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Let us start by identifying a fundamental dilemma of eny practicing

instructional developer: the models by which we work have considerable

practical utility, and they are generally well grounded in theory. But

the business of translating theory into practice is always risky. As

Cunningham (1986) points out,

...we must rid ourselves once and for all of the notion that

science will produce "truth," fixed and immutable for all

time. Our notion of generalizability must be radically altered.

We must allow ourselves the discomfort that comes when we

realize that we are less certain about things than we previously

imagined.

In this view, theory in principle does not lead smoothly and unambiguously

to generalizable prescriptions for practice. Instead, practitioners must

use theory as a "point of view" or a means for forming expectations of how

reel world problems will behave. These expectations help.the practitioner

understand the complexity of real world problems, and they help structure

decisions about what to do. While it is true that the map is not the

territory, it is also true that to navigate in the territory, one must
have a map: theories are only abstractions of reality, but reality can

only be understood through the point of view provided by theory.

And so it is now, as instructional developers seek to incorporate

the theory of information processing cognitive psychology into their

practical models of instructional design. As lways, the research is

incomplete and in some cases contradictory. But even so, we must ask if

there are models, modes of analysis, or prescriptive principles which are

powerful enough to improve the practice of an instructional developer who

uses them.

The answer is a (heavily qualified) "yes," in the opinion of recent

reviews, such as Fredericksen (1984) and Andre (1986). To evaluate these

opinions, it is appropriate to examine how thinking about instructional

design might change to incorporate cognitive theory. This examination

modify their design practice.

TECHNICAL PROBLEM SOLVING

also will help illuminate some unanswered theoretical questions and

identify some tools which practitioners will need in order to effectively
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Let us tke as the point of departure the topic of teaching trouble
shcoting, as one might find it in content areas such as electronic circuit

Fault detection, mechanical system repair, computer software debugging, or

medical diagnosis. Troubleshooting has the advantage of being a common
subject of training courses, and also a comr,...n topic of cognitive re-

search. However, troubleshooting is generally well structured compared to
other kinds of problem solving (such as design tasks), so the degree of

generalizability to other cognitive tasks must be questioned.

First, we will quickly review common (behaviorally based) design
practices for training in troubleshooting. Then, we will examine some of
the cognitively based recommendations for teaching problem solving which
have been recently published, and see how they might be applied to design
of troubleshooting training. Finally, we will identify some unanswered
questions of importance to practitioners seeking to incorporate cognitive

principles into their instructional designs. As part of the discussion,

we will note certain key divergences between Scan"ira's Structural Learn-.
ing Theory (SLT) and other cognitive theories.

BEHAVIORALLY BASED DESIGN PRACTICES FOR TROUBLESHOOTING TRAINING

The behaviorally based approach to teaching troubleshooting is
essentially algorithmic. For example, popular treatments such as Mager's
(1982) of en include recommendations such as these:

1. Identify the system's most common faults.

2. Derive one or more algorithm(s) for troubleshooting each common

fault,using a split half strategy. A full analysis includes

identification of conditions, actions, and feedback for each step.

3. Sequence instruction in each algorithm (or algorithm segment)

using sequencing rules (e.g., teach prerequisite parts before
wholes).

4. Teach each algorithm (or algorithm segment) separately, teaching
the steps in retrograde sequence. Structure practice of each step
so it includes:

o realistic stimuli (conditions)

TECHNICAL PROBLEM SOLVING Page 2
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o realistic responses

o immediate feedback on accuracy of the response, in detail

Continue practice until the behavior is satisfactorily shaped.

Limitations of the Behavioral Approach. Instructional design strat-

egies incorporating these features have '...een in use for over twenty years,

and they have been shown repeatedly to be effective. However, the behav-

ioral approach has not been without critics. For example, Duncan (1985)

makes these points:

1. Detailed procedure analysis of the sort required is costly.

Each system fault requires a separate algorithm, or algorithm seg

ment.

2. Technicians resist using a fully algorithmic approach.

3. The algorithms are very situation specific, and thus expensive

to update.

4. Retention of algorithm details is a constant problem, because

most of the faults (and their associated algorithms) are rarely

encountered --and thus rarely practiced.

5. Transfer of troubleshooting skills to new syste.rs or new faults

is relatively low.

It may be that experience with these limitations are at the root of

the common practice of using job aids to record troubleshooting algo-

rithms, wherever possible. When they can be used in the work situation,

job aids effectively offset the problem of retention, and the need for

transfer is greatly reduced. However, the cost of the analysis and the

need for constant updating still remains.

