compression
nor do we have enough experience to inform us as to which is the more useful terminology
to adont, but the language must be consistent, either with respect to points or their labels.

The issue is really one of alternative perspectives and confusion about what is the object
that moves and what is the referential system against which the object's movement is to be
measured. We expand our view; the scene is compressed. Problems of this kind occur
regularly in day-to-day experience with respect to time and position as well as to scale.
What do students most naturally see as the manipulable object in a stretching action? Is it
the function alone, as if it were drawn on a transparent rubber sheet and can be stretched or
translated over a fixed axis system? Is it the axis system alone, as if the function were an
independent, free-floating, real-world object and the axis systemwere not attached to it but
could scan over it like the hair-line on a gun-sight? Or is it both, as if the entire graph, axes
and all, were constructed on a rubber sheet? Or is it lx..,er yet tc have an image in which
both the axes and the appearance of the graph are fixed and it is the student who shifts
attention from one region to another and approaches or backs away?

Distinguishing the "zoom" operation from other scale changes

The image of approaching and backing away brings up another issue that raises conflict
with our intuition.

In the real-world, the horizontal and vertical changes in the dimensions of objects that
approach and recede are equal: if the horizontal scope of view is doubled (that is, if the
horizontal dimensions of any object in that view are halved), then the vertical view is also
doubled. If one is tripled, the other is tripled. Even when total independence of x- and y-
scales is accepted, our intuition about scale change is so tied to our experiences with
changing distances in the real-world that when it is our intention to perform a zoom-like
operationone that simply gets "closer to" or "farther from" the function in some .
meaningful way by resealing both axesour almost automatic approach is to change both
scales by the same factor, preserving the ratio of the two resulting scales.

Such an equal rate change might very reasonably, however, be treated as a special case.
Consider the visual effect of scaling the units on both axes by a constant m. For m = 10-'0,
this represents changin" both the x- and y-scales by a factor of 1000 and moves, let us say,
from a view that incluae:, a radius of 10 around the origin to a view that includes a radius of
10,000 around the origin. If the function that has been graphed on the initial grid is linear,
we are not shocked by the result. Distances shrink and angles are preserved just as we
expect them to be. In particular, the apparent distance between the function and the origin
diminishes, but the function retains its characteristic slope. Another way of saying this is
that the two functions ax + b and ax become more and more indistinguishable the farther

.1
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out we zoom. In this case, the equal rate change of scale seems to be what we would want
for a zoom.

The same rescaling operation, however, is often very unsatisfying when it is applied to
a parabola or cubic; its effects do not meet our casual expectation. Zooming out far enough
in this way leaves a parabola looking like a vertical ray (see, for example, figure 36) and
leaves a cubic looking like a vertical line. Thus, this familiar conception of the zoom
operation has different visual effects depending on the polynomial to which it is applied.

For polynomials, at least, a different conception of zoom might make more sense.
Consider a zoom that is linked to the order of the polynomial. For a cubic, if the x-scale
were changed by a factor of m, then the y-scale would be changed by a factor of m3for
example, zooming out until the x- -scale is changed by a factor of 10 would cause the y-scale
to be changed by a factor of 1000. The farther "out" we move with such a zoom, the more
indistinguishable the general cubic ax3 + bx2 + cx + d becomes from ax3. Similarly, if the
y-scale changes by a factor of m2 as the x-scale changes by a factor of m, then the
quadratics ax2 + bx + cx and ax2 would appear to converge on zooming out. Perhaps more
to the point, the root functionsax3 and ax2would not appear to change at all under the
order-linked zoom operation, just as the line ax does not appear to change at all under a
conventional linear zoom.

The mathematical significance of this kind of order-linked zoom is so great that we may
want to go out of our way not to support the already strong bias toward linear-space zoom.

And in the case of functions with referents, it is difficult to make consistent meaning
out of any definition of zoom. What, for example, does it mean to "approach" the velocity-
time plane? That is, what kind of measuredistance? time? pounds?are we reducing as
we "approach"? Although this may seen a tiny matter when all one seeks is a better view
of the graph, the metaphors we use affect our understanding of the mathematics. In getting
a better view of a velocity lime graph, we want to change scale at our discretion, but we do
not want zoom.

LESSONS TO BE DRAWN

There is no fitting summary for this work: not enough is yet known about the various
phenomena we have noted to make a summary statement at this time. But there are some
lessons that may be drawn now. Here are a few.

1 Students base comparisons of graphs on gestalts that they create by matching
identifiable "special" points such as, in the case illustrated in figures 1-4, the vertex
of the parabola. To help counter the attention that the vertex draws, it may be
important for software to let students mark points whose transformations they wish
to track. One such point might be, for example, the y-intercept.

2 We must be thoughtful in the 'anguage we use. The two parabolas in figure 2 are
graphed at different "heights." The use of the word "height" to refer to the effect of
the constant term is equally sensible but quite different. Language being what it is,
it would be unnatural (and probably ineffective) to proscribe one of those uses, but
the difference should be made clear by drawing explicit attention to it.
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3 The perceptual illusion illustrated in figures 4, 20, and 21 suggests that students
need to have experience with shifting figures around on the screen and watching the
effects of those shifts. When such figures are produced by a graphic rather than
symbolic manipulationdragging the parabola vertically with a mouse or moving it
stepwise with an arrow keythe illusion tends to vanish, as one is more apt to
measure distances along the direction of movement than along a shortest path.

4 The structure of an algebraic expression may affect a student's interpretation of its
graph, so multiple forms must be available for students to explore and translate
among.

S When multiple scales are used to represent the same graph, graphing windows
should contain internal frames or other visual aids to help students recognize which
portion of a distance view is being enlarged in a close-up view. See, in particular,
figures 18 and 19 for examples of this kind of aid.

6 it is important that students have experience controlling scale. In fact, students
need experience both with strictly metric controls (e.g., specifying the exact borders
of the region of the plane they wish to examine), and with visual, primarily non-
metric controls (e.g., stretching or shrinking an image to reveal or match some
property without having to compute window border values in x and y). Default
behaviors of scaling controls, e.g., a room function of some sort, should support
richer rather than poorer notions of the scaling of space. In particular, we should
not reinforce students' preferences for symmetry and linearity.

