DOCUMENT RESUME

ED 292 622 SE 048 964

AUTHOR Pea, Roy D., Ed.; Sheingold, Karen, Ed.

TITLE Mirrors of Minds: Patterns of Experience in
Educational Computing.

REPORT NO ISBN-089391-423-1

PUB DATE 87

NOTE 342p.; Compilation of papers from the Center for

Children and Technology, Bank Street College. Some
charts may not reproduce well,

AVAILABLE FROM Aablex Publishing Corporation, 355 Chestnut Street,
Norwood, NJ 07648 ($19.95).;

PUB TYPE Collected Works - General (020) -- Reports -
Research/Technical (143)

EDRS PRICE MF01l Plus Postage. PC Not Available from EDRS.

DESCRIPTORS Computer Assisted Instruction; *Computer Uses in
Education; *Educational Technology; *Elementary
School Mathematics; *Elementary School Science;
Elementary Secondary Education; Interactive Video;
Mathematics Education; Minority Groups; Science
Education; *Secondary School Mathematics; *Secondary
School Science; Sex Differences

ABSTRACT

This publication presents selected papers that
address certain questions that are being investigated by Bank Street
College's Center for Children and Technology (CCT). CCT's researchers
are working to help define new research inquiries and to document
students' and teachers' uses and understandings of educational
technologies. Included in this book are papers dealing with: (1) the
interpretation of Logo in practice; (2) teachers' adoption of
multimedia technologies for science and mathematics instruction; (3)
functional environments for microcomputers in education; (4)
preparing urban teachers for the technological future; (5) literacy
and technology for minority schools; (6) mapping the cognitive
demands of learning to program; (7) integrating human and computer
intelligence; (8) the cognitive effects of learning computer
programming; (9) Logo and the development of thinking skills; (10)
the microcomputer as a symbolic medium; (11) involving teachers in
the formative research and design of "The Voyage of the Mimi"; (12)
interactive video discs for children's learning; (13) computers and
girls; (14) informing the design of software through context-based
research; and (15) the practices of novices and experts in critical
inquiry. (TW) .

dkkdkdhkkhkkdkdhhdhhkhhhhhhhhkhhhhdhkhhhhhhhhhkhhhhhhdhhhhhihhkhkhhhhhkdkhhhhkdkhdkhkk

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
khkkkhdhhhdhdkdhkhhhhkhhhhkkrkhhhhhhhhhkhhkhdkhhhhhhhkhkhkhkhhhhhhhdkkhkdhdhdhhhhhhhdkrk

TSNS APV T SR SRR

NG

U 5. DEPARTMENT OF EDUCATION
Office of Educational Research and improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has bee reproduced as
recewed from the person of orgamizaton
nginating 1t

O Minot changes have been made {0 impruve
reproduction Gualty

o Points of view gr opinions stated inthisdccu: X
ment do not necessartly represent offiziat
OERI position or pohcy H

“PERMISSION TO REPRODUCE -t
MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

|
ﬁ TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

2

926 2¢

e r o2 o Srin i

2

[

£

e AL 7 100 e v A N SRR A i o

MIRRORS OF MINDS:

Patterns of Experience
in Educational Computing

Papers from the
Center for Children and Technology, Bank Street College

Edited by

Roy D. Pea
New York University

Karen Sheingold
Bank Street College

Ablex Publishing Corporation
355 Chestnut Street
Norwood, N.]. 07648

Copyright © 1987 by Ablex Publishing Corporation.

All rights reserved. No part of this publication may be reproduced,
stored ir a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording,
or otherwise, without permission of the publisher.

Printed in the United States of America.
Library of Congress Cataloging-in-Publication Data
Mirrors of minds.

""September 1986.""
Bibliography: p.
Includes index.
1. LOGO (Computer program language)—Study and teaching.
2. Cognition in children. 3. Education—Data processing.
I. Pea, Roy D. II. Sheingold, Karen.
QA76.73.L63M57 1987 370.15'6 87-1274
ISBN 0-89391-422-3
ISBN 0-89391-423-1 (pbk.)

Cover art is an adaptation of Sky and Water II by M. C. Escher.

Ablex Publishing Corporation
355 Chestnut Street
Norwood, New Jersey 07648

Preface

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

USING TECHNOLOGY IN CONTEXT

THE INTERPRETATION OF LOGO IN PRACTICE
Jan Hawkins

TEACHERS’ ADOPTION OF MU TIMEDIA
TECHNOLOGIES FOR SCIENCE AND
MATHEMATICS INSTRUCTION

Laura M.W. Martin

FUNCTIONAL ENVIRONMENTS FOR
MICROCOMPUTERS IN EDUCATION

Denis Newman

PREPARING URBAN TEACHERS FOR THE
TECHNOLOGICAL FUTURE

Karen Sheingold, Laura M.W. Martin, and

Mari E. Endreweit

BEYOND BASIC SKILLS: LITERACY AND
TECHNOLOGY FOR MINORITY SCHOOLS
Warren Simmons

TECHNOLOGY AND THINKING PROCESSES

MAPPING THE COGNITIVE DEMANDS OF
LEARNING TO PROGRAM

D. Midian Kurland, Catherine A. Clement,

Ronald Mawby, and Roy D. Pea

INTEGRATING HUMAN AND COMPUTER
INTELLIGENCE

Roy D. Pea

ON THE COGNITIVE EFFECTS OF LEARNING
COMPUTER PROGRAMMING

Roy D. Pea and D. Midian Kurland

35

57

67

86

103

128

147

vi ¢ Contents

Chapter 9. LOGO AND THE DEVELOPMENT OF THINKING
SKILLS 178
Roy D. Pea, D. Midian Kurland, and Jan Hawkins

Chapter 10. THE MICROCOMPUTER AS A SYMBOLIC
MEDIUM 198
Karen Sheingold

SHAPING THE TECHNOLOGY

Chapter 11. CHARTING THE COURSE: INVOLVING

TEACHERS IN THE FORMATIVE RESEARCH

AND DESIGN OF THE VOYAGE OF THE MIMI 211
Cynthia Char and Jan Hawkins

Chapter 12. INTERACTIVE VIDEODISCS FOR CHILDREN'S
LEARNING 223
Cynthia Char, Denis Newman, and William Tally

Chapter 13. COMPUTERS AND GIRLS: RETHINKING THE

ISSUES 242
Jan Hawkins

Chapter 14. INFORMING THE DESIGN OF SOFTWARE
THROUGH CONTEXT-BASED RESEARCH 258

Jan Hawkins and D. Midian Kurland
Chapter 15. PRACTICES OF NOVICES AND EXPERTS IN

CRITICAL INQUIRY 273

Jan Hawkins, Ronald Mawby, and Jane Marie Ghitman
References 299
Software References 318
Author Index 319
Subject Index 325

PSP, S

6.1

6.2

6.3
6.4
6.5

9.1
9.2

6.1
6.2
6.3

Figures

Procedural flow of control task to assess students’ ability to
use procedural reasoning

Program production task to assess students’ skills in
planning, problem decomposition, and features of
programming styles

First Logo comprehension task with correct drawing of the
resulting screen effects

Second Logo comprehension task with correct drawing of
the resulting screen effects

Performance of students on program production task
Diagram of classroom model, Study 1

Diagram of classroom model, Study 2

Tables

Performance of students on program production tasks
Debugging task

Correlations of demands measures with measures of
programming proficiency

111

114
116
117
120

184
189

121
123

124

vii

PREFACE

The computer is too often the starting point for contemporary discus-
sions of the roles for technology in education. Treated as the newest
delivery machine for teaching and learning, the computer and its kin—
software, videodisc, and other information technologies—become the
main topics. It is cur conviction that a more productive orientation for
the uses of technologies in education will result if one begins instead
with the processes of education, and with the learner rather than the
computer in the spotlight of inquiry. This book of essays is testimony to
that conviction, and reveals the plethora of complex basic issues one
faces in doing research centered on the learner and the educational pro-
cess rather than the machine.

We find that the age of information makes new demands on the ways
we think about education and on research relating to it. In a fundamental
way, the possibilities are far more open-ended than in prior research.
The nature of children’s cognitive capabilities when knowledge-based
tools are made available to support their thinking is a challenging terrain
to explore. Moreover, the significance of social contexts and culture to
students’ learning with new technologies become all the more central to
understand as the mutual influences of technology and context become
apparent. Finally, basic questions arise about how information-handling
tools and the new forms of literacy and skills they require change the
very goals of education.

How might the researcher respond who is concerned with improving
both our basic understanding of children’s learning and thinking and the
processes of education that depend on them? One could engage, as we
sometimes have, in descriptive studies of what children learn in a partic-
ular classroom environment with an already-available software program.
cut it does not take very long to become dissatisfied with “‘existing’’
learning outcomes given the current state of educational computing, and
to wish to create new, research-informed software environments, in
which it is possible to craft learning contzxts and software features for
more effective education.

ix

-

X o Preface

At the entry gate of this delicate bridge between descriptive and pre-
scriptive studies, one faces difficult decisions in selecting orienting themes and
directions. A few good research questions that can lead work down a
productive path may be more important than a vast portfolio of data
from studies with a too diffuse or overly specific orientation. For this
reason, many chapters in this volume have a reflective character, seek-
ing to clarify fundamental issues upon which a research program or de-
velopment agenda can be built, or to critically situate particular studies
in a broader context, such as mind-media studies, critical inquiry, defini-
tions of literacy, conceptions of intelligence, or early symbolic develop-
ment.

Given the many possible ways that technologies could be designed
for children’s learning and thinking, what are the ways in which uses of
computers could positively influence the processes and outcomes of
education and human development? As educators begin to integrate
these powerful tools into educational practices, what contributions are
made by unique aspects of this interactive medium, of children’s inter-
pretations of the machine and their patterns of software use, and of
teaching practices and classroom organizational contexts? How might
what we know about the history of media and innovation in education,
and of the cognitive impacts of technologies such as writing systems in-
form the directions we take in creating and testing new electronic learn-
ing environments?

As the title to this volume of essays suggests, we have continually
found that educational technologies serve as mirrors of minds and the
cultures in which they "live.”” Rather than radically amplifying or trans-
forming the processes uf teaching and learning, as many predicted, they
instead reflec! the expectancies represented in classrooms and the knowl-
edge and skills of individuals using them. Although one can point to
dramatic cases vf intellectual or affective development supported by
computer environments, the broad-scale changes at even a classroom
level, much less a societal one, appear to be slow to emerge and elusive
to study. The comparison with studies of changes in thinking one might
have carried out shortly after the invention of the printing press is apt.
Would the profound societal impact and changes in patterns of thought
ducumented centuries later by Eisenstein, Ong, and others have been
observable so early?

This collection presents selected papers addressing aspects of the
above questions from staff of Bank Street College’s Center for Children
and Technology (CCT). Since its inception in 1980, CCT’s researchers
have worked to define new research inquiries and to document students’
and teachers’ uses and understandings of educational technologies in an
emerging field at the interface of psychology, education, and technology.
Like a recent book edited by Norman and Draper (1986) on User-Centered

3

Preface » xi

System Design, we find important perspectives in the cognate disciplines
of the cognitive sciences—computer science, psychology, anthropology,
linguistics, sociology, and artificial intelligence. But with education as
the focus, other research is also central—in developmental psychology,
and or the processes of education as they take place in classrooms, with
their associated organizational constraints and supports. To consider the
nature of the child- teacher-instructiOnal environment system that shapes
tanchine neanticns and is <ba il o~ 1S A UIT) A tech-

LaCNING Praciicss and .\.uuuub SUuLomics \vv ith or without the new
nologies), one must acknowledge these diverse contributions. The chap-
ters of the book thus often straddle traditional academic boundaries in
the interdisciplinary nature of the problems they address and in their
methodologies of inquiry. We have found these travels invigorating, as
well as essential, and the work exciting to do.

CCT research has provided basic and applied cognitive studies (e.g.,
on children learning computer programming), critical theoretical analy-
ses, and formative analyses of the roles for new software and other in-
formation technologies in «..e cognitive and social growth of the child, in
the organization of math and science learning in classrooms, and more
broadly, in the restructuring of educational goals and practices in modern
times. The studies and essays here rarely offer “answers” to the general
questions such as those presented above. They more commonly serve to
illuminate the inquiry space and to provide central dimensions for pro-
grams of research and development. We feel that this is appropriate in
the early state of this interdisciplinary field.

The contributions selected for this volume are representative of the
wide range of work at CCT, except for new software dzvelopinent and
in-process research activities yet to be reported. We hupe the collection
provides a valuable sourcebook for scholars, students, educators, policy-
makers, and designers/developers of educational technologies to learn
about seminal issues in the new field emerging at the interface of psy-
chology, education, and technology. Insofar as we have been at all suc-
cessful in seeking to capture not only the particularities but general
issues in child-computer interaction in educational contexts, the book
should serve well as & foundational text for graduate studies in the field.