Recent cognitive research suggests some ways of overcoming some of

these limitations. To see how, let us next summarize some key findings

from that research.

KEY COGNITIVE PRINCIPLES OF RELEVANCE TO TROUBLESHOOTING

Of the various lines of cognitive research, two of perhaps greatest

interest to instructional designers teaching problem solving deal with

knowledge representation and with the things that expert problem solvers

know. While these findings are familiar, we will review each to facili-

TECHNICAL PROBLEM SOLVING Page 3
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tate later discussion.

Knowledge Representation. In general, cognitive researchers have

tended to draw distinctions between different types of knowledge. For

example, Andre's chapter on problem solving in a recent introductory text

(Phye and Andre, 1986) distinguishes between:

o Concepts, or schemata, which are stored as sets of multiple

discrimination rules and as prototype examples; and

o Production systems, including rules, principles and skills,

which specify the conditional relationships between concepts.

In addition, Andre makes the familiar distinction between:

o Declarative knowledge, which supports the ability to classify

or define; and

o Procedural knowledge, which supports the the ability to per

form.

An exception has been Scandura's Structural Learning Theory (Scandu-

ra, 1936). In SLT, both declarative and procedural knowledge are subsumed

in a single rule structure. In the rule structure, higher order rules

subsume lower order ones, and separate knowledge structures are not postu-

lated.

Expert Knowledge. In studying differences between expert and nov-

ice problem solvers, Andre's review distinguishes two types of knowledge

important for our purposes:

o Heuristic knowledge. Heuristics, or generally applicable (but

imprecise) production systems, are used by experts to control

problem representation and selection of solution strategy.

o Domain Specific knowledge. Experts have mastered large arrays

of knowledge specific to a particular domain. This knowledge

probably includes:

the symbol system in use

the structure of the system

types of problems

problem solution algorithms

strategies for applying heuristic knowledge to domain

specific knowledge.

TECHNICAL PROBLEM SOLVING
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Again, there is a contrast with SLT. SLT does not allow for

extra domain knowledge, other than a single "goal switching" control mecha-
nism, which is taken to be innate. What otiers call heuristics are taker,

within SLT to be higher order rules, which may be applied to generate

lower order (content specific) rules as required. Another important

phenomenon is automaticity, or the ability to process certain kinds of
highly standardized algorithms rapidly anc with minimal cognitive process

ing load (Sch'eider & Shiffrin, 1977). There is growing evidence that

automaticity is important because it frees up attentional power for other.

less standardized tasks. Elio (1986) suggests that this effect applies to

production systems, but not to concepts. In other words, rapid recall of

facts does not necessarily facilitate learning of advanced skills, but

rapid performance of component subskills does.

Finally, the expert's reasoning process itself has been studied.

Elstein, Schulman and Sprafi:a (1978) characterized physician's reasoning

process as hypothetico-deductive, meaning that expert physicians usually

formulated a small number of hypotheses early in the problem solving pro-

cess, then gathered the information with the greatest power in discriminat
ing between competing hypotheses. This is essentially a refinement of

earlier views (for example, Gagne, 1954) that activities such as fault

identification are essentially tree structured deductive tasks involving

sequential discrimination of multiple cues. However, more recent work

(Patel & Croen, 1986) suggests that this kind of backward reasoning may
not be used universally. At least in the case of problems of moderate

difficulty, a forward reasoning process seems to be more characteristic of
experts.

With these basic concepts in mind, let us now turn to the problem

of teaching troubleshooting by addressing it as a subset of the general

issue of teaching problem solving.

HOW TO TEACH TROUBLESHOOTING

If we approach the task of designing instruction for troubleshoot-
ing by using a standard instructional design moeel, it makes sense to
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first discuss the analysis of the task, and then to address the selection
of appropriate instructional strategies.

Analyzing the Task. The theory reviewed above le,._ to some signif
icant departures from conventional task/content analysis. The analysis.

nrocedure might look like this:

I. If experts use a symbol system to describe the system, identify
it. Then analyze the characteristics of the symbol system through
a conventional concept analysis.

This recommendation is based on the finding that knowledge of an

appropriate symbol system is the first level of an expert's

domain specific knowledge.

2. Using this symbol system, represent the system under study,

identifying components within the system. The level of detail of

analysis should be such that the smallest unit of analysis corre
spands to the smallest component to be acted upon in troubleshoot

ing. The analysis should include at least the name and function of
each system component.

This corresponds to the identification of concepts or schemata for

an expert's domain specific knowledge, or the lowest order of rules
in an SLT rule structure.

