AUTHOR TITLE

PUB DATE NOTE

PUB TYPE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

ABSTRACT

The purpose of this study was to determine the level of reasoning of a convenience sample of all seventh through twelfth grade students ($\mathrm{N}=156$) in a consolidated school district in rural arkansas prior to the introduction of a thinking program in which logical thinking is one component. Four research questions were investigated: (I) What percentage of seventh through twelfth grade students are formal operational thinkers as measured by the Group Assessment of Logical Thinking (GALT)? (2) Are there significant differences in the level of thinking as measured on the GALT among seventh through twelfth grade students? (3) Are there gender differences in logical lthinking ability of seventh through twelfth grade students as measured by the GALT? and (4) What are the underlying differences among seventh through twelfth grade students classified as formal, transitional, or concrete operational? The 12-item abbreviated form of GALT was selected to measure the reasoning level of the sample. Eleven percent of the sample measured formal operational on the GALT. Significant results in favor of the tenth grade group were found. Significant values were found in favor of the males on the conservation mode, conservation of volume, and probabilistic reasoning and in favor of the females on combinatorial logic. (CW)

[^0] CENTER (ERIC)

- This document has been reproduced as
received from the person or organization, foriginatiog it.
Minor changes have been made to improve reproduction quatily
- Points ol view or oomions stated in this docu ment do not necessarily represent otticia OERI position or policy
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESUURCES INFORMATION CENTER (ERIC)."

Betty L. Bitner-Corvin
Assistant Professor of Elementary Secondary Education and Foundations
Southwest Missouri State University Springfield, Missouri 65804

The GALT:

> A Measure of Logical Thinking Ability of 7 th through 12 th Grade Students

Abstract

The Group Assessment of Logical Thinking (GALT) (Roadrangka, Yeany, \& Padilla, 1982) was used to determine the reasoning level of a convenience sample of seventh through twelfth grade students ($N=156$) and logical thinking as a unitary construct. Eleven percent of the sample measured formal operational on the GALT. The results of the cne-way ANOVA (GALT by grade) was significant in favor of the tenth grade group. Significant t-values were found in favor of the males on the conservation mode, conservation of volume (item 4), and probabilistic reasoning (item 16) and in favor of the females combinatorial logic (dance). The principal components analysis of the six reasoning modes of the GALT resulted in all items loading on factor 1 except items 1 and 4 . both conservation problems, and item 13. a probabilistic reasoning problem, which loaded on factor 2. The total explained variance was 44.5\%.

The Galt: A Measure of Logical Thinking :bility of 7th through 12 th Grade Students

Functioning in the "Insormational Age Society" necessitates processing information <Naisbitt, 1982; Toffler, 1980) rather than just memorizing facte. A challenge of the "Information Age Society" (Naisbitt, 1982) is the development of scientifically and technologicaily literate citizens (James \& Kurtz, 1985; Netional Science Board Commission, 1983; Yager, i984). Scientific and technological literacy depende on the understanding of and the application of scientific concepts, laws, and principles. Many scientific concepts, laws, and principles such as atomic structure, energy, force, and motion demand logical thought procesces. Inhelder and Piaget (1958) sdvanced the need for the development of propositional logic, of formal operational schemata, and of the integretion of these operational schemata and propositional logic as essential logical reasoning operations. The development of logical reasoning occurs between the agea of nine and fifteen (Inhelder \& Piaget, 1958). It is also at these ages that science as a separate subject area is introduced in the school.

The structure of formal operational reasoning
has been questioned. Formal operational reasoning as a unitary construct has been supported by Lawson (1977; 1982): Lawson and Renner (1975): Tobin and Capie: (1980a, 1980b, 1981); and Roadrangka, Yeany, and Padilla (1983).: Other researchers (e.g., Ahlawat \& Billeh, 1982; Bitner, 1986; Karplus, Adi,〔 Lawson, 1980; Lawsmn, 1978; Lawson, Karplus, Adi, 19'78; Levine \& Linn, 1977; Staver \& Gabel, 1979) found that formal operational reasoning is not a unitary construct. Lawson (1982b) concluded that a. unitary structure of formal operational thinking will be found i:f the instrument of logical thinking measures only four problens (i.e., proportionai reasoning, control of variables, correlational reasoning; and probabilistic reasoning). In addition, he identified three other criteria for eatablishing formal operational thinking as a. unitary structure: (a) homogeneity of the sample in respect to age, (b) heterogeneity of che ample in respect to mental ability, and (c) subjects who are either developing or have recently reached formal operational thinking.

Capie, Newton, and Tobin (1981); DeCarcer, Gebel, and Staver (1978); and Lawson (1985) have identified five formal modes of reasoning (i.e: proportional reasoning, controlling variables; probabilistic reasoning, correlational reasoning,
and combinatorial reasoning) as essential for science and: mathematics achievement at the upper levels. The importance of proportional reasoning. has been emphasized for both introductory and advanced science courses (wollman and Lawson, 1978) and specifically in the application of quantitative relationships in science (Karplus, Karplus. Formisano, k Paulsen, 1979). In addition, they (Karplus et al., 1979) stressed the role of controliing variables in the understanding of cause-and-effect relationships. In addition, Hiofstein and Mandler (1985) found that probability contributed significantiy to the variance in physics and chemistry. Formal operational reasoning is a predictor of performance in chemistry (Howe \& Durr, 1982), of the understanding of evolution concepts (Lawaon, 1983b), and of science and mathematics achievement of eighth grade students (Bitner, 1986). Moreover, formal operations are vital in science and mathematics achievement as well as generalizable and necessary acrose the disciplines (Capie et ai., 1981; Lawson, 1982a: Linn, 1982).

Formal operational thinkers sutperformed transitional and concrete operational thinkers un abstract and concrete tasks. Formal operational high school chemistry students <Cantu \& Herron,
1978): secondary biology, chemistry, and physics students (Lawson Renner, 1975): ninth and tenth grade students in mathematics, chemistry, physics, and biology (Hofstein et al., 1985): propositional thinkers (Lawson, Lawson, \& Lawson, 1984) outperformed transitional and concrete operational thiṇkers.

