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DOING DATA ANALYSIS WITH PROPORTIONAL HAZARDS MODELS:

MODEL BUILDING, INTERPRETATION ANP DIAGNOSIS

Research questions about duration, and its relationship with

other factors, are of fundamental interest in educational research.

For example, the researcher may ask whether certain groups (such as

women, minorities, math/science graduates) stay in teaching longer,

or whether graduate students in particular areas of specialization

typically spend longer completing their graduate degrees. Thus,

research interest focuses not only upon the length of time (the

waiting-time) to the event in question (e.g., resignation from

teaching, graduation from a degree program), but also upon those

characteristics of the individuals and of their treatment and

environment that are associated with inter-individual variation in

waiting-time.

Unfortunately, building models of waiting-time as a function

of selected predictors is not completely straightforward.

Generally the sampled individuals are not followed for their entire

lifetimes. Rather, the investigator will gather the waiting-time

data during some pre-specified and finite data-collectioa period.

Although information may be available on all of the sampled

individuals for the entire length of the data-collection period,

the value of dependent variable (waiting-time) may still not be

known for all of these individuals because the event of interest

may not yet have occurred for all of them. Some teachers will.not
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have left teaching by the end of the data collection period, some

students will not yet have graduated. These individuals, for whom

the event of interest has not yet occurred by the end of the data

collection period, possess truncated or right-censored waiting-

times (see Miller, 1981, pp. 3-9).

Analyzing the waiting-times of only those individuals for whom

the event of interest has occurred will necessarily result in an

underestimate of the true length of service or time-to-degree

(Allison, 1982, 1984; Karrison, 1987). For instance, in a naive

assessment of how long it takes to complete a doctorate, the median

lifetime of that sample of graduate studuate who have completed the

degree, will seriously under-estimate the true median length of time

to degree because the estimation has ignored those students who

have not yet finished (see, for instance, the results cited in

Abedi & Benkins, 1987). Obviously, the very presence of

ungraduated students in the institution indicates that the true

time to completion is much longer than the naive approach would

suggest. The facz that some p3rcentage of any entering cohort has

not graduated by some specific occasion contains much information,

particularly information about the probability that earning a

doctorate takes longer than the time that has already elapsed.

Methodologists have responded to the biasing effect of right-

censoring by creating new, and statistically sophisticated,

analytic methods known as survival analysis (Gross & Clark, 1975;

Kalbfleisch & Prentice, 1980; Lee, 1980; Miller, 1981) or event-

history analysis (Allison, 1984; Tuma, 1982; Tuma & Hannan, 1978).

Rather than modeling the waiting-times directly, these strategies

5
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model mathematical transformations of the waiting-time that remain

meaningful in the face of right-censoring: the survival function

and the hazard function. Within this large class of techniques,

one popular semi-parametric strategy that examines hazard as a

function of selected predictors is the fitting of proportional -

hazards models by the method of partial-likelihood ("Cox

regression" -- see Cox, 1972; Kalbfleisch & Prentice, 1980).

Although the statistical papers describing this technique ar

highly technical and difficult to understand, the strategy

recently become accessible to empirical researchers by vir

appearing as a procedure in several statistical packages

BMDP2L, SAS PROC PHLGM).

Recently, we were approached by a colleague with a

empirical dataset and a research question that fell re

the framework of proportional-hazards modeling. He n

about the practical application of the technique.

collaboration it became obvious that, although the

theory underpinning survival analysis has been we

the methodological literature, there is very lit

advice for the empirical researcher. There is

clearly articulates how good data-analysis is

models. And yet, the articulation of sound

and high quality data analysis is crucially

findings of educational research are to su

strong inference.

This paper was written in order to

guidelines. In our consulting, we have
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which some advice and clarification may be required:

Definition of terms: Among a variety of conflicting
definitions of the survival and hazard functions, what
minimal set of definitions permits the empirical
researcher to implement survival analysis effectively?
What are the potential sources of confusion?

The model and its assumptions: What is the nature of
the statistical model that is being fit during
proportional-hazards modeling? What key assumptions
must be satisfied if the results of proportional-
hazards modeling are to be believed? Is there a useful
data-analytic Analogy to provide a conceptual framework
for understanding the function of the proportional-
hazards model?

Model-building: What data - analytic strategies are
useful when building proportional-hazards models?
Among a confusing variety of strategies, what methods
are the most practical for verifying that the
assumptions have been satisfied? How should tne
researcher choose the predictors to be included as
predictors in the model? Are all predictors equally
acceptable? Can interaction terms be included in the
models?

Interpretation: How can the estimated model parameters
be most meaningfully interpreted? How should we report
the results of the proportional-hazards modeling?

This paper establishes a framework for doing good data-analysis

with proportional-hazards models. Our presentation makes use of a

data-based example from an investigation of decade-long teacher

survival patterns for a cohort of teachers who entered the

profession in 1972 in Michigan (Murnane & Olsen, 1988; Murnane.

Singer & Villett, 1988).
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I. DEFINITION OF TERNS

Survival analysis was originally intended for the analysis of

clinical lifetime data. Such research examines how long cancer

patients survive after diagnosis or treatment, and the event that

terminates the observed waiting-times is death. Thus,

(unfortunately for other disciplines, where the event of interest

is often the happier onset of employment or the occurrence of

graduation), the language of survival analysis is couched in dark

and forboding terms. In the social sciences. survival analysis

helps the researcher investigate whether certain types of teacher

stay in the profession longer than others. Do men remain longer

than women? Foreign language teachers longer than science

teachers? Do teachers who are paid more, remain longer?

