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Introduction

Problem solving in many subject-matter domains often

requires the problem solver to transform a problem from its

original symbolic representation (e.g., words) into an

alternative symbolic representation (e.g., iconic, mathematical)

in order to arrive at a solution (Clement, Lockhead, & Monk,

1980; Hooper, 1981; Nesher, 1982; Shavelson, 1981; Shavelson &

Salomon, 1985). Consider, for example, the following word

problem: "Start with one beaker of red solution and one beaker of

water. Place a teaspoon of red solution from the first beaker

into the second beaker. Then place a teaspoon of liquid from the

second beaker into the first beaker. Is the amount of red
.1.,

solution in the first beaker equal to the amount of water in the

second beaker?" The verbal presentation usually leads to a

logical mistake. Recognizing that the word problem can be

transformed into an algebraic representation leads readily to the
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correct solution.

For a variety of reasons, tc be discussed below, students

may have difficulty translating from the symbolic representation

of the problem to another symbolic representation that leads to a

solution. Or, they may be able to translate among certain

symbolic representations more easily than among others. For the

purpose of assessing subject matter knowledge, tests that fail to

take these possibilities into account may produce distorted

estimates of students' achievement. Problems on typical

achievement tests often require certain kinds of translation (for

example, from words to algebra or graphs) and not others. Yet,

students may be able to solve the same problems when presented in

an alternative symbolic form. If so, typical achievement tests

would underestimate these students' subject matter knowledge.

No research to date has systematically investigated the

relationships among the symbolic representations of problems

given to students to solve, the representations that students use

to solve the problem, and the accuracy of their solutions. This

study examined some aspects of these relationships. Specifically,

it systematically examined students' problem-solving processes

and performance as they solve essentially the same problems

presented in a variety of symbolic representations. The purposes

of the study were (a) to describe the mental representations that

students used while solving problems,,,,,,(b) to determine the kinds

of translation (if any) that took place, (c) to determine the

accuracy of their meatal representations and translation, and (d)

to link the accura,:y of their representations to problem-solving

performance.
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Taxonomies of Symbolic Representations

Most of the research on symbolic representations and

translation among them has focused on describing categories of

representations and on defining translation. Lesh, Post, and

Behr (in press), for example, described five contexts for solving

mathematical problems: real scripts which organize knowledge

around "real world events that serve as models for interpreting

and solving other kinds of problem situations" (p. 6),

manipulative models (e.g., Cuisinaire rods) which contain

elements that correspond to relationships and operations in many

everyday situations, spoken languages including special languages

such as logic, and written symbols, which in addition to English,

may involve specialized sentences such as x + 3 = 6.

Hooper (1981) developed a more fine-grained typology for

some categories: equations--mathematical formalizations that

represent precise relations between things; graphs--simultaneous

displays both of the general relationship between variables and

the specific relationships between particular values of a set of

variables; tables--an intermediate representation between

equations and graphs that provides information about the

relations among values of a set of variables; pictures--displays

of specific instances, making the problem concrete, and
1.,

diagrams--visual displays of the general characteristics of a

problem that demonstrate abstract concepts such as Venn diagrams,

pie charts, flow charts. We adapted Hooper's taxonomy to

representations of science concepts. We used equations, graphs,

3
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tables, and diagrams from Hooper's taxonomy. We also used a fifth

representation, numerical exercises.

No one claims that the symbol systems just mentioned are

single or pure symbol systems (see Lesh, 1981). Diagrams, for

example, may not be single or pure symbol systems. Schematic

drawings of electric wiring, pie charts, flow charts, and Venn

diagrams can all be considered diagrams but they use somewhat

different symbols (circles, squares, numbers, arrows) and even

the symbols that they have in common may have different meanings

(compare a circle in a flow chart with a circle in a pie chart).

At present, because no one knows whether these differences

influence students' problem-solving processes, clarifying the

type of symbolic representation used in any particular study is

very important.