In general, males outperformed females on formal reasoning tasks (Farrell \& Farmer, 1985; Hofstein et al., 1985; Meehan, 1984; Karplus et al., 1979). Meehan (1984) in. a .meta-analysis of fifty-three studies found that males scored aignificantly better than femalea on propositional logic, control of variables, and proportionality. Also, Hofstein et al. (1985) reported that males outperformed females on eight of the fifteen tasks on Lawson's test. In addition, low-income urban males performed better than females on control of variables and proportionality (Karplus et al., 1979).

Factors that impede or facilitate formal operational reasoning rave been identified. Inhibitors of formal reasoning include fielddependency and superfluous information in a problem-situation (Lawson, 1982b, 1983a, 1983b; Lawson, 1985: Lawson \& Snitgen, 1982: Levine \& Linn, 1977: and Linn, 1980), impulsive cognitive
style and low mental capacity (Lawson, 1985), and students' inaccurate expectations of variebles and age (Linn, 1980; Linn, 1982; Linn, Clement, \& Pulos, 1983). On the other hand, it has been found that concept familiarity <Champagne, Klopfer, G.: . Anderson,: 1980;- Linn \& Levine, 1978; Lazarowitz \& Shemesh, 1986; Pulos \& Linn, 198.1) and task content and task problem (Lawson, 1982b,. 1983a, 1983b; Linn, Pulos, \& Gans, 1981) facilitated formal reasoning. Specifically, concrete physical models Cantu G Herron, 1978; Gabel. 1979; Stavar, 1984; Wollman \& Lawson, 1978), inquiry laboratory approach in science concupt achievement for concrete and formal operationel thinkers (Gabel, 1979: Staver, 1984), and cognitive dissonance (Staver, 1984) have been recommended.

Research abounds on studies of iogical thinking abilities. Until recently often the a paper-and-pencil format with actual
demonstrations of the tasks (e.g., the Classroom Test of Formal Operations) was used (Lawson, 1978). The Group Assesament of Logical Thinking (GALT) (Roadrangka, Yeany, \& Padilla, 1982) provides an alternative to the above format. The GALT is a paper-and-pencil instrument of logical thinking in which the examinees must reapond correctly to both the answer and the reason. In the validation
study, Roadrangka, Yeany, and Padilla (1983) found a reliability coefficient of .85 between the GALT and the Piagetian Interview Tasks. The principal components factor analysis reaulted in factor loadings ranging between .33 to .73 with all items except the ones measuring conaervation loading on Factor 1. Bitner (1986) reported that items \#8 (proportional reasoning), \#11 and \#13 (controlling variatles), \#15 and \#16 (probabilistic reasoning), \#18 (correlational reasoning), \#20 (combinatorial reasoning) loaded on Factor 1. Factor 1 contributed $19.3 \times$ of the total variance with all items except \#18 loading . 46 or greater. On Factor 2 items \#1 and \#4 (conservation), \#9 (proportional reasoning); \#17 (corralational reasoning), and $\# 19$ (combinatorial reasoning) loaded. Loadings on Factor 2 ware .49 or greater except for item 1. Factor 2 contributed $14.9 x$ of the variance. The two components extracted on the principal cemponents varimax rotation explained $34.2 x$ of the total variance. In this study of eighth grade students, Bitner (1986) found $5 x$ functioning at the formal operational level, $33 x$ functioning at the transitional level, and 62x functioning at the concrete level. Bitnex (1986) reported that students in basic level and rasource room ware exciuded from the sample. Premo and Fahey (1982)
reported the percentage of formal level thinkers es follows: (a) 3.5x (seventh). (b) $5.2 x$ (eighth), (c) 13.2 x^{*} (ninth): (d) 44.7x (eleventh), and (e) 49.5x (twielfth). Karplus and Karplus (1970) reported the following percentages of complete abstract reasoners ($N=449$) on the Island Puzzle: fifth and sixth graders (OX), seventh through ninth graders ($O X$), tenth through twelfth graders ($3 x$), twelfth grade physics students (8x), 1959 NSTA Convention attendees ($6 x$), and AAPT (13x). Karplus et al. (1979) concluded that students rarely use proportional reasoning before fifteen. In their sample of thirteen to fifteen years, old studente from seven countries, they (Karplus et al., 1979) found only $7 \times$ of the sample functioning at the formal operational level. In a mample of secondary biology, chemintry, and physics students ($N=133$), Lawson et al. (1975) found only $4.8 x$ of the sample were full formal operational reasoners. In a sample of students in grades seven through twelve (N = 588), Lawson and Renner (1974) found the following distribution in percentages: (a) formal: seventh ($1 x$), eighth ($3 x$), ninth ($3 x$), tenth ($5 x$), eleventh ($8 x$), and twelfth (12x): (b) post concrete (transitional): seventh (15x), eighth (21x), ninth (13x), tenth (20x), eleventh (23x), and twelfth (21x): and (c) concrete: seventh (83x), eighth
(77x), ninth (82x), tenth (73x), eleventh (71x), and twelfth (66x).
. In the use of the GALT, both Roadrangka et al. (1983) and Bitner (1986) found that the correiational and proportional reasoning items were the most absitract. In particular, Bitner (1986) noted that students had definite problems with item 8 (proportional reasoning), item 13
(controlling variables), item $1 *$ (probabilistic reasoning), and items 17 and 18 (correlational reasoning). Only $20 x$ of the sample ($N=147$) used proportional reasoning for item 8; the others used additive or intuitive reasoning patterns. Fortytwo percent of the sample ($N=147$) used control of variables in the ramp problem. Non-formal thinkers reasoned that the heavy ball was needed because it had more force. Only 38x used probabilistic reasoning in the item 15. Those who selected the incorrect response and reason did not consider all dimensions of the problem (i.e., shape, texture, and number of geometric shapes). The percentages answering the correlational reasoning problems correctly are as follows: 21x (item 17) and 37x (item 18). Those students who responded incorrectly did not focus on the dimensions of the objects, and therefore did not glean the relationship. Furthermore, Bitner (1986) reportid
that 100x of the formal operational thinkers completea the correct combinations for itens 19. and 20.

This researcher desired to determine the reasoning levels of seventh through twelfth grade mtudente" (N w.156) prior to the introduction of a ." thinking prograk of which logical thinking is one component.

The research queations investigated in this study include the following:

1. Is logical thinking a unitary conatruct as measured by the GALT?
2. What percentage of seventh through tiwelfth grade students are formal operational thinkers as measured by the GALT?
3. Are there significant differences in the level of thinking as measured on the GALT among seventh through twelfth grade students?
4. Are there gender differences in logical thinking ability of seventh through twelfth grade students as measured by the GALT?
5. what are the underlying differences in thinking among seventh through twelfth grade students classified as formal, transitional, or concrete operational?