Broadly conceived, then, survival analysis seeks to predict

the waiting - times by variables that describe the treatment.

background and environment of the sampled individuLls. To address

such issues the simple regression of the waiting-times themselves

on predictors of interest would be inappropriate because right-

censored teachers would have missing values for the outcome. Thus,

the regression model would be fit in a subsample of short-lived

teachers with unavoidable bias to the findings. To avoid this

bias. the dependent variable must be re-conceptualized so that it

incorporates information from both the censored and the uncensored
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cases simultaneously. For this reason, survival analysis uses as

its dependent variable a mathematical function of the waiting-times

that remains meaningful in the face of right-censoring: the hazard

function,

Unfsrtunately, not only is this new "dependent variable" onoe

or twice removed from the actual dependent variable of interest

(the waiting-time) but there is also some confusion as to its

definition and interpretation. The literature is littered with

alternative definitions and explanations of the hazard function,

some of which are incorrect (compare, for instance, Allison, 1984,

p. 23; Anderson et al., 1980, p. 228; Gregson. 1983, p. 48;

Kalbfleisch & Prentice. 1980, pp. 5-8; Miller. 1981, p. 2! Tuma,

1982). This confusion arises chiefly when the observed welting-

time has not been specified clearly as a discrete or a continuous

variable. There is an inclination on the part of some authors to

insist on the former while defining the hazard function, but assume

the latter while performing the analyses. This leads to

considerable confusion because hazard is defined differently in

discrete and continuous time. In this section, we resolve these

conflicts by specifically distinguishing the discrete and

continuous waiting-time metrics and clearly defining the hazard

function in both domains.



II.1 Hazard in discrete time

Rather than examine the waiting-times directly and be at the

mercy of right-censoring, survival analysis focuses on the

probability that a randomly-selected individual will "survive"

beyond specific times. Then, although a given member of the

population may ultimately be censored (i.e., may not ultimately

"die" during observation), the fact that this individual is "alive"

in some earlier period contributes information to the probability

of survival beyond that eatl_er time.

The definition of a survival-probability distribution function

-is the first step in the ultimate definition of the hazard function

that will serve as the foundation for the subsequent survival

analyses. In discrete time., the value of the survival-probability

distribution function (shortened to "survivor function" henceforth)

at time t is the probability that a randomly-selected member of the

population will "survive" beyond t:

S(t) = Prob{ survival beyond t] [1]

(Kalbfleisch & Prentice, 1980, pp. 5-6 notice the conflict with

Anderson et al., 1980, p.228 and Miller, 1981, p.2). In effect,

the survivor function is nothing more than a "list" of

probabilities one for each vol.: the times of interest and

therefore is best displayed graphically.

By definition, the first value of the survival-probability

distribution function S(0) is 1 because al] the individuals are

10
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"alive" at the beginning of the period of study. As individuals

"die" one by one, the function gradually "steps down" towards 0.

However, it does not necessarily reach zero in the period under

study because all of the members of the population may not have

"died" by the end of the observation period -- these are the

censored cases. Because the survivor function describes a sequence

of probabilities (one for each discrete value of t), it can only

take on values between 0 and 1. Because no more individuals can

survive through the time period between t and t+1 than survived

through the time period immediately preceding, it is a

monotonically non-increasing, and usually decreasing, function of

time. Because the waiting -times have been measured at discrete

timepoints. Set) is a step-function.

To have survived to at least t requires an individual to have

also survived through all earlier time-periods. As a result. the

value of the survival function at time t confounds cumulative

information on survival for all of the preceding time-peri.xls with

specific information on survival in period between t and t41.

Because interest often centers upon the risk of "dying" in a

particular time period (in a particular year, say) another function

that is derived from the survivor function is usually examined in

survival analyses: the hazard function.

With discrete waiting-time data, the value of the hazard

function at time t is a probability. It is the probability that a

randomly-selected member of the populatit.,n will "die" in the

interval between t and t#1, given that s/he has survived until the

beginning of that same interval:
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h(t) = Prob[death between t and t+lisurvival until t] [2]

(Anderson et al., 1980, p. 228 note the misprint in Kalbfleisch

& Prentice, 1980, p. 8, and the conflict with Miller, 1981, p.2).

Ia other words, all of those members of the population who survive

to time t enter the potential "risk set" for the period between t

and t+1, and the hazard probability at time t is the proportion of

this risk set who then die between t and t+1. Because h(t)

represents the population probability of "dying" in the time-period

between t and t+1 conditional on having survived to t, knowledge of

the hazard function allows the investigator to determine whether

there were certain timeperiods in which the risk of "dying" was

higher than usual, whether there are time periods that are

intrinsically more "hazardous".

11.2 Hazard in continuous time

When survival time is measured continuously, the definition of

the survival-probability distribution function in Equation (1)

stn.: holds and the obtained survivor function is a monotonically

non-increasing and continuous function of time, rather than being a

step-function. Therefore, S(t) is still interpretable as a

sequence of probabilities.

Unfortunately, the definition of the hazard-function cannot be

maintained in a transition from discrete to continuous time. When

1 `)
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survival time is measured continuously, the definition of hazard

must be modified. In continuous time, it makes little sense to

talk of tY probability of a death occurring at a given instant as

this will automatically be zero, given the nature of continuous

probability distributions. Moreover, it makes little sense to

consider the probability of death in some arbitrary interval as

this probability will differ depending upon interval length.

Furthermore, the very act of choosing a specific interval length is

essentially equivalent to arbitrarily discretizing the waiting-time

measurements with consequent loss of information.

One solution to this problem is to compute the conditional

probability of death within soma arbitrary interval and,

recognizing that this probability will increase with the length of

the interval, divide the obtained probability by the length of the

interval thus obtaining a sort of "conditional probability of death

per unit time" or "rate of change of conditional probability". To

ensure that the meaning of this probability rate is consistent from

user to user, we must all agree on the length of the interval that

will be used. Theoreticians, borrowing from differential calculus,

have decided that interval should be infinesimally small that we

should take the limit of the probability rate as the length of the

arbitrary interval disappears to zero.

It is this mathematically-required modification that makes

hazard a potentially confusing concept in continuous time.