7 Thought must be given to the kinds of educational questions that we ask. Not only
does rapid graphing make new questions possible, but it makes some new
questions, e.g., ones that draw attention to the possible ways of misinterpreting the
newfound graphic information, quite important.

8 Our students, even at early *.ages, carrot escape having to deal with notions of
continuous functions and discrete points, infinity and infinitesimals, the invisibility
of points, and other issues we tend to ignore until the calculus. We must consider
appropriate ways of introducing these ideas much earlier than we typically do. The
behaviors of some young students who become comfortable changing scales on
graphs suggests an "intuitive calculus" long before the algebraic manipulations for
formal calculus are present.
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III. RESEARCH INSTRUMENTS AND TRAINING
MATERIALS FOR SECOND YEAR

OVERVIEW

Near the end of the first year's work, we began to focus our attention on plank:_ng for the
second year of research. Two considerations led us to believe that our best strategy was
not to develop a single line of interview questions and train research assistants to conduct
reliably comparable interviews using the prepared questions.

1 The scale issues which are our focus interact complexly with many other issues.
Until we know how students respond to our probes, it is difficult to predict how we
will have to proceed in order to tease apart what failures are due to scale alone.

2 Those probes that we have (see, in particular, Appendix C) that do focus quite
purely on scale, effectively eliminating the interaction problems reported above,
remove scale issues so totally from the graphing activities that motivate our study
that we feel we must perform other experiments as well. Put differently, our
purpose is to study scale in the context of graphs of functions. We believe this to
be an inherently complex domain. Although we must certainly develop and use
probes that help reduce or control for the complexity (e.g., the Appendix C
probes), we cannot ignore viewing the complex situation of interest itself.

Therefore, we developed statements of rationale for the interview as a whole, with a
very broad set of examples of possible interview items.

To give researchers a "head start" on creating follow-up questions as needed in the
course of an interview, we decided to create problem-based teaching materials for what we
think will be the most important of the diverse paths that interviews might follow. These
are explained in the next section and attached as apeendixes. Altogether, these provide
more strategies and more variety than any single interview could use.

As practice for interviewing, research assistants will observe interviews and perhaps
conduct some jointly with a senior member of the research team.
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AN EXPLANATION OF THE PREPARED MATERIALS

Probes

During the first year, we created a set of interviewing guides. We call them probes. These
tend to take the form of worksheets that present a situation and ask some questions about it.
Most probes have been created around some hypothesis concerning confusions that
students have regarding graphs and functions. Most can, therefore, serve either as the
basis for an interview or as a basis for teaching intervention. In the course of our
investigation we may use both methods.

Some probes make use of the computer while others do not.

Appendix A contains non-computer probes designed to find out if a student can
interpret and create a variety of real-world graphs. Because, for some students, a real-
world model may be a necessary precursor to abstract graphs, we felt these would help to
clarify failures in tasks with the abstract probes.

Appendix B contains probes designed to explore the connections a student has made
between a complete graph and the symbolic representation of the function that produced it.

Appendix C contains probes dealing with issues of shape and scale.

Appendix D contains several computer explorations. Some of them are self-explaining
and students may work without intervention from the interviewer. The interviewer's role is
in those cases is to encourage thinking aloud, tape record all responses, and ask questions
where necessary to clarify a student's thoughts or procedure.

In the remainder of this section we shall discuss some aspects of the design and use of
these probes.

Interpreting and creating graphs of real-world phenomenz: Appendix A

The probes in this section are designed to assess (1) whether or not a student is familiar
with graphs of real-world phenomena and their interpretation; (2) whether the student is
capable of creating and interpreting such graphs correctly with particular reference to the
appropriate use of points and lines to distinguish continuous from discrete relations. The
probes ts.re designed in worksheet form, but should be presented in a form appropriate to an
interview situation, e.g., omitting phrases like "If you have answered 'yes' to #3, then...."

Abstract rules and their graphs: Appendix B

The probes in this section are also cast as worksheets. Most deal with traditional issues
concerning the interpretation of graphs and the algebraic notation usually applied to them.

Issues of scale: Appendix C

Issues of scale rarely arise in elementary algebra graphing exercises for two reasons: (1)
teachers and students select functions whose graphs fit on standard graph paper so sealing
is not necessary; (2) texts customarily promote graphing using slope and y-intercept so
early that introducing scale considerations would interfere with the student's acquisition of
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the concept of slope. By contrast, the use of graphing software to explore functions
requires students to confront these issues.

In an attempt to separate scaling issues from other graphing skills, we begin our scale
probes not with graphs but with a real-world model suggested by the word scale itself: the
world of thermometer scales.

Scale 1

These probes contain questions the student can answer without the interviewer's
intervention. The interviewer's primary role here is to encourage thinking aloud and to ask
additional questions as necessary so that we have as clear a record as possible of what the
student is thinking.

Scale la The idea here is to deal with scale cleanly in as simple a context as possible.
The one dimensional of translating one thermometer scale into another seems both an
appropriate model and one most students have some experience with. This probe involves
only a change of scale, but no change of origin.

We are interested in what a student does when asked to diagram the Nory scale next to
the C scale. The possibilities are many. Is 0° N opposite 0° C? Are the segments the same
length? Are the divisions equal? When a student does something, the interviewer should
be on the lookout for pitfalls which occur as a result of that action. For instance, suppose a
student makes 1° N exactly equal in length to 10° C. Does this mean that the student thinks
that 1° N = 10° C or is it a case of casual inaccuracy in drawing? And is this used in the
process of conversion?

Once the scales are drawn, the student is asked to draw arrows in order to provide a
visual scale correspondence. Does the student interpolate visually to perform calculations?
Under what conditions does the student perform calculations from a rule? Can the student
see that a rule can provide the same correspondence? Watch for students who show a clear
preference for either the rule or the visual match. Does there seem to be a consequence in
their interpretations or computations? Does a student maintain a visual preference even
when the information is clearly not precise? Where students behave very differently, it may
be worth asking their teacher for other information about them.