A convenience sample of all seventh through twelfth grade students ($N=156$) in a consolidated school district in rural Arkansas was used. The researcher currently is a consultant in thinking skills for the district, K-12. The project is funded by the Winthrop Rockefeller Founciution.

Instrumentation

The instrument for this study was the:
abbreviated GALT a twelve-item paper and pencil test of logical thinking (Roadrangka et al., 1982). The fifty minute class periods necessitated the use of the abbreviated form of the GALT. The rationale for the selection of the GALT can be found in Roadrangka è al. (1983).

The twelve items in the abbreviated GALT measure six reasoning modes: conservation, proportional reasoning, controlling variables, probabilistic reasoning, correlational reasoning, and combinatorial reasoning. All reasoning modes except conservation require formal operational thinking.

Both construct and criterion-related validities have been established for the GALT (Roadrangke et al., 1983). In addition, a reiiability caefficient of .85 was found between
the GALT and the Pisgetian Interview Tasks and for the GALT: . :..$:$.. .
: The GALT was administered to the sample within. a ore week span of time. The tests were then' graded by a graduate assistant. Subsequently, the researcher rechecked the tests and assigned a:total score ranging from 0-12. Ta receive credit for item $1,4,8,9,11,13,15,16,17$, and 18 , the subject had to select both the correct answer and the correct rationale. For item 19, the subject had to show a pattern and had to have not more than one error or omission. The subject had to show a pattern and had to have no more than two errors or omissions to receive credit for item 20.

The data were computed using statistical programs from Statistics with Finesse (Boding. 1985)

Results

Included in the results section are the test analysis, descriptive statistics, and answers to the five research questions.

Test Analysis and Descriptive Statistics
The test analysis of the abbreviated GALT for the sample ($N=156$) resulted in a range of proportion correct from . 21 to . 81 and discrimination indices ranging from . 24 to .59 (sere Table 1). All items discriminated in a positive

```
direction. The analysis of the data for the total
sample yielded a KR-20 reliability coefficient of
.83. The KR-20 reliability coefficients for each
grede are as follows: . 70 (seventh). . 81 (eighth),
.69 (ninth), .87 (tenth), . 82 (eleventh). and . 85 .. 
(twelfth).*
```

In\#ert Table 1 about here

In Table 2 are contained the mean, standard deviation, and percent on the GALT for the seventh through twelfth grade students. The mean of the six grade levels ranged between 1.52 and 5.22. The mean of the tenth grade group $\langle\underline{M}=5.22, \underline{S D=3.30)}$ exceeded all other groups in the sample.

Insert Table 2 about here

Intercorrelations and Principal Components Analysis
The intercorrelation matrix for the $s i x$ modes of reasoning and the total GALT score in Table 3 yielded coefficients ranging between . 17 and .78 . The highest correlations coefficients were found between the GALT total score and proportional reasoning (.71), probabilistic reasoning (.78), and combinatorial reasoning (.70).

Insert Table 3 about here

The principal components factor analysis of the twelve items in the abbreviated GALT resulted in a two factor solution. All items except the two which measure conservation loaded on factor one. Seven of the twelve values on Factor 2 were negative. Subsequently, the principal componenta factor varimax rotation analysis of the twelve items in the abbreviated GALT was completed (Cattel, 1978; Kin \& Mueller, 1978). The yarimax rotation analysiz of the twelve items in the abbreviated GALT reaulted in a two factor solution (see Table 4). In this atudy, itams 8 and 9. (proportional reasoning), item 11 (controlling variables), items 15 and 16 (probabilistic reasoning), items 17 and 18 (correlational reasoning), and ite) ; 19 and 20 (combinatorial reasoning) loaded on Factor 1 with loadings between .37 and .88. Factor 1 contributed $30 x$ of the variance. Item 1 (conservation of mass), item 4 (conservation oi volume), and \pm tem 13 (controlling variebles) loaded on Factor 2 with loadings ranging between . 56 and .80. Therefore, Factor 2 contributed $14.5 x$ of the variance. The two components extracted on the principal components factor varimax rotation explained 44.5x of the total variance. Also, included in Table 4 are the
broad variance ($h^{(*)}$ and unique variance (U^{*}) for the twelve items in the abbreviated GALT.

Inseirt Table 4 -about here

The six reasoning modes were than subjected.t, the single-factor solution. The loadings ranged between .47 and .81 with all loadings. except.those for conservation loading at or beyond .68. The single-factor solution of the six reasoning modes explained 47.4x of the variance.

Reasoning Leyels of Seventh through Twelfth Graders The percenteges of students falling in the formal operational level per grade are as follows: (a) $0 x$ seventh grade students, (b) $4 x$ eighth grade students, (c) 3x ninth grade students, (d) 22x tenth grade students, (e) $12 x$ eleventh grade students, and (f) $\mathbf{2 8 x}$ twolfth grade students.. The percentages of students falling in the transitional operational level per grade are as follows: (a) 4x (seventh), $26 x$ (eighth), $17 x$ (ninth), 28x (tenth), 31x (eleventh), 6x (tweifth). In addition, the percentages of concrete operational students per grade are as follows: 96x (seventh), 70x (eighth), 80x (ninth), 50x (tenth), 58x (eleventh), 67x.
(twelftr). The percentages of each reasoning level

```
for the total sample are 11x formal. 19x
transitional, and 70x concrete.
```

Insert Table 5 about here

Differences in Reasoning Levely Among the Seventh through Twelfth Grade Students

Differences in reasoning levels among the seventh through twelfth grade students were found. The results of the t-test of independent samples (see Table 6) indicated that the senior high group (1.e., students in grades ten through twelve) surpassed the junior high group (i.e.. students in grades seven through nine) on individual reasoning itams, subtests, and GALT total. In addition, the resuli of the oneway analysis of variance (grade level by GALT) is reported in.Table 7.

Insert Tables 6 and 7 nbout here

Gender Differences in Loqical Thinking Ability of the Seventh through Twelfth Grade Students

Although gender differences were limited in this study. significent differences ware found on individual items. The males outperformed the females on the conservation item metal weights and on the probabiliztic reasoning iten squares snd

diamonds \#2. The females outperformed the males on the combinatorial reasoning item the dance.