Consequently, in this paper, we will refer to continuous-time

hazard as hazard-rate and the function will be given a new symbol,

Xlt), in order to distinguish it from the conditional probability

13
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in Equation (2]):

Prob[death between t and t+AtIsurvival to t]1
Mt\ = Limit

E3l
At-0

6t

(cf., Miller, 1981, pp. 2-3). Unfortunately, although this

adjustment solves the mathematical problems inherent in the

application of hazard to continuous time, it makes the function

difficult to interpret because it can no longer be considered a

probability.

Since the survivor function is relatively easy to interpret

and maintains the same probabilistic interpretation in both

discrete and continuous time, the job of the empirical researcher

in interpreting hazard-rate is made easier by the demonstration of

a simple relationship between the continuous-time hazard-rate and

the survivor function. As Kalfleisch & Prentice (1980, p. 6)

demonstrate, if the survivor function is transformed by taking the

natural logarithm of S(t), then the value of the hazard-rate at

time t is the (instantaneous) slope of the transformed curve at

this time, multiplied by minus one. In other words, X(t) is the

negative slope of the logarithmically-transformed survivor function

and therefore, in a monotonically transformed world, the hazard-

rate records fluctuations in the rate at which the survivor

function decreases.

Although practical application of this aew insight is not

simple, the data analyst can learn to visualize S(t) when presented

Mt), and vice versa: local maxima and minima in the hazard-rate

1(1
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function indicate more steep and less steep regions of the survivor

function respectively, slope changes i the survivor function point

out the peaks and valleys in the hazard-rate. Such comparisons

emphasize that inspection of the hazardrate function provides a

very sensitive method -- a magnifying glass -- for the detection of

changes in survival probability over time. This, of course, does

not resolve the difficult problems involved in the reporting of the

findings of a survival analysis to a relatively unsophisticated

reader hazard-rate remains a difficult concept to interpret and

discuss. Consequently, in Section IV, we suggest some relatively

non-technical strategies that ye have found useful when discussing

our findings to others.

15
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II. THE MODEL AND ITS ASSUMPTIONS

The generic label "survival analysis" refers, in general, to

analytic strategies based upon the statistical modeling of the

survivor and hazard-rate functions and subsumes a wide variety of

different analytic methods, including:

Univariate descriptive strategies: Product-limit and
life-table estimation of the survivor and hazard-rate
functions within a specific population. Eyeball
inspection of estimated survivor and hazard-rate
functions permits the investigator of teacher career
paths to detect particular sections of the teaching
career that are more "hazardous" than other periods
(see, for instance, Singer & Willett, 1987).

Bivariate inferential strategies: Non-parametric tests,
including the Logrank and Wilcoxon tests, that permit
the survivor and hazard-rate functions of two or more
populations to be compared. These strategies can be
used to answer questions such as: Do female teachers
remain in teaching longer than their male counterparts?
Do elementary-school teachers leave the profession more
readily than other teachers?

Multivariate inferential strategies: Statistical
methods, that examine systematic differences in hazard-
rate as a function of predictors selected to describe
the individuals' treatment, background and environment.
These strategies can be used to answer questions such
as: What are the characteristics of those teachers with
longer careers? Controlling for gender, do elementary-
school teachers remain in teaching longer than
secondary-school teachers? In the secondary school,
controlling for age and gender, are teachers of physics
and chemistry more inclined to leave teaching than
other teachers?

The generic label of life-testing is often applied to the

1G
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univariate descriptive and bivariate inferential strategies listed

above (see Lee, 1980). A variety of life-testing methods are

available in the major -statistical packages as subprograms such as

BMDP1L, SAS PROC LIFETEST, and SPSSx SURVIVAL. In this paper, we

focus principally on doing good data-analysis with one particularly

robust and readily-available multivariate strategy that has seen

wide application in clinical and sociological research, and that is

becoming more familiar in educational research: the fitting of

proportional-hazards models by Cie semi-parametric methods of

pr..tial-likelihood (Cox, 1972). This strategy is available in

BMDP2L and SAS PROC PHGLM.

Proportional-hazards modeling bears a considerable resemblance

to the more familiar multiple regression analysis. In both cases,

an appropriate dependent variable is modeled as a function of user-

selected predictors so that questions about the association between

the dependent variable and the predictors can be answered. As with

multiple regression analysis, proportional-hazards modeling permits

more substantively and statistically powerful analyses to be

performed than are available through the corresponding component

bivariate analyses. However, just as preliminary univariate

descriptive and bivariate correlational analyses can inform the

building of multiple regression models, so can the univariate and

bivariate methods of life-testing inform the multivariate modeling

of hazard-rate. These latter methods will therefore become part of

our exploratory data-analytic toolkit.

In this section of the paper, in the context of our data-based

example, we define the mathematical form of the proportional-
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hazards model and discuss the key assumptions on which its analytic

validity rests. We also provide a simple and more-familiar analogy

that can help the empirical researcher build an intuitive feel for

the way that the proportional-hazards model operates.

II.1 The proportional-hazards model

In our analyses of beginning teachers in Michigan through the

1970's, we are interested in the extent, to which teachers with

different characteristics have careers of different durationl. We

focus particularly on two classes of predictor: (1) Demographic

characteristics represented by the age at which the teacher first

entered teaching (a continuous variable measured in years) and the

teacher's gender (a dichotomous variable that takes on a value of 0

for males and a value of 1 for females), (2) Background

characteristics represented by the teacher's subject-matter

specialty (a dichotomous variable that takes on a value of 0 for

english teachers and a value of 1 for elementary-school teachers).

If teaching career duration differs systematically by

entryage, gender and subject-matter specialty, then the hazard-rate

function describing career persistence in the population will

depend not only upon time (the early years of teaching have been

1 Of course, it is entirely possible that some teachers will teach
for a while, leave and then return to the profession for a second
or third "spell". In the analyses presented here, we are
concerned only with the duration of the first spell of teaching.
Murnane, Singer & Willett (1988) present a more complete analysis
of the multispell data.