Scale lb This probe introduces a translation (a change of origin with no change of
scale) and some further abstraction. Does the student shift the K scale visually so that the 0
point corresponds with the N scale's 3? What effect does a non-shift have on a student's
performance? Do shifters do better on liter questio 1 Does the student move between the
K and N scales to obtain information about the C scale? Does the student prefer to use
calculations obtained from the previous sheet?

Scale lc-lf These represent a different model for an interview. They consist of
pictures and suggested questions (listed on the sheet) to asked by the interviewer. It is not
possible for a student to involve herself in these probes independently. The student's
graphing sheets should not contain the interviewer's questions.

The idea here is to make a transition to the two dimensional world of graphs. There are
unexpected dividends here. The information provided by the matching arrows between

4 S
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parallel scales is much more efficiently depicted by a point when the scales are
perpendicular. It is fundamental to graphing skills that a student realize this. The probe
gives the interviewer an opportunity to assess and teach if necessary. In fact many
fundamental questions about graphing can be asked. Does a student see what information a
point conveys? To what extent is it possible to move in both directions C to N and N to C?
Does a student favor one direction? Does a student naturally answer a question by
interpolating a point on the line once three points have been graphed? Does a student use
the graphs to answer questions about negative numbers? Does a student see a new line as a
new thermometer pairing and is the student able to use it? Is the question about 1 N = ? C
facilitated by the graph?

Scale 2

Scales 2a-2d are left without fixed questions so that they can be used as support materials
for the interviewer (e.g., to record responses to other probes). The format attempts to get
at the problem of stretches and shrinks as they are generally depicted on a computer screen.
Each sheet contains a pair of windows with axes in them.

Scale 2a The windows have the same height and different lengths.
Scale 2b The windows have the same length and different heights.
Scale 2c The windows have different lengths and different heights.
Scale 2d The windows are identical.

Scale 2a looks like this.

In addition, there are two classes of questions that these forms suggest. Can the student
process coordinate information to determine the shape of an object (e.g., a triangle) which
is transformed from one system to another? Can the student see how transformational
information can be processed to yield coordinate information?
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One strategy for exploring scale independent of function might be the following:

Interviewer places coordinates
on the axes in the large frame,
and then sketches a simple
figure, e.g., a triangle in that
frame.

The interviewer then asks the
student to sketch the same
figure in the smaller window.
Does the student automatically
make a congruent copy? Does
the student assume from the -10

picture that there is a
compression of the system
and therefore change the
shape of the triangle? Or does
the student realize that more
information about scale is
needed to do the job?

10

The interviewer then places coordinates on the small v low and asks S to perform the
same task, using a different sheet if S has already drawn a triangle. Do the coordinates
affect the drawing? Ask S to approximate the coordinates of the vertex of the triangle.
Does S realize that the coordinates of the small-window image should be the same?

-10

-10

5

10

At this point, the interviewer might
want to explore the results of a
variety of scales, say -5 to 5 or -20
to 20. He might then want to go on
to draw the triangle in the small
window and reverse the process,
asking essentially the same
questions. Is it easier for some
students to g. rem large to small
and others from small to large?

10 What happens when the numbers
don't match the visual image, that is
when the larger window has the
smaller coordinate limitation?

The same exploration can be performed with constant horizontal and variable vertical
dimension, with changes :n both dimensions, and finally with the sheets on which the
windows are the same size. Muth graphing software handles scale by fixing the window
and giving size information, and it is important that students be able to deal with the scale-
impact of fixed windows and changing" 'ordinate systems.
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It will be important to identify skill level at each stage. Perhaps students who can
handle questions involving coordinates which conflict with the relative sizes of the
windows can automatically handle the fixed-size pairs. Or the converse may be true.

The selection of geometric figures consisting of more than one point was motivated by
our desire to make the problem more concrete than the exploration of the coordinates of a
single point, but it may be a drawback if the complexity of multiple points connected by
lines is a confounding irrelevancy. Similar questions may be asked about the location of
single points on a graph. Another version of the single-point question works like this:

(3,2)

Aro

I I

.. (2, 2)

Does the student see this task as having no solution? One? Many? Does the student
know what information is missing? How does the student approach the problem?

(3,2) *----

(2, 1) ____

1

(2, 2)
.0......T1911.-

A

-..

1

Does the student see this
version as more or less
complicated? Does he or she
recognize that all needed in-
formation is present? What
other information does the
student request?

Scale 3-6

These sheets explore the same concepts as sheets 2a-2d, but in the context of the graphs of
functions. Previously, the object (the triangle in our example) had easily identifiable
points. The figures the interviewer sketches in this section will be graphs of functions,
often without such clearly discernable features. We think now that it is better that the rules
not be identified, although the interviewers may decide differently. It is also not clear what
progression to follow. The conventional algebraic order with linear forms presented before
higher order polynomials may be unfairly devoid of features. On the other hand, they may
make for fewer sketching issues. his will have to be seen later. Examples should include
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functions that pass through the origin and ones that do not. We think it is satisfactory for
the interviewer to draw the curve, perhaps introducing the problem in a manner like this:

Have you sketched the graphs of algebraic rules or equations before?
Give me an example of a graph you've seen i;efore. (Have the student sketch something)
Suppose I put down these numbers on the window here. What does that tell you about the graph?
Ok, can you sketch the same graph in this little window?
Suppose I put these coordinates here. Can you sketch it now?
Why did you make it go this high here?

This questioning game can be played with each of the functions if the intervier keeps in
mind that she is looking for patterns of visual interference with numerical information. In
particular, are the patterns with function-graphs the same as those she has observed for the
object-graphs in the preceding sheets?