Definition of Translation

One comprehensive definition and description of the

translation process between symbol systems comes from Lesh and

colleagues. Lesh (in press) defined "translation among

representations in mathematics as a problem-solving process of:

(1) translating from the 'given situation' to a mathematical

model, (2) transforming the model so that desired results are

apparent, an (3) translating the model based result back to the

original problem situation to see if it is helpful and makes

sense" (p. 1). Lesh, Post, and Behr.14in press, p. 8) identify

five steps in the translation process, corresponding to modeling

a mathematical problem: (1) simplifying the problem by ignoring

irrelevant information, (2) mapping between the givens and the

'model,' (3) transforming the properties of the model to arrive
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at a result, (4) translating the result back to the givens, and

(5) evaluating the fit of the result to the givens. Lesh (in

press, p. 2) provides the following example in which the same

problem can be translated from words into algebraic or geometric

representations: "A boat, traveling upstream on a river, takes

two hours to reach its destination eight miles away. The return

trip downstream takes one hour and twenty minutes. What is the

speed of the river current?"

Lesh argues that "The ability to do these translations are

significant factor influencing both mathematical learning and

problem-solving performance" (Lesh et al., in press, p. 7).

Indeed, students able to solve mathematical problems do so by

representing the problems not in a single symbol system, but in

several systems, each corresponding to different parts of a word

problem (Lesh, Landau, and Hamilton, 1983).

Most students, however, not only have difficulty understan

ding word problems and pencil and paper computations, they lack

an understanding about models and languages needed to represent

and manipulate ideas in problems (Behr et al., 1985; Post, 1936).

To diagnose the.e difficulties, Lesh et al. (in press, p. 8)

recommended presenting an "idea in one representational mode and

asking the stulent to render the same idea in another mode.

Then, if the diagnostic questions indicate unusual difficulties

with one of the (symbolic representations)... other

(representations)... can be used to strengthen or bypass it."

We agree with Lesh that instruction should encourage

translation among symbolic forms. Given the fact that much
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current instruction does not focus on this concern or even deal

with a considerable variety of symbolic representations, an

important first step is to determine the kinds of translation

that students engage in spontaneously and the effects on the

accuracy of their solutions to problems. The results have

implications not only for instruction but also for achievement

testing. Typical tests may not measure the full range of

students' problem-solving abilities. Achievement tests present

problems in one dominant form: verbal, multiple-choice (often

word) problems. Not all students have experienc.3 with such

representations, especially if other representations have been

taught with greater frequency, or if this representation has not

been taught specifically. Hence, switching from the usual verbal

multiple-choice word problem to other representations might

reveal knowledge that otherwise would be judged absent.

Empirical Studies of Translation

Although the notion that students have difficulty

translating among symbolic forms is commonplace, few studies have

systematically investigated the extent of students' difficulties.

Clement, Lockhead, and Monk (1980) showed that even advanced

students have difficulty translating a word problem described

verbally to an equation. For example, only 39% of freshman

engineering majors were able to correctly solve the following

problem: "Write an equation using the.,variables C and S to

represent the following statement: At Mindy's restaurant, for

every four people who ordered cheesecake, there were five who

ordered strudel. Let C represent the number of cheesecakes

ordered and let S represent the number of strudels ordered."
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(Clement, Lockhead, & Monk, 1980, p. xxx). For the following

problem, "Write an equation for the following statement: There

are six times as many students as professors at this university.

Use S for the number of students and P for the number of

professors.", only 63% of 150 calculus students and 43% of 47

non-sciene majors taking college algebra were able to generate a

correct algebraic representation (Clement, Lockhead, & Monk,

1380, p. xxx). The most common error was trying to .Hatch the

words and algebraic symbols too closely (see also Galvin & Bell,

1977; Nesher, 1979; Paige & Simon, 1966). This matching would,

for example, produce the equation 6S = P for the students and

professor problem. Clement, Lockhead, and Soloway (1980)

suggested that students did not have difficulty understanding the

wording of the problem, but instead misinterpreted the syntax of

the the equation they generated.