18
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shown to be more "hazardous" -- see Mark & Anderson, 1985; Singer &

Willett, 1987) but also upon entryage, gender, and subject-matter

specialty. In order to represent such dependencies, Cox (1972) has

introduced a statistical model that specifies the hazard-rate

function in terms of:

4, A vector of predictors X whose values differ among individuals

and which describe selected characteristics of each

individual's treatment, background and environment (the

subscript referring to the pth individual). In our analyses,

Xp includes entryage Ap, gender Gp and subject-matter specialty

S (and possibly interactions among them).

A vector of regression parameters p = (Pa,Pg,Ps,...)' that are

common to all individuals in the population and that describe

the direction and magnitude of the relationship between the

predictors and the hazard-rate function. These estimation of

these parameters is of principal interest in the analysis.

Using the Cox (1972) formulation, the following mathematical

function is proposed as an appropriate model for representing

hazard-rate as a function of the main effects of the three

predictors:

roX [PA +PG +PS]
X (t) = A

0
(t) e = (t) e

ap gp sp

b

[4]
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where )0(t) is an unknown function of time
2

.

Providing that the predictors are time-invariant, the

statistical model in Equation (4] separates out the universal time-

dependence of the hazard-rate function from its dependence on the

entryage, gender and subject- matter specialty of the members of the

population. The overall hazard -rate for the p
th member of the

population is a product of two distinct parts: a term that depends

solely upon time and is the same for all individuals, and a term

that is unrelated to time but depends upon a linear combination of

the values of the predictors for a specific individual.

11.2 The assumptions of the proportional-hazards model

As a consequence of the specific mathematical form adopted for

the statistical model in Equation (4], certain crucial assumptions

must be met if the model is to be validly applied in practice: the

"proportional- hazards assumption" and the "linear additivity

assumption".

The proportional-hazards assumption

Notice that, in the model of Equation (4], X0(t) does not

2
Both time-invariant and time-varying predictors can be

included in the Cox formulation. Therefore, proportional-hazards
modeling can easily incorporate teacher salary and teacher
qualifications (both of which are intrinsically time-variable).
However, for conceptual clarity, we restrict the current
presentation to time-invariant predictors.
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possess a subscript denoting toe identity of any particular

individual and therefore it is the same- for everyone in the

population. Furthermore, among those particular members of the

population for whom all the predictors have the value zero (if any

such exist, the hazard-rate function is equal to 0(t). For all

other individuals (for whom the predictors take on values different

from zero), the exponentiated term in Equation (4) acts to shift

the hazard-rate function multiplicatively away from X0(t).

Conceptually then, No(t) is acting as a baseline hazard-rate

function, all other individuals having hazard-rate functions that

are magnified or diminished versions of the baseline. The process

of magnification, or diminution, of an (unspecified) baseline

function to generate all other required hazard-rate functions,

implies that the hazard-rate functions of all individuals are

proportional. This inbuilt proportionality must be checked during

data-analysis if the analytic validity of the model is to be

maintained. We will discuss strategies for checking the

assumption, based on the methods of life-testing, in Section III.

The proportional-hazards constraint is both the curse and the

reward of proportional-hazards modeling. It is a curse because it

is an additional assumption that must be satisfied if the model is

to be applied in practice. However, if the assumption is validly

made, then it permits the statistical model in Equation (4) to be

estimated in two stages by the method of partial-likelihood (Cox,

1972). First, by focusing only on the second (exponentiated) term

in Equation [4], the parameter vector 0 can be estimated without

the necessity of specifying the functional form of the baseline

2'
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hazard-rate. Cox (1972, 1975) has indicated that obtained partial-

likelihood estimates of A are endowed with large-sample

distributional properties typical of their maximum likelihood

counterparts (see also Efron, 1977; Oakes, 1977). Second,

subsequent to the estimation of 0, estimates of the baseline

hazard-rate function can be obtained (Breslow, 1974).

Thus, in Cox regression, the shape of the baseline hazard-rate

function need never be specified "up-front" but can remain happily

indeterminate until estimates are required. Therefore, unlike

other types of survival analysis (which require the specification

of a particular probability distribution for the waiting-times),

Cox regression remains partially-parametric (Tuma, 1982). This has

proven to be a considerable boon for empit:cal research in

education, in which little is yet known about the nature of the

underlying survival processes.

The linear additivity .Issumpt:Ion

A useful and informative conceptual perspective on the

operation of the proportional-hazarls model can be obtained by

taking natural logarithms throughout Equation [4]:

log
e
[x
p (t)] = loge

[X
0
(t)] + [ PaAp + PgGp + PsSp [5]

Notice that, in a logarithmically-transformed world, the action of

the predictors is to shift the entire baseline hazard-rate function

systematically and additively by an amount equal to the

corresponding parameter P per unit increase in the predictor.

2'1
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Thus, in the model, the influence of the predictors on the

logarithm of the hazard-rate function is both linear in the

parameters and additive.

This assumption has considerable implication for good data-

analysis. First, the data-analyst must ensure that the linearity

assumption has been satisfied. This presents no problem when the

predictors are dichotomous, as are gender and subject-matter

specialty in our analyses. However, in the case of a continuous

predictor such as entryage, the data-analyst must check that

differences in the log-hazard-rate due to differences in entryage

are equivalent at all levels of entryage in order that the variable

can be included as a continuous predictor in the model. Second,

the data-analyst must check that the contribution of each of the

predictors to the log-hazard-rate is additive. In practice, this

involves specifying interactions among the predictors and testing

that their inclusion has a non-zero effect on model fit. We will

discuss both of these issues further, in Section III.

11.3 A useful analogy with ANCOVA

Conceptually, the transformed model in Equation (5) bears a

remarkable resemblance to an analysis of covariance model. It is

as though the influence of the predictors (the "treatment"

variables) on the logarithm of the hazard-rate (the "dependent"

variable) is being investigated, with time being treated as the

"covariate". In this context, what is the proportional-hazards

23



21

assumption in Cox regression corresponds to the assumption of

homogeneity of within-group regression lines in the analysis of

covariance. In our cc,aultations with empirical researchers, we

have found this mental image (of the log baseline hazard-rate

shifting vertically up or down under the influence of the

individual-specific predictors) to be a very useful heuristic
3

.

