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Abstract

Two methods for estimating measures of pass-fail reliability are

derived. The methods require only a single test administration and are

computationally simple. Both are based on the Spearman-Brown formula for

estimating stepped-up reliability. The non-distributional method requires

only that the test be divisible into parallel half-tests; the normal method

makes the additional assumption of normally distributed test scores. Bias for

the two procedures is investigated by simulation. For nearly normal test

score distributions, the normal method performs slightly better than the non-

distributional method, but for moderately to severely skewed or symmetric

platykurtic test score distributions the non-distributional method is

superior. Test results from a licensure examination are used to illustrate

the methods.

KEY WORDS: Cohen's kappa, licensure examination, pass-fail reliability,

Spearman-Brown formula.
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Introduction

A primary component of the Standards for Educational and Psychological

Testing (APA, 1985) with respect to licensure and certification examinations

requires test publishers to report the reliability of pass-fail decisions

(hereafter referred to as PF reliability). Hambleton and Novick (1974)

proposed 8, the proportion of consistently classified examinees, as a

measure of PF reliability. Swarthathan, HambJeton, and Algina (1974)

suggested that Cohen's (1960) kappa coefficient, denoted by K, be used in

place of e. Coefficient K is the proportion of consistently classified

examinees, corrected for chance. Though it is commonly thought of as a

measure of association rather than of agreement, (1), the Pearson correlation

between two dichotomous variables, equals K under certain circumstances that

will be discussed. Thus, (I) may also be used as a measure of PF reliability.

If two parallel test forms are available fcr administration to the same

sample of examinees, then estimates for 8 and K are easily obtained by the

method of moments. If only one form of the test may be administered, then

obtaining estimates for 8 and K becomes much more difficult, both

theoretically and computationally. Huynh (1976) developed a procedure for

estimating 8 and K which is based on a beta-binomial model and requires only

one test administration. The computations involved are quite intricate, but

Huynh (1976) also suggested a simpler method based on a normal

approximation. Peng and Subkoviak (1980) further simplified Huynh's (1976)

approximate method and presented evidence suggesting that their simplified

procedure is superior to Huynh's. Brennan (1981) supplied tables which make

the computations for Peng and Subkoviak's (1980) procedure relatively

5
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simple. Subkoviak (1980) discussed several other methods for

estimating 8 and K when only one test form is available.

The purpose of this paper is to derive and illustrate two theoretically

and computationally simple methods by which both 8 and K may be estimated from

a single test administration, when the test is cdvisable into parallel half-

tests. One of the methods is based on normal theory; the other makes only

minimal distributional assumptions. Bias for the two procedures is evaluated

under a variety of test score distributions and test reliabilities using

simulation, techniques.

Derivation of the Methods

Let X denote the total test and Yl and Y2 the parallel half-tests (Lord

and Novick, 1968) into which X is divisible. As will be seen later, the

statistical assumptions defining parallelism for Y1 and Y2 may be relaxed so

long as Y1 and Y2 are parallel (h^mogeneous) in content. Let A denote the

dichotomous variable that equals 0 when an examinee fails X and equals 1 when

an examinee passes X. The dichotomous variables Bl and B2 are similarly

defined for Yl and Y2. The three variables A, Bl, and B2 require that passing

scores be set for X, Yl, and Y2. The passing score for X is usually

determined, at least in part, from criterion information distinct from the

pass race. It is assumed, however, that the passing scores fc. Y1 and Y2 are

determined so that the pass rates f.r Y1 and Y2 are identical to that of X.

The proportion parameters describing the variables Bl and B2 may be

expressed in the usual format of a 2 by 2 table as follows:
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Value of B2
Value of B1 0 1 Total

n01o too

1

IT

10
IT

11

Total q p 1

In this table IT
00

is the proportion of examinees in the population of interest

who fail both Y1 and Y2, and
n01' 1T10

and 71-

'1
are defined analogously.