Insert Tables 8 about here

The Underiying Differences in Thinking among

Seventh through Twelfth Grade Students

The researcher decided to examine more closely the responses and reasons for those items for which the percentage of incorrect answers and reasons surpassed the percentage of correct answers and reasons. In particular, both the answers and reasons for Items 8, 11, and 17 and only the answers for Items 15, 16 and 18 were scrutinized for patterns of transitional and concrete operational thinkers. A closer observation of the results of Item 20 indicated that only four formal operational thinkers selected the incorrect answer. Again patterns were found.

For item 8 a proportional reasoning problem measuring ratio of water levels, only 27% of the sample ($N=156$) selected the correct response c, whereas $40 x$ of the sample chose the incorrect response a and $21 x$ of the sample selected b. Both response and b represent addictive thinking. The pattern of correct response for item 8 per grade level is as follows: 15\% for seventh, 5\% for eighth, 10* for ninth, 3* for tenth, 4* for
eleventh, and 22x for twelfth. The percentage of studeñts selecting either reaponse a or ber grade level is as follows: • 78x for seventh, 55x for eighth, 57x for ninth, 36x for tenth, $42 x$ for eleventh; and 44x for twelfth. An examination of the item "per level of thought reveals the following patterns: 77x of the formal, 50x of the transitional, and only $13 x$ of the concrete chose the correct response c. Eighteen percent of the formal operational reasoners selected a and 65x of them chose b. Of the transitional operational. thinkers, 37x selected a and none of them selected b. Forty-foux percent of the concrete operational reasoners selected a; 29x chose b.

The justification for item 8 also created difficulty for the examinees. Only $21 x$ of the sample ($N=156$) selected the corrected reason 2 , whereas $33 x$ selected reason 1 , 26x selected reason 3 and $18 x$ selected reason 4. The response pettern for the correct reason per grade level is as follows: 41x of the seventh graders, $5 x$ of the eighth graders, $13 x$ of the ninth graders, 50x of the tenth graders, 28x of the eleventh graders, and 22x of the twelfth graders. The percentages selecting the correct reason per reasoning level are as follows: 65x of the formal, 43x of the transitional, and $8 x$ of the concrete. The
percentages per reasoning level choosing the reeson 1 (additive reasoning) are as follows: $18 x$ of the formal, 20x of the tranmitional, and 39x of the concrete. Reason 3 (intuitive reasoning) was. selected by $6 x$ of the formal operational thinkers, 10x of the transitional operational thinkers, and 33x of the concrete operational thinkers. Those selecting "There is no way of predicting" are $6 x$ of. the formal, $23 x$ of the transitional, and $18 x$ of the concrete.

Only 42x. of the sample ($N=$.156) selected the correct response c for item 11 the pendulum, a controlling variables problem. The others answered 23x response d (doesn't understand control), 13x response a (are not controlling for weight), and $10 x$ for rexponse b and $11 x$ for e (both do not indicate an understanding of controlling variables). The percentage of the correct reaponse per grade level are as follows: 20x for seventh graders, $44 x$ for eighth graders, $41 x$ for ninth graders, 65x for tenth graders, 36x for eleventh graders, and 40x for twelfth graders. The following patterns were found for the three levels of reasoring: (a) 94x of the formal, $67 \times$ of the transitional, and 27x of the concrete chose the correct response c. (b) Response a was selected by 6x of the formal, $7 x$ of the transitional, and 16x
of the conerete. (c) Dniy $8 x$ of the concrete operiationale seiected response b. (d) Twenty percent of the tranaitional and $28 x$ of the concrete operationals selected d. (e) Only 16x of trie concrate chose rempon*e ©.

Forty-isix percent of the sample (H $=156$) selected the corract raason 5 for item 11, a controlling variables problem. Twenty-two percent. chose 2 (a lack of underztending of the relationahip between manipulation and control), thirteen percent chose 3 (doesn't understand manipulation or control), 10x chose 4 (doesn't realize the need for comperison of manipulated variable length), $8 x$ ciose 1 (doean't consider manipulation of the langth), and no reason ($2 x$). The percentages of the correct reason per grade level are as follows: $33 x$ (seventh), 47x (eighth), $45 x$ (ninth), $75 x$ (tenth), 39x (eleventh), and $11 x$ (twelfth). The correct reason 5 was chosen by 100x (formal), 73x (tranaitional), and $29 x$ (concrete). Rsason 3 was selected by $13 x$ of the transitional, and $16 x$ of the concrete. Justification 2 was chosen by $7 x$ of the transitional and $30 x$ of the concrete. Three percent of the transitional and $14 x$ of the concrete operational thinkers chose reason 4. Only $11 x$ of the concrete operational
thinkers selectad reason 1 .

Only $27 x$ of the sample $(N=156)$ selected the correct response a for item 15, a probabilistic reasoning problem. Twenty-nine percent chose answer e (other), 22\% selected d (did not consider the dimensions of color and shape), $17 x$ selectad 3 (only considered one dimension--spotted), and 5x chose b. The percenteges os correct response per grade level are as follows: 8x (seventh). 3ix (eighth), 16x (ninth), 50x (tenth), 27x (eleventr). and 39x (twelfth). One hundred percent of the formal level' thinkers, 47\% of the transitional operational thinkers, and only 10% of ta concrete operational thinkers chose the correct response a. Response was selected by $37 \times$ of the transitional operationals and $31 \times$ of the concrete operationals. Response c was chosen by $13 x$ of the transitional and 20x of the concrete. Three percent of the transitional thinkers and 6* of the soncrete reasoners selected b. Only 32% of the concrete operational thinkers chose d.