The model in Equation (5) indicates that the hazard-rate function
is linearly-related to the individual-specific predictors in a
logarithmically-transformed world. As data-analysts we should
not find this log-linear representation particularly unusual.
The hazard-rate is strictly non-negative and, given a "dependent
variable" with thig, property in any other data-analytic
situation, we might extend its possible range to negative
infinity prior to analysis by applying a logaraithmic
transformation.
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III. MODEL-BUILDING

In order to examine the relationship between the selected

predictors (entryage, gender and subject-matter specialty), and the

censored teaching career durations, a series of proportional-

hazards models must be fitted and compared. And, for every model

that is to be interpreted, the investigator must demonstrate that

the underlying proportional-hazards and linear additivity

assumptions are met and that the model does, in fact, fit. In this

section, we demonstrate how preliminary survivor function

estivation and life-table testing provide simple methods for: (1)

checking the validity of the linear additivity and proportional-

hazards assumptions, (b) eliminating less promising predictors from

consideration in the model-building process, and (c) suggesting

particular predictor combinations that might be included as

interaction terms in the proportional-hazards models.

III.1 Checking the assumptions

In multiple regression analyses of uncensored data, the

underlying assumptions are assessed easily by the careful

examination of regression residuals. In the application of Cox

regression to the analysis of censored waiting-time data, the

25



23

situation is considerably more opaque. Not only are the underlying

assumptions themselves more complex but there is also no non-

systematic ("error") term in the proportional-hazards model to

represent variation unexplained by the predictors and consequently

there is no direct analogy for the regression residual . In the

literature, a large and confusing variety of formal and informal

tests have been proposed for examining the validity of the

underlying assumptions, many of them difficult to apply and hard to

interpret (Allison, 1984; Harrell & Lee, 1986; Miller, 1981;

Kalbfleisch & Prentice; 1981)
5

.

Until new tests are evolved, or until the glitches are worked

out of the old ones, the empirical researcher requires a few

workable assumption-evaluation strategies -- particularly those

based on plots -- that can readily be applied in practice. Such

strategies must necessarily be able to be applied before the

proportional-hazards models are fit. A natural approach is to use

the univariate descriptive and bivariate inferential methods of

4
Miller (1981, pp. 168-172) and Kalbfleisch & Prentice (1980, pp.
96-98) disci= sc-called generalized residuals that can be used
to check the adequacy of the proportional-hazards model (see
also, Cox & Snell, 1968). The conceptual and theoretical
justification for generalized residuals is not easy to grasp and
the residuals are difficult to obtain with commercial software
packages.

5
SAS PROC PHGLM provides a simple test of the adequacy of the
proportional-hazards assumption the "z:ph" test (see also
Harrell & Lee, 1986). The provided z-statistic is intended to
permit the testing of the null hypothesis that the proportional-
hazards assumption is met, for each predictor separately. In our
experiences, however, the z:ph test is so very highly sensitive
to the presence of ties among the waiting-times -- the obtained
z-statistic beiig inflated by factors of 10 to 100 as the
proportion of ties increases -- that the test has almost no
practical utility.

PC
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life-testing referenced earlier to estimate the survivor function

within strata defined by the selected predictors and use these

estimates as the basis for diagnostic testing.

Integrating and taking logarithms in Equation [4], provides

the following reformulation of the proportional-hazards model:

loge(-loge(Sp(t))) = loge(-loge(So(t))) + [6]

Thus, under the Cox regression model, the log( -Iog) survivor

function is an additive linear function of the predictors. In

other words, provided a dichotomous predictor such as gender

satisfies the proportional-hazards assumptio. plots of the log( -

log) survivor function .against time for men and women will have the

same shape but be simply displaced vertically by a constant amount.

Provided a continuous predictor such as entryage satisfies both the

proportional-hazards and the linear-additivity assumptions, plots

of the log(-log) survivor function against time will have the same

shape but be displaced vertically by a constant amount for each

unit increase in the predictor.

Because the survivor function is easily estimated (independent

of proportional-hazards model-fitting) by the methods of lils-

testing and because inspection of the 13g(-log) survivor function

readily reveals the failure of either tne proportional-hazards or

the linear additivity assumption, estimation of this function

provides the most accessible diagnostic strategy that can be

applied during the exploratory data-analytic phase of model

b.Jilding. In other words, in advance of model-fitting, the

univariate and bivariate methods of li:a-testing (Lee, 1980) can be
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used to estimate survivor functions within each distinct level or

stratum of each selected predictor so that the estimated log(-log)

survival probabilities can be plotted against time and examined.

Most commercial software packages (BMDP1L, SAS PROC LIFETEST, SPSSx

SURVREG) provide life-table and product-lim;.t (nonparametric

maximum-likelihood) estimates of the survival-function so that the

required log(-log) survival plots can easily be obtained.

Checking the proportional-hazards assumption

In practice, instead of plotting estimated values of log(-

log(S(t))) against time, it is more useful to examine the negative

log(-log) survivor plot (that is, a plot of -log(-log(S(t))) versus

time). This latter plot is a monotonic transformation of the

original estimated survivor function (i.e., both decrease steadily

as time passes), whereas the former plot is a "flipped over"

transformation of the original and therefore less intuitively

appealing.

Thus, for our sample of beginning Michigan teachers, Figure

[1] presents -log(-log) survivor plots estimated separately for men

and women by the product -limit method (Kaplan & Meier, 1958).

Figure [2] presents similar plots, by subject-area specialty
6

.

Notice that, in both figures, the pairs of plots appear to have an

approximately constant vertical separation over time indicating

that the proportional-hazards assumption is met for both

predictors.