Beca'ise the pass rate (p) is the same for B1 and B2,
/T01

= IT
10

. In terms of

these proportion parameters,

0 = 1 -
01

/(pq)

8 = -a

00
+

11
, and

K = (0 8
1
)/(1 8I)"

(1)

(2)

(3)

wt-.ere 8
I

p2 12 The parameter 81 is the value of 0 when B1 and B2 are

statistically independent. Given the above assumption that the pass rate is

the same for B1 and B2, one can show that K = 0 , as first noted by Cohen

(1960) who also stated that K and are nearly identical so long as the pass

rates di:fer by no more than .10.

Estimates for 0, 8, and K obtained by substituting observed proportions

into (1), (2), anc. (3) would pertain to decisions based on the half-tests Y1

and Y2 and not, as is desired, on the whole test X. Let Y1 and Y2 be the

doubled in length versions of Y1 and Y2, when the lengthening is in accordance

7
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* *
with the model of parallel measurements. Thus, Y1 and Y2 are parallel

* *
forms of X. Let B1 and B2 be the dichotomization of Y1 and Y2 under the

* *
asumption that the passing scores for Y1 and Y2 are chosen so that the pass

* * *
rates are the same as for Y1, Y2, and X. Finally, let ¢ = K and a be the

* *
PF reliability coefficients corresponding to 81 and B2 (arid, consequently,

to A). Expressions for these coefficients will be derived below.

Calculations Using Normal Theory

* *
One simple way to estimate ¢ and a is a straightforward modification of

the Huynh-Peng-Subkoviak (11,-S) procedure to fit the present model of parallel

half-tests. One can drop the HPS beta-binomial model assumption for item

sampling, but keep the bivariate normal approximation for test scores.

Let K
q

= (K p
x
Pa

x
, where K is the passing score on the total test,

and p
x
and

ax are the population mean and standard deviation for the total

test. Under the assumptions of the model, q = PEZ 5 Kg], where Z is a

standard normal random variah'.e, and p = 1 q. Furthermore

* *
'fro() = PEZ1 Kq, Z2 Kq, p ] (4)

where Z
1

and Z
2 have a standard bivariate normal distribution with correlation

*
coefficient p .

To estimate Kq, one can replace u
x
and a

x
with their corresponding sample

estimators. From the parallel half-scores Y1 and Y2, one can estimate the

half-test reliability, p, then step it up to an estimate, rSB , of the full-

*
test reliability, p , using the Spearman-Brown formula. The estimates for Kq

* *
and p can then be substituted in Equation 4 to eFLimate Troo . The tables in

*
Brennan (1981) may be used to look up values for the estimate of 700 , as may

other tables of the bivariate normal distribution function.

8
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* *
Estimates for the probabilities 7r

01
and 7r

11
can then be computed from

* 4 * *
the relationships 11-00 + Tr°, = q and 11'11 + Ito' = P

* * * * * *
Since 6 = Ito° + Tr" and 4 = K = 1 - it /(pq) , the normal model estimates

* * *
for ffoo , ffil , and Trol can be immediately converted to estimates

* *
for 6 and 4 .

The practical difference between the method proposed here and the HPS

method ts the use of the stepped-up reliability estimate, rSB, in place of

KR21. The basic theoretical difference is that the mcLhod proposed here

relies on a parallel half-test model rather than on a beta-binomial model for

the full test.

A Non-Distributional Method

In the normal theory model above, the half-length reliability , o, was

*
stepped up to the full-length reliability, p , by the Spearman-Brown

formula. Alternatively, one could step up the half-length PF

*
reliability, 4, directly: 4'B = 24/(1+4) . Substituting the expression

*
for 4 given in (1) into this expression for 4

'SB
and simplifying yields

* Tr

01
4
SB

= 1

2pq Tr

01

where p
.B.01 + ff11

is the pass rate and q = 1-p. Because

* *
4 = 1 Tr°, /(pq), it follows that

*

* O1
()SB (I)

*
=

Tr01
Tr
01

21x1 it01

(5)

(6)

