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THE EFFECTS OF MODEL MISSFECIFICATION AHD SAILE SILE

ON LISREL MAXIMUM LINELIHOOD ESTIMATES

Stztement of the Problem

Covarjance structurs medeling using the LISREL program requipes the
researcher to make certain fundamental assumptions about the nature o;
the available data, the representativeness of the sample, and the
Plausibility of the theoretical mode| being tested. The statistical
processes of specification, estimation, and i(esting of hypothetical
models presuppose important statistical and theoretical conditions, and
Violations of these assumptions may seriously jeopardize the consistency
of results. Such consistency, as 1t relates to the reliability of

Farameter estimates and test statistics, may also be termed robustriess.

The robustness of LISREL to violat'ons of assumptions shouild be
known so that applied researchers can make more appropriate use of this
sophisticated data analysis tool. The appropriateness of the LISREL
modei and the accuracy of results when known violations occur are
subject to question. Most problems regarding robustness nhave largely
been ignored by applied researchers, though not by choice. Because
LISREL is a relatively new statistical technique, siatistical
resear.hers have not yet been able to answer most questions regarding
the robustness of LISREL. Some recent Monte Carlo studies have examined
the effects of using discrete variables or variables with skewed
distributions; others have attempted to systematically review the
effects of jample size anc mode! misspecification. However, much work
rémains before statisticians or applied res.archers can feel reasonably
sure that LISRi. results are robust to assumption vivlations or that

violations will consistently distort results in known and predictable
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ways.
Tiie purpose 1 tnie study is to examine the robustness of LISREL
naximum 1jkeljhoo? estimates under specific conditions of model
misspecif ication and sample size. The conditions of model
misspecification include errors of omission of structural paths, errors
of Inclusion of st~uctural paths, and Simultaneous errors of omission
and inclusion of structural paths. All misspecif ications are examined
under sample siies of 100 and 200. By examining the values of parameter
estimates and comparing them to the Population values, we have more
specific information about how such factors affect Parameter estimates
in applied research situations. Behavorial scientists need this
information in order to make more informed decisions about mode!

Specification and its relation to substantive theory.

Research Questions

The results of previous simulation studies and the substantive
Kno<l2dge available on the nature of model specification lead to several
questions:

(1) Are certain types of specification error more serious in

terms of parameter bias and/or model f1t? This question has

never been addresseq adequately, altheugh Gallini (1963)

presented some preliminary observations and concius,uns in

the study of common specification errors in Path analysis.

(2) Are compound specification errors more likely to Jead to

Parameter bias than are single errors of omission or

inclusion? MacCalum (1986) has attempted to gauge the

effects of compound errors. This question, however, needs to

be answered more systematically by developing a typology of
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Pussible errors and testing the effects of such etrors un the
same structural model.

(3) Are sample sizes of 100 more likely to lead to

Parameter pias than are samples of 2007 Boomsma (1983)
considered the effects of sample size. Much of this work,
however, dealt with the robustness of factor loadings. The
Same question in regard to the robustness of structural
Parameter estimates needs to be answered.

(4) Are sample sizes of 100 more likely to lead to

problems with Heywood cases or nonconvergence of solutions
than are samples of 2007 This issue was also examined in the
Boomsma (1983) study. The present study examines this
problem more thoroughly for structural equation models.

(5) When the measurement model is not misspecified, will
factor loadings be consistent from model to model? This
question has not been specificaliy addressed in any previous

study.

The_Concept of the True Model

This study attemptea to answer two questions: (1) how does sample
size affert the maximum 1jkel thood pParameter estimates produced by a
LISREL-type model; and (2) how do specific instances of structural model
misspecification affect the parameter estimates. Robustness studies of
this type are commonly made using « Monte Carlo method. The main
advantage of this empirical method 1S that the true distribution is
known, not assumed, as in most analytical methods of study (Hatch &
Posten, 1966). The researcher Knows the true probability gistribution a

priori because the researcher is free to Specify the distribution and

ERIC s

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

take sampies from It (ACito & Andersnn, 1984) Thus Monte Carlo methods
involve the generation and analysis of artificial data.