6 All life-test estimation reported in this paper was performed
with SAS (Version 5) PROC LIFETEST and all plots were created
with SASGRAPH PROC GPLOT.
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Insert Figures [1] and [2] here

When performing such comparisons purely by inspection, it is

difficult to know how deviant the constant separation of the

estimated -log(-log) survivor functions must be before the

proportional-hazards assumption is compromised. The work of

experts in the field (Kalbfleisch & Prentice, 1980, pp. 89-95,

Figures 4.3 through 4.10) and our own practical experience suggests

that the methodology is quite robust against violations of this

assumption. Nevertheless, just as we would be very cautious in the

interpretation of an analysis of covariance in which there existed

a possibility that the within-group regression slopes were not

homogeneous, so we should be similarly circumspect in our

interpretations of Cox regression models fitted when the

proportional-hazards assumption may not be met.

Unfortunately, the "intra-ocular" testing of the proportional-

hazards assumption fails to take into account the standard errors

associated with the survival probability estima.;es. When standard

errors are large, -log(-log) survival functions that appear to

violate the proportional-hazards assumption may in reality be

indistuishable from one another and the question of their "constant

separation over time", therefore, becomes mute. In practice,

especially when relatively few subjects are involved in some

particular level or stratum of the predictor being examined,

adjacent estimated -log( -log) survivor-functions may overlap and

29
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criss-cross quite frequently a condition that, 'f it represents

the population situation accurately, of necessity violates the

proportional-hazards assumption. However, by judicious application

of the the Logrank or Wilcoxon tests of survivor function

equivalence, the investigator may be unable to reject that the

offending functions are, in fact, identical (in which case, the

question of "constant separation over time" need not be addressed).

Potentially, this provides the investigator with a diagnostic

strategy of pairwise survival-function comparison that can be

applied effectively in practice although, as with any other form of

multiple comparisons, the family-wise a-level must be adjusted

appropriately.

Checking the linear additivity assumption

In our analyses of the Michigan beginning teacher dataset, if

entryage is to be included as a continous predictor in a Cox-

regression model, then we must demonstrate that its action

satisfies the assumption of linear additivity. In other words, we

must check that equal increments of entryage are related to equal

vertical shifts of the -log(-log) survival function. The simplest

way to test such assumptions is to stratify according to the values

of entryage and simultaneously display the estimated within-stratum

-log(-log) survivor functions. Figure [3] presents such a plot.

Insert Figure [3] about here
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Inspection of Figure [3] not only indicates the failure of the

linear additivity assumption for entryage, but also points up an

interesting effect. Distinguishing only on entryage, there appear

to be two sorts of teacher; younger teachers (of entryage 30 and

less), and older teachers (of entryage 31 and more). Because of

this interesting natural dichotomization, in all subsequent

analyses entryage has been recoded as a dummy variable with value 0

for younger teachers and value 1 for older teachers. Judgement of

the adequacy of the proportional-hazards assumption for groups

distinguished by the newly-dichotomized entryage is informed by the

estimated -log(-log) survival functions in Figure [4].

Insert Figure [4] about here

111.2 Choosing predictors and building a hierarchy of models

Corresponding to each of Figures [1], [2] and [4], there are

tests of survival-function equivalence such as the nonparametric

Wilcoxon and Logrank tests (see Lee, 1980, Ch. 5). The

significance levels of these tests are usually in good agreement,

although the Wilcoxon statistic does place more weight on early

differences between the survival functions whereas the Logrank

statistic attaches equal importance to all differences regardless

of location along the time axis. However, because there is a

particularly "close relationship between the logrank [test] and the
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proportional-hazards model" (Kalbfleisch & Prentice, 1980, p.215),

we favor this latter test as an exploratory tool.

If the investigator carries out the Logrank test when plotting

the -log(-log) survival functions above, then the test statistics

can be used to inform the model-building process. In particular,

survival functions that can be inferred to differ in the population'

on the basis of the Logrank test are likely to be widely separated

as estimated -log(-log) survival functions. Consequently, they are

also likely to have been generated by grouping on a predictor that

has substantial influence in the Cox regression model. For this

reason, just as simple bivariate correlational analyses can inform

the building of multiple regression models, so can systematic life-

testing be one foundation for the construction of proportional-

hazards models.

In the Michigan data, although the vertical separation of the

subject-area-specific -log(-log) survivor functions in Figure [2]

is much smaller than the .orresponding vertical separations in

Figures [1] and [4], the null hypotheses of survival function

equivalence can be rejected for all three predictors: entryage

(logrank chi-square statistic=67.9, df=1, p<.000), gender (logrank

chi-square statistic=59.8, df=1, p<.000), and subject-area

specialty (logrank chi-square statistic=6.8, df=1, p<.009). Thus,

all three variables are likely to be decent predictors in

subsequent proportional-hazards models, with the possibility that

subject-area specialty will have the weakest effect.

Table [1] presents the results of fitting a variety of

4
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proportional-hazards models the method of partial likelihood7
.

For the moment let us only consi.....3r Models #1 through #3, each of

these models contains a single predictor. No.,...ce that the fittld

relationships are as we might have expected on the basis of the

survival-function comparison above. By inspection of both the

parameter estimates (in relation to their standard errors) and the

chi-square improvement-in-fit statistics, we see that entryare and

gender both demonstrate a strong non-zero relationship with hazard-

rate (p<.001) and, while the influence of subject-area specialty is

much weaker, it remains significantly different from zero (p<.05).

Insert Table C1) about here

111.3 Including interactions as predictors in the model

As in multiple regression analysis, the influence of the

predictors on the dependent variable may not be solely additive.

The predictors may interact in their prediction of the hazard-rate.

For this reason, products of the predictors may be legitimately

included as interaction terms in the model. And, just as

exploratory -Ice-log) survivor plots can inform the selection of

predictors for inclusion as main effects in propertional-hazards

All of the Cox regression analyses reported in this paper were
carried out by SAS (Version 5) PROC PHGLM.

4'



Table (1]. Investigating career duration of teachers entering the
profession in Michigan in 1972: estimated proportional-hazards
model parameters, standard errors and improvements-to-fit, models
#1 through #6.