* *

(Note that the pass rate p . Tr

01
+ Tr

11
= Tr

01
+ Tr

11
is the same for both the

half-length and the full-length tests.) For non-zero Tr", the left side

*
difference in (6) is zero if and only if not = [1/(1 + 4)]ff01. However,

9
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*
because 0 5 7r 5 w

01 ,
the first term of the right side difference is

01

greater than 0 and less than 71'
01

/(pq), and this leads to the following upper

and lower bounds for the left side difference in (6):

71'

01
1'01 poi* *

2pq - 7r

01
TSB

ci)

Pq 2pq not

*
Since each side of this inequality approaches 0 as ffol approaches 0,

6SB

(7)

*
becomes a better approximation to qb as the half-test reliability increases,

* *
though, as will be argued, (I)

SB
can be a useful approximation to th when the

half-test reliability is only moderate.

*
Technically, qb

SB
is the reliability of a test composed of the two

dichotomously scored parts B1 and B2 or, equivalently, the correlation between

two parallel forms of such a test. These test scores would be trichotmous

variables taking the values 0, 1, and 2. Consequently, the interpretation

of (I)

SB
as the correlation between B1

*
and B2

*
is an approximation,

* *
because B1 and B2 are dichotomous variables.

More specifically, let C = B1 + B2 and C' = B1' + B2' where the prime

. *
deno;es a parallel measurement. The coefficient (I)

SB
equals the correlation

between the two parallel measurements, C and C', both of which may take the

values of 0, 1, cr 2. For the measurement C, the value 0 occurs if the

examinee fails both B1 and B2. The value 1 occurs if the examinee pass one

but fails the other. If the examinee passes both B1 and B2, then C takes t'ne

value of 2. The values of C' are similarly defined in terms of B1' and B2'.

If B1 and B2 are reasonaby reliable, then there should be relatively few

examinees with scores of 1 on C and C'. Assume that the group of examinees

scoring 1 on C is approximately the same as the group of examinees with scores

of 1 on C'. Let the dichotomous variables D and D' be defined by dividing

10
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this group of examinees in half and assigning one half scores of 0 and the

other half scores of 2.

The dichotomous variables D and D' will have approximately the same means

as C and C', but their variances will be larger. The covariance between D

and D' will also be larger than the covariance between C and C'.

Consequently, the correlation between D and D' should be approximately equal

to the correlation between C and C', which is
TSB.

However, since D

and D' may i-Je viewed as a dichotomous grouping of the trichotomous variables C

and C',
)

6
SB

may be close to but slightly greater than the correlation between

D and D' because of attenuation due to grouping. The variables D and D' take

* *
the values of 0 or 2 while the variables 31 and B2 take the values of 0 or

1. While t"e variables D and D' are defined differently than the

* *
variables B1 and B2 , their values are linearly related with a slope equal

to two and an intercept equal to zero. Insofar as the variables D and

* *
D' serve as approximate representations for the variables B1 and B2 , on a

* *
different scale, 6

SB
may be interpreted as an approximation to 6 , the

* *
correlation between B1 and B2 .

* *
The approximation 6

SB
is related to 0 as follows. First, algebraic

* *
2 * * 2

manipulations show that 7
11

= pq6 + p and 7
00

= pqq) + q . Combining

* * *
these equations with the relationship e = 700 + 7" results in

* *
0
S3

= 40
SB + p2 + q'

* * *
The relationship to K is more simple: K

SB
= 6

SB

(8

In practice, it may not be possible to construct exactly parallel half-

tests from a single test, and as a result, 701 may not be equal to 710 . If

the difference in the observed proportions p01 and p10 corresponding
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to 1
01

and
110

are minor in relation to the sample size, then p
01

and p,, may

be replaced by their average, and the marginal proportions adjusted

accordingly. The above formulas are then applied to the modified 2 x 2 table

of observed proportions.