The contributions to the book are organized in three major sections,
beginning with the first part of the book, USING TECHNOLOGY IN
CONTEXT. In this section, the five chapters consider how cultural tools
are shaped and changed by their use in the contexts for which they are
made. In this sense, the uses of computer technologies mirror the class-
rooms, schools, and districts that they serve. They reflect not just minds,
but also systems of social interaction and cultural values.

But the human systems that are mirrored in the use of technology are
themselves interacting with and reflecting on the technology and its
uses. The computer is a tool whose interpretation is central to its use in

1U

xii * Preface

context. ‘What is the computer for?’’ has been a compelling question
for those who have sought o incorporate it into the life of the classroom
and school. Since the computer can be fcr many purposes, to ask what
the computer is for is to ask, at least in part, what educational goals it
best serves. The complex dialogue between the technology and its users
(in this case, not only learners, but teachers and other educators, and
the educational system itself) is one that we hope will lead to a rethink-
ing of the goals of education, and to the provision of more powerful tools
to support their pursuit.

In aitempting to understand this dialogue between the technology
and its users, we have examined the educational context at several levels
~the classroom, the school, the district, the curriculum and its educa-
tional assumptions about what, as Alfred North Whitehead put it, is
worth knowing. But one cannot look at the use of computers in schools
without looking fcr change. We have both described the kinds of changes
that occur (or do not) when computers are used in particilar ways in
specific settings and have offered analyses cf the kinds of changes that
we view as beneficial.

The chapters in this section address, both descriptively and analytically,
how computer-based technologies may or may nat contribute to educa-
tional innovations. The first chapter, Interpretations of Logo in Practice, by
Jan Hawkins, details the experiences and reflections of two teachers in-
volved in a two-year classroom experiment with the computer program-
ming language and educational philosophy known as Logo. The chapter
describes and illustrates the changing interpretations teachers make of
Logo as they and their students interact with it. It is clear that over the
course of that 2-year period the goals of the students and those of the
teachers with respect to Logo do not always converge.

Denis Newman discusses and exemplifies the importance of the coor-
dination of student and teacher goals in what he terms Functional Learn-
ing Environments for Microcomputers in Education. Teachers, students, and
software together set up functional learning environments, where stu-
dents’ learning is purposive and the goals of teachers are also served. In
the next chapter, Laura Martin examines preliminary findings on the
adoption of the multimedia Voyage of the Mimi materials for math, science,
and technology education by sixteen teachers in four school districts in
the greater New York area. At the district level, she finds that aspects of
district organization affect the success of the innovation.

Both the chapter by Sheingold, Martin, and Endreweit, Preparing Urban
Teachers for the Technological Future and Simmons’ contribution, Beyond
Basic Skills. Literacy and Technology for Minority Schools, take urban schools
as the context to be studied and analyzed. Sheingold et al. examine com-
puter-related teacher education in urban districts and find reflected a
core set of issues concerning both the profession of teaching and the

S

Preface * xi

challenges faced bv urban schools. Teachers’ shaping the use of tech-
nology becomes an opportunity, it is argued, for them to help design the
school of the future. In Simmons” analysis of iiteracy in urban schools,
ke highlights a critical dilemma. The information age has changed the
very meaning of literacy to one in which higher order thinking skills are
central, yet urban schools continue, throug!. their curriculun. and uses
cf technology predominantly for drill and practice, to emphasize basic
skills. He proposes using the power of the technology to belp teachers
implement new models of literacy in urban schools.

The second part of the book, TECHNOLOGY AND THINKING PRO-
CESSES, is devoted to five chapters on technology and thinking pro-
cesses. Three chapters focus on the cognitive requirements and outcomes
of leaming computer programming, in particular the Logo language
derived from Lisp (the lingua fra.ica of artificial intelligence) in order to
make its powerful functions accessible to young children. As a whele,
they make apparent that both learning to program and attaining broader
cognitive outcomes from doing so, such as becoming better at planning
or reasoning, are more challenging than many educators currently realize.
We find that students’ current reasoning capabilities are mirrored in pro-
gramming, serving better as predictors of how well they learn to pro-
gram rather than as general thinking skills outcomes.

In Mapping the Cognitive Demands of Learning to Program, Kurland, Cle-
ment, Mawby, and Pea present data from a multivariate research pro-
gram designed to ascertain what cognitive skills, such as procedurai
reasoning, might predict students’ progress in learning to program.

In their essay, On the Cognitive Effects of Learning Computer Program-
ming, Pea and Kurland develop a critical review of existing findings on
whether leaming to program promotes the development of general
higher mental functions. They recommend more of a differentiated and
developmental gerspective on what it means to ‘‘program,”” which
would investigate how specific learning-teaching interactions in particw-
lar programming contexts contribute to transformations of a studcnt’s
programming knowledge and skills and related reasoning abilities.

Logo and the Development of Thinking Skills by Pea, xurland, and Haw-
kins offers a reflective and descriptive look at a series of empirical studies
on whether elementary and middle-school students become better plan-
ners as a result of learning Logo programming. They discuss how their
research rationale was adapted as findings from children’s difficulties in
learning to program emerged, and suggest how more positive outcomes
could be engendered by creating a “’culture of thinking’’ by means of
any rich symbolic technology, including Logo.

In Integrating Human and Computer Intelligence, Pea r:xpioc.s from a
Vygotskian perspective the important implications of theoretical and
technical advances in artificial intelligence for the psychological study of

12

xiv * Preface

learning and development, and for enhancing educational processes.
He outlines how recent findings on giftedness, cross-cultural studies of
cognition, and the devciopment of computer expert systems suggest
prospects for human-computer intelligent systems that can work together
to solve problemns, learn, and develop.

Sheingold discusses various roles for The Microcomputer as a Symbolic
Medium in early childhood education and, in particular, the relationshup
between hands-on experiences and experiences with computer-based
microworlds. She suggests ways in which computer experience can en-
hance early symbolic development, promote reflection on creative pro-
cesses, and engender knowledge of computational devices per se.

In the third part of the book, SHAPING THE TECHNOLOGY, five
chapters address important precursors to the design process, sources of
ideas for design, and the kinds of research that can both precede and ac-
company design and development. Each chapter provides a somewhat
different route toward the design and development process.

Although work at CCT has put learners and the classroom context at
the center of study, the technology itself comprises a critical domain
within which to instantiate and test theories. It provides a rapidly chang-
ing set of cultural tools to explore, understand, and, ultimately, mold to
new educational purposes. The technology offers tools for demonstrating
concretely our educational perspectives and aims, mirroring the minds
of those who make it.

Three very general approaches are illustrated by the Hawkins chapter
on Computers and Girls, the Char, Newman, and Tally chapter on Interac-
tive Videodiscs for Children’s Learning, and by the Hawkins, Mawby, and
Ghitman paper on Practices of Novices and Experts in Critical Inquiry. Each
takes a large problem—a population not well served, a technology ill-
understood, an educational process not well implemented in classrooms
—and, through research, sets the stage for design and development.

Specifically, Hawkins considers the meaning of computers to girls as
we thus far understand it. For the most part, computers are tied to mathe-
matics, science, and business—fields that often do not match girls” im-
ages of who they are or should be. Studies show large sex differences in
interest and proficiency with computers. Yet, under some conditions,
girls find computer-based activities engaging and useful. These condi-
tions raise issues about both the type of software one might design for
girls and, more generally, the uses to which comnputers are legitimately
put in schools. For Hawkins, how the machine itself is interpreted is as
important as the design of software that girls want to use.

Char, Newman, and Tally take a different tack. They view the inter-
active videodisc technology as one that has been underutilized for edu-
cational purposes. Is it a viable medium for children to make their way

13,

Preface * xv

arou..d, and for teachers and students to use in classrooms? While most
videodiscs present programmed instruction with pictures, a few make
good use of tiie novel features of this educational medium by taking ad-
vantage of its many visual and auditory features and giving the learner a
great deal of control. Armed with some exemplary discs, for which they
had to provide auxiliary software programs as supports for classroom
activities, they began to discover the educational potentials of this me-
dium. The research “ney did will inform future interactive video design.

The third examp'e of very general routes to des n and development
is the chapter by Hawkins, Mawby, and Ghitman. The authors have iden-
tified critical inquiry as a set of higher-order skills they both want to
understand and to help support students’ learning of in classrooms.
They have decided to design and develop a piece of software that scaf-
folds inquiry processes. In order to do so, however, they need to know
much more about how novices and experts carry out inquiry tasks. Thus
the research they report is intenaed to provide the empirical foundation
for the development of a software tool for critical inquiry 1n classrooms.
An underlying assumption here is that studies of novices and experts
can enable researchers to identify aspects of the inquiry process for which
technological support will be particularly useful.

The other two chapters in this section (Char & Hawkins, Hawkins &
Kurland) broadly address issues of who contributes to the development
of educational technology and how. In all of the development work that
has been done by CCT staff, users are given a ptominent role in shaping
the technology by means of extensive formative research as software is
being designed and implemented.

While both papers underscore the central importance of formative re-
search for the development of educational technology, they emphasize
different strategies for doing so. Char and Hawkins in, Involving Teachers
in the Formative Research and Design of "'The Voyage of the Mimi,”’ detail the
many roles that teachers can play in the research, design, and develop-
ment of educational software, drawing on their experience in the devel-
opment of The Voyage of the Mimi materials. Hawkins and Kurland, in
Informing the Design of Software Through Context-Based Research, highlight
the importance of going beyond formative studies to develop viable edu-
cational software. They illustrate the importance of understanding the
context within which a piece of software will be used. In addition, they
show how, under particularly favorable circumstances, basic research
can critically inform software design.

These chapters were all written within the last four years at the Bank
Street College of Education. Many of them have appeared in print before
and we would like gratefully to acknowledge the permission to reprint
them that has been granted by our publishers:

14

xvi Preface

Chapter 6: To appear in D.N. Perkins, J. Lochhead, & J. Bishop (Eds.), Thinking, Hillsdale,
NJ: Erlbaumi, 1936.

Chapter 7: In E. Klein (Ed.), Children and computers. New Directions for Child Development
(Vol. 28), {pp. 75-96), San Francisco: Jossey Bass, 1985,

Chapter S: New Ideas in Psychology, 1984, 2, 137-168. Pergamon Press.

Chapter 9: In M. Chen & W. Paisley (Eds.), Children and microcomputers: Research on the
newest medium (pp. 193-212). Beverly Hills, CA: Sage, 1985.

Chapter 10: In P.F. Campbell & G.G. Fein (Eds.), Young children and microcomputers (pp.
25-34). Englewood Cliffs, NJ: Prentice-Hall, 1986.

Chapter 13: Sex Roles, in press. Plenum Press.

In addition, with the exception of Chapters 2, 5, 11, 12, 14 and 15,
these reports have been widely distributed at cost as part of the Techni-
cal Report Series from the Center for Children and Technology, and sub-
scribed to by many libraries, programs in teacher education, research
groups and centers, graduate schools, and individual researchers, de-
velopers, and teachers. Terre Weinbel and Laura Bryant deserve special
thanks for managing distribution tasks.

We would especially like to express our appreciation for the encour-
agement and support of the research reported in this book provided by
The Carnegie Corporation of New York, CBS Educational and Profes-
sional Publishing, The Ford Foundation, National Institute of Education,
National Science Foundation, Sony Corporation of America, The Spencer
Foundation, U.S. Department of Education, and The Xerox Foundation.
More detailed acknowledgements of funding support appear with each
chapter.

Throughout our five years of existence as a Center, many people have
worked with us on the research and development activities reported in
these chapters in the capacity of research assistants and associates or
education coordinators. We thank Jeffrey Aron, Nancy Cahir, Barbara
Dubitsky, Kathleen Fiess, Carla Freeman, Monica Hamolsky, Margaret
Heide, Sally MacKain, Thomas Roberts, William Tally, Kathy Wilson,
and Jan Wootten for their contributions. George Burns and Michael Cook
deserve special thanks for their active roles in our classroom research.
Our secretaries Donna Bernardini, Marla Henriquez, Veronica Herman,
Terre Weinbel, and Mei Mei Woo have provided word-processing sup-
port at different times throughout this period.

The copy editing of this manuscript was handled with great proficiency
by production editor Ruth Kolbe, who has provided continually cheerful
and ever-competent service since she began working on our technical
report series several years ago. Kristine MacKain deserves special thanks
for the excellent subject index.

It is hard to express how special an institution Bank Street College of
Education has been, and what a unique context for research and devel-
opment it fosters. It has housed our center since its beginnings, and pro-

I5

Preface o xvii

vided the supportive environment necessary for our research activities
to develop. Our colleagues in this setting have continually served to
orient our work to utility in practice. The leadership of its president,
Richard R. Ruopp, and his creative ideas for improving children’s lives
with ne'v technologies, has been instrumental in making a productive
home for the Center. Beyond this, of course, we are thankful to the teach-
ers and chiidren of Bank Stre~t’s own School for Children. Many other
schools throughout the greate. New York metropolitan area have helped
us in our studies, but to our resident colleagues we offer a special debt of
gratitude. Their willingness to participate in joint educational experi-
ments, their forthrightness in questioning our assumptions, and their
demonstration in practice of what it means to put children at the center
of education, have affected and significantly improved our work.