The probabijity distribution from wnich to take samples is
dererained by the problem at hand. In this case, LISREL structural
equation mode;iin$ .,equires 2 mujtivariate normal disiribution. As It
was riot the ain of this study to examine the effects of non-normai ity or
the effects of using categorical data, the jndicator variasles were
assumed to foliow a multivariate normal distritution.

Under typical applications of the LISREL model, a raw data matrix of
size N X k would be obtained and a sample covariance or correlation
matrix would be derived and used as input to the LISREL program. In the
Monte Carilo study, the generation of raw data is unnecessary. Once the
true model has been specified, true parameter values are determined.
These parameter values are suppljed to a computer program, and the
population covariance matrix I is generated.

It we regard the finite population matrix £ as a sample
covariance matrix and analyze 1t using maximum 1ikel $hood estimation,
the estimated parameter vajues would be exactly equal to the true
P- ~ameter values. In fact, regardless of the estimation procedure used,
the obtained solution wouid be identical to the true solution, and all
solutions would have a perfect fit to the data with a chi-square of zero
(Joreskog & Sorbom, 1964).

Sampiing theory tells us that a sample *_.en from a population
(known or unknown) can yield an estimate that is ejther close to the
Population vaiue or widely discrepant from it due \o sampling
variabiiity. In Monte Cario studies, the population values are known,
and subsequent sampling produces estimates within the wide range implied

by the population. Thus a specific sample may yield covariances that
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are close to or wideiy deviant from population covarjances, but on the
average over numerous samples, the average sample values should
approximate true population values (Hammerley & Handscomb, 1964).

The notion of sampling Drings up two other questions: (1) what is
the optimal sample size N; and (2) how man samples or number of
replications NB should be generated. Sampie size affects the 3eneration
of sample estimates as it IS xnown from sampling theory that larger
samples have a higher probability of yielding sampie values which are
close to the popuiation values. Also the number of replications has an
effect on this probability. Any one replication regardless of sample
$ize may have sample specific characteristics. Thus miltiple
replicaticns are necessary in Monte Carlo research.

The optimal sampie 3ize question is answered by consideration of
Past research. The LISREL Iikelihood ratio test assumes a large sample
31ze ana yet a definition of "large” was not examined until the work of
Boomsma (1902a, 1982b, 1983). Boomema initiaily experimented with models
using sample sizes of 25, 50, 100, 200, 300, and 800. Analysis of his
first model revealed that serious convergence problems often resujted
from using sample sizes smaller than 100. For samples of size N: 400,
convergence problems and imoroper soiutions were fewer, but the
distributions of sample parameter ¢stimates were not normal. In
Subsequent analyses, the samples using N:800 were ajso dropped as
estimates and chi-square statistics were not improved by the use of this
sample size. The sample size N: 200 is a reference point established by
Boomsma ana considered in most Monte Carlo studies thereafter
(Ethington, 1985; Gallini & Mandeville, 1963; Gerbing & Anderson, 198%;
MacCallum, 1985).

The number of repljcations 1S aiso a primary issue that w1s first
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:Xadined by Soomsw? (1983). The numoer of replications is a determining
223> In cata0iishing the accuracy of scmple parameters, siandard
errcrs, and chi-square statistics. As :rith sample size, more usually
means better :n terms of estimating Dopulation values. Monte Carlo
studles however are often ilmited by the realities of using extensive
camputer time, the cost of such time, and the sheer difficulties of
nandling the massive ar>unts of numbers produced by a Monte Carlo study.
For instance, Boomsma (1983, p. 46) states that use of a 99% conf idence
level would require 6643 replications. If a mode: were estimated that
contained 20 farameters, producing the estimates, the standard errors,
the t-values, the modification indices, the variances of the estimates,
and the chi-square statis*ics would require nandling 101 pieces of
information for each replication or 670, 943 numbers for all 6643
replications of one model. The amount of information is even more
3.aggering when one considers that most studies involve comparisons of
-
many mode.s.