In an attempt to disco7er whether students had difficulty

with translations in general, or only from non-algebraic

representations into algebra, Hooper (1981) extended the work of

Clement et al. by asking calculus and pre-calculus students to

generate an equation, a graph, a table, a picture, and a diagram

for the student-professor word problem. Hooper found that the

difficulties that some students demonstrated in translating from

words to algebra generalized to other representations as well: a

.+%

subset of students could not represent the concept of a variable

in any representational mode. Thus, Hooper (1981, p. 31)

concluded that "errors in a number of representational domains

suggest that the errors observed in the equations represent a

7
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fundamental lack of understanding of the relationships between

variables and general unfamiliarity with the conventions of all

mathematical representations, not only equations. The errors in

eauations do not, then, simply reflect difficulties in syntactic

translation from verbal descriptions to equations or the lack of

procedural specificity in equations."

Clement et al.'s (1980) and Hooper's (1981) studies required

students to translate from a single, given symbolic

representation to specific other(s). While their studies were

very important in showing the difficulties that students have in

translating among symbolic representations under those

conditions, they did not show the kinds of translation that

students engage in spontaneously. The study reported here focused

on whether students can correctly interpret and solve the same

kind of problem given in multiple symbolic forms. The focus of

the present study, then, was on the kinds of translation that

students engaged in spontaneously when solving problems presented

in a variety of symbolic forms.

Determinants of Translation

Although there is no empirical data on the kinds of

translation that students engage in spontaneously when presented

with prpoblems in several symbolic forms, it possible to generate

a number of hypotheses to describe when translation will or will

not take place.

No-translation hypothesis. One hypothesis is that the

symbolic form of a problem as given will set boundaries on the

mental representations that students will use to solve the

problem. For example, problems presented iA words may most
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likely or initially lead to verbal representations, whereas

problems presented as diagrams may lead co nonverbal, pictorial

repre' ktions.

Symbolic encoding specificity. A second hypothesis, one that

competes with the first, is that the symbolic representations

used in instruction may set boundaries within which students

learn and remember concepts. This encoding specificity may place

restrictions on students' abilities to translate the problem as

given into a symbolic representation that admits to a solution.

Encoding specificity may characterize students' knowledge

especially when concepts are learned initially. Fuller

understanding may come with repeated exposure to the material in

different contexts and with repeated application of the concepts

to different types of problems. With full understanding of the

material, multiple symbolic representations of the same concept

can be recognized and used to solve problems.

Duo, to the limitations in depth of coverage and time

allocated to important concepts in much instructional contexts,

we suspect that students' acquire only partial understanding from

many courses. This partial understanding is probably dominated

by the verbal and limited range of other symbolic representations

used in classroom instruction.

We cannot find research directly relat'd to symbolic

encoding specificity. The closest evidence is indirect and comes

from studies finding that people acquire different knowledge from

different media. The results of Thorndyke and Hayes-Roth's

(1982) map-learning study, for example, supported their
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hypothesis that when learning from a map, people encode global

spatial relations, images that can be scanned and measured like a

physical map; whereas when learning through navigation, people

acquire knowledge about the routes connecting different

locations.

Aptitude or preference. A third hypothesis is that students

may have a preference or aptitude for a particular symbolic form;

this preference will guide the mental representation(s) that

students use to solve problems. Furthermore, this aptitude or

preference may vary from student to student or from group to

group (e.g., cultural background). In this perspective,

students' understanding of a subject will depend greatly on the

symbolic representations used in instruction, students' preferred

symbolic mode of representing that subject, and the fit between

instruction and aptitude.

Cronbach and Snow (1977) reviewed resear'-h trying to uncover

interactions between aptitudes for learning material in different

modes of communication (e.g.. verbal, figural) and instructional

treatments varying the modes of communication. Not )nly were the

results of the studies mixed, but Cronbach and Snow concluded

that the studies often focused on the wrong questions or used

treatments or aptitudes that were broad or ambiguous. For

example, they point out that thr, aptitudes and instructional

treatments used did not always correspond closely: for e,L1mple,

they did not see how graphs, pictures, and diagrammatic schemes

would capitalize on spatial reasoning ability (p. 280).