We find particularly significant the original name of the college when
it was founded in 1916—The Bureau of Educational Experiments. It is in
that spirit that we have planned and carried out our work. We hope that
others can sense our excitement about studying children’s thinking and
education with and through educational technologies, and that the fruits
of our labors might inspire others to advance the education that will em-
power children to face the challenges of the future.

Roy D. Pea
Karen Sheingold

September 15, 1986

-

PART 1

USING TECHNOLOGY
IN CONTEXT

17

CHAPTER 1

THE INTERPRETATION OF LOGO
IN PRACTICE

Jan Hawkins

Innovations in education seldom simply arrive and radically redefine
the activity or meaning of learning situations. Rather, educational inno-
vations take hold gradually, affecting certain aspects of the setting, and
are interpreted and shaped by the participants. As one aspect of a re-
search program conducted at Bank Street College’s Center for Children
and Technology, we were concerned with understanding how a particu-
larly promising educational innovation—using computer technology to
learn general problem-solving skills through programming in the Logo
language-—was assimilated into the classroom.

Educational innovations, which are often embodied in radically new
materials (e.g., new math), new perspectives on learning (e.g., open
education), or new technologies (e.g., language labs, television, and
computiers), have complex histories in individual classrooms and in
American education in general. Like ideas or text materials, such inno-
vations are interpreted in terms of the knowledge, experience, and setting
of the teachers and students who encounter them. Thus, they do not
change the broad educational landscape by leveling what was already
there, but instead offer opportunities for reshaping the existing content
in individual settings. One must also expect interpretations of the inno-
vations themselves as they are practiced in the complex systems of class-
rooms. This is what happened with Logo.

The following is an account, itself an interpretation, of the ways in
which two teachers thought about, grappled with, and practiced Logo in
their classrooms over the course of two years. One source of information
is utilized: the perspectives of the teachers as expressed in interviews
throughout the two years, and in journals they kept during the fitst two
months of the experiment. The teachers began with a set of beliefs and
expectations that were revised and developed as they attempted to fit
their classrooms to Logo, and Logo to their classrooms.

18

4 * Hawkins

The coherence of the teachers’ developing views based or: what they
thought, tried, and observed is important to preserve as an interpretive
voice for the experiment. It is but one of several accounts that can be given
of our larger experiment. The overall research program was designed to
help us understand the cognitive and social effects of children’s experi-
ences with Logo and computers in classrooms. We conducted many
studies and collected several types of information, including longitudinal
case studies of individual learners, experimental studies of planning
skills and understanding of programming concepts, assessments of ex-
pertise, observational studies of interactions in classrooms, videotaped
studies of peer collaboration, and analyses of collaborative skills in group-
structured situations. It was essential that all these studies—careful,
detailed fragments of the whole—be seen in a single context, that of the
classroom experience of Logo. In order to provide this descriptive con-
text, teachers were interviewed, classrooms were regularly observed,
lessons were recorded, and records of children’s work were collected.
The interviews with the teachers were particularly rich and, taken to-
gether, provide a coherent picture of what took place.

THE DEVELOPMENT OF LOGO

Logo was developed as a programming language for children by a team
at MIT in the late 1960s and the 1970s; Seymour Papert (1980) has be-
come its principal spokesperson. The language was designed to intro-
duce children to programming concepts and, through this experience, to
develop powerful higher order thinking skills that could be transferred
to other contexts. Logo is accompanied by a particular pedagogy: Chil-
dren are to learn through self-guided discovery methods, pursuing their
own goals and ideas with minimal adult intervention or systematic pre-
sentation of concepts or skills. Thus, it has been claimed that children
develop general problem-solving skills through self-initiated and self-
guided exploration of Logo. Logo has been described as a special and
rich environment for the acquisition of high-level logical and reasoning
skills (Papert, 1980; Papert, Watt, diSessa, & Weir, 1979).

The avaiiability of Logo also filled a need in the educational commu-
nity: Computers were rapidly being acquired by schools, but without
good software or clear notions for defining their role and use. Logo offered
a powerful way of using the machines, a rationale with broad-ranging
and highly desirable learning outcomes, accompanied by respect for the
child’s natural capacities and learning initiatives. Our research program
was designed to look closely at the development of children’s under-
standing in the most salient educational environment offered by our cul-
ture—the classroom.

18

The Interpretation of Logo in Practice * §

At the time of our research (September 1981-February 1984), Logo
was a new and relatively untricd system for use in education. While the
accomplishments of individual students using the language had been
documented (see Papert et al., 1979), most material described the power-
ful potential of Logo. There was no critical analysis of the cognitive con-
cepts or processes required to achieve facility in using Logo, or of its
incorporation into classrooms.

THE TEACHERS AND CLASSROOMS

The study was located in two classrooms at an independent school in
Manhattan. One classroom included 25 (11 boys, 14 girls) 8- and 9-year-
old children (third and fourth graders); the other consisted of 25 (11
boys, 14 girls) 11- and 12-year-old children (fifth and sixth graders). The
children encompassed a variety of ethnic and socioeconomic backgrounds
and a range of achievement levels. Each classroom had six microcom-
puters: three Apple II Plus computers and three Texas Instruments (TI)
99/4 computers.

These classrooms were selected because the children met our age re-
quirements, and because the teachers expressed interest in participating
in the research. These were experienced and talented teachers. The basic
philosophy advocated by the Logo developers was compatible with the
teachers’ perspectives on education, generally described as a child-
centered learning approach.

The teachers (two men), as well as the school math coordinator (a
voman), attended a 6-week summer course in Logo conducted by the
New York Academy of Sciences, with Dr. Papert as one of the instruc-
tors. Skeptical at first, both teachers became engrossed in the topic of
programming and completed the couise feeling optimistic about Logo’s
potential as an important learning experience for children. The teachers
and the coordinator continued to meet regularly to advance their under-
standing of Logo and to help one another with their programming work
during the first part of the school year.

Over the course of the experiment, the teachers acquired considerable
skill in Logo in particular, and programming in general. In addition to
the two years of work with the children in their classrooms, the teachers
developed and taught courses in Logo and computers in education to
master’s degree candidates in a graduate program. Together they wrote
abook about Logo applications in education, and guides for educational
software designed to introduce programming concepts.

In the spring of the pilot year, six microcomputers were placed in
each of the two classrooms, and Logo became a part of the classroom
activities for the last two months of the school year. Throughout the next

()

6 ¢ Hauwkins

two school years, the teachers sought to engage the chilciren’s interest in
and develop their understanding of Logo. Our research period, there-
fore, covers three groups of about 50 children cach: one 2-month pilot
period, and two complete cycles of school years. Thus, the teachers had
the opportunity to work out and rework their approach to the innova-
tion, modifying the introductory material and course of instruction for
each successive group.

INTERVIEWS

In addition to frequent informal discussions, each teacher was formally
interviewed ten times throughout the research period. These interviews
constitute the bulk of the material discussed here. Each sessicn lasted
between 45 minutes and two hours, and was conducted by one or more
members of the research team. The interviews were structured, covering
some of the same questions each time and focusing on new issues as
they arose. The teachers were invited to reflect and speculate on their
experiences, and the interviewer(s) encouraged them to develop their
ideas throughout the discussion. In addition to these dialogues, the
teachers kept journals of their experiences with computers during the
initial 2-month pilot period. This material is cited where appropriate,
particularly because it provides some detailed information about what
the teachers initially thought about the innovation.

METHOD OF ANALYSIS

The interview sessions were tape-recorded and transcribed for analysis.
Qualitative analyses were performed on the material. The transcriptions
were read several times by several readers in order to develop a system
for categorizing the material. The interviews were divided into segments
according to class, date, and overall theme. The themes included defini-
dons and redefinitions of Logo as a classroom element, discussions of
cognitive abilities and transfer, evaluations of Logo and problems en-
countered, strategies for supporting the learning or teaching of Logo,
and the social context of the classroom. The interview material was then
reorganized by theme and date so that changes in the experience within
each of these categories over the two years could be noted.

THE ROLE OF RESEARCH

Computers and Logo were introduced into these classrooms as part ofa
research project to document and analyze the cognitive and social effects
of this technological innovation for education. Rather than imposing a

21

The Luterpretation of Logo in Practice * 7

poir.t of view or curricuium, we, as researchers, were interested in how
the teachers themselves chose to incorporate this innovation. It was a
collaborative venture, and *vhat each of us saw liad some influence on
what the others thought and did. The children were alsc aware that they
were participating in an “‘expetiment’’ which was intended to try out
computers and Logo in classrooms.

The following account—a description of what the teachers did with
~0go and how they thought about its value for the children—is divided
chronologically into two sections. First, we describe the pilot period and
the first year of the experiment for each classroom. The activity during
the second year, which was significantly reorganizcd, is described in the
second section. -

Throughout the project, teachers pondered two major questions:
“What is Logo and what is its value?”’ and "How should I organize a
learning experience with Logo?’’ In their interviews, the teachers de-
fined and redefined Logo; they worked to understand Low Logo could
be used as a learning tool in the classroom, and *o drfine its possible
value for children. These definitions and evaluations changed consider-
ably over the course of the two years.

The fact that these interpreters’ relationship to Logo was as ‘“teacher’’
in a particular kind of setting, is critical. The development of a perspective
is based on the mode of engagement: The teacher’s perspective will be
quite different from the researcher’s, which, in turn, will differ from that
of the software developer. These teachers were concerned with roles for
Logo as part of a complex, ongoing, and multifaceted program of learning
that they had carefully constructed during their previous years of teaching.

SECTION 1. PILOT PERIOD AND FIRST YEAR:
WHAT IS LOGO AND WHAT IS ITS VALUE
FOR CHILDREN?

The Teachers' Expectations

Before beginning the Logo experiment with their summer training ses-
sions, both teachers (hereafter known as Dan [the younger class] and
Jeff [the older class]) were somewhat critical of and skeptical about com-
puters and their role in the larger culture. Both reported that they had
had frustrating experiences with the technology prior to their involve-
ment with the experiment. For example, at the culmination of a law suit,
Dan had been told that there was no legal basis for his complaint since
he had been the victim of a ““computer error’’: “It's in the computer.
There’s no responsibility.”” Jeff, on the other hand, recognized that com-

8 < Hawkins

puters were part of our culture, but that there was great potentia! for
misuse. His concern was that use of the technology by children might be
trivialized and focus on videogames rather than educational applications.
Despite these experiences and reservations, both teachers volunteered
for the intensive experiment and enthusiastically looked forward to
learning more about the technology and its potential for classroom use.
Logo seemed a promising possibility for children in their classrooms be-
cause of its claim to engage and develop general problem-solving skills.

Both teachers found the summer seminars engrossing and challenging.
One reported that he had had trouble picking up programming concepts,
but that he very quickly became immersed. He described the learning

* process as one of reaching a plateau of knowledge, struggling for a while,
and then reaching another plateau—a unique experience for him be-
cause he was used to effortless learning and acquiring skills without dif-
ficulty. Consequently, he sometimes felt frustrated as he wrestled with
Logo. The other teacher found the logic of programming easy to learn,
but reported that ’it was difficult to orchestrate the commands for a pur-
pose,” that it was often hard to figure out how to construct a program to
suit a desired goal.

At the end of the training period, both teachers felt that they had
made significant progress, but that they had a considerable way to go
before they could be fully functional with the language in the classroom
setting.

Thus, at the beginning of the experiment, Dan and Jeff were enthusi-
astic about the educational potential of Logo. They found the claims for
the development of general problem-solving skills in the context of a
self-discovery pedagogy to be persuasive. Although they had some
reservations, they expected that Logo could be a powerful learning tool
for children to explore. Two kinds of expectations were expressed. First,
that Logo could be a unique type of school task for the practice and de-
velopment of certain types of thinking skills:

It could enhance kids’ ability to deal with problems abstractly.
* * * * *

It could help them to structure their thoughts and think about things on an
abstract level—maybe make it easier for them to plan out something on paper,
communicate at a meeting, draw plans for something to build, understand
geometry.

* * * * *

It might help kids doing logical and analytic thinking.

It's real work as opposed to assigned problems to solve. They‘ll learn to be
better thinkers, to discuss questions and mull things over—a sense of self-
wnitiation, setting up tasks and solving them. I hope they‘ll be able to discass a
process whereby they solve a problem better, how to go about it, and I hope it
will generalize to any problem, like scenery for a play. They'll be able to break
it down into pieces, to use analytic skills.

23

The Interpretation of Logo in Practice » 9

With respect to the types of skills engaged, the teachers felt that Logo
might be a vehicle for (a) developing analytical skills that could be used
to approach and solve many types of problems, and (b) giving kids con-
ceptual tools and language for discussing, presenting, and communi-
cating about the problem-solving process.