Only 24\% of the sample ($N=156$) selected the correct response a for item 16, a probabilistic reasoning problem. Thirty-nine pezcent of the sample selected e (other), $13 x$ chose d (considered only number of diamonds and total number of objects), 12x chose b (considered only diamond shape), $12 x$ chose C (considered only number, not
shape or texture), and $1 x$ (no response). Per grade
level, $4 x$ (seventh), $23 x$ (eighth), 23x (ninth), 44x
(tenth), 27x (eleventh), and 33x (twelfth)
responded correctly to item 16. According to the
levels of reasoning, $94 x$ of the formal, $43 x$ of the
transitional, and $8 x$ of the concrete selected the
correct response a. Response was selected by the
formal operational thinkers (6x), by the
transitional (47x), and by the concrete (42x).
Seven percent of the transitional and $17 x$ of the
concrete selected d. Three percent. of the
transitional and $16 x$ of the concrete chose b. Only
$17 x$ of the concrete operaticnal thinkers selected
C.
For item 17 a correlational reasoning
problem (mice), $40 \times$ of the sample ($N=156$)
selected the correct response a, whereas 58x chose
b. Per grade level, 59x (seventh), 35x (eighth),
17% (ninth), 34\% (tenth), 46% (eleventh), and 28%
(twelfth) chose the correct response a, indicating
there is a reletionship between the size of the
mice and the color of their tails.
The justification for item 17 seemed also to
create a problem for the students. Only $19 x$ of the
sample ($N \times 156$) chose the correct reason 1.
Thirty-six percent selected 2 sobserved only the
color of the tails and the size of the mice without
any reference to how size and color are related in the problem), $6 x$ chose 4 (considered only one dimension of the problem--tail color), and 55x selected 5 (considered only the dimension of size). The percentages of correct reason by grade level are as follows: 15x (seventh), 22x (aighth), 10x (ninth), 28x (tenth), 23x (eleventh), and $11 x$ (twelfth). Eighty-two percen't of the formal operational reasoners, 20x of the transitional, and only $8 x$ of the concrete selected the correct justification 1. Reason 3 was selected by 6x. of the formal operationals, by $40 x$ of the tranaitionals, and by 38x of the concrete. Six• percent of the formal, $37 x$ of the transitional, and 40x of the concrete selected reamon 2. Reason 4 , was chosen by $6 x$ of the concrete. Only $7 x$ of the concrete reasoners chosie reason 5.

The rationale for item 18 (fiah), a correlational problem seemed to be a difficult for the students. Only 7X of the ample ($N=156$) chose the correct reason 2. Forty-seven percent selected 1 (observed only the size of the fish and the width of the atripe without reference to the relationship between the two charactaristics), 35x chose 4 (Observed only that not all fish are the same in respect to stripes and size), $6 x$ selected 5 (considered only, the stripes, not the size), and $4 x$
selactic 3 (considered only the size of the fish). The percentages of the correct reason per grade • lavel are as follows: $4 x$ (seventh), $9 x$ (eightih), 7x (ninth), 6x (tenth), $12 x$ (eleventh), and 6x (twelfth). Only $12 x$ of the formal, $13 x$ of the transitional, and $5 x$ of the concrete selected the correct rationale 2. Forty-one percent of the formal. $53 x$ of the taansitional, and $46 x$ of the. -conerete choise 1. Twenty-nine percent of the formal, $33 x$ of the transitional, and $37 \times$ of the concrete chose 3. Reason 5 was chosen $12 x$ by the formal and $75 x$ by the concrete.

Forty-four percent of the sample (si = 156) listed the correct number of pairs of dancing partners for item 19, a combinatorial reasoning Froblem. The formal operational students scored 100x on thim item. The percentages per grade level listing the correct number of dencing partners are as follows: $30 x$ (seventh), $48 x$ (eighth), 20x (ninth), $59 x$ (tenth), $54 x$ (eleventh), and $56 x$ (twelfth). The most irequent error was the repeating of the pastners (i.e., $A-L$ and $L-A$). For item 20, a combinatorial reasoning problem, only $21 \times$ of the sample $(N=156)$ managed to complete the twenty-four combinations. Even four of the formal operational reasoners ($n \times 17$) failed to complete the twenty-four patterns. The. -
percentages per grade level completing the patterns are as follows: 0x (seventh), 13x (sighth), 30x (ninth); 22x (tenth), 27x (eleventh), and 39x (twelfth). Three of the four formal operational students who missed item 20 were males. One male completed just fours sets. of four or sixteen total. Another male completed four sets of three or twelve total: The third male began with a set of four. then went to sets of three, and finaliy returned to the sets of four. The Eemale student did not consider all combinations at the, onset, did not complete the pattern, and had no real pattern. The concrete operational students rarely had a pattern and either completed too few combinations or tried to fill all the blank apaces.

Discussion and Educational Implications Both similarities and differences exist between the reaults of this study and the results of other studies in which the GALT was utilized (e.g., Bitner, 1986; Roadrankga et al., 1983). The test reliability for this sample was similar to Roadrankga et al.'s (1983) reliability for the total GALT, but slightly lower than Bitner's (1986). Also, the results of the principal components varimax rotation differ only slightly from those of Roadrangka at al. (1983) and drastically from Bitnar's (1986). In the present
study, only one formal reasoning item (i.e., item 13) failed to laad on Factor 1. Of course, this sample which, included students in Grades 7-12 was similar to Roadrankga et al.'s. (1983) sample which ranged from sixth grade atudents through graduate level college students, but differed fron Bitner's (1986) sample of eighth grade students.

The proportion of students (11*) in this sample ($N=156$) classified as formal operational reasoners was higher than these reported by Karplus et al. (1970), Lawson et al. (1974), and Lawson et al. (1975) and lower than Premo et al's (1982) findings. In particular, the percentage of tenth (22x) and twelfth (28x) grade students who are functioning at the formal operational level is high.

In addition, obvious differences in reasoning exist between formal and non-formal operational thinkers. In the proportional reasoning problews, the concrete and transitional operational thinkers used additive or intuitive reasoning rather than ratios to solve the problems. In the control of variable problews, the transitional and concrete operational reasoners did not indicate an understanding of the relationship between manipulation and control. In solving the probabiliatic reasoning problem, the concrete and
transitional operational thinkers focused on only one or two dimensions of the problem (i.e., geometric shape diamond and number of diamonda). The concrete and transitional operational students failed to observe the characteristics of the objects and to understand the relationship between the characteristics in the correlational reasoning problems. The non-formal operational students failed to demonstrate a pattern and did not complete all combinations in the combinatorial - logic problems.

The results of this study indicated that only iix of the students in grades seven through twelve are formal operational thinkers and yet many scientific concept, laws, and principles requise logical thought processes (Bitner, 1986; Capie et al., 1981: DeCarcer et al., 1997; Hofstein et al., 1985; Howe et al., 1982; Karplus et al., 1979; Lawson, 1982a, 1983b, 1985; Linn, 1982; Wollman et al., 1978). If our goal for the 21 st century is a scientifically and technologically literate society (James et al., 1985; National Science Board Commiseion, 1983; Yeger, 1984), intervention approaches are needed to bridge the gap between the thought processes of concrete and transitional operational thinkers and the demands of abstract scientific concepts, laws, and principles.