Furthermore, they described how some labeling of treatments may
be incomplete! "we came to realize that a task is to be



characterized not merely by its stimuli and the required

responses, but also by the way a good performer processes the

information. In classifying spatial material and generalizing a

rule, verbal processes can be as important as spatial ones"

(Cronbach & Snow, 1977, p. 281). The present study avoids the

latter shortcoming by explicitly investigating students' problem-

solving processes for problems presented in different symbolic

modes.

Task demands. A final hypothesis j; that other features of

the problem may guide the kinds of translation that take place.

For example, students may translate from the symbolic form of the

prob:em to the symbolic representation of the response required.

Problems requiring students to draw a picture may lead to

representations concerned with imagery, regardless of the whether

the problem was initially presented in words, numbers, tables, or

some other symbolic form.

The present study could test some of these hypotheses, but

not others. For example, we did not control instructional

histories of students, so we could not test the encoding

specificity hypothesis. Furthermore, we did not have a measure

of symbolic aptitude or preference and so could not examine

whether instructional history interacted with individual

preference. The present study was, however, designed to

investigate the kinds of translation "that took place and to

relate the resulting translation (or lack of it) to various

features of the problems (symbolic form, type of response

required).
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Methodology

Overview

A test of the ideal gas laws, representing five different

symbolic representations, was administered to 20 high school

students. Students were asked to think aloud as they solved the

problems. Transcripts of their protocols were analyzed to

determine the kinds of symbolic representations students used

while solving those problems. Students' answer sheets were used

to assess the accuracy of their responses.

Sample

Twenty students from two eleven-grade classes in a Los

Angeles high school participated in this study. The classes were

selected to represent two types of classes to vary abili,.y and

coverage of the ideal gas laws. Ten of the students were

enrolled in an above-average chemistry class that had spent 15

lessons on the laws, and the other ten came from an average

physical science class that had spent 10 lessons on the topic.

Most students were white; approximately 30% were of Hispanic

bi-:kground, All students were fluent in English. All students

-volunteeretl to participate in the study and were paid $5 for

their time.

Test Construction and Structure

The test was designed to systematically vary three factors:
.A.,

(1) three ideal gas laws, (2) two response forms (quantitative,

qualitative), and (3) five symbolic representations of the problem

description. In general, one item was generated for each

combination of these three factors.
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First, the test included problems on the three ideal gas

laws: Charles' Law (the relationship between temperature and

volume of an ideal gas when the pressure is kept constant),

Boyle's Law (the relationship between volume and pressure of an

ideal gas when its temperature is kept constant), and Gay-

Lussac's Law (relationship between pressure and temperature of an

ideal gas when the volume is kept constant). No attempt was made

to assess students' understanding of each of the specific

concepts of pressure, temperature and volume.

Second, there were two types of problems: quantitative and

qualitative. Quantitative items typically contained quantitative

information in the stem of the item and required students to give

a numerical response. Qualitative items did not contain

quantitative information and asked students to give non-numerical

responses.

Third, problems for each of the laws and type of problem

were represented by five different written symbols: words,

diagrams, tables, numbers, and graphs.

One item was written to represent each combination of the

three factors described above, except qualitative problems in

numeric symbolic form. Each student was given a different random

sample of 20 problems to solve (the maximum number that students

could respond to in 50 minutes). Figure 1 gives examples of each

of the five symbolic forms of quantitattive problems. Figure 2

gives examples of qualitative problems in each symbolic form

(there were no numerical, qualitative problems).

Insert Figures 1 and 2 about here

13



Test Administration

The test was administered in a one-to-one interview and

lasted for 50 to 60 minutes. Each student was interviewed by one

of three interviewers. All interviewers followed the same

interview procedure, using a general script. The interview

started with a short explanation of the "thinking aloud"

technique and then a written example of a hypothetical think-

aloud protocol was real aloud to the student (see Shavelson,

Webb, & Burstein, 1985, for a methodological critique of the

think aloud method; see also Bell & Osborne, 1981; Ericsson k

Simon, 1980; Osborne & Gilbert, 1980). After the interviewer

felt that the student understood what he or she was supposed to

do while taking the test, a brief summary of the ideal gas laws

was introduced in a written form and the interview started.