However, each teacher also expressed reservations about Logo’s pos-
sible limitations:

I'm not sure, though, to what extent working on computers makes kids
deal with the most important questions they have to Jeal with—it's for intel-
lectual, not affective or value, questions. Analytic thinking could be helped by
computers, but I'm not sure of its role in life—the breaking down of a situa-
tion into components.

* * * * *

I still sometimes wonder about its purpose—what really do childien learn

from it?

It is interesting to note that neither teacher disussed the value of Logo in
terms of the importance of learning programming as a skill, it was inter-
preted primarily as a means for learning general problem-solving skills.

The second major expectation was that Logo could be a learning en-
vironmnent that supported self-initiated, expressive learning. The innova-
tion was valued for the claim that children could individually engage in
developing their own skills, at their own pace, and in the context of self-
selected goals:

The best scenario as far as I'm concerned is children working on their own
creations, not drill and practice or presenting of concepts. I'd like them to feel,
"I want to follow my own ideas."’

* * * * *

You sihould do whatever you feel like, according to your own imagination.
You get immediate results, rather than have to find out all the things necessary
to deal with programming—there’s a possibility that kids will be working on
their own ideas independently.

* * » * *

In a classroom, it's a different experience. There are times when you
shouldn’t be answerable to a1.yone else, it’s completely personal, no other in-
put. it’s a piece of work that is theirs and they will talk about.

In terms of the classroom curriculum, both teachers thought that
Logo was most similar to creative writing Yecause it offered children a
medium for expressing their own ideas. Logo was unique, however, in
that the skills and ideas developed in this expressive conteat were logical
und analytical.

The Pllot Period: Classroom Work

For the pilot period, Dan, the teacher of the younger group, decided to
impose little structure on Logo learning. He was committed to the posi-

R4

10 e Hawkins

tion that Logo was a self-expressive medium for children, fully suppor-
tive of self-discovery learning:

It’s different from most of what goes on except for writing. They can use it
in their own way. If it's a powerful tool, they can use it themselves.

The principal structure he felt he needed to provide was the scheduling
of work (two 1-hour periods a week for each child, plus lunch and before
school; organization of partners), and helping with the complexity of the
relative geometry of the turtle movements ('‘eliminate the geometrical
traps”’). Dan decided to show the children the basic turtle movement
commands (e.g., forward, back, left, right, color commands), and then
"’have them play with it a lot. But I won’t give them ideas. I want to see
their own ideas."’

Ovwer the course of the six weeks, Dan had only two meetings with the
whole class, in which he demonstrated the capability of Logo */sprites’’
(objects whose shape, color, and movement can be user-defined) and in-
troduced the concept of programming. All other teaching was done indi-
vidually. Occasionally, Dan wrote commands or small programs on the
blackboard for the children to copy and try out. Scheduling presented a
problem for him—how to arrange for ali kids to work on the computers
regularly. But he also reported that the presence of the computers loos-
ened up the classroom space and kept half the class occupied, enabling
him to work intensively with small groups on other things.

Contrary to expectations, Dan found he had to supply the children
with ideas, which he did on an individual basis. He found the projects
some children chose to do disappointing. The children looked to their
world of experience with computers to find projects, many of them .e-
cided to do videogames, and were disappointed by their inability to
reproduce them in Logo.

Additional problems encountered by Dan were. (a) many children
didn’t know how to “‘take the next step’’ in their projects, (b) children
found the angle inputs required by turtle geometry to be a problem, (c)
many had difficulty with the idea of information storage in computers—
they were puzzled by the question. “’If the program is stored on a disk
and you recall it, where is the information?’’ (Mawby, Clement, Pea, &
Hawkins, 1984).

Like Dan, at the outset of the exprriment Jeff decid- d to provide the
children with the basic commands and allow them to follow their own
interests and pace as they worked with Logo. He decided to begin with
turtle graphics and bring in sprites later in the term. The children were
encouraged tu develop their own goals, and Jeff supported their learn-
ing either individually or in small groups. No large-group meetings
were held to teach computer concepts, when the children wanted to
know something, they asked either Jeff or an experienced peer. Ideas

25

The Interpretation of Logo in Practice ¢ 11

spread through the class, and Jeff found that children shared programs
freely with one another. He anticipated that the children would have
trouble with certain concepts (e.g., variables and directionality), but ex-
pected them to master these in three to four weeks. The children were
scheduled for tw_ periods a week with the computer, and they could
elect to do additional work before school or during lunch. However, ad-
ditional comp-iter work was contingent on having finished all other
assignments.

The Pllot Perlod: Reflactions
At the end of the 2-mwnth pilot period, both teachers were excited about
the experiment and had observed some chilc’ien doing sophisticated
and interesting things with Logo. Dan commented: ‘’Some kids got in-
volved with computers on an abstract level and thought about computer
problems in a way they wouldn’t think about other _roblems.’ How-
ever, both teachers were beginning to express reservations about Logo,
which they r~de explicit in several ways. Contrary fo expectations, they
had noticed substantial individual differences in children’s interest in
and learning of Logo. A few children became thorcughly engrossed in
the activity, whereas others showed no interest or even hostility. Jeff
said: “'I wasn’t able to figure out how to get the uninvolved kics in-
volved.” He was dissatisfied with many of the projects chosen by the
children, such as the replication of videogames.

Concern was also expressed about the shallowness of the chiidren’s
knowledge. The teachers felt that many children’s level of engagement
and contact with Log> was too low to permit them to make sense of what
was going on.

They simply seemed to accept the logic of the computer on its own grounds
~ather than struggling to understand it. “If that’s the way you do it, that’s the
way yvu do it.”’

* * * * *

Ithought they would be going home and deciding how to program things,
but no. They seemed to work on programming only when they actually
worked on the machines.

* * * * *

I was not surprised at the direction~games—but I was surprised at how

little discussion there was other than */what should we do next.”’

s Dan became more familiar with the Log» lar.guage, it became less
clea, .0 him just what depth of understanding was desirable for the chil-
dren:

The kids do understand it because they can use it. I see that there’s a great
limitation to my understanding—~I don’t really know what it means to ““make
quotes’* or “‘read character.” It's a whole program that I just have to accept,

26

12 * Hawkins

that I have never bothered to find out just what goes on in that program. So I
discovered that I wasn't giving kids the opportunity to use things that they
didn’t understand. ...It’s led me to present elements in a way that is func-
tional to them. It’s possible to go a lot farther this way.

Neither teacher saw evidence of the transier to other areas of the cog-
nitive abilities gained through programming. Initially, they focused on
the Logo language as a potentially powerful environment for developing
general thinking skills; after two months, they were beginning to be
skeptical of this claim.

I didn’t see much cognitive effect. I didn’t see them talk about program-
ming, and I didr’t see the skills showing up anywhere else.
» * * * *
Transfer? It’s hard to say where it shows up. They weren’t even ‘hinking
that way about the computers a lot of the time.

The First Year: Revisions for Classroom Work

At the beginning of year 1 both teachers decided that more structure
was required if the childre: were to become competent users of Logo.
They elected to give further individual support for the discovery and
development of Logo project ideas, and to require greater adherence to a
work schedule by all the children.

Dan gave the children little preparation other than to introduce the
functions of drawing and animation. Since 17 of the children in his class
had been in the pilot Logo group, Dan decided to have them help the in-
expericnced children learn basic concepts. This strategy “’ended up
hard * because, when the experienced children were paired with the in-
experienced, ““the experienced ones already had the idea of program-
ming and took over.”

To support children’s formulation of project ideas, problems and tech-
niques were written on the blackboard by Dan as a source of informa-
tion. The problems were intended both to challenge the students and to
give them ideas about what could be done. He also supplied mimeo-
graphed handouts on these topics so that the children could use them at
the computers and, if they wished, take them home. Dan continued to
work with the children individually or in small groups as the need arose,
there were no large-group sessions. He felt that it was too early to begin
critical discussicns with the students about the technology:

It would be interesting but they're very young, very young to have a criti-
cal perspective. I'm going to get alot of these videogame junkies talking about
how wonderful it is. So that puts me in the position of having to do editorial-
izing for them, or having to sit there saying, "“uh huh.”

o

The Interpretation of Logo in Practice * 13

Jeff also organized the first year’s work of the older students around
helping them find and work on their own projects. Teaching took place
individually and in small groups, and Jeff encouraged the experienced
children to help the inexperienced ones. Meetings were held to talk
about the projects under construction, and about computers in the larger
cultural context. Computer work was no longer contingent on finishing
other work.

The teachers increasingly recognized the complexity of learning Logo.
Their attention was beginning to coalesce on the skills and experiences
needed to do interesting things with Logo as a programming environ-
ment, rather than discussing Logo as a vehicle for learning general cogni-
tive skille. For example, three months into the school year, Jeff expressed
his goals fer the children in these terms: ‘‘My underlying goal is for them
to learn to put together programs of greater and greater complexity, to
be able to achieve more and more with programs.‘’

By November, Jeff reported that many children were having difficulty
understanding important programming concepts: Recursion was vague
to most, and variables and procedures were not used effectively. The
learning w.s child <entered: Individuals were assigned to work twice a
week and during these periods were free to explore the uses of the Logo
language. Jeff worked with individuals, occasionally making a suggestion
about how to expand the progr=.u, but he did not require children to pro-
gress to new concepts. He also provided written sheets and cards for the
children, which served as mnemonic devices for certain techniques. Oc-
casionally, he gave them a complete program if he felt it was easier for
them to use it as an unanalyzed tool. The children sometimes adapted
these programs to suit their own purposes. Jeff recognized that the chil-
dren often chose projects that were too ambitious to complete, and he
tried to help them to proceed more gradually.

In February, Jeff offered some programmed games to the children and
suggested that they try to make modifications. This strategy for learning
did not work well because the children preferred playing the games to
playing with the programs. In addition, those children who were sophis-
ticated enough to make interesting modiiications in their programs were
already involved in other self-development work. At this point, Jeff
attempted some group lessons on special topics, such as random num-
bers, but after a few sess‘ons did not find this format particularly success-
ful for getting kids involved or helping them to develop new skills. Jeff
also began teaching to selected individuals the use of more sophisticated
Logo topics (e.g., xy coordinates, conditionals, tests, toplevel, and ad-
dressing memory locations). He encouraged children to take on certain
kinds of programming goals (e.g., animation, guessing games, and
word games). He reported that he had no formal class curriculum in

28 .

o

14 ¢ Hawkins

computers: The children who were interested kept making new things;
the children who lost interest did very little.

By the end of the year, Jeff described his goals for Logo entirely in
terms of computers: "My goal is mastery—being able to manipulate and
make sense of what to do with computers.’”” Similarly, Dan expressed
the value of Logo in a more limited fashion than he had at the outset of
the experiment: "’It’s gocd for teaching about programming.”’

As a result of their increasing awareness of the complexity of the lan-
guage, both teachers struggled throughout the year to understand what
the children needed to know as they learned Logo, and the value of
devoting significant amounts of time to its practice.

In teaching subjects, I generally have a clear idea of what kind of skills I ex-
pect them to be learning and, in giving them specific work, I have a good
sense of what kids are able to do—analyzing and assessing their work. With
the computer, it's still an early stage of development in my thinking. It's very
difficult to understand what is going on with kids’ understanding of com-
puters, and this is true for kids who are very good with it and those who are
not very good. I haven’t yet built up a way of analyzing what happens when I
give them a task, and what it means to succeed. I will think that the next step
will be too hard and it won't be, or I'll think that it‘ll be simple and it turns out
to be difficcult. It can be very unnerving because no matter how good the
kids’ work is, there’s a lack of understanding on my part of what really they‘re
doing and where they ought to be going with it. [Dan]

Thus, Dan continued to revise his Logo program throughout the year.
Midway, he added the element of "“optional lessons’’ to his learning
structpre—giving occasional lessons on a special topic to a small group
of chiidren who expressed interest (e.g., how to write procedures with
variables). The technique was demonstrated, documentation sheets
were distributed, and the children who participated could then diffuse
the information to other members of the class. Teaching was done indi-
vidually or in small groups, based on expressed interest. Large-group
meetings were considered inappropriate because Dan believed that indi-
vidual learning styles varied. At this point, like Jeff, Dan began to give
children programs in Logo that they could use as tools in their own work:

One thing that’s really changed is my thinking about giving the kids pro-
grams. This came about with the “’read character’” program, which seemed
like a very complicated program to just hand to the kids. I didn’t know at
what point they would understand what was happening until I showed the
program to one kid who was not terribly concerned with understanding what
the syntax meant. They were very capable of understanding how to type it out
and which parts needed to go where, and therefure had their own under-
standing of how the program worked.

29

The Interpretation of Logo in Practice * 15

"’Computer sharing’ was introduced as a method of communicating
information: The class began to meet as a group, and individual children
presented and explained their work.