Boomsma first used 100 replications for his initial work. After
studying the resuits, the number of replications was increased to 300.
The demands of computer time, storage of information, and amount of
information were heavy but not unreasonable. The results were greatly
improved by using 300 replications instead of 100 as the standard errors
were reduced by haif. Therefore for this study 300 replications were

used for each model tested.

Model vescription
The population model used for this study was designed so as to

represent a number of structural specifications commonly found in

applications. Such specifications could then be manipulated in the

3]
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models to be tested, and the effects on the models examined. The true
model is presented in Figure i, and the population parameters are given
in Table 1.

The povulation xodei contains one exogenous variable, three
endogenous variables, and elght indicator variables, two for each iatent
variable. Although the use of three {ndicator variables per |atent
variable would reduce the parameter bias that sometimes occurs when two
or fewer indicator variables are used, it is useful to study the
behavior of parameter estimates under the worst possible conditions.
Also, the use of two 1ndicator variables per latent variable 3is not
uncommon 1in applied research (Gerbing & Anderson, 1985; Boomsma, 1986).
For the present study. all mode! misspecif fcation occurs in the
structural model; the measurement mode! remains constant and consists of
indicators generated from a mul tivariate normal distribution.

The following nine possible types of structural model
misspecification were studied:

1. Errors of omission

A. Qumitted path from an exogenous variable to an
endogenous variable (which nov pecomes an
excgenous variable),

B. OGmitted recursive path from an endogenous
variable to an endogenous variable, and

C. Gmitted non-recursive path between endogenous
variables,

2. Errors of inclusion

A. Included path from an exogenous variable to an
endogenous variable,

B. Included recursive path from an endogenous

9



variable to an endogenous variable, and

€. Iacluded aon-recursive path between endogenous
variables.

3. Simultaneous errors of omission and inciusion

a. Omitted path from an exogenous variable to an
endogenous variable (which now pbecomes an
eaxogenous variable) and included path from an
2xogenous variable to another endogenous
variable,

J. Jlmitted recursive pain from an endosgenous
variaole to an endogenous variable and included
recursive path from an endogenous variable to
another endogenous varia.le, and

C. Gmitted non-recursive path between endogenous
varlables and fncluded a different non-recursive

path batween endogenous variables.

Generation of Sample Covariance Matrices

and Estimation of the Misspecified Models

Using the assigned true parameter vajues, the model was specified
and the population covariance matrix generated using a SAS PROC MATRIX
program. The population covariance matrix £ 1S used to generate 300
sample covariance matrices S for each model to be tested. The sample
covariance matrices were produced by using a FORTRAN Wishart variate
generator program (Smith & Hocking, 1972). This FORTRAN routine
generates a sample covariance matrix from a multivariate normal
Population with mean vector 0 and the specified sample size.

LISREL programs were wri.tten for each of the nine models to be

ERIC 10
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tested. In addition, each model was tested under two sample sizes, N:
100 and N=200. Thus 10 combinations of model misspa~if fcation and
sample size were tested for a minimun total of 5400 replications over
the entire study. The LISREL program computes starting values using an
instrumental varitables method (non-recursive models) or a least squares
method (recursive models). Use of these starting values effectively
cuts down on the computer time required for estimatior. and alds in
reacning a convergent solution within the 250 jteration |mit imposed by
the LISREL program.

The relevant output from the program runs consisted of the max {mum
likel1hood parameter estimates, the standard errors of the estimates,
modification iadice:s for ali parameters that were not being estilisated,
and *he chi-square goodness-of-fit value with the associated degrees of
freedom. Means and average standard errors of parameter estimates were
computed across replications for each combination of model and sample
size N.