Simulation Results

A Monte Carlo investigation was undertaken to evaluate the accuracy of

the non-distributional procedure as well as the normal procedure. An

important application of PF reliability indices is in the area of

certification and licensure examination where there is usually at least

several hundred and often times many thousand examinees taking the test.

Hence, it was considered to be more important to investigate the bias of the

procedures for large sample sizes rather than to compare the small sample

standard errors of the procedures.

The present simulations were undertaken on an IBM 4381 mainframe using

SAS version 5 (SAS Institute Inc., 1985), except that IMST, (IMSL, 1987)

function BNRDF was used to evaluate the bivariate normal cumulative

distribution function for the normal method. Six simulation situations were

considered. Within each of three different test score distribution shapes:

nearly normal, platykurtic, and negatively skewed, two full-test reliabilities

were considered: .92 and .71, where the full-test reliability is defined as

the Spearman-Brown stepped-up correlation between the half-tests. For each of

the six simulation situations, two replications were done where one

replication consists of the generation of four half-test scores for 20,000

examinees under the following model:

Yij = Y2Ti + YEij + B i = 1, . . ., 20,000 and j = 1, 2, 3, 4,

where Y and 8 are parameters and T and all {Eij} are independent variates

generated from the standard normal distribution. All half-test scores were

"i2

..:
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rounded to integer values, and the full-test scores were computed as

X1 = Yl + Y2 and X2 = Y3 + Y4. Various degrees of symmetrical and

asymmetrical truncation on T and to a much lesser extent symme*rical

.cation on the E's was used to control the distributional shapes of the

test scores being generated. Formulas for the mean and variance of truncated

normal variables are available (Johnson & Kotz, 1970), and these in

combination with the Y and $ parameters permitted some control over the means,

variances, and reliabilities of the test scores.

Full-test characteristics for the six simulation situations are presented

in Table 1. These situations were chosen as representative of those

Insert Table 1 about here

encountered ia practice. Test score distributions for licensure,

certification, and various other selection examinations are frequently but not

exclusively found to be negatively skewed as is illustrated by an example

presented later. Alternatively, Lord (1955) found for professionally

constructed educational examinations that if they were symmetric they tended

to be platykurtic (flat). Lord's (1955) finding was reaffirmed with a random

sample of 40,000 examinees from a recent administration if the ACT Assessment

examination. The distributions of raw scores for the iJur subtests comprising

the ACT Assessment were approximately symmetric with skews ranging from -.2 to

+.25 but with kurtoses ranging from -.40 to -.96. Finally, since test scores

are inherently bounded, rather than consider an exactly normal distribution

situation, a nearly normal situation with slight platykurtosis was used

instead. Though full-test reliabilities for professionally constructed

examinations are usually in the nineties or at least the eighties, subtest
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reliabilities may bP lower and so both high and low reliabilities represented

by .92 and .71 were considered.

Failure rates of ten and *Flirty percent were selected for investigation

as they seemed to represent a realistic range. Due to the integer nature of

the generated test scores, it was not always possible to achieve exactly ten

or thirty percent failure rates for the full-tests. Rather, the failure rated

ranged from 8.5% to 11% and from 29% to 32.5% across the six situations.

For an estimator T of some parameter p, bias is defined as E(T) - 0.

The parameters of interest are the PF reliability indices 0 and = K. For

the distributions modeled, the theoretical values of these parameters are not

known. However, the simulations included the generation of two full-test

scores for all simulated examinees, and consistent estimates for the

parameters were obtained by applying the method of moments (MOM) to the 2 by 2

table derived from the pairs of full-test scores. With a N of 20,000 these

consistent MOM estimates should, for practical purposes, accurately reflect

the true parameter values. In what follows, t:ase estimates are denoted by a

carat, but have no subscript. The two estimation methods compared were the

normal and non-distributional methods both of which are computed for the first

full-test score X
1

= Y
1

+ Y
2

only. Normal method estimates have N as a

subscript while the non-distributional method estimates have SB as a

subscript. The bias for each method is estimated as the difference between

its estimate and the consistent MOM estimate. This approach of using the MOM

estimate as the parameter is similar to that used by Peng and Subkoviak

(1980), Huynh and Sanders (1980), and Subkoviak (1978).