In the spring, Dan noticed a loss of interest in Logo on the part of
many children, and began to work harder at scheduling time at the com-
puter for all of them. He felt that sequenced presentation of material was
not possible because the children were working with a variety of things.
His support consisted of helping children solve local problems, and
working with them on ideas for moving ahead with their projects. The
focus of the small-group sessions switched from demonstration of de-
contexted techniques to demonstration of programs embodying specific
techniques. As noted earlier, Dan had recognized that a major problem
for the children was ’putting the pieces together.”” He therefore decided
to show them whole, working programs in order to give them some idea
of how the techniques functioned in the achievement of goals. He also
began to work with the children to help them connect a series of pro-
grams into one “‘superprogram’’:

A major part of what I’ve been showing them is how to connect a series of
programs, how to think about joini.g specific things together to make a big
program. If they can think about one thing at a time and break it down that
way, it’ll be easier for them to think about a whole program and put it together.
We've worked this way on animation and how to put a story to it.

Dan also tried to build links between the programming work and
the math curriculum:

The Apple can use "’setxy” commands to draw lines. You can vary the
shape by varying the coordinates. I have been giving them experience with
coordinates, which is also part of the third-fourth grade curriculum, so I'd be
doing it with them anyway. I want them to have this experience so that they
canhave it as a tool and as something that is part of the curriculum. We can do
this as part of the math curriculum and also to advance their knowledge of the
computer,

At this point in the year, Dan was unclear about how much the children
understood and, consequently, about how he should be helping them.

By the end of the first year, Dan recognized the necessity for a theory
of Logo instructional support and had accumulated enough experience
to begin to develop one. Some of the problems of the first year’s work
were revealed in his account:

I'was teaching programming skills piecemeal, and expected them to find a
use for that skill. I hoped they’d come up with the picture. I realized near the
end that I should show them the results of having the skill and then see what

16 * Hawkins

they do with it. After the demonstration I would say, *"You have to do such
and such.”

Based on his experiences with two classes of children, Dan began to
make his theory of instruction for Logo explicit. Both he and Jeff decided
that there was a need to teach spexific skills in a coherent sequence (e.g.,
what is a program, what is a vaaable, recursion, conditionals, tests); to
context the skills in sample progtams; to provide support for further
developing their ideas; and to come back and talk about results. Encour-
agement to practice the skills was seen as important because

It was rare for children to go beyond [their initial efforts]. They somehow
stay pleased with things as they are, the passive approach. They want imme-
diate results, so they pick small goals and are pleased with themselves.

Dan also decided that he wanted to include information about the his-
tory and function of the technology in the general culture as a part of the
programming work, thereby offering a perspective for the children that
would help them to see how this work fit into the world.

By the end of the year, Jeff reported that it was difficult to have group
discussions about the computers because the uninterested children re-
acted negatively to tae idea. Some didn’t like the precision required for
doing things on computers; others were interested in spending their
time elsewhere. Throughout the year, Jeff had attempted to provide
support to the children as needed in order to advance their work. He
estimated that about 85% of the teaching was done individually or with
two or three children. During much of this time, Jeff remained commit-
ted to the idea that the children would learn Logo most successfully
through developing their own projects. His efforts to engage the unin-
terested children included project suggestions, teaching skills by demon-
strating interesting programs, and giving children programs to modify.

Unlike the younger children, computer sharing was not popular among
the older group: "It just didn’t connect with what they wanted to do.”
Because he found that disk housekeeping was a problem—the children
couldn’t find their work on the disks—Jeff resolved to teach good file-
saving techniques and the importance of documenting programs during
the second year. He also felt that teachers needed a good deal of support
in order to carry out the Logo agenda:

The skills a teacher needs are monumental. The kids says, ''I'd like to do
this,”” and sometimes I have no idea how to do it. So I said, ""Let’s think of a
simple thing, a part of it.”’ I was afraid that was dishonest—Ihad tha. ..appen
many times. We need to get expert help. It’s not like helping the kids to write
a story, where I'm never at a loss.

31

The Interpretation of Logo in Practice * 17

The First Yoar: Reflections on Cognitive Skills and Whet

the Children Learned

During the first year, the teachers shifted their focus from Logo as a
learning environment for general problem-solving skills to Logo as a
context for learning about programming and computers. One reason for
this shift was that the teachers were accumulating evidence that caused
them to reinterpret the value of Logo:

1. There were large individual differences among children in interest and
skill with Logo.

2. Many children had difficulty “putting the pieces together’’ into projects.

3. Many children reached ''plateaus’’ of skill and didn’t seem to be moti-
vated to advance.

4. Many children had a relatively shallow grasp of the functioning of thelan-
guage and were not flexible in applying what they learned in one context
to a new problem.

Individual Differences. Both teachers noticed and were concerned
about the wide variation in the children’s commitment to working with
Logo. At the end of the year, they estimated that about one-quarter of
the children were very much involved in the work, one-half were moder-
ately involved, and one-quarter were not at all interested. The teachers
were concerned that many of the unenthusiastic individuals were girls
(e.g., Hawkins, Chapter 13, this volumc). Siven their expectations about
Logo’s broad appeal for children, the teachers were surprised at the ef-
fort required to motivate children. They had great difficulty in getting
the uninterested children involved in the work. In this effort, the orga-
nizing idea was to help children find a project or goal for themselves as a
means of getting into the system,; the learning of skills was subordinated
to the articulation of goals:

Another problem is that not every kid has a project that they’re working
on—that was my goal at the beginning. I haven't insisted because of practical
pressures. Also, because some of the kids need a lot of play, a lot of directed
play...I was heading for everyone having a project real soon, butI've changed
that. This is my learning about the process. [Jeff, in November]

* * * * *

Trying to get kids who are not interested in projects on their own to get in-
terested—that has been my struggle all along. I've been trying to get them to
find activities that they’re interested in. [Jeff, in February]

* * * * *

My biggest task is to get kids interested who aren’t doing very much. It's
similar to writing in that I focus on helping kids to develop skills. {Jeff, in
June]

32

18 * Hawkins

By the end of the first school year, both teachers were beginning to
voice concerns about the possibility that, in contrast to the idea that Logo
was, per se, an exciting and beneficial environment for all children, cer-
tain prior skills or interests might be prerequisites for enthusiastic en-
gagement with Logo:

Alot of abstract thinking is required. I wonder about limitations on people’s
ability to do programming. Maybe some people can do it and some can’t [do
it] as well because of the highly symbolic abstract nature of it. It may be a mis-
conception that people need to learn how to program computers to survive in
the world. It may be a very limited field, more inaccessible than I thought—
maybe it’s not like reading that anyone can do. .. .I have no impression that it
changed the thinking of kids, but I don’t feel that what I did with computers
was particularly successful, so maybe it wasn’t a fair test. And it could be that
the kids that were good were already thinking that way. [Jeff, in June]

* * * * *

Kids who do logical thinking develop programming skills. I now think that

the reverse is unlikely. [Dan, in June]

Making Programs from Pieces. From the beginning of year 1, Dan
was particularly concerned with his observation that, although many
children learned individual commands or techniques, they had difficulty
putting them together into coherent programs:

Even though they have all these pieces of things that they know they can
do, it is very hard for most of them to put all these pieces together—it only
happened in two or three cases. [Dan, in October]

* * * * *

I began to demonstrate actual programs to them rather than just tech-
niques. The kids weren't putting the pieces of the techniques together to
make wholes. Some kids, yes, but for the most part kids were having a hard
time seeing all the pieces and taking the big step. And even when they do,
they’ll get satisfied and go no farther. [Dan, in February]

Jeff also reported that putting commands together to construct pro-
grams became increasingly difficult for many children as the year pro-
gressed and the programs became more complex. Translating an idea
into the code required to execute it was a difficult task for both children
and teachers. The children often changed their goals to accommodate
the program, rather than trying to rewrite the code in order to achieve
their original goals.

Plateaus of Skill. Both teachers reported what they found at first to
be a strange phenomenon: Many children reached a “’plateau’’ of skill,
sometimes quite early in their learning, and were content to continue
constructing programs at that level. The teachers then realized that this
could be said of many areas of the curriculum, but that it was especially

The Interpretation of Logo in Practice o 19

true of the programming work with its individual-project focus. This
was particularly demanding of the children because it required them to
be self-motivated in learning about and adapting new tools to their own
purposes. The teachers directed their efforts at encouraging the children
to do variations on their work, and off2ring them new concepts that they
might incorporate into their work, thereby gaining new skills.

Depth of Knowledge. The teachers also found that most children did
not have a very deep understanding of many of the commands or the
structure of programming, and thus were not flexible in applying partic-
ular commands or concepts to new problems. As discussed above, the
teachers began to realize that it was increasingly unclear to them just
what “full” understanding of the language entailed: How deep did the
children’s understanding of the functioning of the system have to be?
As they thought about this problem, both teachers expressed as their
overall goal that children be able to use the concepts flexibly. The core of
their implied definition of expertise was that a child should be able to
accomplish what he or she wants to do in programming the computer.
However, by the end of the year, most children were well below this
functional level.

Some kids know commands as nonflexible units; others can use the same
command as a tool. I see differences between kids in using a command as a
sophisticated tool and using it without clear understanding. [Jeff, in February]

* * * * *

There is a gap between what kids want to do and the skills they need to do
it. Some programs have to be very complex to do simple things. [Jeff, in June]
* * * * *

I would like them to understand the instructions. . . if the kids had an idea,
they weould be able to do it. [Dan, in February]

The First Year: Reflections on Self-Initiated Learning
As noted above, the secor.d idea that guided the incorporation of Logo
into the classrooms was that it would support self-guided, expressive
learning. Logo was an nvironment where children could learn complex,
logical skills through a medium that allowed child-centered expression,
as opposed to teacher-directed learning of component skills. Although
they made significant modifications, the teachers remained committed
to the organizing framework of child-selected Logo projects throughout
the 2-year experiment. The following account summarizes the issues
they encountered as they reinterpreted the value of Logo as a tool for
self-initiated learning.

During the pilot period, the teachers had begun to realize that the
children were having difficulty developing their own goals for Logo—a

20 e Hawkins

considerable problem for a learning exp 'rience firmly rooted in self-
motivated expression. But they were committed to the strategy that the
children be given access to Logo and then make their own decisions
about what they wanted to do with it:

I see the computer as another area of the curriculum, an area thatit’s very
much up to them what they want to do. I would never want to give a kid
something to do on the computer that the kid would say, *“No, I don’t want to
do that.’’ I'd rather it remain optional until they have adequate command of
the language. .. .I would like the kids to be motivated to learn, so they can
decide if the computer is something they want to express themselves with.
[Dan]

Throughout the first year of the experiment, the teachers struggled
with the problems involved in maintaining the self-initiated framework
for learning, while becoming increasingly aware of the complexity of the
learning skills required in this domain. Many children had to struggle
with both the computer skills and finding their own goals for the work.
This theme remained a constant and unresolved tension throughout the
experiment:

I didn’t give them a basic introduction. Basically [wanted to get kids think-
ing about a project. I'd leave that up to them, but I realize from last year that
they really need a lot of structure for their thinking about what to do on the
computer. Their imaginations seem to stop at a certain point. It's sort of shock-
ing for me to see that. [Dan, in October]

But the self-initiated orientation was valued by the teachers, who saw
it as especially powerful for those children who became engrossed in the
programming work:

With thejr pregrams I have rarely said where I want them to go. ™ ~rt of the
reason is that kids have their own ideas of where they want them to go. It
generally happens that kids say, “'I'm done.’’ Kids don’t say that with com-
puters. If they do a program, they want to play with it and improve it. It's a
new material and a new type of work. It's more self-directed and kids can
work absolutely alone. They might ask more difficult questions though, and
that's something that doesn’t happen in other parts of the curriculum. [Dan,
in February]

By June, Dan was expressing more need for structure and teacher in-
put to children’s programming work:

The best results were in the last two months when I insisted on a project,
and my having iriput into it. More people were interested and they asked
more quest.v... It’s not a tool you can just hand over to kids and have them
express themselves, as I'd expected.

3.

The Interpretation of Logo in Practice * 21

Thus, while maintaining a commitment to the self-initiated framework,
Dan was beginning to interpret Logo less as a context for solely self-
guided expression, and more as requiring some structured guidance of
discovery from the teacher.

Jeff also reported that children were having difficulty in formulating
goals for themselves, and that some simply abandoned the work. He
found that he had to carefully think through what was appropriate for
the children to attempt, and then develop ways to support the work
they chose to do:

I've been having them work at the computer exploring the possibilities of
computers, and not giving them specific tasks, encouraging projects of vari-
ous sorts. If I see them working on something, I might ask them if they’d like
to try such and such, and I would teach them a technique. I haven’t pushed
the kids to move on.....I am realizing what is feasible and what is not. In the
beginning, kids took on things that were too ambitious. Recently, I'v.. been
more careful about getting them to go little by little,

By the end of the year, Jeff felt that the fully self-initiated learning
framework worked well for only a few children: “'If they developed a
good project, the work was enjoyable and intellectually challenging. But
not many kids did that sort of thing.’’ Significantly, Jeff added, /I didnt
teach it in the right way.”” Jeff's interpretation of his role in the enter-
prise had undergone significant revision—from a tool that taught’’
itself, to a topic that required careful teaching.