During the interview students were asked to think aloud while

they solved the problem and to write their answers (as well as

any other work) in the test booklet. After students gave their

answers to the problems, the interviewer asked further questions

to determine whether students used other symbolic forms that they

did not verbalize while solving the problem. This probing took

place whether the student's answer was correct or incorrect. All

interviews were audiotaped and transcribed.

Coding of the Interview and Test Sheets

Students' answer sheets were used to code the accuracy of

their responses to the problems. In some cases, when students

gave several answers to a problem, or changed their answer, the

transcript of the interview was used to determine which answer

14 1



was the student's final response before any probing by the

interviewer.

The transcripts of the interviews were . ,alyzed to determine

the symbolic form of the mental representations that students

used to solve the problems. The following representations were

the ones most commonly used: (1) formula (e.g., P1V1 /T1 =

P2V2/T2; partial formulas and incorrect ones were also coded in

this category), (2) numerical (any manipulation of numbers,

either in the form of an equation or in arithmetic expressions,

for example: 300/200 = 1.5/X), (3) diagram (descriptions or

drawings of diagrams), (4) verbal (verbal statement of an ideal

gas law, for example: "When the pressure is constant, then the

volume will increase as the temperature aoes because that's one

of the laws"), (5) image (for example, describing or drawing a

picture of moving molecules: "Well, going back to my teacher's

original imagery, he has a large glass full of molecules that he

shakes up. And he puts it inot a smaller glass and he shook it

the same and we saw the pressure increase dramatically"), and

(6) graph (students described or drew a graph of the relationship

between variables, or refered to a graph they had seen before, "I

remember we saw this. I think it was that one"). A category

called "other" was used for unique representations that occurred

rarely (for example, one student drew arrows in two items to
.1.%

represent increasing pressure and decreasing volume).

Two coders independently coded the accuracy of response and

the kind of representation used for a random sample of five items

for ten students. The interrater reliability was .89 for
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1

accuracy of students' reponses and was .89 for the

representations students used.

Because the data source for the students' responses to the

problems (the answers they gave) was predominantly their answer

sheets and the source of the representations they used was their

think-aloud protocol, we are confident that the data on accuracy

of responses is independent of the data on students'

representations.

Results and Discussion

The analyses focused on four questions: (1) which features

of the problem guided students' mental representations, (2)

whether some mental representations led to more accurate

responses than others, (3) what is the effects of the nominal

symbolic form of the problem on the accuracy of students'

responses, and (4) what is the effects of the type of problem

(quantitative vs. qualitative) on the accuracy of students'

responses?

Before presenting the results, a caveat about our use of the

term "mental representation" is in order. Students' verbal

descriptions of th.2 representations used during problem solving

do not necessarily correspond to the symbolic representations

they use. Given that their verbal descriptions are probably only

approximations of their actual problw-solving processes, we use

the term "mental representation" to denote that approximation and

to distinguish students' representations from the symbolic

representation of the problem as given.
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Task Demands and Mental Representations

Were students' mental representations bound by the symbolic

form of the problems or were they guided by task demands? This

was a test of the "no-translation" hypothesis that predicted that

word problems would give rise to verbal representations,

numerical exercises would give rise to numerical representations,

and so on.

The frequencies of different mental representations for the

five symbolic forms are presented in Table 1. The nominal

symbolic form of the problem was not nearly as important as the

problems' task demands for students' mental representations. In

particular, the form of the response required --quantitative or

qualitative--seemed to govern students' mental representations.

Most of the quantitative problems required a numerical response,

or repuired a numerical calculation. Of the quantitative

problems, 74% of the word problems evoked formulas or other

numerical mental representations, 77% for diagrams, 78% for

tables, and 87% for numerical exercises. The one exception was

graph:, (59%). Students lacked the skill to work quantitatively

with graphs.