Reconmendations for bridging the gapi include the use of tuning (Linn, 1982), the use of concrete
physical models (Cantu et al., 1978; Gabel, 1979;
Staver, 1984), the use of the inquiry approach
(Gabel, 1979; Staver, 1984), and the use of cognitive dissonance (Staver, 1984) \because

References

Ahlawat, K. S., G Billeh, V. Y.' (1982). The factor structure of the Longeot test: A measure of logical thinking. Journal of Reseerch in Science Teaching, 19(8), 647-658.

Bitner, B. L. (1986, March). The GALT: A measure 여 logical thinking ability of eighth grade students and a predictor of science and mathomatice achievement. Paper presented at the annual meeting of the National Association for Resiearch in Science Teaching, San Francisco, CA.

Bolding, J. (1985). Statistics with finesse, (Revised). (Computer program). Fayetteville, AR: University of Arkansas

Cantu, L. L., G Herron, J. D. (1978). Concrete and formal Piagetian ztages and science concept attainment. Journal of Research in Science Teaching, 15(2), 135-143.

Capie, W., G Newton, R., G Tobin, K. G. (1981, May). Developmental patterns among formal reasoning skille. Paper presented at the Eleventh Annual Symposium of the Jean Piaget Society, Philadelphia, PA.

Capie, W., G Tobin, K. G. (1980, September). Establishing alternative measures of logical thinking for use in group settings. Paper presented at the Annual Meeting of the American Paychological Association, Montreal, Canaden

Cattell, R. B. (1978). The scientific use of factor analysis in behavioral and life sciences. New York, NY: Plenum Press.

Champagne, A. B., Klopfer, L. E., G Anderson, J. H. (1980). Factors influencing the learning of claseical mechanics. American Journal of.

Physics, 48, 1074-1079.
DeCarcer, I. A., Gabel, D. L., \& Staver, J. R. (1978). Implications of Piagetian research for high school science teaching: A review of the iiterature. Science Education, 62(4), 571-583.

Farrell, M. A., \& Farmer, W. A. (1985). Adolescents' performance on a sequence of proportional reasoning tasks. Journal of Research in Science Teaching, 22(6), 503-518.

Gabel, D. (1979). Piagetian research as applied to teaching science to secondary and college students. Viewpoints in Teaching and Learning, 55(1), 24-33.

Hofstein, A., \& Mandler, V. (1985). The use of Lawson's test of formal reasoning in the Israeli science education context. Journai of Research in Science Teaching, 22(2), 141-152.

Howe, A. C., \& Durr, B. P. (1982). Analysis of an instructional unit for level of cognitive demand. Journal of Research in Science Teaching, 19(3), 217-224.

Inhelder, B., Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. U.S.A.: Basic Books.

James, R. K., \& Kurtz, V. R. (Eds.). (1985 , Fall) Science and mathematics education for the year 2000 and beyond. Bowling Green, OH: School Science and Mathematics Association, Inc.

Karplus, E. F., \& Karplus, R. (1970). Intellectual development beyond elementary school I: Deductive logic. School Science and Mathematics, 70, 398-406.

Karplus, R., Adi, H., f Lawson, A. E. (1980). Intellectual development beyond elementary school viif: Proportional, probabilistic, and correlational reasoning. School Science and Mathematics, 80(8), 673-683.

Karplus, R., Karplus, E., Formisano, M., \& Paulsen, A-C. (1979). Proportional reasoning and control of variables in seven countries. (In J: Lochhead \&'J. Clement (Eds.). Cognitive process in instruction. (pp. 47-103). Philadelphia: The Frankin Institute Press.

Kim, J., \& Mùeller, C. W. (1978). Factor analysis. Statistical methods and practical issues. Beverly Hills, CA: Sage Publications.

Lawson, A. E. (19'78). The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching, 15(1), 11-24.

Lawson. A. E. (1982a). Formal Reasoning, achievement, and intelligence: An issue of importance. Science Education, 66(1), 77-83.

Lawson, A. E. (1982b). The nature of advanced reasoning, and science instruction. journal of Research in Science Education, 19(9), 743-760.

Lawson, A. E. (1983a). The effects of causality, response alternatives, and context continuity on hypothesis testing reasoning, Journal of Research in Seience Teaching, 20(4), 297-310.

Lawson, A. E. (1983b). Predicting science achievement: The role of developmental level, disembedding ability, mental capacity, prior knowledge, and beliefs. Journal of Research in Science Teaching, 20(2), 117-129.

Lawson, A. E. (1977). Relationships among performances on three formal operational tasks. The Journal of Psychology, 96, 235-241.

Lawson, A. E. (1985). A review of research on formal reasoning and seience teaching. Journal of Research in Science Teaching, 22(7), 569-617.

Lawson, A. E., Karplus, R., \& Adi, H. (1978). The acquisition of propositicnal logic and formal operational schemata during the secondary school years. Journal of Research in Science Education, 15(6), 465-478.

Lawson, A. E., Lawzon, D. I., 6 Lawson, C. A. (1984). Proportional Reasoning and the linguistic abilities required for hypotheticodeductive reasoning. Journal of Research in Science Teaching, 21(2), 119-131.

Lawson, A. E., \& Renner, J. W. (1975). Relationships of science subject natter and developmental levels of learners. journal of. Research in Science Teaching, 12 (4), 347-358.

Lawson, A. E., E Snitgen, D. A. (1982). Teaching formal reasoning in a college biology course for preaervice teachers. Journal of Research in Science Teaching, 19(3), 233-248.

Lezarowitz, R., \& Shemeah, M. (1986, March). Factors which influence students' performance on formal reasoning group test. Paper presented at the Annual Meeting of the National Association of Research in Science Teaching, San Francisco, CA.

Levine, D. Is, \& Linn, K. C. (1977). Scientific reasonjing ability in adolescence: Theoretical viewpoints and educational implications. Journal of Research in Science Teaching, 14(4), 371-384.

Linn, K. C. (1977). Scientific reasoning: Influences on task performance and response categorization. Science Education, 61 (3), 357369.