By the end of the first year, both teachers were uncomfortable with
the child-centered, self-discovery pedagogy embodied in the Logo rhet-
oric. They felt that the radical version of this approach—child-initiated
goals with support from the teacher only when necessary—had worked
well for only a small number of children. Difficulties for other children
were attributed to two factors: First, the children had difficulty develop-
ing goals in this new medium. Unlike other domains, they brought little
world-knowledge of what could be done with Logo. ‘’Social studies was
much more contexted than Logo programming—in social studies chil-
dren have ideas already about what it’s possible to do.”’ Second, the
teachers were not satisfied that they had adequately solved the problem
of what it was necessary for the children to know, and of how to support
Logo learning in the classroom.

Summary of Year 1: What is Logo?

At the end of the first year, a critical question was being asked by both
teachers and children in the two classrooms. Is Logo a legitimate part of
the work of the classroom? For the teachers, this meant two things:
What is Logo teaching, and what is its role in relation to curriculum?

36

22 e Hauwxins

Initially, the teachers had believed that the children might learn general
problem-solving skills. This belief gave way to doubt about the generality
of such skills, and a new question emerged: What is the importance of
computer programming itself as a topic?

The second interpretation of the legitimacy of Logo concerned the way
Logo was taught. Hew does it relate to other areas of the curriculum? Is
it a “real’’ subject, and what instructional requirements and techniques
are appropriate?

Even in parts of the curriculum they're very excited about, I have to direct
them. I have to give them a sense of what's next. With a lot of kids they can
develop a sense of what's next with the computer, but for the kids who aren’t
good with the computer, the decision as to whether tolearn it is very personal,
and until I make the decision to make it part of the curriculum, then " will re-
main a private area. It's now a self-directed experience. {Dan, in February]

¢ * * * * -

Next year it'll be a subject kids are responsible for. I'll teach particular

skills, talk about results, concept-oriented. [Dan, in June]
* * * * *

It's different. There haven't been failures because I haven’t imposed goals
on their work. It's completely child-directed. They‘re doing it, but I wouldn't
force them to do it. My goals are very flexible, very different for each child,
much more tailored to what they like. My goals for the academic work have
been much more uniform. There is a sense of direction in academic work,
uniform direction that there isn’t in computers. (Jeff, in November]

* * * * *

One thing I'm struggling with is, what is my role vis-a-vis the computers
outside the individual format? The other thing is, how do the techniques
which I use in other teaching apply? Are they relevant? [Jeff, in February]

The work of the children reflected the ambiguity of the status of Logo
in the classroom. For them, the question of its legitimacy concerned the
lack of clarity about what the activity was, and their responsibility for
working at it. The radically self-initiated style of the work was uncom-
fortable for many children because it was so different from the more
structured tasks of the classroom that they were used to. There was no
formal presentation of material, no group lessons, no task requirements,
and no evaluations. Because the children were not sure of the legitimacy
of the Logo work in the school environment, they didn’t know how
much effort they should devote to learning it:

There were kids who were losing interest. They were receiving a double
message. | wanted computers to be part of their work, yet it was optional.
Kids would reach a problem in their work, and they would be less inclined to
push through it in the way they might with other work because I didn’t make
them. [Dén, in February])

37

The Interprelation of Logo in Practice * 23

* * * * *
Some kids felt, ““Isn’t it funny we can just fool around with this?’ [Dan, in
June)

Jeff also reported that some “’kids didn't feel that it was a legitimate part
of their work. Others saw it as an intrusion.”

Thus, over the course of one school year, both teachers began to as-
similate Logo into the complex pattern of learning that was already
established in their classrooms. Logo-out-of-the-box was problematic
because teachers found it too complex for children to master without
systematic support. The radical self-discovery pedagogy of Logo gave it
an ambiguous status vis-a-vis the more structured learning tasks of the
classroom because it was unclear where the responsibility for getting the
work done rested and, indeed, what the work itself should be.

By the beginning of the second year, Logo learning began to take on
some characteristics of learning and teaching in other curriculum areas.
However, the teachers recognized the overall nature of the interpretive
problem they were struggling with:

I'have a clear idea of culture such as it is, past culture, of what it means to
be an educated persun in terms of all different subject areas. In terms of the
computer, it’s not part of our culture, it's something new so I don’t have clear
ideas of what kids should or should not know. In a sense, I can be much more
conceptual about computers than I can about other kinds of work because
society as a whole doesn’t know yet what it wants to do with computers. [Jeff)

SECTION 2. THE SECOND YEAR:
THE DEVELOPMENT OF AN INSTRUCTIONAL STRATEGY

During the second year of the experiment, the teachers began to provide
a particular type of structure to Logo learning based on their experiences
with effective edcuation in other subject areas. Unlike the first year, when
the teachers were committec to adopting Logo in the manner advocated
by its developers, the second year saw Logo being adapted to the shape
of the existing classroom learning context. Logo was also offering new
perspectives to the teachers about the teaching of cognitive skills. While
they viewed programming as a ‘‘subject’’ requiring precise, analytic
skills, the classroom work continued to be seen as more like social studies
and writing and less like math and grammar, the core of Logo learning
remained organized around self-initiated programming projects. Be-
cause of their belief that this sort of analytic skill required a structured,
sequenced curriculum, both teachers developed a parallel ‘‘track’’ where
concepts were “‘formally”” taught and children were held accountable
for learning certain concepts and doing assigned tasks.

o
o

24 e Hawkins

Over the course of year 1, Dan’s thinking about learning Logo under-
weat a major shift in focus from a belief that the structure of Logo natu-
rally supported children’s discovery of programming concepts with little
instructional intervention necessary, to an effort to develop a means for
systematically supporting the learning of important programming con-
cepts.

The Second Year: Revlisions for Classroom Work

By the second year, Logo was seen as a tool for learning about com-
puters, with the emphasis on programming. There was no longer any
talk about the acquisition of general problem-solving skills. Although
there was still some ambivalence about its ultimate value for all children,
by the end o. «ne experiment both teachers felt that learning program-
ming in Logo was valuable for many children:

Programming can be a good idea, to give kids control over the computer,
how the computer is working, invest their own ideas in what is happening.
There were few kids who I thought it was totally worthless for. [Dan])

Jeff also felt that Logo was valuable, even if no broader goals were
achieved through its practice:

My thinking now is that what thinking kids have to do to make up pro-
grams is a worthwhile, useful exercise. I don’t know about its application or
impact on other thinking, but even if there were none it wouldn’t bother me.
So I'm giving them skills, making sure they understand them.

Jeff decided to work out a sequence of skills to present to the children.
His concern was that children missed concepts or misunderstood some
things, and thus could not proceed. Therefore, he began the year by
assigning the children lessons and tasks for practicing these skills. At
the same time, the children were required to develop their own projects.
“This year’s structure is designed to teach skills. Kids who are facile
with the computer can do what’s assigned in five or ten minutes, and
then do their own projects.”” The assignments were designed to ask chil-
aren to use concepts in contexts similar to, although not identical with,
the ones in which they were taught. Jeff felt that these assignments
would be diagnostic tools to help him understand what was going on
with individual students’ knowledge development. Jeff continued to
find it difficult to help kids develop their own project ideas, to give them
’germs’’ from which larger projects could grow.

Requirements for documentation were laid out so that the children
and Jeff could easily find their programs. Children were required to
keep a card file of their work.

At the beginning of the second year, the teachers were no longer de-
fining Logo primarily as a medium for self-expression, but as a curricular

39

Y

The Interpretation of Logo in Practicc * 25

topic with particular concepts and skills. Both teachers devised plans for
the second year’s work:

My plan is to teach programming skill in sequential order. Last year I taught
things when kids needed it or were bored; this year I'm teaching in a particu-
lar order, it’s more coherent. It’s arranged so that the computer is work. [Dan}

* * * * *

This year there will be a weekly computer period. I will teach skills in a
directed way, with equivalent importance to other subjects. There will be less
time just free with computers in classrooms. I'll work out a sequence of devei-
oping skills. I'll teach record-keeping techniques. [Jeff]

Thus, inthe second year, like Jeff, Dan decided on a squence in which
he presented Logo concepts and held weekly lessons for the entire class.
The lessons were accompanied by worksheets that the children could
use for reference. The children were required to develop their own pro-
jects, but Dan also gave them programs that he asked them to look at
and modify. In effect, there were parallel learning activities going on
with Logo which sometimes intersected. Children learned skills through
the formal lessons, and worked on their own projects during assigned
work periods. Sometimes the new information was incorporated into
the ongoing, self-initiated work, and sometimes it was not. Dan was
hoping to develop a conceptual framework for the children and an orga-
nized repertoire of skills, which they could draw on as needed. Dan con-
tinued the practice of embedding techniques and concepts in working
programs, as well as the group sharing where children demonstrated
and explained their work to each other. He recognized the need to draw
children’s attention to the details of a program in order to develop furc-
tional capacity with a technique:

I think that by giving them more of an opportunity to think about what’s
happening and see how it works, we can make those difficult steps. I've been
focusing a lot on looking at the program and really reading what I’m putting
in front of them—to think about what it’s going to do before it runs. Thinking
about how I demonstrated things in the past, I'm sue I typed things on the
screen and told them what was going to happen and then did it—not making
sure they‘re reading the words, not making sure they know the significance of
cach part, and not giving them the opportunity to practice before they ‘ve got-
ten it themselves.

Dan felt that it was important for the children to be able to share theis
work and knowledge publicly, that such opportunities added to the im-
portance and coherence of the work for the children:

So I found that I had started giving them reinforcement in the way that1do
with other subjects all the time but sort of . .ever really did with the computer.
The thing that gets the most response from the kids if youre teaching is still
to give everybody the opportunity to give an answer. So that if you have a

4l

26 © Hawkins

wide open question where anybody can contribute anything to it, kids will
always respond—that’s how we try to teach a lot of things. Allowing kids to
read through a program over and over again—what’s this line going to do.
Five or six kids will raise their hands because they want to be able to say what
it will do, and they feel good that they can say it and nobody objects.

They’re very interested in sharing something. The importance is not so
much the product but in saying, *’I worked on this and I want to show this to
you.” Same thing happens with computers as happens with their stories.
They get very involved in it. They pay very close attention to each other’s
work. They don’t say "’no’’ to each other’s work because there’s too much ot
a personal connection. They have a better understanding than adults do some-
times. They can empathize with the kid.

The learning experience in the classrooms during this year was de-
signed to address some of the problems that the teachers had observed
during the first year’s work. In November, for example, Dan discussed
his intention of helping the children to deepen their knowledge of Logo
in order to enable them to use it flexibly:

They can’t understand why what’s happening is happening. So they are
working out their own problems, their own programs, but they’re not getting
much out of it. I want to make what they know more coherent to them. Like
last year, Kathy made a program witk. eight variables but it wasn’t clear to her
what she was doing. Kids don’t ask why things do what they’re doing. In that
program she would just throw anything in. There was nothing systematic
about figuring out why those numbers worked.

Dan reported that this lack of pursuit of understanding was not limited
to learning with the computer:

Function is so important, so much more important to them than under-
standing. If they’re reading a story and tt , come across a word they don’t
know, it doesn’t matter to them if they can still understand the story. But if
it’s a focal point in the story, hands shoot up right away. Kids won’t ask why
things are the way they are in math. If they’re working on the abacus and I
say that 8 times 7 equals 56, no one asks why.

Thus, Dan decided that programming was analogous to other subject
areas, where teacher support and direction were essential to the devel-
opment of depth of knowledge.

Jeff also cited the development of deeper understanding as a goal of
his work with Logo:

A major concern from last y=ar was that kids didn’t understand things and
that inhibited their performance on the computers. This year I'm going to be
more thorough in the instruction I provide, so I help kids who would other-
wise drop out—the kids who missed concepts and couldn’t proceed. I want to
make sure the kids get the skills to build upon.

41

The Interpretation of Logo in Practice * 27

An additional problem that both teachers noted during the first year
was the difficulty children had in putting the pieces/commands of Logo
together into programs: ‘“With the computer, it’s an arbitrary logic. It's
very difficult for them to put tie pieces together on their own. It’s hard
not to function as a mediator.” Thus, they began to present program-
ming techniques in the context of working programs to demonstrate the
function of a piece within a whole.

In order to delivery sequenced information to children about critical
programming concepts, the teachers set up situations that encouraged
children to think through in detail what was happening as programs
were constructed and run, and they helped children to develop project
ideas. The notion of long-term projects selected by individual children
continued to be a dominant framework.