Assessment of the results was based on the following criteria:

(1) Average parameter estimdtes for each model and sample

size combination across replications

A. Bias of sample estimates: Is the average sample
parameter estimate different from the actual
parameter value? This relative daifference was
Judged ry cumputing a difference statistic
wg which 1s {(w - @'/ w) X 100.

B. Standard errors of sample estimates: [s the
root mean square error (RMSE) of a parameter
estimate different from the expected standard

error? The RMSE is an unbiased estimate of the

11
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average standard error for a restricted sample
»'72.  This statistic is the square root of the
T 7ir23e cacorrected sum of squares for a
srnapeter 23iimate.  The actual standard errors
‘ould provide a bilased estimate if averaged.
<e expected standard error is the standard
3 or when I is usea fo~ a specified sampla»
»ile. This realative difference was judged by
Computliig a difference statistic sey which is
[(RMSE - se)/ se] X i00.
(2) Average clit-squ2:¢ across replications: Would a
misspecified modet still be considered a good fit? What
Is the rate of rejection for misspecified models?
(3) Moaif ication indices for errors of omission

A. Averages modification jndex for a particular
error.

B. Percentage of cases in which the index 1s
highest for the misspacification made: Does the
modification index correctly indicate the model
adjustment to be made?

(4) T-va'ues for errors of jnclusion
A. Average t-vatue for error: Is the t-value

signif icant?

B, Percentage of cases in which the t-value is
insignificant: Does the t-value correctiy
indicate that the parameter should be set
equal to zero?

Q
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Improper Solutjons and Nonconvergence

In addition to analyzing information about model misspecification
Paramet:r blas, and resultant goodness-of-fit, it is also of interest to
consider the occurrences of improper solutions and nonconvergence in a
Monte Carlo study. Improper solutjons result when maximum IiKelihood
estimates oi variances are nega These necgative variances tndicate
that the solution is unstable. Nonconvergence was def ined as the
inability of the program to find a unique solution which meets the
convergence criteria within 250 jterations. Often it is uncertain
whether raising the maximun number of 1ter ..ions will Jead to a final
solution. In cases of Monte Carlo study, it is often more efficlent to
simply terminate the program after 250 iterations (Boomsma, 1982a,

1985). Such was the casce in the present study.

Negative estimates of variances or Heywood cases are problematic 1n
that the solution is suspect. In Monte Carlo research however, the
solutions are often regarded as plausibls and the parameter estimates
standard errors, and chi-square statistics are analyzed as for
admissible solutions (Bromsma, §932, 1985; Rindskopf, 1984). Gerbing &
Anderson (19685) disagree, and have emphasized tnat {nclusion oi improper
solutions may Jead to problsms ot interpretation and additional bias.

For this study, improper solutions were included in the analysis
unless the improper solutions represented a sizeable percentage {(over
10%, of the replications for any one model. It was planned that if some
particular models had overly numerous improper solutions, the bias of
parameter estimates would be calculated twice-- once with the improper
solutions included and once with the improper solutions excluded. In
this way, the influence of improper solutions on Monte Carlo results
could be examined more thoroughly. These measures were not needed

Q
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aowever, as nor: ¢f ihe misspecified models produced more than 107 of
aproper solucltons.

A bore :ericls prodblem in Monte Carlo research 18 that of
nonconvergence. In general, nonconvergence problems are most often
a4ricizted crith small sample sizes. 3Because this study involved sample
sizes of 10U and 200. it was expect d that nonconvergence problems would
be infrequent. Siice the solution in a nonconvergent LISREL anailysis
may deviate widely from > true solution, nonconvergent solutions were
not included in the analysis. Any solutions that were nonconvergent
werc discarded and another computer analysis with a new ranjom sample
was used to take {ts place. In other words, there were at least 300

converged replications for each model tested.