The interviewer must also explore with appropriate students the connections which the
student has made between the graph of a line and the symbolic representation of the same
function. The interviewer might draw a line in a coordinatized window and ask about the
slope. or intercepts. Then, using another sheet of the same type with recoordinatized
windows, ask the student to draw the same graph. Does the student preserve the slope
visually, or account for the change in scale? Where is the y-intercept located? How is the
process affected by going from large numbers to small or from small to large?

Again, the uizrviewer may turn the problem around in the following way:

1 1

5x 3
NM.

Does the student recognize why. information is missing? Does the student recognize
what information is not missing?
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The interviewer may also present tasks, on or off the computer, that ask a student
which of a set of figures might represent the same function drawn on different scales. The
essential information will consist not in what the student picks, but in what explanations for
those choices the student offers:

ni v
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V. APPENDIXES
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Algebra Research Project.

The diagram at the right
was constructed from a
table of information that
was recorded after a test
driver tested a new car.

The horizontal axis re-
presents elapsed time in
seconds. The vertical
axis represents speed in
miles per hour.

speed

Modeling 11
70

Appendix A

60
50
40

30

4 0

3 0

2 0 a

1 0 -

0 1 2 3 4 5 6 7 8 9 10

time in seconds

1. Circle one of the points on the graph. What information does this point give you about
the test?

2. The four points on the diagram were created from a much larger table of information.
Locate a 5th point that might have been createu from the table and mark it with an x.

3. Assume that the actual table from the test consisted of many entries.
Would it make sense to connect all these points to make a graph?
Explain your reasoning in a few words.

4. If you answered yes to
question 3, draw such a
graph here.

Interviewer

speed

70

60

50

40

30

20

10

a

0 1 2 3 4 5 6 7 8

time in seconds

Date
ti 0

10

Student
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The diagram below was constructed after one die was rolled a number of times. The
horizontal axis depicts the numbers on the face of the die. The vertical axis depicts the
number of times a number came up.

7

6

times the 5
number came

up

X

4

3

2

1

0
0

X

X

I
1

X

2 3 4 5 6 7 8 9

number showing on die

1. How many times was a 3 rolled?

2. How many times was a 5 rolled?

3. Which number came up 6 times?

4. Which number came up once?

5. The graph above consists of just 6 points. Where might a 7th point be?

Could one point lie between two points that already exist?

If so, mark a possiblity on the graph and label it with x.

Interviewer Date (:-0 d Student
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6. Some people have connected the points on this graph. If this makes sense, do so
below. If it doesn't, explain why it doesn't.

7

6

times the 5
number came

4
up

3

2

1

0

X

X

X

t.-

1 X i

0 1 2 3 4 5 6 7 8 9 10 11 12

number showing on die

7. How many times was the die rolled? If there is no answer, say so. If you think
there is an answer but are not sure how to get it, put down a question-mark. (?)

60
Interviewer Date Student
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Two dice were rolled 12 times. The following sums came up:

1. Graph the data on the grid below.

7

6

5

4

3

2

1

0
110 1 2 'X I1 4 7 Q q in 11.

sum rolled on two dice

Appendix A

2 - one time
3 - one time
5 - two times
6 - one time
7 - three times
3 - four times.

2. The dice were rolled three more times. The following sums came up:
9 - two times
6 - one time

7

6

5

4

3

2

1

0

Sketch the graph which represents all 15 rolls. (Extend the grid if necessary,
providing any labels required.)

0 1 2 3 4 5 6 7 8 9

sum rolled on two dice

Interviewer Date

10 11 12

Student
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Carefully examine the graph. Then describe in words what the graph says.

The temperature of the center of
a cake baking in an oven.

Time

Interviewer Date

Appendix A

Student
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Carefully examine the graph. Then describe in words what the graph says.

Speed

A ball on a hill.

Time

63

Appendix A

Interviewer Date Student
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On Cle grid below, each mark on the x-axis is 1 unit; each mark on the y-axis is 1 unit.

y

The graph sketched is a
curve called a parabola.

Give the approximate coordinates of the following points on the graph:

1 The point(s) where the parabola is the highest.

2 The point(s) where the parabola crosses the y-axis.

3 The point(s) where the parabola crosses the x-axis.

4 Is the point (4, -1) close to being on the parabola?

5 Is the point (-1, 4) close to being on the parabola?

6 Find the y-value(s) of any point(s) on the curve whose x- value is 3.

7 Find the x-value(s) of any points) on the curve whose y-value is -2.

8 Find the x-value(s) of any point(s) on the curve whose y-value is 6.

9 Find the x-value(s) of any point(G) on the curve whose y-value is -4.

10 Find the y-value(s) of any point(s) on the curve whose x-value is 9.

Interviewer Date
t;5 Student



Algebra Research Project Mapping 22 Appendix B

On the grid below, each mark on the x-axis is 2 units; each mark on the y-axis is 5 units.

U

The graph sketched is a
curve called a parabola. I

.11

> Reread the description at the top of the page. <
Then give the approximate coordinates of the following points on the graph:

1 The point(s) where the parabola is the highest.

2 The point(s) where the parabola crosses the y-axis.

3 The point(s) where the parabola crosses the x-axis.

4 Is the point (4, -1) close to being on the parabola?

5 Is the point (-1, 4) close to being on the parabola?

6 Find the y-value(s) of any roint(s) on the curve whose x-value is 3.

7 Find the x-value(s) of any point(s) on the curve whose y-value is -2.

8 Find the x-value(s) of any point(s) on the curve whose y-value is 6.

9 Find the x-value(s) of any point(s) on the curve whose y-value is -4.

10 Find the y-value(s) of any point(s) on the curve whose x-value is 9.

Interviewer Date Student

tiG



Algebra Research Project Mapping 33-- Appendix B

The 8 points on the graph you see were all graphed by using one algebraic rule. We will
call this rule f(x).

1. What is the approximate value off(2)? (Ai out what is y's value whenx = 2?)

2. For what value of x is f(x) approximately -2.5?

3. What is an approximate solution to the equation f(x) = 0?

4a. Is it true that the maximum value offlx) when x < 0 is probably 1.