Insert Table 1 about here

.A.,

The tendency for students to use mental representations

corresponding to response demands, rather than the problem's

symbolic form, was also evident for qualitative problems (those

requiring a non-numerical response). The predominant mental

17
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representation for aualitative problems was verbal: 50% for word

problems, 48% for diagrams, 76% for tables, and 56% for graph

problems. We speculate that a verbal expression of the

relationship among the variables was an important step in all the

qualitative problems. Since students were not required to reach a

numerical solution, they did not formulate the relationship using

formulas or equations. Even when the required response was not

verbal (for example, drawing an arrow), verbal statements of the

relationship among the variables were probably a prerequisite for

solving these problems.

We conclude that students translated from the symbolic

form of the problem to a symbolic form corresponding to the

response required. Very few students were bound by the nominal

form of the problem.

Accuracy of Solutions for Different Mental Representations

The response demand of the problem guided many students'

mental representations. Quantitative responses most frequently

corresponded to formulas, or numerical representations;

qualitative problems most frequently corresponded to verbal

representations. Of concern is whether these representations were

more likely than others to lead to the correct response.

Data on the accuracy of responses for different mental

representations are presented in Table 2. For qualitative

problems, verbal representations were,no more likely than other

representations to lead to the correct solution. Above-average

students performed better than average students regardless of the

mental representations they used.

2 (%
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Insert Table 2 about here

For quantitative problems, in contrast, some mental

representations were more likely to lead to the correct response,

and the mental representations most likely to be successful were

different for above-average and average students. For above-

average students, numeric representations were most likely to

lead to the correct response, whereas verbal representations were

least likely to. In fact, above-average students who used

verbal representations to solve quantitative problems performed no

better than average students who used verbal representations.

(Although the frequencies are small, the same result holds for

students gave no spontaneous evidence of their mental

representations when solving quantitative problems).

Although average students often used numeric representations

to solve quantitative problems, these representations were less

likely than verbal representations to lead to -z.he correct answer.

Average students, who were not familiar with the formulas (their

teacher had not taught the formulas in class nor did students

practice solving quantitative problems using formulas) were

likely creating their own numerical relationships among tne

numbers given in the problem. The high frequency of

unidentifiable numerical expressions among students' work

supports this speculation.

Accuracy of Representation vs. Accuracy of Response

The interpretation of the results just described implicitly

assumes that students who obtained the correct response used a
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correct representation (e.g., a correct numerical expression

instead of an incorrect one). This assumption was correct. Of

the 259 items for which students provided both i representation

and a response, the accuracy of the representation matched the

accuracy of the response in 257 of them, or 99.2%. Of the two

cases that did not match, one student used the correct formula

but made an arithmetic error and obtained the wrong result. In

the other case, the student selected the correct graph, but

described the wrong relationship between variables. From these

results, then, we can conclude that students who generate a

correct representation of the problem (e.g., the correct formula,

the correct description of the relationship between variables)

will correctly solve the problem.

Relations among Nominal Symbolic Form Mental Representation, and

Accuracy of Response

The problem's nominal symbolic form did not constrain

students' mental representations. Students readily translated

from the nominal symbolic form to a representation that

corresponded more closely to the response required.

The question remains, is there a relationship between

nominal symbolic form, mental representation, and accuracy? For

example, was translation from word problems to formulas was more

effective than, say, translation from diagrams to formulas?

Unfortunately, the sample was too sm41 to systematically examine

this question; we present only an analysis over all

representations. We found few differences across symbolic forms,

except for the lower accuracy rates for graph problems (Table 3).

This result may be due to several factors, including students'
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unfamiliarity with graph problems in general, the ambiguity of

the instructions given in the problems used in this study

(students had difficulty undersanding what the problem

required), and the complexity of the response students were

required to give, particularly in the quantitative problems

(calculating and plotting several points, and drawing the curve

through the points).