3. For each component, identify the failure modes and the probabil
ities and costs associated with each failure. Then group the fail
ure modes into categories.

This corresponds to identification of the expert's knowledge of the
types of problems which occur. The recommendation to attach proba
bilities and costs to the failures is consistent with Elstein,

Schulman and Sprafka (1978), and also with work done with some
expert systems.

4. For each category of failure, identify the solution algorithm
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for isolating the problem. The algorithms are specific indicators

or tests which isolate compnent failures. They are not complete

algorithms for troubleshooting the entire system. It may also be

worthwhile to identify the relative cost and reliability of each

test.

This corresponds to an expert's knowledge of problem solution algo-

rithms for each problem type, or higher order rules within SLT.

There is some evidence from studies such as Elstein, Schulman and

Sprafka (1978) that experts also take into account the cost and

reliability of each test when weighing the information value of

each alternative.

5. For the system as a whole, derive heuristics which may be ap-

plied to guide linking of the detailed solution algorithms to find

a particular fault.

This corresponds to an expert's knowledge of problem s,lving strate-

gies, or the highest order rules within SLT.

Compared to conventional behavioral analysis, this task analysis is

much more comprehensive, yet potentially simpler to perform. It shows the

structure of the system when it works, and when it doesn't work; it also

shows the production systems used by an expert when troubleshooting at a

precise and a heuristic level. However, ,t does not do what a behavioral

analysis would: it does not map the exact algorithms needed to trouble

shoot every particular fault in a specific system. Instead, it assumes

that detailed troubleshooting algorithms are constructed by experts as

they are confronteC with each malfunction. To do this, the experts draw

on all five types of knowledge analyzed above. If all five types of knowl-

edge are taught to learners in an effective way, the assumption is that

they also will be able to construct the algorithms as experts do.

This approach to cognitive task analysis also differs from that

proposed by Brien and Duchastel (1986). In their technique, discrete

learner objectives are developed for reproduction competencies (for which

the learner is expected to recall the algorithm), and production competen-

cies (which the learner must generate). The production competencies corre-

TECHNICAL PROBLEM SOLVING Page 7
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spond to the troubleshooting algorithms mentioned in point 4 above,

However, Brien and Duchastel do not seem to make separate provisions for

heuristic knowledge, as recommended in point 5 above. Furthermore, struc-

tural analysis of the relationships between the rules in the knowledge

structure is not discussed.

With the task analysis complete, let us turn to the design of the

instructional strategy.

Instructional Strategies. It would seem logical to teach each of

the five types of knowledge with a separate instructional strategy. Howev-

er, there is considerable controversy over whether this is really effec-

tive. For example, Duncan (1985) reported improvements in fault fi ding

efficiency, but not accuracy, when various problem representation strate-
gies were taught. Improvements in accuracy came only with practice. An

attempt to directly represent production systems to physics students by

Hewson and Posner (1984) yielded mixed results. On the other hand,

Boekaerts (1985) has concluded that greater transfer occurs when concepts

and production systems are taught in an integrated fashion a: ' complete

system representation. Scandura (1986) concurs from both theoretical and

empirical evidence that use of separate instructional strategies is both

less efficient and less effective.

While integrated teaching of concepts and production systems may be

best for declarative knowledge, the opposite may be true of procedural

knowledge such as the specific algorithms and general heuristics known by
experts. Chaiklin (1984) has argued that verbal representation of proce-

dural rules assists novices as they master the rules, even though the

verbal representations drop out when experts use the procedures. Further

more, Chaiklin argues that even experts may return to verbal representa-

tion of the rules when confronted by a difficult problem.

These recommendations are far from certain. Each of them could be

challenged by citing conflicting research findings. However, it appears

(at least to this author) that they represent the most persuasive posi-

tions among current work. Combining them with more widely recognized

instructional strategy recommendations leads to this instructional strate-
gy for teaching troubleshooting:

TECHNICAL PROBLEM SOLVING Page 8
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I. First, teach the symbol system used to represent the problem.

The symbol system is essentially a system of declarative knowledge involv-

ing both terms and concepts. Procedures for teaching terms and concepts

using sequences of definitions. positive and negative examples have been

well documented, most recently by Tennyson and Cocchiarella (1086).

2. Then, teach the system under study, including both its compo-

nents and their causal relationships (how the system works). This corre-

sponds to the recommendation to teach concepts and production systems

simultaneously. Procedures for teaching in this way are outlined by Tenny-

son and Cocchiarella (1086).