Analysis

Each case of model misspecification was studied for each of two
sample sizes, N:100 and N:200. Thus 18 cc binations of model
misspecification and sample size were fested with at least 300
replications per combination. The program output was compiled and the
PROC UNIVARIATE proceaure of SAS was used to tabulate average parameter
estimates, root mean square errors, average modification indices, and
the frequencies of estimates across replications and within each
combination. T-values were determined, and the relative difference
statistics wg and seq were calculated. These data provide
information about the effects of model misspecification, parameter
estimate blas, and the resultant goodness-of-fit of the morel. In
adaition, the frequency of improper soiutions and noncowivergence were

examined.

14
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Sumoary of the Results

In ord.* to compare the rates of nonconvergence and improper
solutions across models and sample sizes, Table 2 presents an overview
of these results. In general, the incidence of nonconvergence and
Heywood cases was the same for both sampie sizes. However, for Models
1A, 2B, and 3B the aifference in the rates of nonconvergence was
larger. For Model 1A, a sample size of 200 produced 7% nonconvergent
solutions as opposed to 13”7 for N:100. For Models 2B and 3B, the rates
were 4% for N:200 and 137 for N:100. Models 1B, 2C, and 3A had the
highest rates of nonconvergence- 497, 37%, and about 50% respectively.
There were no models in which the rates for improper solutions was
hagher than 10%.

Tables 3, 4, and 5 present sumnaries of the results for Models 1, 2,
and 3. These tables give qualitative information on the relative
performance of the models for each of the sample sizes considered.
These tables are based on similar tables found in Boomsma (1983). Part
I of each table indicates the degree of blas for the parameter estimates
and standard errors. Part Il indicates the aegree of departure from
optimal performance. For example, 1f a misspec:fied model had a high
rate of acceptance and an average x2 value less than the critical
value, such performance could not be considered optimal as the

guodness-of-fit is misleading.

Discussion of the Results

The purpose of this study was to examine the robustness of LISREL
maximum liKelihood parameter estimates under specific conditions of
model misspecification and sample s¢ze. These conditions of model

misspecification are errors of omission of structural paths, errors of

RIC 15

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

14

inclusion of structural paths, and simuitaneous errors of omission and
inc.usion ef structural paihs. By examining the values of the parameter
estimates and comparing them to the population values, we have some
specif {c information about how such factors may affect parameter
estiiates {n applied research situations. In addition, this study has
Invest.gated the ~¢Zfects of model misspeciiicatie. and sample size on
the estimates of staidard errors, the .-values, the modif fcation
indices, tne zoodness-of-fit of the model, and the frequency of
nonconvergent and jimproper solutions. These results wij! similarly
provide us with information that may aid researchers in making informed
decisions with regard to the theoretical specification of LISREL models.

Certain types of specification errors seem to be more serious {n
terms of parameter pias and/or model fit In generat, the effects of
omitting a path from an exogenous varlable to an endogenous variable
seem to be less serious than the effects of omitting a path from 2n
endogznous variable to another endogenous variable. The estimation of
Parameters and standard errors was affected much less by the former
error than by the latter. The marked bias of the structural parameter
estinates when a paih from one endogenous variable tc another endogenous
variable 1s omitted should be noted. Nonconvergence problems were also
more frequeni when such a path was omitted. The x2 measures for
goodness-of-f {t appropriately jindicated a lack of congruence between the
data and the theoretical model except In the case of Model 1B with
K=100

Adding a path from one endogenous varianle to another endogenous
variable affects the estimation of parameters and standard errors less
than for any other m.sspecif ‘cation, regardless of sample size.

However, the misspecified model wou'd be accepted as a good fit with a

16



very high probability. The addition of a path from an exogenous
variable to an endogenous variable presented probiems only for the
smaller sample size.