Linn, M. C. (1980). When do adolescents reason?. European Journal of Science Education, 2(4), 429-440.

Linn, M. C. (1982). Theoretical and practical significance of formal reasoning. Journal of Research in Science Teaching, 19(9), 727-742.

Linn, M. C., Clement, C., \& Pulos, S. (1983). Is it formal if it's not physics? (The influence of content on formal reasoning). Journal of Research in Science Teaching, 20(8), 755-770.

Linn, M. C., \& Levine, D. I. (1978). Adoleacent reasoning: Influence of question format and type of variables on ability to control variables. Science Education, 62 (3), 377-388.

Linn, M. C., Pulos, S., \& Gans, A. (1981). Correlates of formal reasoning: Content and probiem effects. Journal of Research in Science Teaching, 18 (5), 435-447.

Mechan, A. M. (1984). A meta-analysis of sex differences in formal operational thought: Child Development, 55, 1110-1124.

National Science Board Commisaion on Precollege Education in Mathematics, Science and Technology. (1983). Educating Americans for the 2ist century: A pian of action for
improving mathematics. sciénce and all technology education for all Ameris:an elementary and secondary students so that their achievenent is the best in the world by 1995. Weshington, DC: National Science Foundation.

Premo, J., \& Fahey, P. (1982). Piaget testing as a change agent. In R. W. Bybee \& R. B. Sund, Riaget for educators (2nd ed.). Columbus, OH : Merrill.

Pulos, S., Linn, M. C. (1981). Generality of the controlling variables scheme in early adolescence. Journai of Early Adolescence, 1 , 29-36.

Roadrangka, V., Yeany, R. H., G Padilla, M. J. (1982, December). GALT, Group test of loqical thinking. Univeraity of Georgia, Athena, GA.

Roadrangka, V., Yeany, R. H., \& Padilla, M. J. (1983, April). The construction and validation of group assessment of loqical thinking (GALT). Paper presented at the annual meeting of the National Association for Research in Science Teaching, Dallas, TX.

Staver, J. R. (1984). Research on formal reasoning patterns in science education: Some messages for science teachers. Schocl Science and Mathematics, 88(7), 573-589.

Staver, J. R., G Gabel, D. L. (1979). The development and construct validation of a groupadministered test of formal thought. Journal of Research in Science Teaching, 16, 535-544.

Tobin, K. G., \& Capie, W. (1980a, April). The. development and validation of a group test of logical thinking. Peper presented at the American Educational Rescarch Association Heeting, Boston, MA.

Tobin. K. G., G Capie, W. (1980b, April). The test of logical thinkirg: Development and applications. Paper presented at the Annual Meeting of the National Asmociation for Research in Science teaching, Boston, MA.

Tobin. K. G., \& Capie, W. (1981). The development and validation of a group test of logical thinking. Educational and Peychological Measurement, 41. 413-423.

Toffier, A. (1980). :The third wave. New York: Bantam.
\because
Wollman, W. T., \& Lawson, A.E. (1978). The influence of instruction on proportional reasoning of seventh graders. Journal $\frac{\text { of }}{\text { Research in Science Teaching, }}$ 15 (3), 227-232. $\frac{\text { Research }}{\because}$ in Science Teaching, 15 (3), 227-232.
Yeger, R. E. (1984). The major crisis in science education. School Science and Mathematics, 84 (3), 189-198.

Table 1
Test pmalysis of the Aboreviated GRT (MI $=156$).

Ite ${ }^{\text {Pr }}$	Proportion Correct	Discrinination Index	mean	Standard Deviation
Mode 1: Conervation				
*i Piese of Clay	. 81	. 45°	. 78	. 41
* Metal Meights	. 58	. 46	. 54	. 50
Subtest: Conervation (ill anc (4)	. 70			
Mode 28 Proportional Remoning				
* Glass Size t2	. 24	- . 52	. 15	. 36
*9 Scale ${ }^{\text {If }}$. 50	. 58	. 31	. 46
	. 37			
Mode 3: Conkrolling Variables				
*il Pendulum Length	. 44	. 58	. 37	. 46
t13 Ball 1	. 50	. 55	. 41	. 49
Subterts Controlling Yariables (ill and 13)	. 47	:		
Mode 4: Probebilistic mamoning				
\#15 Squares and Dismonds ${ }^{\text {ti }}$. 39	. 59	. 21	. 41
*15 Squares and Dizmonds *2	. 40	. 56	. 20	. 40
Suthest: Probubilistic masoning (15 and 116)	6). 40			
Mode 58 Corvelational messoniny				
317 The Mies	. 30	. 31	. 15	. 36
*18 The fich	. 38	. 24	. 03	. 16
Subtest: Correlational memoning	. 34			
Mode 62 Canbinatorial mesoning				
\# 19 The Dance	. 44		. 44	. 50
te2 The Shopping Center ${ }^{\text {a }}$. 21		. 21	. 41
Subtest: Cominatorial mesoning	. 33			

Note L. $K(f-20(N=156)=.83$. The KR-20 reliability coefficients for atch grade are 70 (seventh), .81 (eighth), . 69 (ninth), 87 (temth), . 82 (eleventh), and . 85 (twelfth).