Table 2 presents MOM estimates for the PF reliability indices

0 and 0 = K as well as estimated biases for the normal and non-

distributional methods. Results are presented for two replications under all
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six simulation situations and for approximate fail rates of ten and thirty

percent.

Insert Table 2 about here

The replications in Table 2 reveal some variability in the bias estimates

even with an N of 20,000. Despite this variability, clear patterns do

emerge. Focusing first on 0, it can be seen that for the two nearly normal

situations the normal method is never significantly worse and in one case

appreciably better than the non-distributional metnod, though the bias for

both methods is modest. With the four non-normal situations, the pattern is

reversed. The non-distributional method is never substantially worse and

usually considerably better than the normal method, but again, both methods

usually show only modest bias.

Turning next to (1), the pattern is similar but the biases are generally

larger, the latter result having also been observed by Peng and Subkoviak

(1980) and Huynh and Sanders (1980) with their methods. For the two nearly

normal situations, the normal method is appreciably better than the non-

distributional method though the latter method performs reasonably well. With

the four lion-normal situations, the non-distributional method usually performs

fairly well and is considerably better than the normal method which has rather

large bias when the fail rate is 10%.

It is interesting to note that while the normal metho:i sometimes yields

positive and sometimes negative bias estimates, the biases in Table 2 are

always positive for the non-distributional method. In the derivation of the

non-distributional method, it was suggested that insofar as the method may be

biased, the bias would be positve and attributable to attenuation due to

15
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grouping. It is also worthwhile to note that previous simulation studies by

Peng and Subkoviak (1980) and Huynh and Sanders (1980) found that the HPS

method and Huynh's beta-binomial method had biases similar in magnitude to

those found for the present methods, though the previous studies concentrated

on short tests while the focus of the present study is long tests. However,

Huynh's beta-binomia'. model was applied to the current simulated data, but the

results are not reported because, as was expected, its performance was very

similar to the performance of the normal method. (In applying the beta-

binomial metlod, the number of items on each test was chosen so that KR21 was

close in value to psB with the constraint that test length could never be less

than the maximum observed score.)

In summary, neither method shows large bias when estimating 6, though the

norrv.1 method generally shows less bias than the non-distributional method

when the test scores are approximately normally distributed while the opposite

holds when they are not. In estimating 4), the non-distributional method

generally shows mild to moderate positve bias, but is considerably less biased

than the normal method when the test scores are not normally distributed with

the reverse being true when they are. These results indicate that when the

sample size is large and the test score distribution shows substantial

departures from normality the non-distributional method should yield more

accurate estimates of 6 and especially 4) than the normal method.

In the next section, the methods are illustrated with data from a

licensure examination.

An Illustrative Example

The data used here are from a licensuid examination containing 300 scored

items. The test is divided into two separately timed parts consisting of 150

scored items each. The two parts were constructed to be equally difficult
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based on field test data and were matched in content according to the test's

table of specification. A group of approximately twenty expert judges rated

the 300 scored items using the Angoff (1971) method. The judges also rated

what proportion of items a minimally competent examinee should answer

correctly in each of the many content areas covered by the test. A passing

score for the total test of at least 200 items correct was determined from a

weighted average of the judges' item and area ratings.

The method requires that passing scores be determined for the two parts.

From a strictly statistical perspective, these passing scores should be chosen

so that the passing rates on the two parts are equal to each other and to the

percentage passing on the full test. If a representative sample of examinees

is available, then the half-test passing scores may be determined solely from

the passing rates. The half-test passing scores need not be taken as one-half

of the ful3 test passing score, nor do the half-test passing scores have to

sum to the full test passing score. In general, these last two conditions

will not be fulfilled when the half-test passing scores are determined by

equating the passing rates.