Omitting a single reciprocal path is also not serious. However,
adding a reciprocal vath wnen another reciprocal path already exists in
the model seems to present severe estimation problems for the standard
errors. This 18 probably due to the incorrect partioning of direct and
indirect effects. Adding a reciprocal path to a model that Las no other
non-recursive path may not have the same effects as were noted 1n this
study.

Simultaneous errors from an exogenous variable to an erdogenous
variable seem to be more problematic than single errors of omission or
inclusion. The structural parameter estimates and the standard errors
are more likely to be quite different from the population values. The
problems of -onr- vergence were also much more severe for the model with
simultaneous errors.

Model goodness-of-fit was markedly affected for Models 3B and 3C 1n
that these models fail to yield accurate results concerning
goodness~of-fit, and the correct respecifications cannot be discerned
from the modif ication 1ndices and t-values. Moderate bias was noted for
the parameter estimates.

As was expected, the factor loadings remained consistent from mode}
%0 model with little or no bias detected. This finding confirms the fact
that changes in the structural model have few effects on the measurement
model.

Nonconvergence problems seem to be related to the type of error made
in relation to the overall pattern of the true model. For example, the
addstion of a structural path from an endogenous variable to anoiher

Q
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encogenous variable presented numerous nonconvergence probiems, One
Jourd exp22% thal the mode: containing simultaneous errors might
117 ise be aifect2d, but this was not the case. The particular
Troblems for this misspecification may be model-specific, that is, due
to the repartitioning of direct and indirect effects in contrast to such
effects In the true model. Of the four iatent variables in the model,
three are endogenous. There {s a certaln dynamic to the flow of direct
and indirect effects jn this model. For the case in which reciprocai
Paths are present, an aimost circular flow of effects couid De assumed.
Gnitting 2 “major* path in the model may restrict this daynamic flow.
Thus the nonconvergence probiems may be more indicative of
model-specific tendencies than due to the deletion of a particular type
cf path.

Sample size seemed to be a minor issue in many of the models studied
11 the models are examined on a case-by-case basis. There seems to be a
general "rule of thumb® in that those models which fit well and are
relatively “easy” to estimate can be estimated well whether the sample
size is 100 or 200. On the other hand, models which have convergence
problems or which do not fit well will usually have similar results for
the dilferent sample sizes as well. This does not mean, however, that a
sample size of 100 necessarily gives the same results as a sample size
of 200. In particular, the standard errors seem to be greatly affected
by sample size. This was particularly true for Models 1A and iC. Sampie
estimates of standard errors were much closer to population values when
N:200. Even when the parameter estimates themselves were relatively
unbiased for N:100, comparisons to the results of N:z200 snow that these
estimates are even more accurate for the larger sampie size. The

incidence of rejecting a misspecified mode! also seems to improve when

15
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the sample size is increased. T-values more adequate.y refject the
inclusion of extraneous paths, and the modification indices more
accurately flag those paths which should be fnciuded in the model.

Overall, few blanket recommendations as to the classes of
specification errors which most seriously affect the robustness of
Parameter estimates can be made. From a theoretical point of view, 1t
might seem that adding a path to an otherwise correctly specified model
would be the least innocuous of all errors. Inspection of the parameter
estimates for the modeis tested would seem to support this notion.
However, it must De pointed out that the goodness-of-iit for all errors
of inclusion was very good, a bit of {nformation that is quite
misleading. In addition the standard errors for all of these models
were moderately to strongly biased. Such bias can alsc affect
conclusions as to the significance or non-significance of !ndividual
parameters.

Whitch eriors are of the most consequence from an appiied standpoint?
Exclusion of B paths, inclusion of reciprocal paths in models that
already contain a reciprocal path, an” multiple errors of any sort seem
to have the most serious consequences for causal modeling. Such errors
bias structural parameter e<timates and severely distort standard
errors. Recovery from such misspecifications is doubtful. T-values will
not be reliable, modification indices cannot be guaranteed, and model
goodness-of-fit 1s also affected.