4b. Is it true that when x < 0, the maximum value of f(x) is probably greater than 1 and
less than 2.

5. Now sketch your best estimate of the complete graph by extending the partial graph
above.

Interviewer Date
t.

Student7



Algebra Research Project Mapping 4a
__4___

Appendix B

The following graph is a graph of the function ax3 + bx2 + cx + d, where a, b, c, d are
rational numbers. Each mark on the axes is one unit.

Y

1 1 x

1. Is the number a positive, negative, approximately 0 (or is it impossible to tell)?

2. Is the number d positive, negative, approximately 0 (or is it impossible to tell)?

3. How mi._.1. .olutions are there to the equation ax3 + bx2 + cx + d = 0?
(Choose oz..)

none 1 2 3 4 an infinitz. number

4. How many solutions are there to the equation ax3 + bx2 + cx + d = 5?

none 1 2 3 4 an infinite number

5. How many solutions are there to the equation ax3 + bx2 + cx + d = 20?

non( 1 2 3 4 an infinite number

6. How many solutions are there to the equation ax3 + bx2 + cx + d > 20?

none 1 2 3 4 an infinite number

7. Find an approximate solution to the equation ax3 + bx2 + cx + d = -3.

8. For what number n is there no solution to the equation ax3 + bx2 + cx + d = n?

Interviewer Date
1,..,: t;)
...I (,)

Student



Algebra Research Project

The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

This set of problems asks you to sketch
functions that are closely related to f(x).

Mapping 4b5
Y

Appendix B

Please sketch the function f(x) -1 on the blank axes below.

Interviewer

Y

Date

x

Student



Algebra Research Project

The graph to the right is a sketch of the
function fix).

Each marl,. on the axes is one unit.

Mapp;ig 4b6-- Appendix B

Please sketch the function f(x - 1) on the blank axes below.

Interviewer

x

70
Date Student



Algebra Research Project

The graph to the right is a sketch of the
function fix).

Each mark on the axes is one unit.

Mapping 4b7
Y

Appendix B

Please sketch the function f(x) + 1 on the blank axes below.

Interviewer

Y

Date

x

Student



Algebra Research Project

The graph to the right is a sketch of the
function ,x).

Each mark on the axes is one unit.

Mapping 4b8
y

Appendix B

Please sketch the function f(x + 1) on the blank axes below.

Interviewer

y

Date Student
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The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

Mapping 4b9
Y

Appendix B

Please sketch the functionf(lx1) on the blank axes below.

Interviewer

ge

Y

Date i t)

x

x

Student



Algebra Research Project Mapping 4b10
The graph to the right is a sketch of the
function fix).

Each mark on the axes is one unit.

Y

Please sketch the function If(x)1 on the blank as below.

Interviewer

Y

Date

x

Appendix B

I I x

Student



Algebra Research Project

The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

Mapping 4b
11--

Y

Please sketch the function -f(x) on the blank axes below.

Interviewer

v

Y

Date

x

rte C..'
t.)

Appendix B

x

Student



Algebra Research Project

The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

Mapping 4b12

Ar

y

Please sketch the function f(x) on the blank axes below.

y

x

Appendix B

I I x

Interviewer y G Date Student
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The graph to the right is a sketch of the
function f(x).

.

ft(

Each mark on the axes is one unit.

Mapping 4b
13---

Y

Appendix B

Please sketch the functionf( -lx1) on the blank axes below.

Interviewer

Y

Date 4 1 Student
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The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

Mapping 4b14
Y

Appendix B

Please sketch the function 2f(x) on the blank axes below.

Interviewer

Y

Date

x

Student

.

I
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The graph to the right is a sketch of the
function f(x).

Each mark on the axes is one unit.

Mapping 4b15
Y

Appendix B

Please sketch the function f(2x) on the blank axes below.

Interviewer Date Student
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The graph to the right is a sketch of the
function j(x).

Each mark on the axes is one unit.

Mapping 4b16
Y

Appendix B

Please sketch the function 1-f(x) on the blank axes below.

Interviewer

Y

80
Date

x

x

Student
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The graph to the right is a sketch of the
function j(x).

Each mark on the axes is one unit.

Mapping 4b17
Y

Please sketch the function, (!ix) on the blank axes below.

Interviewer

y

Date

x

Appendix B

I I x

Student



Algebra Research Project Mapping18
The two graphs below are both parabola.

Parabola 1:

Appendix B

Parabola 2:

Interviewer Date Student

0 =2



Algebra Research Project

Establish a language with the student.

Mapping 519 Appendix B

If function notation can be used, label parabola 1 f(x) and parabola 2 g(x). Otherwise,

label them yi and y2. Change the language of the questions below accordingly.

1. Which parabola rises more steeply?
Explain your reasoning.

2. Which is smaller, 4) o.: g(i)? 2.

1..

3. Could f(x) and g(x) be described by
the same algebraic rule? Explain your
answer.

4. Plot the graph of f(x) on the same
axis as that of g(x).

5. Now plot the graph of g(x) on the
same axis as that off(x).

Interviewer
p 00 j

Which parabola rises more steeply?
Explain your reasoning.

Which is smaller when x =1, y 1 or y2?

3. Could the two parabolas be graphs of the
same algebraic rule? Explain your answer.

4. Plot the grap' )f parabola 1 on the same
axis as that ol parabola 2.

5. Now do the reverse. Plot the graph of
parabola 2 on the same axis as that of
parabola 1.

Date Student



Algebra Research Project Mapping 6
20--

The partial graph of the functionRx) below contains 13 points.

Appendix B

1. Make a table of approximate values correspozding to these points:

2. Between vhich adjacent pair cf
these points is the value of the
function changing the least?

x y

). Letween which adjacent pair of
these points is the value of the
function changing the most?

Interviewer Date Student



Algebra Research Project. Mapping 721 Appendix B

1. Below are the graphs of f(x) = 10 and g(x) = 6. On the same set of axes, sketch a
graph of their difference, h(x).=f(x) - g(x) = 4.