By the middle of the second year, Dan was talking about the organi-
zation of learning in terms cf the kind of structure that was needed to
help the children acquire difficult concepts. He was no longer reliant on
the “‘natural organization’ of the material, but recognized that he as a
teacher had to organize the presentation ‘o help kids see clearly and
avoid misconceptions:

Whereas last year I would probably have introduced it {variables] as a tech-
nique, the past few months I've been trying to think about how they would
understand it best. Not just from how the computer works, but how they
would understand it best....It's building up each step logically, what you
need to do before you do the next thing.

The teaching of Logo was beginning to be interpreted as analogous to
other subject areas where a teacher has to structure the material in accor-
dance with his or her theories of children’s learning: ‘“It’s forced me to
sit down and think, well, I have this sequence of skills, and what comes
first and when. . .it makes me think of how to flesh out each concept.”’

During this year, Jeff’s formal lesson structure broke down because of
the limited time he had available fo: teaching, and because of the resis-
tance of the children to these lesson formats. Jeff also began to feel that
there was little relationship between the lessons and what the kids were
doing on their own:

I realized that the lessons were too rigid, meaningless to some because
they were too difficult. For others they didn't fit with what they wanted to do.

When I gave lessons or taught techniques, many kids didn’t care if they
understood or not. Some wanted to do sophisticated things but I didn’t have
the skills, so I taught them pieces. ...The sequence of concepts didn’t work.
It was too fast for some and too slow for others. It went from drawing to rela-
tive direction, commands, absolute direction, variables, recursion, * nging
variables, conditionals, print. I realized the lessons weren’t faring weil when
there were no interesting projects.

42

28 * Hawkins

Jeff reported that for the second half of the year he gave no work-
sheets or assignments. Techniques were demonstrated—‘short things
to learn’’—and individual projects were again the major emphasis. Jeff
felt that it was a mistake to try to get all the children "’moving at the
same speed’’: "’Programming is like math. You could not teach a group
of 26 children all the same math.”’

At the end of the second year, Jeff *vas again disappointed in the
year s work. He felt that few interesting projects had resulted, and was
concerned at the number of children who had "’dropped out’’ of the
programming work. Like Dan, he was not sure how to bring together
the disparate elements of learning Logo given the constraints of the
classroom. He felt that Logo should be based on functional learning
through an individual project focus, yet the children needed a frame-
work to master difficult concepts and skills in order to do their indepen-
dent work. He found the task of helping children identify appropriate
projects to be difficult and frustrating. Because the children learned in
different ways and at different speeds, whole-group lessons were prob-
lematic. In addition, Jeff continued to feel that the legitimacy of the work
was still an issue among the children:

There were changes from the previous year. I tried to make it clear that the
computer was a subject. I set aside periods for it. But even this year, few chil-
dren thought of it as a subject. The older kids knew about tests for schools,
and they talked a lot about that. They’re not tested in Logo like they are in
other things. If I did it again, I would do something like evaluation of skills. I
would do more group teaching.

* * * * *

There are some kids who still have trouble, and obviously I have to con-
tinue to think about how to connect them. There’s an enormous range, from
kids who are very good to kids who can barely make a program. Some kids
pick up an idea and do all kinds of things with it. They expiore. Others—it’s as
if it truly is an alien medium to them. {Jeff, in May]

By the end of the second year, Dan felt “’like the pieces are fitting to-
gether.”” He began to observe that the children were using skills they
had learned earlier in the year in both individual and group projects. For
example, one group of children was creating a solar system program
that used a lot of different techniques: ‘’They finally found a reason to
use some of the things we’d been talking about.”’

While he felt that there were several different levels of ability repre-
sented in the classroom, Dan also believed that proficiency and interest
were more widespread than the previous year. He characterized the
year as one in which he had been doing a curriculum and group lessons,
and therefore didn’t have much time left over to individualize things.
The promise of Logo had been just that. a learning environment where

The Interpretation of Logo in Practice * 29

the pace and sequence would accommodate very different individual in-
terests and needs. When it became clear to Dan that the language was
too complex for the children to learn without considerable structured
support, he focused in the second year on a way to offer that structure to
the class as a whole. The issue of how to provide an overall framework
and yet deal with each student’s level of understanding was an unre-
solved one for Dan in light of time constraints in the classroom:

I feel that I have to have more time to figure out ways of involving them all
in solving a problem. There was always a clear difference among children but
I wanted to ignore it for the sake of time. It’s very hard to get away with not
differentiating—I don’t like to do it. I've never used grouping where they’re
grouped according to skills. The first time I've ever done it is with math, so
maybe I should do computer when they’re already grouped that way. WhenI
get more abstract now, fewer kids can follow. I want to make time for the
good kids—some kids are so good at things, I'd like more time to work with
them individually just to see what’s going on. For less good kids I need to
figure out ways to help them—to see what’s going on and figure out ways to
get them to participate, not necessarily in the grotp, but in doing something
productive for them—thac’s still the hardest. To work with anyone on the
computer takes an enormious amount of time. That’s why I'm talking about
splitting them up into groups. I see there’s a real need to focus independently
on the kids who really know the skills, and then to meet in some way the
needs of the kids who don’t know the skills. I've been working on a sophisti-
cated level, sort of pushing them. That means thc kids who can’t get pushed
are lost.

The Sacond Year: Refloctions

Throughout the second year, the teachers reflected on their role in rela-
tion to Logo as they tried to assimilate it into their classrooms in a struc-
tured way. Their original perceptions of what Logo as a fully self-initiated
learning experience could offer to children, and their subsequent aware-
ness of the need to make it a structured, legitimate, and accountable part
of the classroom work, created a tension about their understanding of
their own roles that continued to be an issue at the end of the second
year. During this year, in contrast to the first year, Logo was defined by
the teachers as a new curriculum area, thus giving it legitimacy in rela-
tion to other classroom work.

Dan felt that his commitment to sequence and structure in the learn-
ing of Logo helped him to better understand what was going on with the
children. He reported that he was forced to think through the require-
ments of learning the language. Dan also felt that his commitment to
providing a coherent learning structure allowed the children to feel more
comfortable, Logo was defined in terms that legitimized it in children’s
eyes as part of their appropriate work in the classroom setting.

44

30 e Hawkins

It’s different from last year, primarily in my perspective. I feel like we're
going somewhere. I don’t know if the kids feel the way I do. I feel that they're
going to end up with something. [Dan, in November]

* * * * *

This year it seems less of a problem to help kids figure out what to do on
the computer—in fact they really seem to have ideas. I think it has a lot to do
with my attitude toward teaching it, that it is a subject I expect them to be
responsible for, a lot to do with the coherency with which things are taught.
It’s forced me to sit down and think—I have this sequence of skills, and what
should come first, how to flesh out each concept. It’s building each step logi-
cally: What do you need to have before doing the next step? [Dan, in January]

Dan reported that throughout the year most of the children were
more engaged in understanding the details of program construction
than they had been during the first year:

The kids demonstrate what they 're working on and they explain it to other
kids....Kids will ask, "’Let me see the program.” To meit’s a sign that they’re
thinking about how it’s happening, that they would ask. It didn’t really hap-
pen last year that kids would ask what it looks like.

At the end of the year, Dan summarized his strategy and agenda for
the children: He had decided to lay out the programming concepts and
techniques in a sequence and present them to :he children in meaningful
contexts. He discovered that it was best to introduce each new concept
as part of a program that interested children—a problem situation. This
gave the children an idea of how it worked in context and what it was
good for. He felt that it was important to combine two things: present-
ing concepts in a clear way, and doing problem-solving work with the
children. Self-discovery-based learning was problematic because the
ideas inherent in Logo needed to be clearly and carefully pointed out.

This year I had an agenda, and let them take part in it as they wanted to.
Last year I was more involved in their individual work—seeing how I could
help them rather than giving a general framework. It was more hectic last
year, giving pieces of information that did not fit together.

Overall, Dan was pleased with the development of this teaching
strategy and the engagement and accomplishment of the children dur-
ing the second year. However, he still pondered the paradox inherent in
his role in this structured yet self-discovery-based learning situation.

Sometimes the kids have the right idea of what ought to work on the com-
puter, but the syntax is so exact—the right icea but the wrong set of words,
and there are no books that are useful to them. It’s a very funny situation
because it really makes a myth out of what Papert is saying. Even though kids
feel very much in control, very much involved, it’s made my role as a teacher
much more traditional in a funny sort of way. I've tried in the lessons to give

45

The Interpretation of Logo in Practice ¢ 31

some idea of the structure of the language, but still I'm the dispenser of the in-
formation., I still have to say, *’This is how it works.”” It’s different in other
areas—I can ask them a question about how people coming over from Europe
in 1600 would manage to live, and from the knowledge they have and from
speculation, they could come up with some very good ideas and they can
have a discussion. We can’t really do that with the computer now. That’s ac-
tually something I'm trying to do now—thinking of more open questions that
have to do with computer logic but not necessarily with {he exact answer.
[Dan, in June]

Jeff was less satisfied than Dan with the Logo experiment during the
second year. This was perhaps partially due to the fact that Jeff was on
half-time paternity leave during the year and had to accomplish a great
deal duriig his limited time with the children, partially to the fact that
he found it difficult to engage many children, and partially to the age
difference between the classrooms. Jeft found that the structured se-
quence he had planned did not work well: Many of the children were
resistant to organized lessons about Logo. Throughout the year, a domi-
nant theme in relation to his teaching role was the large individual dif-
ferences he saw in interest and ability, and the conflict between letting
children follow their own interests and holding them accountable for
learning the programming skills:

This year, I tried to make clear that the computer was a subject and set
aside periods for it. But even this year, few kids thought about it as a subject
like others. They weren’t tested in Logo, and they know they have tests in
other subjects. Many kids didn’t like the lessons, but when there were few
organized things, kids dropped out. [Jeff, in June]

Jeff found that he had difficulty providing both organized lessons and
the project ideas that grew out of these lessons as germs for long-term
programming commitments. He continued to grapple with the need for
some structured learning, and the fact that individual children assimilated
and made use of information at different rates. Like Dan, Jeff remained
committed to the organizing framework of individual programming pro-
jects where children pursued their own goals as a means of learning. But
he had difficulty with organizing the information-giving so that children
could make use of it in their own way and at their own pace:

Another part of my approach is thinking that if I just let kids fiddle and
rlay with it, they’ll run out of things because they don’t know what to do. So
I wanted to give them techniques, project ideas. And they were very con-
scientious about it—they always did what I gave them. There were kids who
got techniques out of it, but there were kids who didn’t understand, so my
going on with what I thought was this curriculum was a problem. In math, I
have a curriculum, and the fact that they don’t perfectly understand or can’t
manipulate all the concepts doesn’t mean that I don’t 3o on because they do

46

32 ¢ Hawkins

get some of it. The difference with computers is that having experienced it
isn’t enough to apply it to your own work, just as an artist who had some ex-
ercises in perspective couldn’t use it unless he or she played with it a lot. You
need much n:ore experience than just a lesson with it. [Jeff, in May]

* * * * *

So what I decided about three months ago is that I couldn‘t teach a whole
group—that just didn’t make any sense at all. I had decided in the beginning
of the year that I could do that. I wanted to make it into a piece of the curricu-
lum, into something that the kids felt was part of their work. Doing it in this
very ‘‘projecty’’ way—kids following their own interest—I was having alot of
trouble making them feel that this was work they had to do. Most things aren’t
run that way; most classroom activities are much more assigned. So I felt I
had to structure their work more and give it direction. What happened was
that in giving them direction, I was trying to get them all moving at the same
speed and that just wasn’t working. It‘s not like social studies—I would never
divide the lass into more and less mature groups because the thinking about
people, even if it takes place at different levels of maturity, has important
commonalities. There's a core of understanding about what a person is that
abstract symbolic information lacks. [Jeff, in June]

Thus, at the end of the second year, Jeff also confronted a paradox:
His understanding of the necessary pedagogical structure for learning
an abstract symbol system (leading to considerations of sequence, ac-
countability, and ability grouping) was in conflict with a commitment to
the importance of self-initiated, discovery-based learning:

It's very difficult to tell what is going on with kids’ understanding of com-
puters, and this is true for kids who are good and those who are not. I haven’t
yet built up a way of analyzing what ha} pens when I give them a task and
what it means to succeed. .. .[Consequently] I don’t intervene much in their
work.

CONCLUSION

The analysis of Logo in classroom practice was undertaken to under-
stand how Logo was assimilated to classroom use over time, and how
particular issues were confronted and resolved as teachers worked with
it in the comnplex learning situation of schools. Such an analysis is critical
to understanding the impact of Logo in a general way and might be help-
ful to teachers and other practitioners. The perspective here, however, is
a research perspective. What overall themes and problems appeared,
and what was their course of expression in the teacher dialogues?I have
made use of the teachers’ voices as they expressed the general themes I
discerned, nonetheless, the research ear was selective. Others, coming
to the material with different questions and goals, would have heard dif-

47

The Interpretation of Logo in Practice * 33

ferent things. With these caveats, certain conclusions emerge for me
from these materials.