3. Continue teaching the system by identifying the failure modes

of each type of system component and how each failure affects the system

as a whole (how it works when it doesn't work). Again, this is an exam-

ple of teaching both concepts a. production systems at the same time, so

the instr-ctional procedures would be as in the previous step. However,

in this case the content directly concerns system malfunctions.

If the designer wishes to teach probabilities and costs for each

class of failure, these would be two kinds of concept attribute to teach.

4. Teach algorithms for isolating each type of component fail

ure. These would be specific algorithms which provide definitive tests

to isolate each class of component failure. They would be taught using

standard procedure teaching strategies, such as those outlined by Salis-

bury, Richards and Klein (1985).

5. Teach heuristics for troubleshooting the system in general.

Use a practice strategy which asks the learner to state the heuristics and

use them by applying them to troubleshooting the system. In other words,

practice of the heuristics would involve asking the learner to verbalize

them as they gen,rate and state specific algorithms for troubleshooting

given problems in specific systems. This is an application of Chaiklin's

(1984) recommendation and is also consistent with Gagne' (1954).

A general consideration is whether, in each step, the learner

should continue practice until automaticity is achieved. As previously

noted, Elio's (1986) argument that automaticity facilitates learning of

production systems but not concepts suggests that extended practice should

be planned at least fol steps 2 through 4, especially in exercises requir

TECHNICAL PROBLEM SOLVING ii Page 9



ing the learner to apply the production systems by stating or predicting
functional relations. Reasoning from Duncan's (1985) review, one would
expect the extended practice to affect only accuracy and speed of solving
such exercises.

It should also be noted that steps 2 through 5 would involve heavy

use of simulation to teach the production systems and heuristics. The

realism of such simulations should be carefully regulated. The simula-
tions should provide only the practice of relevance for each step. Conse-
quently, they are likely to be relatively unrealistic, allowing for consid-
erable intrusion of instruction into the simulation. This is consistent
with Munro, Fehling and Towne's (1985) recommendation for computer based
simulations.

The strategy described above represents a plausible application of
some current research. however, many of the recommendations may be open
to challenge based on studies other than those cited. Furthermore, the
author could identify no examples of actual instructional systems using
all five of the recommended strategies. To illustrate some of the recom-
mendations, the next section will briefly describe a commercial training
product which is applies some of them. Then, a final section will summa-
rize some of the points of controversy surrounding the instructional strat-
egy proposed above.

CICS MAINTENANCE: A PRACTICAL APPLICATION OF SELECTED PRINCIPLES

The CICS Maintenance product (Robbins and Connors, 1987; was devel-
oped by Advanced Systems,Inc. es the introductory course in its curriculum
to teach IBM's CICS application programming systeL. The course was imple-
mented in a combination of linear video with a printed text exercise manu-
al (Video Assisted Instruction, or VAI), and level III interactive video,

with a supplementary printed text component and a pocket reference job aid
(Interactive Video Instruction, or IVI). The target auaience for the

course is proficient applications programmers and systems analysts who are
learning CICS for the first time. Needs analysis shcwed that beginning

TECHNICAL PROBLEM SOLVING
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CICS programmers are first assigned to maintenance tasks, such as fixing

bugs or adding features to existing CICS programs. In spite of this,

there ar? no reference manuals or training products which explicitly teach

this skill. Instead, it is widely regarded by CICS experts as one which

nrd to learn and not usually mastered until the programmer has had a

.0ber of years experience with CICS.

The course thus represents a radical departure from conven'.ional

CICS entry level training in at least two ways. First, it is an explicit

attempt to teach novices a skill which experts widely believe "can be

learned, but not taught." Second, the course is an explicit attempt to

teach a high level problem solving skill.

The course is not a full implementation of the analysis and deign

strategy outlined above. However, some of the principles identified were

applied. These are described below.

Task Analysis

o Analysis of the symbol system was in this case analysis of the

CICS programming language itself, using conventional methods of

concept analysis.

o Representation of the system under study. The system under

study was CICS programs, as implemented in typical programming

structures. Analysis thus included identification of typical

programming structures as executed in blocks of CICS code.

Analogies to COBOL programming also were identified.

o Failure modes. The failure modes included both commonly occur

ring bugs and frequent maintenance rt.quests. These were identi

fied by expert CICS programmers and then grouped into catego
ries. No attempt was made to exhaustively identify every possi

ble bug or maintenance requirement. Instead. only the problems

which were most commonly occurring and most typical of their

category were analyzed.

o Solution algorithm. Specific solution algorithms, such as

debugging tests or modification procedures, were not separately

identified in task analysis.