Interviewer Date Hv Student



Algebra Research Project Mapping 722 . Appendix B

2. Below are the graphs offlx) = -2x -3 and g(x) = -2x + 6. On the same set of axes,
sketch the graph of their difference, h(x) = f(x) - ex) = -9.

4. Which is neater, fix) or g(x)? Explain how you know.

Interviewer bi G Date Student



Algebra Research Project Mapping 723 Appendix B

5. Below are the graphs of f(x) = -2x + 6 and g(x) = x - 3. On the same set of axes,
sketch the graph of their sum, h(x) =qx)+ g(x) = -x + 3.

6. For what values of x is f(x) greater than g(x)? Explain how you arrive at your
conclusion.

8';'Interviewer Date Student



Algebra Research Project Mapping 824 Appendix B

1. Find all x which satisfy: 3x - 5 = 2x - 4. Explain your method.

2. Find all x which satisfy: 2x - 5 = 2x 4. Explain your method.

3. Find all x which satisfy: x2 + 5x + 6 = (x + 2)(x + 3). Explain your method.

4. Evaluate:

a) 10 -6

b) 3 - (-2)

c) -2 - 5

5. Find the difference between:

a) 12 and 19

b) 6 and -7

c) -15 and -9

Interviewer

41.".

Date Student
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Algebra Research Project Scale la1

The scale at the far right represents a diagram of the Celsius
thermometer scale. 100° C is the boiling point of water.

0° C is the freezing point of water.

On the line to th:.: left of the Celsius scale you will be asked
to sketch a similar diagram of the Nory scale.

The Nories are an 8 fingered race dwelling on a distant
planet. On the Nory thermometer, 0° N is the freezing point
of water and 8° N is the boiling point of water. Show how
the Nory scale might be marked in Nory degrees.

Appendix C

0

100

1 What is 0° N in Celsius measure? Draw an arrow from the point on the Nory scale to
the matching point on the C scale.

2 What is 100° C in Nory measure. Draw an arrow from the C point to the matching N
point.

3 What is 4° N in C measure?

4 What is 25° C in N measure?

5 What is 6° N in C measure?

6 What is 16° N in C measure?

7 What is 110° C in N measure?

8 What is 9° N in C measure?

9 Which of the following formulas provides a correct conversion from Nory to Celsius
measures?

a) °C = 25/2 (°N) c) °C = 50 °N

b) °N = 2 °C / 25 d) °N = °C /12

10 What is 2° N in Celsius measure?

11 What is 125° C in Nory measure?

Interviewer

'IA

Date 90 Student



Algebra Research Project Scale lb2--

N

Reproduce your N scale from the previous sheet, Scale la.

You will be asked to draw a.:1ther scale, the Qaos scale on
the line at the right.

Lord Qaos was a Nory. He agreed that the spacing of the
Nory scale was correct because the 8 spaces between the
boiling point of water and the freezing point of water were
what The Maker of All intended. After all, not only water
but also Plenbium, the most precious of the eight liquid
metals, boiled at exactly 8 Nory degrees higher temperature
than its freezing point. It freezes at 3° N and boils at 11° N.

Lord Qaos decided that Plenbium and not water should be
honored by having its freezing point called 0. Accordingly
he created the Q scale which maintained the N-scale
divisions, but set 0° Q to be the freezing point of Plenbium.

1 Sketch the Q scale including the divisions.

2 What is 100 N on the Q scale?

3 What is 0 C on the Q scale?

4 'What .ls 8 Q on the C scale?

5 What is 4 Q on the N scale?

6 What is 1 Q on the C scale?

7 What is 1C on the Q scale?

Appendix C

Q

C
100

0

Interviewer Date Student
9 1. .4.



Algebra Research Project Scale lc3
(To be conducted only in interview form. The wording here was chosen to suggest the
purpose and tone, and is not a prescribed wording.)

You ha probably done some graphing on this kind of graph paper. Am I right?

Would you point to the horizontal axis just so I know we are looking at the same thing?

Make some marks on the horizontal axis.

Would it make sense to you to put numbers on the horizontal axis so that it would represent
the Nory scale? Go ahead and do that and label it with an N.

Make some marks on the vertical axis.

Could this a-ds repesent the Celsius scale? Put numbers on it and label it with a C.

interviewer Date 1 Student



Algebra Research Project Scale lc
....4.....

Appendix C

Collect two or three matching pairs from your diagram on page 1 and enter them in this
table:

N C

Record the information indicated in your table on the axes above. (e.g., How would you
indicate that 4° Nory is the same as 50 degrees Celsius?)

Does this graph help determine the Celsius measure for 3° N? (How?)

What is 70° C in Nary measure? (How does the student answer this question? Using the
graph? Formula? Refering to earlier probe?)

Interviewer

( I 0

Date Student



Algebra Research Project Scale lc5 Appendix C

Could you have used this grid to record some of the information relating Nories to Celsius?

5

4

3

2

-9 -5 2 3 4 5 6 7 8 9

-7--

Describe the differences in the results of the two graphs.

zi
Interviewer Date Student
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Below is a graph of the temperature in degrees Celsius vs. the temperature in degrees on
the Nory scale. Does it look right to you?

Which axis represents the number of degrees Celsius?

Can you produce a graph on these same axes that indicates the Celsius temperature vs. the
Qaos temperature?

If you can, please do it.

Would it help to label the axes? [C and N (or Q?) as before]

100

75

50

25

4---1
-9 -5 1 2 3 4 5 6 7 8 9

-25

-50

Interviewer Date
5

Student
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Someone made this graph to compare the temperature in Celsius with that in Nories.

Did they do it correctly?

Interviewer
(96

Date Student
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Algebra Research Project

The straight line here
is another graph of
Celsius temperature
vs. Nory temperature.
Does it look correct?

The curve represents
Celsius plotted against
yet another scale, the
Flauntium Scale.

100

80

60

40

20

0

Scale if8 Appendix C

Take a few data points from the graph above and enter them in the
table at the right.