The resuits of Llus study support some conclusions from past
research. The recommendation by Boomsma (31983) to use sample sjzes
larger than 100 1s supported. Although the average x2 statistics
did not indicate any overall improvement from M:100 to N:200, the range

of x2 values 1s much smaller for N=200; thus, the probability of

19




O

ERIC

Aruitoxt provided by Eic:

18

obilining a reliaole test statistic is much imprcved for the larger
sam3ie slze. .3 a'scussec oreviously, sample size has a deflnite effect
on ihe estimatlcr of parameiers, standa’d errors, 2nd modif Icat jon
tnasces.

MacCalltm's (.785) research sho-ec that models with one
ni3specificztlon error often were not rejected. This research
demonCtraies that models contalning errors of Inclusion are particularly
at high risk of belng erroneously accepted as plausible. On the other
hand, models containing errors of omisslon may be rejected or may fail
to be rejected depending upon the type of path omltted. Contrary to
MacCallum's study, two misspeclfication errors do not necessarily
increase the chances of rejecting a model. The types of errors made
seem to be more Importaant ihan the number o< errors. For instance, for
Model 3C which omitted and included reclprocal paths, the model was
accepted as plausible 1n most replications. Thls was true despite the
fact that structural parameters were blased.

Gerblng & Anderson's (1985) Monte Carlo study demonstrated that the
varlabllity of parameter estimates gecreases as sample slze Increases.
This finding was |lkewise supported In this study. Thelr findings are
based on research Investigating the effects of model characteristics on
parameter estimates In conf irmatory factor analysis. However, 1t makes
Intuitlve sense that parameter estimates should | lkewise be affected In
structural equation models.

Gerping & Anderson also noted that sample size and the number of
indicators per latent varlable had large effects on the structural
parameter ¢ which relates two faccors. Thls study found a somewhat
slmilar effect on the varlance terms of the matrix ¢ and on the

disturbance terms of the matrix V. By misspeclifying the model and by
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limiting the mmber of 1ndicators to two, estimation 1S hindered. The
incidence of pias ior the parameters in these two matrices was much
higher, even in cases in wnich the bias of other parameters was |imited,
and the model otherwise performed optimally. This was pParticularly true
for sample sizes of 100. The bias of these parameters indicates that
the misspecification introduces a degree of uncertainty into the
estimation procedure. Much of the variance which is otherwise accounted
for in the population model cannot be explained in the misspecif jed

model. Thus these terms are apt to ve affected.

Implications for Educational Research

The Jdevelopment of LISREL-type structural equation models has
decidedly influenced the direction of educational research in the pa t
few yeairs. Causal modeling techniques allcw researchers to hypothesize
about .he complex relationships among theoretical variables in a manner
that is not possible with path analysis or multiple regression.

The popular usage of any statistical technique leads many
researchers to speculate on the utility of that technique. while the
robustness of more tradit.onal methodologies against violations of
assumptions has been tested, the effects of such violations are not
clear when using LISREL-type models. These procedures have only
recently been under study. ‘

This study adds to the literature by having examined the effects of
model misspecification and sample size. Although the generalizatlons
of the study are restricted due to the particular class of models anc
the particular types of misspecification examined, such generalizations
may lead us to a more "informeq guessing” of how such model

misspecifications may affect results when working in an applications
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context. Although Iinear structural equation modeling is never
reccimended tv be used In the total absence of supstantive theory, the
presence of equally plausible yet conflicting theories may result {n
various different model specifications for the same theoretical research
question. XInowledse of how mcGe's oehave under aliernate
misspecifications 1s a valuable asset In such situations.

In general, the results of this study strongly confirm the idea that
LISREL-type model ing must be undertaken only when there is guiding
substantive theory. In many cases, misspecified models were
inaccurateiy described as having acceptable goodness-of-fit,
Alternative models may have equally g0od fits. The ultimate decision to
accePt a model must lay with the researcher. The numbers themselves

cannot be used as the sole criteria for Judging the quality of a model.