TECHNICAL PROBLEM SOLVING
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o Heuristics. For each category of bug or maintenance request,

in the form of t4mall produc-

consider." These then

"rules of thumb" were identified,

tions for "things to check" or "points to

were sequenced intu a flowchart (a format chosen be cause of its

familiarity to the audience), even though the result was no

fully deterministic.

t

Instructional Strategies.

o Teaching the symbol system was done early in the course, in

linear video with text based practice, using standard concept

teaching sequences involving careful isolation and presentation

of concept attributes, use of positive and negative example

sequences, and spaced practice involving generation of simple

code and discrimination of positive and negative examples of

concepts.

o Teaching the system under study was done by introducing the

basic programming structures through analysis of blocks of CICS

code and through analogy to COBOL.

o Teaching the failure modes was done by introducing the heuris-

tic flowchart in interactive video. At its highest level, the

cells in the flowchart are a taxonomy of program update types.

This taxonomy was taught using conventional coordinate concept

teaching strategies.

o Teaching the heuristics was done by presentation of each of

the production systems ("rules of thumb") shown in the flowchart

to be relevant to each type of program update. Practice was

two level: first, in an on line CET format, learners were asked

to analyze a typical CICS maintenance request and select the

production systems which applied to that problem. Then, learn-

ers were given a "final exercise" involving handling of a simu-

lated maintenance request and manual rewriting of CICS code.

The course is structured to facilitate self paced mastery learn-

TECHNICAL PROBLEM SOLVING Page 12
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ing. However, practice is insufficient to lead to true automaticity for

any of the skills tau7ht.

While the course is a conscious attempt to apply some of the princi-

ples identifi..1 in this paper within the constraints of a practical, com-

mercial development project, it is not without compromise. To complete

the course within constraints of time and budget, a number of design deci-

sions had to be made which are not fully supported by the research cited

above. Thus, the project helped us identify a number of topics of inter-

est to instruo,tional designers which do not appear to be fully explored by

research. These topics will be discussed in the next section.

WHAT WE DON'T KNOW ABOUT TEACHING TROUBLESHOOTING

The research cited above, and our experience with the CICS project,

leads to articulation of a number of questions which are as yet not fully

answered in the literature. These include:

1. How should knowledge be represented? In the CICS project, flowcharts

were used to represent what was really a heuristic process. Concept hier-

archies were used for the concept analysis. However, other authors have

used a large variety of representation techniques, especially for produc-

tion systems, heuristics, and rule structures. As yet there are no stan-

dard recommendations for the representation system to use in a cognitive

task analysis. Scandura (1986) argues that the various representation

systems have varying strengths, much as do different computer programming

languages. If this is so, then what is needed are recommendations for

when to use each representation system.

2. Should the strategy components of the skill be directly verbalized and

taught, or should they be acquired inductively through practice? Chalk-,

lin (1984) is typical of those who advocate direct verbal teaching of

cognitive strategies, while Derry and Murphy (1986) are representative of

those who seem to argue for inductive modeling (discovery) of strategies

through practice, with little or no verbalization of the strategy.

TECHNICAL PROBLEM SOLVING
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3. Do the principles of teaching procedures apply to cognitive strategies

and heuristics? Principles of procedure teaching such as those summa-

rized by Salisbury, Richards and Klein (1985) may apply, but it may be

that other techniques are more appropriate.

4. How should simulations be constructed for practicing the procedural

knowledge components of troubleshooting skills? There a-e indications

that carefully constructed but unrealistic simulations are more effective

than realistic simulations, especially early in the learning process (see,

for example, Munro, Fehling and Towne, 1985). However, empirically vali-

dated guidelines for constructing such simulations are only fragmentary.

5. How can a designer predict when the benefits of achieving automaticity

outweigh the development costs for the extended practice sequences?

Authors such as Elio (1986) argue that automaticity is needed for

low level algorithmic components of problem solving, in order to manage

attentional loading in higher level components. If this is so, what deci-

sion rules can a developer use to identify a priori the component sub-

skills truly requiring automaticity?

Many more questions could be derived, of course. But it should be

clear that research on the learning psychology side of the cognitive field

far outstrips the research on the instructional psychology side. In many

ways, the situation is analogous to that over twenty years ago, when behav-

ioral theories did a much better job of describing learning than of pre-

scribing instruction. At that time, a behaviorally based instructional

psychology was developed. Perhaps it is time to do the same, using cogni-

tive psychology as a basis.
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