Insert Table 3 about here

Although the results in Table 3 suggest few differences

across symbolic forms (except graphs), the interpretation of the

results depends on the relative difficulty levels of the problems

for different symbolic forms. Although this study attempted to

control many features of the problems to produce problems of

comparable difficulty, uncontrolled features became apparent

after administration of the test. For example, the numerical

values of pressure, volume, and temperature varied across

symbolic forms of problems. An increase in pressure from 2 to 3

atmospheres may be a more difficult numerical relationship than

an increase from 1 to 2 atmospheres. Moreover, some features of

the problems were ambiguous. In diagram items, some students were

confused as to whether the increase in pressure pertained to the
a,

pressure inside or outside the container. Finally, the nominal

symbolic form was sometimes confounded with the kind of response

required. Consequently, we cannot be sure that the problems were

equivalent in difficulty across symbolic forms.
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Type of Problem: Quantitative vs. Qualitative

Although the type of problem--quantitative or qualitative- -

was not considered a central factor when the test was designed,

its impact on students' cognition was considerable. Not only did

the problem type influence mental representations, the

qualitative problems were easier for students than quantitative

problems (cf. Table 3).

The most likely explanation is that all students received

instruction in the principles underlying the gas laws but

students in the average class received no instruction in solving

quantitative problems. Although these results should be

interpreted ';th caution, they suggest that the type of problem

had a greater impact on students' problem-solving processes and

performance than did the nominal symbolic form of the problem.

Concluding Comments

The results provided support for the task demanc, hypothesis.

Contrary to the no-translation hypothesis, the representations

that students used to solve a problem depended more on the

response required (quantitative vs. qualitative) than on the

problem's nominal symbolic form. Many students readily translated

from the nominal symbolic form (e.g., words) to a representation

that yielded the solution (e.g., a formula).

However, because our test confounded the type of problem

stem (quantitative or qualitative) wi4h the type of response, the

exact feature of the problem that guided students' use of

particular representations is not clear. The stems of problems

that required qualitative responses were also phrased in

qualitative (non-numerical) terms. It is possible that the form
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of the problem stem, rather than the response required, guided

students' translation. To answer this question, the test would

have to systematically vary both the description of the problem

and the kind of response required (e.g., quantitative and

quantitative, uitative and qualitative, qualitative and

qualitative).

clarify the role played by the nature of required

response in guiding students' mental representations, a test

should include a comprehensive set of symbolic forms of problem

descriptions and required responses. For example, the responses

might include writing tables, or drawing diagrams, pictures, or

graphs, as well as responding with numbers or verbal descriptions

(as in, for example, Hooper, 1981). Our test required only a

small subset of possible response formats. It is possible that we

unwittingly selected the representations that students could

generate most easily. Perhaps they would have been less

successful at representing their answers in drawings or tables.

If a more general test confirms the hypothesis that the

symbolic representation of the response required guides the

representations that students use to solve problems, this result

would have major implications for instruction and testing. To

ensure comprehensive understanding of a concept and comprehensive

assessment of students' subject-matter knowledge, instruction and
.4%

achievement tests should systematically vary the symbolic forms

of the required responses to problems. Asking for a quantitative

response to a problem would show whether a student can use the

appropriate formula and manipulate numbers in the correct way.
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Asking for a qualitative, verbal response, on the other hand, may

shed more light on whether students understand the relationships

among variables. In the present study, some students were able

to manipulate formulas more easily than they could explain an

ideal gas law. Asking students to draw a diagram of the

relationship between variables may show still other aspects of

their understanding (or lack of it).

This focus on the kind of response the student is asked to

give would be a major shift away from the focus on the

representation of the information in the problem. Many

curricula, especially in mathematics and science, are based on

the notion that presenting information to students in multiple

symbol systems (pictures, words, manipulatives) will produce

fuller understanding of the subject matter than presenting

information in one or few symbol systems. If students are

required to give the same kind of response (e.g., numerical)

regardless of the given symbolic representation of the prolilem,

the variety of symbolic representations may have only limited

benefit. The potential may only be realized when the variety of

symbolic representations of the given information is linked to a

variety of kinds of representations students must produce as

solutions.