50
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Part 1.2

31as of tactor
loadings

Bias of structural
carameters

1as 0. pY
P Ps)y matrices

81as 0: weas.
rror terms

31as of standard
errors

Zare 1.0
Goodnress-of-f1it

1i0d1f ycation index
for error

T-value for err -
Honconvergence

Improper solutions

Model 1A

200 100
- ]
] (1]
NA NA
[ [
] "

Mode! 1B
200 100
e e
e L1
L)) e
- ]
- L]
NA Na
"e an

dPart 1 indicates the degree of bias from strongest (ss) to no
bias (-). The degree of bias was based on the number o*
parameters affected and the severity of the bjas

bpart 11 indicates degree of departure from optimal pertormance;

it ranges from strongest departure (se) to no departure (-).

TABLE 2. SUMMARY OF RESULTS FOR MODEL i

Mode!

1C

200

100




Model 2a dogel 2B Hodel

N: 260 100 200 400 200
Part 1.3
Bias of factoer - - - -
loadings
#ias of structural - " - - -
parameters
Bias of phi - " - - .
or psi matrices
Bias of meas. - - - - -
error terms
Bias of standara e 1) » » T
errors
Part 11.%
Goodness-of -t LX) ) e T 1)
Modificat) \n index NA NA NA NA NA
tor error
T-value for error - - - - -
Nonconvergence [} » - . e

lmproper golutions - - - - -

3Part 1 indicates degree of Dbias from strongest (#x) to no bias
(=). The degree of bias was based on the number of parameters
atfected and the severity of the bias.

bpart 11 indicates degree of departure from optimal performance;
it ranges from strongest departure (ss») to no departure (-)

TABLE 3. SUMMARY OF RESULTS FOR MODEL 2

™

o
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Meodza| JA Mode] 3B Model 3cC
Nz 200 100 200 100 200 100
Pare 1,3
Bias of factor - - - - - -
loadings
8123 cf structural E] n an s " "
sarameters
° J1as or pal 1 n 1w e " »
or 031 matrices
J1as o1 nea.. - " - - - -
error terms
3138 of 2tandard “n (1] an [} 1] ]
2rrore
dape 1.
Goodnesz-of-f4t - - L] - " 1]
Moditlcation index - - ] " " "
Zor error
T-value for error - - [ " " (X}
Nonconvergence LT " - [ - -

Improper sojutions - - -

3Part 1 1ndicates the degree of bias from strongest (wn) to no
bi1as (-). The degree of bias was based on the number of
parameters atfected and the severity of the bias.

bpart 11 indicates degree of departure from optimal pertormance;
1t ranges from strongest departure (sw) to no departure (-)

TABLE 4. SUMMARY OF RESULTS FOR MODEL 3
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Total Improper

Sotutions HNonconvergence Solutiuvns
Model 1A
N:200 Jar c2(1/) 28(9/)
N:100 Jsc 44(134) 29(9/)
Model 1B
N:-200 597 _9i(497) T(37)
N:100 600 “91(494) 9(37)
Mode| 1C
N=200 350 0(04) 17(5/)
N:100 5o 09 21(6%)
Model 2A
N:200 339 2T (07) 10(34)
N:z10G Jso 26(7%) 17 (5%)
Mode) 2B
H:200 343 14047 ) 8(2/)
N:100 3so ug(134) S5(27)
Model 2C
N:200 480 176(377) 0(07)
N:100 407 187(377) 0(07)
Model 3JA
H:200 636 324(517) 2(17)
N:100 642 322(50/) 1(0%)
Mode} 3B
N:200 351 13(44) 6(27)
N:100 372 50(134) 25(8/)
Model 3C
H:200 Jez 0(07) 1(07)
N:100 351 0(07) 16(5/)

TABLE 5. IMPROPER SOLUTIONS AND NONCONYERGENCE
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