In many applications, it may be possible to integrate psychometric and

statistical considerations. If criterion data, such as expert judges'

ratings, are available, then these data may also be employed in determining

the half-test passing scores. Consider the present example: In rating the

items and areas, the judges' only concern was to establish a passing score for

the total test which would determine whether or not an examinee should be

licensed. However, using the same weights as were used to determine the

passing score for the total test, the item and area ratings were also used to

determine passing scores for the two parts. Both parts received 100 items

correct as passing scores based on the expert judges' ratings. After the test

I 7
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was administered and the results analyzea, these passing scores were changed

to 102 for part one and 98 for part two. The reason for the change was that

in the total group of examinees the average score for part one was

approximately four points higher than that for part two, and with these

adjusted passing scores the part one and part two passing rates were nearly

identical to each other and to the full test passing rate. In this example,

empirical results from a large representative sample were used to adjust the

judges' ratings. Note that no decisions about examinees were based on the

part one and part two passing scores. Their only function is in estimating

the full test PF reliability. The fact that the half-test passing scores sum

to the full test passing score is due to the long length and corresponding

high reliability of the two parts. If the two parts were shorter, this

condition would likely be violated.

Summary statistics for the total group and selected subgroups of

examinees are presented in Table 3.

Insert Table 3 about here

The subgroup data are presented to illustrate the method for different sample

sizes and for groups with different observed passing rates. The determination

of the subgroups is based upon whether an examinee was taking the test for the

first time or was repeating the test; and whether an examinee graduated from

an accredited or nonaccredited university.

The sample alpha coefficients are derived from scores on the

examination's five subtests which differ in content, rather than from the item

scores. This is why the sample alphas are slightly smaller than the sample

KR21's. Since the subtests differed widely in length, average subtest scores

8
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(rather than total subtest scores) were used for computing the alphas.

One would generally expect that the stepped-up reliability coefficient,

r
SB

= 2r(Y1,Y2)/[1 + r(Y1,Y2)] , would be larger than KR21, though that is

not always the case in Table 3. Most likely, this is due to the long length

of the test. In any case, the two reliability coefficients are very similar

in all subgroups.

The data in Table 3 show that while Y1 and Y2 have similar standard

deviations, their means tend to differ; hence Y1 and Y2 are not precisely

parallel. Moreover, the negative skewness coefficients suggest moderate to

severe departures of the data from normal distributions.

The stepped-up phi coefficient,
TSB

, is based, tough, on neither of

these assumptions, but on the assumption that B1, B2, and A have the same pass

rates. An indication of how well the data satisfy this assumption can be

found in the pass rate column of Table 3. The passing scores for Y1 and Y2

were chosen so that the assumption would be fulfilled in the total group of

examinees. The assumption continues to be met in the group of accredited

first-time examinees but is violated to varying degrees in the remaining three

groups. As was previously discussed, the observed proportions may be smoothed

in the application of the non-distributional method. The "smoothed half-test

proportions" in Table 4 were obtained by replacing the two off-diagonal

proportions with their average. The estimated full-test proportions and PF

reliability indices in Tabel 4 were computed from the smoothed proportions.

Though the sample proportions in Table 4 are reported to only 3 digits, the

computations for the PF indices used 4 digits.

Insert Table 4 about here

59 9
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The HPS estimates of the full-length reliability indices are based on

Brennan's (1981) tables. Because, as was noted above, KR21 is nearly

identical to the stepped-up reliability coefficient, rSB, the HPS reliability

indices are nearly identical to those that result from applying the normal

model to the half-test data, as discussed earlier in this paper. For this

reason, the PF reliability indices associated with the normal model are

omitted from Table 4.

Comparing the SB and HPS estimates in Table 4 shows that they yield

* *
nearly identical estimates for e , but that their estimates for K are

sometimes discrepant. The results from this example are consistent with the

simulation results. When N is large and the test score distribution is

substantially skewed, as in the first two groups in Table 4, the two methods

give substantial different estimates for 0 = K. The simulation results

indicate that the SB method estimates should be more accurate, and this is

supported in this example by the similarity of the HPS estimates to the

unstepped-up half-test MOM estimates of 0. Doubling the length of the test

should increase 0 at least a moderate amount; that was always the case in the

simulations. The other three groups are considerably less skewed (with fairly

normal kurtoses also) and here the HPS and SB estimates for 0 are more similar

and substantially increased over the unstepped-up half-test MOM estimates

of 0.