Model
ID#

Parameter
----------

Model
Chisquare
Statistici

(df)

Estimate for each covariate

A
(se)

G
(se)

A*G
(se) (se)

[1]

[2]

-.794*"
(.105)

72.484**
(1)

58.36***
(.072) (1)

[3] -.164+ 5.86'
(.067) (1)

[4] -.854." .570*** 143.08***
(.105) (.072) (2)

[5] - 023 .624*** -.955*** 153.41***
(.246) (.075) (.271) (3)

[6] -.013 .638*** -.9574'* -.185"*" 160.794:.
(.246) (.075) (.271) (.069) (4)

*p<.05 "p<.01 4.4.'pe:001

+The model chi-square statistic is suitable for testing Ho: there
is no improvement in fit on the simultaneous addition of all the
predictors in the model to a model that contains no predictors.
It is obtained by subtracting approximate chi-square (-2 log
likelihood) goodness-of-fit statistics for the fitted model and
for a model containing no predictors.

4'")
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models (Figures El], [2] and [4]), so can similar plots inform the

identification of potential interactions among the predictors.

For our sample of beginning Michigan teolchers, Figure [5]

presents -log(-log) survivor functions estimated separately for

young men and women, and for older men and women. Notice that,

ignoring for the moment the possibility that the proportional-

hazards assumption may not hold, the four plots offer considerable

evidence of an interaction between entryage and gender. In

particular, whereas the estimated -log(-log) survival plots for

young men and older men coincide, the equivalent clots for women

are widely separated and fall on opposite sides of the plots for

men. This impressive gender variation in separation between

entryage survival functions suggests that the effect of entryage on

teacher career duration is very important for women but not at all

important for men. It suggests that entryage and gender interact

very strongly in the prediction of the hazard-rate function, and

that a product term that captures this synergy must be included in

any proportional-hazards model which includes entryage and gender

as predictors8 .

Insert Figure [5] about here

Murnane, Singer and Willett (1988), in a more extensive analysis
of these same iuestions, conjecture that there are forces (such
as the decision to embark upon full-time child-.earing) which
draw young women out of the profession early %....using their
survival functions to fall below those of the othe- groups and
making the profession appear much more hazardous for them.

4
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In Figure [5], because the estimated -log(-log) survivor

functions for the four entryage/gender subgroups do not maintain

constant vertical separation over time, there is also evidence that

the proportional-hazards assumption may no longer be met. This

potential failure of a crucial assumption serves to emphasize that

there are two types of interaction that are of interest in

proportional-hazards modeling: (a) predictor-predictor

interacions, and (b) predictor-time interactions. The form -Ir

interactions can be represented by products of the appropriate

variables and are legitimate candidates for inclusion as predictors

in any proportional-hazards model. The latter interactions

undermine the very fabric of the analysis by challenging the

proportional-hazards assumption itself and must be demonstrated to

be zero.

The earlier analogy with ANCOVA provides insight into, and e

method of evaluating, the potential failure of the proportional-

hazards assumption. The predictor-predictor interactions noted

above correspond, in analysis of covariance, to perfectly

acceptable interactions among the ANCOVA treatment variables

whereas the predictor-time interactions correspond to interactions

between the treatment variables and the covariate in analysis of

covariance interactions that would violate the assumption of

homogeneity of within-group regression slopes. Just as failure of

the homogeneity of within-group regression slopes can be evaluated

by testing the addition to the ANCOVA model of interactions between

the group dummies and the continuous covariate, so can the addition

to the Cox model of interactions between the predictors and time
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inform the evaluation of the proportional-hazards assumption.

The modeling of predictor-time interactions requires the

inclusion of time-varying predictors in the proportional-hazards

model (Allison, 1984; Kalbfleisch & Prentice, 1980). While this is

not difficult, it demands computer software that is not widely

available and is a topic that we have chosen not to discuss in this

paper. Typically, an investigator lacking such software and faced

with the dilemma of Figure [5] would either develop proportional-

hazard models for subject-area specialty within each of the four

entryage/gender subpopulations separately, or would decide that the

violation was not serious and could safely be ignored. Based on

exemplary plots presented in the literature (Kalbfleisch &

Prentice, 1980, pp. 91-95), we have decided to adopt the latter

approach.

Model #4 of Table Ell presents parameter estimates and

improvement-in-fit statistics for a proportional-hazards model that

includes only the main effects of entryage and gender. Model #5 in

the same table includes the interaction between entryage and

gender, in addition to ts..eir main effects. Comparison of the two

models by subtraction of the model chi-square statistics and the

corresponding degrees of freedom indicates that the inclusion of

tie interaction term leads to a considerable improvement in fit

(cLcirge in model chi-square statistic = 10.33, change in df=1,

p<.005). Thus, the non-additive influence of entryage and gender

suggested by Figure [5] is strongly confirmed9.

9
Notice that, Oompared to earlier models, the magnitude of the
estimated age effect in Model #5 is very small. This is not
unexpected because, when the interaction of age and gender is

4"'
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included in the model, the main effect of age indicates the
differences in survival between younger and older men and, as we
have seen by our earlier inspection of Figure (5), this
difference is close to zero.

48
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IV. THE ISSUE OF INTERPRETATION

Having carried out a lengthy and detailed exploratory analysis

to support the building of a hierarchy of proportional-hazards

models, the investigator ultimately faces the problem of

interpreting the findings. This can be an onerous burden because

the obscure nature of the "dependent variable" (the hazard-rate

function) and the logarithmic construction of proportional-hazards

models themselves makes the interpretation somewhat opaque.

Furthermore, in applied research, the substantive questions

being answered often have large-scale policy i"plications and must

be reported to methodologically-naive clients. In our case, a

large section of the audience for our findings consists of school

principals, school superintendents and state and federal

administrators. This group typically displays minimal statistical

training, if at all. Thus, careful consideration needs to be given

to the format of the research-reporting and largely non-technical

approaches based on intuitively-oriented plots and summary

statistics must be applied. In this section, we give examples of

displays and summary statistics that can be used to enhance the

substantive interpretation of the findings of a survival analyis.