F

.11MME,

1

I 0

100

F C

Draw the scales in this case, with the Flauntium and Celsius
scales next to each other.

7
Interviewer Date Student



Algebra Research Project Scale 2a9

Interviewer

Appendix C

Date WL3 ' Student
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Interviewer

Scale 2b10 Appendix C



Algebra Research Project Scale 2c
11-- Appendix C

=1.7.

Interviewer Date 100 Student
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I ;)-1

Appendix C

Interviewer Date Student



Algebra Research Project Scale 3 Appendix C13
1 On the axis below one point is marked. Locate and mark positions for 30, 25, and 0.

20

2 On this axis two points are marked. Locate and mark the positions for 6, 9, 0, and -3.

3 5

3 Use the axes provided to help plot the following points. You should choose a scale that
will allow you to graph all of the given points. Label points on the axes with numbers to
indicate the scale that you have selected.

A = (40,50) B = (-25, 20) C = (7, 0) D = (-2, -12)

Interviewer Date
102

Student



Algebra Research Project

Examine this graph.

Is it possible to mark the x and y axes so that the graph can represent this function?

In successive questions, the interviewer shows each function below one by one.

Scale 414 Appendix C

a y = 3x + 4

b y=2x+6
c y=x-3
d y =-3x +2

The graph at the right shows the function y = -x + 8. Determine the coordinates of the
points labeled P and Q.

Interviewer Date
1g3

Student



Algebra Research Project Scale 415 Appendix C

Here is a graph of y = 2x - 8. Determine the coordinates of the points labeled P and Q.

interviewer Date Student



Algebra Research Project Scale 5a16 Appendix C

Normal conventions of graphing in the Cartesian coordinate plane allow for a restricted
group of scale changes.

1. The two axes must remair.,trpendicular to each other, one designated to be horizontal
the other vertical.

2. Lower numbers are placed at the left side of the horizontal axis and the bottom of the
vertical.

3. Units may be chosen independently for the two axes. That is, knowing that a given
length of the horizontal axis represents 20 units gives us no information about the
number of units represented by the same length of vertical axis.

4. On a particular axis the unit value is fixed. That is, it can be assumed that if a given
length of axis represents 30 units, then each thirtieth of that length is equivalent to one
unit, each 300th of the length is equivalent to one tenth unit, etc..

Assuming the above restrictions on scale changes, which of the following pairs of graphs
could be differently scaled views of the same line?

1.

Interviewer Date 1:6 Student
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2.

Scale 5a Appendix C17

3.

Interviewer

011a.

Date .1:
-.

U Student
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Interviewer

Appendix C

Fir/
Date Student



Algebra Research Project Scale 5b19 Appendix C

For this set of problems the horizontal scale on the first window is given. Propose a
horizontal scale for the second window so that each could be some the graph of some
portion of the same function. If this is impossible in any particular case, write
impossible.

-20 20

0 100

Interviewer Date 1:)8 Student
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3.

AS.......

Scale 5b20

-10 10

4.

500

5.

600

-60

Interviewer

60

Appendix C

I.'!)
Date Student
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For this set of problems the vertical scale on the first window is given. Propose a new
vertical scale for the second window so that each could be the graph of some portion of the
same function. If this is impossible in any particular case, write impossible.

1.

10

-10

2.

Interviewer Date 111 Student
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3.

40

-40

4.

Scale 5c23

-100

5.

6

6

Interviewer

Appendix C

Date 1. ,-: i
A.A.,

Student
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6.

-4

7.

5

Scale 5c
-'-.24

100

-100

Appendix C

Interviewer 1 it 3bate Student
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Algebra Research Project Computer Exploring 1 Appendix D1
Object: To determine a natural language for describing scale changes.

1. What "handles" do students perceive as being necessary for creating distortions in
graphs?

2 . Does the natural language that they use in describing distortions imply a change of the
scale or a change in the function or neither?

Put up the function x2 - x - 4 on a 20)20 grid with center origin (-10 to 10 in x and y).

Show the student picture marked "First Change" and ask the student to get the graph to
resemble that picture without changing the function.

Repeat the process with remaining pictures.

Initial graph of parabola.

First change.

115
Interviewer Date Student
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Second change.

Third change.

Computer Exploring 1 Appendix D2

Interviewer Date 1 .i. (j Student
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Fourth change.

Fifth change.

Interviewer

Computer Exploring 13 Appendix D

Date Student
1 i 7



Algebra Research Project Computer exploring 2

Exploring Scale I

Becoming familiar with the software

1 Press F for "Function" and then press 1 to enter your own function.

2 Type x and press RETURN.

60

40

60

10

Appendix D

-15
-

1

2.5.,.,. -
1 I

1

3.25
o 1

3.25

o

1

o 1

o o

----L o
e .... .... ... .

2.5

15

-10
f (x) = -2x + 45

Picking a problem

1 Press F for "Function" and then press 1 to enter your own function.

2 Type 2x + 45
3 Press RETURN to accept this function. If you have just started working, your screen

should look like this. (If the scale does not match, you should adjust it.)

60

40

40

60

-15
2.5

r 1

3.251

a .1

;3.25

o

o 1

o 1

o o

J
2.5

10

o

o

1

J

-10

f (x) = -2x + 45

Interviewer Date 1uj

15

11
Student



Algebra Research Project . Computer exploring 2 Appendix D2
The little graph in the upper left hand corner shows you that the graph is a line, and shows

that the line passes from the first quadrant (the top right quarter of the graph) into the
fourth quadrant (bottom right). It looks as though the line, if extended further, would
also pass through the second quadrant (the top left ).

Why doesn't the line appear on the big graph? The big graph is a magnified view of the
central rectangle in the little graph. It shows a region extending from x=-15 to x=15
and from y=-10 to y=10. As you can see on the little graph in the uuper left hand
corner, the line does not pass through this central region.

Exploring

4 Think of the big graph as a view through a telescope. Currently, the telescope is not
aimed at the line. How would you need to change things to be able to see the line in the
telescope? Is the line to the right or to the left of our current view? Is it above or
below?