Summary and Discussion

The methods for computing PF reliability presented in this paper require

only one test administration and use the Spearman-Brown formula tc obtain

stepped-up estimates of PF reliability which are computed from parallel half-

tests. They thus require that the test be divisible into two parts that are

equivalent in their content and approximately equivalent in certain

20
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statistical characteristics. If this is not the case, then one of the beta-

binomial model based methods discussed by Subkoviak (1980) could be used such

as the one by Huynh (1976). However, the beta-binomial method is

computationally complex and appears more Appropriate when tests are short lncl

homogeneous in content and item difficulties. For long tests which are

heterogeneous in content and item difficulties, such as licensure

examinations, the Peng and Subkoviak (1980) approximation should yield results

nearly identical to those from the beta-binomial method. Brennan (1981)

presents tables which make the Peng and Subkoviak computations relatively

simple. Brennan (1981) also discusses other PF reliability indices in

addition to 0 and K .

If the test is divisible into parallel half-tests, then the methods

derived within possess certain advantages. Instead of KR21, which is used in

the HPS method, the normal method uses a Spearman-Brown stepped-up half-tests

intercorrelation as an estimate of the correlation between two full-tests.

This latter estimate is based on less restrictive assumptions than KR21, and

as a consequence the normal method has wider applicability than the HPS

method. In particular, it should be better suited to long heterogeneous tests

such as licensure examinations, though this may not always be the case as is

illustrated by the example given within. Of more importance, however, is the

non-distributional method which discards distributional assumptions

altogether. The simulation results support the conclusion that when N is

large and the test score distribution is non-normal, the non-distributional

method will yield more accurate estimates than the normal method especially

for 0 = K and especially for smaller (.10) failure rates.

Though the non-distributional method outperformed the normal method when

normality was violated, it still displayed mild to moderate bias. The bias,
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however, was always positive, in contrast to the normal method, and this

suggests that it may be worthwhile to investigate strategies for correcting

the bias. Also, t' magnitude of the biases found here were generally similar

to those found by Peng and Subkoviak (1980) for their approximate method and

to those found by Huynh and Sanders (1980) for the beta-binomial method,

though these two studies focused on short tests. Finally, the simulation

results obtained here are only applicable when sample sizes are large. An

investigation of the behavior of the non-distributional method when sample

size is small, test length is short, and test score distributions are non-

normal could extend the applicability of the method to situations other than

the one of professional licensure and certification examinations which was

considered here.

22
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Table 1.

Dist.

Characteristics of the Simulation Distributions

Rel. Mean S.D. Skew Kurtosis

Normal* .92 160 23.0 .01 -.17

Normal* .71 70 8.5 .00 -.14

Flat .92 140 25.4 .01 -.93

Flat .71 50 8.7 -.01 -.65

Skewed .92 165 20.5 -.84 .47

Skewed .71 57 5.5 -.63 .42

*These are nearly normal with slight platykurtosis.



Table 2! Parameter
........".., -3.

Dist. p
SB

Sim.

Estimates and Bias Estimates for the Pass-Fail Reliability Indices --
.