49
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IV.1 Summarizing and comparing the fitted models

Table [1] represents what we consider to be the minimally

acceptable format for reporting the fits of the proportional-

hazards modeling process. The table presents the parameter

estimates, their standard errors and the model improvement-to-fit

statistics.

In addition, the table systematically presents results for a

hierarchy of fitted models. To structure this hierarchy, as

Hosteller & Tukey (1977) recommend in the case of multiple

regression analysis, we have established an order of priority among

the predictors on the basis of our research question. Other than

baseline analyses to determine the "zero-order" influence of the

three predictors individually, our principal intention is to

control for the effects of the demographic variables (entryage and

gender) and then examine the influence of the background

characteristics (subject-area specialty) on career duration.

Therefore, rather than reporting a single "best" model, we have

reported several fitted models in order to: (a) demonstrate the

priority among the various classes of predictor, (b) illustrate

that we have done a credible job of considering alternative

explanations of the phenomenon under study, and (c) provide the

reader with a basis for comparison when interpreting the later,

more complicated models.

Thus. Models 01 through #3 display the zero-order influence of

each predictor separately on career duration. Models 04 and 05

summarize the joint influence of the demographic characteristics on

hazard-rate and their comparison allows the importance of the

5 00
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entryage/gender interaction to be evaluated (see Section 111.3).

Models #5 and #6 permit the influence of subject-area specialty to

be examined, having controlled for demographic variation. In this

latter comparison, by inspecting both the change in the model chi-

square statistic and the parameter estimate in relation to its

standard error, we note that subject-area specialty appears to play

a role in the prediction of teaching career duration even when the

influence of entryage and gender have beencontrolled.

IT2 Interpreting the fitted models

Algebraically, the magnitude and direction of the effects of

the predictors on the hazard-rate function are not difficult to

interpret, particularly if the logarithmic reformulation of the

proportional-hazards model in Equation [5] is utilized. In this

re-expression, predictors can be interpreted in terms of their

additive influence on the logarithm of the hazard-rate.

Thus, as the value of predictors with positive "slope"

parameters increases, the log-hazard-rate also increases and there

is a corresponding decline in the probability of survival. For

example, in the case of the zero-order influence of gender (Model

#2), the parameter estimate (.520) indicates that, as gender

changes frDm G=0 (men) to G=1 (women) the log-hazard-rate is

shifted "vertically upwards" by .520. Thus, at all times, the

fitted hazard-rate for women will be "higher" (i.e., more positive)

than the fitted hazard-rate for men. Consequently, we can regard

the teaching career as generally "more hazardous" for women; they

5'
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are less likely to survive, more likely to leave. On the other

hand, the negative parameter estimate for subject-area specialty in

Model #6 indicates that, after controlling for the demographic

variables, the teaching profession is slightly less hazardous for

elementary school teachers (S=1) than for english teachers (S=0)

and therefore the former will remain longer than the latter.

Even though such interpretations are not particularly

difficult to make, they are not readily accessible to the naive

reader. To make our research findings more palatable, we have

found fitted survival functions to be of the greatest assistance as

this avoids discussion of the hazard-rate entirely. By

systematically varying the values of the predictors, it is a

relatively simple matter to generate and plot fitted survival

functions for hypothetical subgroups in the population. Thus,

Figure 16] presents a series of fitted survival plots in which the

career persistence of the four demographic groups is documented, by

subject-area specialty. We have found such plots to be acceptable

to most non-technical audiences, as seems intuitively obvious to

the methodologically-unsophisticated that the size of the entering

cohort will decline over time and that ...-ere will be differences by

entryage, gender and subject-area specialty.

Insert Figure (6) here

Notice, in Figure (6], that a horizontal dashed line has been

drawn across the plots where the fitted survival probability is
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equal to one half. By reading off the time on the abscissa

corresponding to this probability, a useful summary of the fitted

survival distribution is estimated -- the predicted median lifetime

-- the length of time taken by 50% of the particular subgroup to

"die". Thus, on the basis of the fitted survival plots in Figure

[6], the predicted median lifetimes of each of the distinct groups

in our analyses are presented in Table (2). This latter table is

relatively simple for the non-technical to understand and can form

the basis of an interesting report or oral presentation.

Insert Table (2] here
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Table [2]. Investigating career duratic of teachers entering the
profession in Michigan in 1972: estLiated median lifetimes for
elemsntary-school and english teachers based on Model 06 in Table
(1), by entryage and gender.

Subject-area
Specialty

Entryage<=30
(A=0)

Entryage>30
(A=1)

Men
(t.10)

Women
(G=1)

Men
(G=0)

Women
(G=1)

English
(S=0)

Elementary

8.8

>11.0

3.9

4.7

8.8

>11.0

>11.0

>11.0
(S=1)
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FIGURE CAPTIONS

Figure El]: Testing the proportional-hazards assumption for gender.
Product-limit (nonparametric maximum likelihood) estimates of
log(-log) survivor probability plotted against time, for men and
women.

Figure [2]: Testing the proportional- hazards assumption for
subject-area specialty. Product-limit (nonparametric maximum
likelihood) estimates of -log(-log) survivor probability plotted
against time, for elementary-school and english teachers.

Figure [3]: Testing the linear additivity assumption for entryage.
Product-limit (nonparametric maximum likelihood) estimates of
log(-log) survivor probability plotted against time, for a variety
of entering age cohorts.

Figure [41: Testing the proportional-hazards assumption for
entryage. Product-limit (nonparametric maximum likelihood)
estimates of -log(-log) survivor probability plotted against time,
for teachers for whom entryage<=30 and entryage>30.

Figure [5]: Detecting the interaction of entryage and gender.
Product-limit (nonparametric maximum likelihood) estimates of
log(-log) survivor probability plotted against time for men and
women, by dichotomized entryage.

Figure E6J: Fitted survival-functions. Survivor functions
estimated from Model #6 in Table [I] for each of the
entryage/gender subgroups, by subject-area specialty.