5 You can re-aim the telescope and adjust its magnification to change the region of the
graph that you are viewing. To make this change:

Press S to tell the computer that you want to change the Scale of the graph and then 1 to
change the coordinates within which you are viewing. This operation can change the
way

b. For this first try, let the domain (min to max x values viewed) stay as it is and change
only the range (y values viewed) by changing the upper limit from 10 to 15. RETURN
moves you clockwise around the coordinate limits to allow you to choose the space in
which you will type a new value.

Press R to draw the resealed shape. Describe the results.

6 Now change the scale again in this way:.

a.

-4

10

-10

44

How does the image change? Why does it change in this.pardcular way?

7 Change the scale again, this time trying for a view that allows you to see the line as it
passes from the second quadrant, through the first, and into the fourth quadrant.

It
2-

Interviewer Date 1 I tj Student



Algebra Research Project Computer nploring 2 Appendix D_3_

Generalizing

8 Steps 1-3 show you how to pick a new function. Enter this : 8X+432.

Like the previous line, this one also passes through all but the third quadrant. Again,
change the scale so that you can see "a small but reasonable amounvbeyond" where the
line crosses the X and Y axes.

9 Try several other lines. Find some reliable way to predict an appropriate scale from the
coefficients of the function that produces the line.

The method you invent will depend on how big a distance you interpret "a small but
reasonable amount beyond" to mean. Any scheme you can defend will be fine.

10 Here are three lines to test your method on. .01x-500 500X+0.3
3X +400

All three of these lines do pass through three quadrants, though they may not,, at first,
appear to. Try to find a scale for the graph that shows quite clearly that the lines start
in one quadrant, pass into another, and then pass from that one into still another
quadrant.

Theorems and proofs

11 All the lines that I have shown you have passed through exactly three quadrants. Make
a reasoned case for your answers to each of the following questions.

Are there lines that pass through only one quadrant? If so, for which quadrant(s)?

Are there lines that pass through exactly two quadrants? If so, for which quadrant(s)?

Are there lines that pass through all four quadrants?

Interviewer Date
120 Student



Algebra Research Project Computer exploring 24
Exploring Scale II

Picking a problem

1 Press F for "Function"

2 Type -1 . 6x + 34
3 Press RETURN to accept this function. Your screen should look like this.

60

90

90

2.5

2.5

60

-10
f (x) = -2x + 45

Exploring

4 Change the scale so that the screen looks like this:

Ii

--
,

r ..
o

loi
I o

I I
o I
o Io...,

---

Interviewer

Appendix D

15

f (x) = -1 . 6x + 34

Date I'll4.1, Student



Algebra Research Project Computer exploting 25-- Appendix D

5 'Change the scale again, this time trying to get the screen to look like either of these:

f (x) = 1. 6x + 34 f (x) = 1.6x + 34

Generalizing

6 Pick coefficients for a new line and try again to find a scale that makes your screen look
like either of the figures in Exploration 5.

7 Try several other lines. Look for ways to help you predict an appropriate scale from
the coefficients of the function. Make sure you try some "odd cases."

Theorems and proofs

8 For some (perhaps all) of your lines, you have found ways to mai.e them appear to
pass through the center of the graph and through the corners. Yet you know that they
do not, in reality, pass through the center. Why would it appear so if it isn't so?

9 Suppose you were required to keep your graph, symmetric. That is, the distance across
the graph from left to right (the domain, calculated as Xraax-Xmin) had to be the same
as the distance from the top to the bottom of the graph (the range, Ymax- Ymin). Could
you still make any line appear to pass through the center of the graph? Could you still
make any line appear to pass through opposite corners of the graph?

Clearly, one cannot try experiments like these with all possible lines. Still, it is possible to
make some reasoned arguments about how the expriments would work out. Make
some claims about either the symmetric or asymmetric graphs you have been
constructing and support them.

Interviewer Date Student
1 22



Algebra Research Project Computer exploring 2 Appendix D6
Exploring Scale III

Picking a problem

1 Press F for "Function."

2 Type 3 (x 6) (x + 2)
3 Press RETURN to accept this function. Make sure you have a scale that shows clearly

that this curve passes through all four quadrants.

Picking a new problem

4 Press F again and type the polynomial function 3 (x 2) (x 2) .

Exploring

5 Change the scale until you are sure you can see clearly what quadrants this curve passes
through.

Generalizing

6 Instead of picking a problem by picking roots, create a second order polynomial by
picking its coefficients. Try for "strange" cases. For each of your curves, play with
scale or values until you can make a clear case about which quadrants the curve passes
through.

Theorems and proofs

7 Make a reasoned case for your answers to each of the following questions.

Are there second order polynomials whose graphs pass through only one quadrant? If so,
for which quadrant(s)?

Are there second order polynomials whose graphs pass through exactly two quadrants? If
so, for which quadrant(s)?

Are there second order polynomials whose graphs pass through exactly three quadrants? If
so, for which quadrant(s)?
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Exploring Scale IV

Setting up

1 Press F for "Function."

2 Type x3.

3 Press RETURN to accept this function.

4 Use this scale:

4

64

64

4

5 Tape a transparency on the screen (or, with felt-tip marker, mark directly on the screen)
and trace over the graph you see.

Picking a problem and exploring

6 One by one, type in each of these functions:

x3 + 13x2 + 50x + 50
x3 7x2 + ilx + 5
x3 + 16x2 80x + 128
x3 4x2 + 15x + 18
2x3 14x2 + 22x + 10

'1 Change the scale, if possible, to make your new graph fit the tracing of x3 exactly.

8 Change the scale, if possible, to make a horizontal line at the height of the constant.

Generalizing

9 Try this with other cubic polynomials.

10 Start with the tracing of x2 on a scale that runs from -10 to 10 inx and from -100 to
100 in y. Then try to fit arbitrary quadratics to it through scale changes.

11 Recall or retry your experiments with linear functions. Start with a tracing of x on a
scale that runs from -20 to 20 in both x and y.
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