FationingSkill	$\stackrel{7}{(m+27)}$			$\underset{(n=23)}{8}$			$\underset{(n=30)}{9}$			Grade									$\begin{aligned} & \text { Total } \\ & \text { (N=156) } \end{aligned}$					
				$\begin{gathered} 10 \\ (n \times 32) \end{gathered}$	$\underset{(n \in 26)}{11}$			$\underset{(n \in 18)}{12}$																
	\underline{n}	S9	*				\cdots	S0	*	n	50	x	K	SD	\%	n	50	*	n	So	*	M	50	i
Con	. 78	. 75		1.35	. 78		1.50	. 68		1.53	. 62		1.31	. 74		$1.28{ }^{\circ}$. 75		1.30					
\#1	. 52	. 51	52	. 83	. 39	83	. 90	. 31	90		.ひ	94	.69	. 47	69	. 78	. 43	78	. 78	. 41	78			
H	. 26	. 45	36	. 58	. 51	52	. 67	. 4	67	. 53	. 50	59	. 62	. 50		. 61	. 50	61	. 54	. 50	5*			
Prop																								
fues	. 07	. 27		. 17	. 49			. 68			. 84		. 62	. 70		. 67								
*	. 00	. 0	0	. 04	.21	4	. 10	. 31	10		. 49	38	. 19	. 40	19	. 17	. 38	17	. 15	. 36				
4	. 07	. 27	7	. 13	. 34	13	. 40	. 50	40		. 49	38	. 42	. 50	42	. 44	. 51	4	.31	. 46				
Cont																								
Var	. 23	. 58		. 65	. 78		. 83	. 75		1.09	.73		. $\%$. 77		. 63	. 91		. 78	. 79				
\& 11	. 11	. 32	11	. 39	. 50	39	. 40	. 50	40	. 59	. 50	59	. 31.	. 47	31	. 33	. 49	33	. 37	. 48	37			
113	.ll	. 32	11	. 26	. 45	25	. 43	. 50	43		. 51	50	. 65	$\because 49$	65	. 50	. $5 i$	50	. 41	. 49	41			
Prob																								
Ress	. 07	. 38		. 26	. 62		.17	. 53		.75	. 95		.54	. 90		. 69				. 41				
115	. 04	. 19	4	. 13	. 34	13	. 07	. 25	${ }^{7}$. 38	. 49	38	. 27	. 45	27	. 39	. 50	38	. 21	. 41				
\#E	. 04	. 19	4	. 13	. 34	13	. 10	. 31	10	. 38	. 49	38	. 27	. 45	27	. 28	. 46	28	. 20	. 40	20			
Correl Peas	. 07	.27		. 17	. 49		.10	.31		. 28	. 52		. 23	. 43		. 11	. 32		. 17	. 41	1			
17	. 07	. 27	7	. 13	. 34	13	. 10	. 31	10	. 25	. 44	25	. 19	. 40	19	. 11	. 32	11	. 15	. 36	15			
18	. 00	. 0	0	. 04	. 2	4	. 00	. 0	0	. 03	. 18	3	. 08	. 27	8	. 00	. 00	0	. 03	. 16	3			
Comis																								
Sens	. 30	. 47		. 61	. 72		. 43	. 57		. 81	. 78			. 13		. 56								
819	. 30	. 47	30	. 49	. 51	48	. 20	. 41	20	. 59	. 50	59	. 54	. 51	54	. 56	. 51	56	. 41	. 51	4			
200	. 00	. 00	0	. 13	. 34	13	. 30	. 47	30	. 22	. 42	23	. 27	. 45	ह1	. 39	. 50	39	. 21	c41	21			
GRT Total	1.52	1.65		3.26	2.42		3.63	1.90		5.22	3.30		4.50	2π		4.50	3.20		3.78	2.83				

Table 3

Intercorfelations Among Subtestis of Formal Reasoning on GALT - fer. 7th throuah 12 th Grode Students

1. Consarvation 1.00
2. Proportional $\begin{gathered}\text { Reasoning }\end{gathered} .251 .00$
3. Controlling . 33 .41 1.00 Variablea
4. Drobabilistic . 26 . 53 . 401.00 Reasoning
5. Correlationel . 17 .30 .38 . 541.00

Reamoning
$\begin{array}{llllllll}\text { 6. Combinatorial } & .18 & .41 & .40 & .50 & .36 & 1.00 & \\ \text { Resasoning }\end{array}$

Table 4
Eactor Structure Loading for GALT Itans

Table 5
Proportion of Students According to the bevel of Reasoning an Heanurad on the GALT and Gonder for 7 th through 12th Grade Students

Grade	Level of Reasoning					
	Formala		Transitional*		Concrete*	
	E	*	E	*	E	*
7th ($n=27$)	0	0	1	4	26	96
Hele ($n=12$)	0	0	0	0	12	44
Female ($n=15$)	0	0	1 .	4	14	52
8th (n=23)	1	4	6	26	16	70
Hale ($n=14$)	1	4	4	17	9	39
Female ($n=9$)	0	0	2	9	7	30
9th (n=30)	1	3	5	17	23	80
Hale (n=17)	0	0	2	7	15	57
Female ($n=13$)	1	3	3	10	9	30
10th ($n=32$)	7	22	9	28	16	50
Hale ($n=18$)	4	13	4	13	10	31
Female ($n=14$)	3	9	5	16	6	19
11th ($n=26$)	3	12	8	31	15	58
Hale (n=13)	3	12	4	15	6	23
Female ($n=13$)	0	15	9	35	13	SO
12th ($n=18$)	5	28	1	6	12	67
Male (n=11)	4	22	0	0	7	39
Female ($n=7$)	1	6	1	6	5	28
Total. ($\mathrm{N}=156$)	17	11	30	19	109	70

mormal = Level 3, score 9-12; $H=9.76$, $\mathrm{SD}_{\mathrm{I}}=0.97$.
-Tranaitional $=$ Level 2 , acore $5-8 ; ~ H=6.03$, $S D=1.10$. econcrete $=$ Level 1 , score $0-4 ; ~ H=2.23, ~ S D=1.26 .$.

Table 6
Comarison of Junior Hiph Students (n \equiv 80) and Senior Hioh Students (n' \equiv 76):
Individul Itens. Subtertg and EAXI Total

Mote 1. The means of the senior high students surpassed the means of the junior students on all variables.

Table 7
One-way Analysis of Variance: Grade Level by GalT

Source DE \quad SS
Among $5 \quad 241.48 \quad 48.30$
Within $149 \quad 997.926 .70$
Total 155. 1239.39

Table 8
Comparison of Males' and Females' 'Scores for 7th through
12th Grade Students on the Subtests and Individual Itens. of the GALT
Item Reasoning Skill \quad Significant and non-significant
differences ($\mathrm{p}<0.01$)

Conservation
1 Piece of Clay
4 Metal Weights
Proportional Reasoning
8 Glass Size \#1
9 Scale \#1
Controlling Variables
11 Pendulum Length
13 Ball \#1
Probebilistic Reasoning
15 Squares and Diamonds \#1
16 Squares and Diamonds \#2
Correlationai peesoning
17 The Mice
18 The Fish
Combinatorial Reasoning
19 The Dance
20 The Shopping Center Galt Total.

Males > Femalea
N.S.

Males > Females

- N.S.
N.S.
N.S.
N.S.
N.S.
N.S.
N.S.
N.S.

Males $>$ Females
N.S.
N.S.
N.S.
N.S.

Females > Males
N.S.
N.S.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made