Finally, future research should investigate the role student

aptitude or preference for symbolic presentation plays.

Students may have preferences for solving problems using

particular representations. These preferences may interact with

the representations used in instruction, the task demands of the

problem, or both.
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Table 1

Frequencies of Symbolic Representation by Type of Problem

Symbolic Form of Described Representation

Type
o f
Problem

Formula Numerical Diagram Verbal Image Unclassified No
Spontaneous
Descriptiona

Total

Word quant. 1 3 14 3 6 0 0 3 3 9
qual. 1 0 5 16 5 1 5 33

Diagram quant. 8 16 0 4 2 1 10 41
qual. 1 0 2 11 6 3 17 40

Table quant. 1 4 1 6 0 8 0 0 1 3 9

qual. 2 0 0 19 2 2 14 3 9

Exercise quant.
qual.

14 6 0 3 0 0 0 10

Graph quant. 5 14 3 8 2 0 3 3 5
qual. 1 0 6 13 2 1 10 3 3

Total quant. 54 66 6 29 4 1 16 176
qual. 5 0 13 59 15 6 46 145

a Students answered the problem immediately without giving any evidence of their mental representation.
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Table 2

Frequencies and Percentages of Correct Solutions with Difterent Symbolic Representations

Symbolic Form of Described Representation

Type
of
Problem Students

Quantitative
Above-
average

Numerica

f %

60 83

Verbal

f %

7 58

Otherb

f %

6 75

Nonec

f

3

0/0

60 -f

Average 14 30 10 59 3 100 7 58

Qualitative
Above-
average 4 80 27 84 22 96 22 85

Average 0 15 56 7 58 8 40

aFormula and numerical.

bDiagram, image, and unclassified.

clmmediate answer without description of representation.
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Table 3

Frequencies and Percentages of Correct Solutions Across Symbolic Form of Problems

Nominal Symbolic Form of Problema

Words

f ok

Diagram

f %

Table

f %

Numerical

f %

Graph

f %

Total

f 0/0

Quantitative
Above-
average 16 76 21 95 17 85 12 86 1f0 50 76 78

Average 9 53 8 42 8 44 3 33 6 40 34 44

Qualitative
Above-
average 20 95 19 83 22 96 _b 14 74 75 87

Average 8 69 9 53 9 56 _b 4 29 30 51

aSample for this analysis includes all students, whether or not they gave spontaneous representations
while solving the problem.

bNot included on the test.
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Word Problem

200 liters of a gas, under pressure of 1 atm, were compressed until the pressure was
4 atm. What will the new volume of the gas be, assuming that there is no change
in temperature?

Cylinder -

Diagram

V = 4 liters
P = 1 atm. (outside presure)
T = 25'c

v=
P = 2 atm
T = 25'c

Please draw the exact position of the piston in cylinder B.

Table

T('c) 13;atm) V(liters)

25
25

1

4

80

Please complete the table by inserting the correct value of V.

V(Iiters)

600
500
400
300
200
100

Graph

1 2 3

Please complete the grap.i, assuPrPntgrIl constant temperature.

Number
Jnitial State Final State
T = 25'c T2 = 25'c

V = 120 liters v2 = ?
P1 = 1 atm P2 = 4 atm

Calculate V2 In the 4.nal state.

Figure 1. Example of quantitative problems for each symbolic form (Boyle's Law).



Word Problem

Assuming gas temperature is kept constant, if the pressure is increased, wf., .appelis to
the volume of the gas?

Cylinder

Diagram

Piston

A

T = 25*c

B

T = 25'c

Please draw the piston in cylinder B, after the outside pressure has been increased.

Table

T(c) P(atm) V(Iiters)

25
25

1

+
200

Please cr;ihplete the table by inserting an arrow: + = increase

= decrease

= the same

Graph

Draw a line that shows the relationship between the volume (V) and the pressure (P)
of ideal gas, at a constant temperature:

V(1iters)

0 P(atm)

Figure2. Example qualitative problems for each symbolic form (Boyle's Law).
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