10% Failing 30% Failing 10% Failing

* *
N=20,000 and (I) = K

30% Failing
-*
8

-if -it -if -if

eSB
-8 8

N
-8

-if

8
-if -if -it -if -if

8
SB

-8 8
N

$-8 ()

-if -it -it -if

$SB 4)4)

()N4)N
-4)

'S* ..* ..* ..* ..*

4)$ 4)SB $
N
-4)

Nearly .92 1 .94 .007 -.003 .89 .017 .000 .70 .034 -.009 .73 .040 .001
Normal ..) .95 .007 -.004 .88 .021 .003 .71 .029 -.018 .72 .051 .008

Nearly .71 1 .90 .001 -.006 .78 .008 -.005 .41 .004 .006 48 .026 .007
Normal 2 .90 .004 -.001 .79 .013 -.009 .40 .011 .016 .50 .035 -.006

Flat .92 1 .92 .012 .028 .90 .015 -.012 .55 .086 .133 .77 .037 -.043
2 .92 .009 .026 .91 .016 -.014 .57 .066 .114 .78 .044 -.050

Flat .71 1 .88 .008 .018 .79 .008 -.015 .31 .053 .118 .53 .012 -.037
2 .87 .012 .021 .79 .003 -.014 .29 .088 .124 .52 .000 -.035

Skewed .92 1 .96 .009 -.007 .91 .016 -.030 .77 .041 -.u89 .78 .038 -.047
2 .96 .010 -.008 .91 .013 -.029 .77 .049 -.088 .78 .031 -.047

Skewed .71 1 .93 .005 -.022 .80 .013 -.044 .56 .057 -.147 .55 .031 -.051
2 .93 .000 -.026 .30 .012 -.037 .57 .030 -.156 .54 .027 -.038
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Table 3. Summary Statistics and Reliability Coefficients, by Examinee Group
.3=.=.=.2 =

Examinee
group

Summary statistics Reliability coefficients
Pass

N Variable Mean SD Skewness rate Alpha(X) KR21(X) r(Y1,Y2) rSB

Total group 4828

Accredited 3999

first-time

Accredited 548

repeating

Non-accredited 94

first-time

Non-accredited 187
repeating

X 236.06 29.78 -1.41 .900 .92

Y1 119.93 15.11 -1.48 .894

Y2 116.13 15.48 -1.24 .897

X 241.96 22.59 -0.80 .956 .87

Y1 122.97 11.39 -0.88 .952
Y2 118.99 12.20 -0.69 .949

X 224.01 28.73 -0.27 .812 .90
Y1 113.59 14.79 -0.39 .790
Y2 110.42 14.84 -0.17 .821

X 187.22 49.61 -0.14 .404 .96
Y1 95.01 24.28 -0.19 .436

Y2 92.21 26.06 -0.17 .436

X 169.74 39.76 -0.03 .209 .91

Y1 86.05 20.38 -0.13 .198
Y2 83.69 20.38 0.01 .251

28

.95 .90 .94

.91 .84 .91

.93 .88 .94

.98 .94 .97

.96 .90 .95
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Table 4: Pass-Fail Proportions and Reliability Indices, by Examinee Group

Examinee
group N

Total group 4828

Accredited 3999
first-time

Accredited 548

repeating

Non-accredited 94

first-time

Non-accredited 187

repeating

PF Half-test PF reliability indices

derision proportion Full-test Half test Full-test

B1 B2 Raw Smoothed Proportion , , -* -* -* -* -* -*

=K 0
4)SeKSB

0
SB 4)HPS=KHPS

0
HPS

0 0 .078 .078 .089 .72 .95 .84 .97 .76 .95

0 1 .028 .026 .015

1 0 .025 .026 .015

1 1 .870 .870 .881

0 0 .030 .030 .037 .59 .96 .74 .98 .61 .98

0 1 .018 .019 .012

1 0 .021 .019 .012

1 1 .931 .931 .938

0 0 .133 .133 .156 .61 .88 .76 .92 .76 .92

0 1 .077 .061 .038

1 0 .046 .061 .038

1 1 .745 .745 .768

0 0 .500 .500 .527 .74 .87 .85 .93 .90 .95

0 1 .064 .064 .037

1 0 .064 .064 .037

1 1 .372 .372 .399

0 0 .722 .722 .744 .69 .89 .82 .94 .78 .92

0 1 .080 .054 .032

1 0 .027 .054 .032
11:1

lb

1 1 .171 .171 .193
0,
0,
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