First, the teachers vacillated over the course of the two years between
two poles in their interpretation of Logo: Logo as an environment for
discovery learning, where students could freely explore with minimal
guidance; and the belief that some formal structure was necessary for ef-
fective learning. The teachers’ enthusiasm for the discovery-learning
pedagogy of Logo was tempered by some of their experiences with stu-
dents’ classroom learning. They tried different rurms of structure, from
informal lessons to the beginnings of a formal curriculum sequence in
the second year. However, the tension between free exploration of Logo
and structured learning sequences was never fully resolved. There were
different soutions at different times and for different circumstances. For
example, one teacher thought more structure in the form of project ideas
and technique-teaching might help to resolve the problem of sex differ-
ences in learning (see Hawkins, Chapter 13, this volume).

Second, there were large individual differences among the students
in their interest in and accomplishments with Logo over the cource of
the two years. Some students were highly motivated by Logo, became
“experts”” in aspects of the language, and produced substantial projects.
Other students remained uninterested in Logo over the school year and
learned little more than the most basic commands of the language. The
teachers were puzzled about how to involve these students in such a
way that they would become personally motivated to learn through
Logo.

Third, Logo is a complex, symbolic, rule-based system requiring sig-
nificant time and cognitive effort to master (see Hawkins & Kurland,
Chapter 14, this volume). In the classrooms, students had difficulty
understanding the concepts or logic underlying some of the Logo com-
mands necessary to accomplish even relatively simple projects (e.g.,
conditional statements). Students also had trouble understanding when
and how to apply some of the programming coz.cepts, as well as how to
use the fundamental programming technique afforded by Logo of de-
composing a large program into functional subparts, or procedures.

Fourth, the integration of Logo into the ongoing work of the classroom
was problematic because its status and legitimacy were never clarified.
Teachers tried to resolve two issues: Is Logo a legitimate part of the cur-
riculum? And, if so, does it fit in as programming or math, or does it
belong elsewhere? What can students be expected to learn from their ef-
forts involving Logo: specific programming or math concepts, general
problem-solving, skills, or both? Teachers also observed confusion on the
part of the students, who observed that Logo was being treated differ-
ently from other classroom subjects. The accountability that students

4y

34 * Hawkins

had come to expect to “legitimize’’ their work, such as formal require-
ments and assessments of what was being learned, was missing in their
work with Logo. Consequently, it appeared that they often chose to put
less effort into it.

In sum, the assimilation of this educational innovation over two years
proved to be a process of adaptation and refinement—of both the innova-
tion itself and the way the teachers thought about their work. The experi-
ence of these two teachers offers part of a story, and helps to concretize
the issues confronting teachers seeking to make use of the potential of
Logo.

AUTHOR NOTES

This research was supported by a grant from the Spencer Foundation.

The teachers who so insightfully and willingly reflected on their work
made this analysis possible. My thanks as well to the students in their
classrooms, and to Jeffrey Arons, Barbara Dubitsky, Kathy Fiess, Shelley
Goldman, Roy Pea, and Karen Sheingold.

49

CHAPTER 2

TEACHERS' ADOPTION OF
MULTIMEDIA TECHNOLOGIES FOR
SCIENCE AND MATHEMATICS
INSTRUCTION

Laura M.W. Martin

APPLYING TECHNOLOGIES TO SCIENCE AND
MATHEMATICS INSTRUCTION

At present, there is a greal geal of national concern about the quality of
science ard mathematics ir:struction, particularly in elementary and
middle schools. Because science is rarely well integrated into the curric-
ulum, man; chiidren lose interest in this subject early in their school
careers. In science and mathematics, the me.erial covered often appears
to be both irrelevant to the students’ daily life and not intriguing enough
to study for its own sake. In many instances, the teachers themselves are
underprepared and uncomfurtable with teaching basic concepts.

In recent years, curricular goals in these domains he ve been under-
going change Scicnce and mathematics educators have been calling for
a problem-solving approach (National Council of Teachers of Mathemat-
ics, 1980; National Science Teachers Association, 1982). In the case of
science, this means greater emphasis on scientific method and on ways
to motivate inquiry aund investigation among children, in the case of
mathematics, motivation and more flexible use of concepts are the
hoped-for outcomes. Educators recognize that preservice and inservice
training for teachers will have to reflect this new emphasis in the near
future (National Council of Teachers of Mathematics, 1980, National
Science Teachers Association, 1982).

While materials that deal with science and mathematics in enriched
ways have been available fer some time, they have not taken hold in
all or even most schools. Materials alone do not seem to solve the prob-

35

36 e Martin

lem of teacher adoption of new methods (Berman & McLaughlin, 1978).
However, as we have pointed out elsewhere (Sneingold, Martin, & En-
dreweit, Chapter 4, this volume), the advent of new technologies is likely
to provide leverage for school change in a way that hands-on science kits
and problem-solving games do not, if only because of the enormous in-
terest they have for educators, parents, and students.

Two concep:s have been particularly useful in the analysis and under-
standing of the technology-adoption process in schools. The first calls
attention to thie technology itself, for its ability to provide multiple levels
of entry to the teachers and students who use it (Levin & Kareev, 1980).
A technology that provides different routes for accomplishing the same
activity can accommodate a range of individual approaches to problem
solving. The second concept calls our attention to the broad and complex
contexts within which learners, teachers, and technology function. This
“embedded-context’’ analysis requires us to look beyond an individual
child’s carrying out a particular task in order to understand how learning
is supported and tasks are carried out in the classroom (Laboratc..y of
Comparative Human Cognition, 1985). These two notions—multiple-
entry-level technology and embedded-context analysis—can help us to
describe and understand the factors affecting classroom change mediated
bv the introduction of technology.

Multiple Levels of Entry

The idea of offering several paths into an activity means that both experts
and novices can use a software program for their respective purposes,
which, in some cases, is accomplished by building levels of complexity
into the program. For example, wit certain software, once a set of param-
eters becomes comfortable for the user, s/he may select more complex
options that provide corresponding gains in program control or flexibil-
ity. In other cases, multiple entry into an entire medium, such as the
microcom puter, may be designed. The different kinds of user participa-
tion required, for example, by a computer-assisted instruction (CAI)
program and by a turtle-graphics environment result from different
amounts of user support or program structure. In a classroom, a range
of structure may suit the needs of different users of the same computer
(Riel, Levin, & Miller-Souviney, 1984) or the different needs of the same
user.

The Voyage of the Mimi materials, created a‘ Bank Street College, are
an example of technology designed to accon'modate the muitiple needs
of people. This system distributes access to potentially instructive ex-
periences across different media. We will examine how such a system
can contribute to the particular goal of making science and mathematics
relevant to both teachers and their students.

-

ol

Teacher's Adoption of Multimedia Technologies for Science and Mathematics Instruction 37

The Embedded Contexts of Learning

The second notion that has import for the technology-adoption process
is the understarding that learning tasks may be viewed as occusring
within embedded contexts, each of which influences performance on
the tasks (Laboratory of Comparative Human Cognition, 1985). On a
simple level, one can document that a teacher’s use of a microprocessor
is often determined by the routes through which machines are intro-
duced (e.g., by a teacher-enthusiast) into the classroom (Hess & Miura,
1984). Less directly, institutional factors have been seen to exert influ-
ence at the individual level on decision making about children’s educa-
tional needs (Mehan, 1984a). Thus, in order to understand adoption of
educational technology that appears to depend on teacher attitudes and
experience, it may be necessary to analyze the process as part of district
“organizational procedure’’ (Mehan, 1984a), rather than as teacher
choice. In this regard, the current work points to district procedures that
are influencing the use of technology by individual teachers in their
classes.

In order to specify how district procedures influence classroom change,
we look for the presence of support for teacher learning as it becomes
structured in the context of a more comprehensive goal, usually formu-
lated at the district level. The larger goal will necessarily have an impact
on technolagy adoption by defining what constitutes feedback and sup-
port.

The current framework is consistent with what studies have found to
be factor: relevant to the adoption of innovation in schools (Berman &
McLaughlin, 1978; Hord & Loucks, 1980). As we shall see, the themes of
multiple-entry points and embedded context allow us to describe the ini-
tial stages of a developmental process that took place among individual
teachers attempting to improve their classroom practices through the
use of educational techrology, and among distz cts attempting to im-
prove instruction across 2zhools.

This chapter reports preliminary findings from a training preject that
introduced teachers to The Voyage of the Mimi, a multimedia package for
teacking science and mathematics. Some of the assumptions behind the
development of the package and the goals of the teacher training are
described as they address current concerns about science and mathemat-
ics instruction generally.

THE VOYAGE OF THE MIMI MATERIALS

We begin by providing background on The Voyage of the Mimi materials
and the related Mathematics, Sciencz and Technology Teacher Educa-
tion Project (MASTTE), and then briefly describe the results of the train-

32

38 ¢ Martin

ing program. The major focus of the chapter is a discussion of the effects
of (a) the various media that comprise the Mimi materials on classroom
instruction, and (b) the organizational features of the school systems
themselves on the adoption and diffusion of these materials. The con-
cept of multiple-entry-level technology helps us to understand the first
set of effects, while the notion of embedded context is useful for under-
standing the second.

In 1981, with funding from the U.S. Departmert of Education, the
Bank Street College Project in Science and Mathematics began the de-
velopment of a multimedia program using video, computer, and print
materials that was aimed at helping children gain a better understanding
of science, mathematics, and technology. This program, The Voyage of the
Mimi, has been available on the commercial market since the spring of
1985.

The designers of The Voyage of the Mimi worked from several con-
ceptual premises which addressed the issues of what would stimulate
change in science and mathematics practices in schools. These premises
related to the effects of the media on users, both teachers and children.

First, the developers were concerned with providing the children
with concrete and affective experiences, and then moving to mcre ab-
stract activity. As a result, the centerpiece of The Voyage of the Mimi is a
13-part television drama that portrays the adventures of a group of young
scivntists who are studying whales off the coast of New England. Dur-
ing the course of the show, viewers see the crew conducting scientific
““experiments’’ and solving technical problems. Each episode is accom-
panied by a documentary showing scientists engaged in their work,
thereby offering students and teachers a chance to apply their story in-
volvement to a real problem domain.

Four different computer modules covering concepts related to the
scientific voyage allow children to experier.ce simulation of navigation
instruments, a microworld ecosystem, a too! for measuring and graphing
pbvsical events, and a programming envircnment. Although researchers
are only beginning to study the effects of these types of computer-medi-
ated experience on learning outcomes, it is presumed that such activities
on a microcomputer give children experience in linking concret. ..nd ab-
stract problem dimensions in ways otherwise unavailable in classrooms.
For example, the ‘‘Whales and Their Environment’’ module includes
hardware and software that allows a micrucomputer to measure ard
record temperature, light, and sound. The possibility of relating measure-
ment and representation of measurement directly with the laboratory
tool accompanying the Mimi provides special connections that are not
readily demonstrated with graph paper and thermometers.

The Mimi package includes a book version of the television show with
classroom activity suggestions and additional factual information, as

=g "

Teacher's Adoptiim of Multimedia Technologies for Saence and Mathematics Instruction * 39

well as books to accompany the microcomputer modules. The latter pre-
sent information related to the module content, computer-based and
noncomputer-based activities. Thus, the print materials both iterate in-
formation available from the video and microcomputer, and in some
cases present new facts, experiments, and puzzles. In many instances,
*he specific activities available through the print materials make a bridge
to the recording and interpreting of information and t1 the use of nota-
tion systems, both central to science learning.

Second, because of their belief in the importance of demonstrating to
children the social nature of doing science, the Mimi developers showed
people working together, provided materials that allow children to work
cooperatively and productively in their thinking, and presented open-
ended topics of interest to both scieatists and children. The developers
assumed that the fact of shared questions and interests would become
an important part of the discovery experience for the children, for ex-
ample, very little is known about whales, and it was found that a large
cross-section of children are fascinated by these mammals.

Third, the Mimi package takes into consideration the teacher rtici-
pation in the enactment of science. Designed to be supplemeiuary to
regular curricula, the Mimi materials contain no scope or sequence re-
quirements or suggestions. At the same time, however, a teacher’s
manual gives suggestions for activities in class, discussion topics, vocab-
ulary, and work on concepts reizted to the Mimi themes in ways that are
designed to broaden teachers’ notions about science and matheinatics.
Information about whales is also provided for the teacher in the manuals,
no assessment materials are. More importantly, the materials were de-
signed to establish an exciting context and reason for teachers to teack
science and mathematics, something not ordinarily available. As one
teacher described her typical science lesson:

I'had a book with questions and an experiment to answ er each one. "What
is the purpose of a reservoir? Then you have them build a reservoir and
figure out the purpose. That’s the curriculum. Six or seven questiuns per unit.

The Mimi materials, in contrast, invite the teacher to be an active ex-
plorer in the learning situation by being respons:ble for much of the orga-
nizational and motivational work, which is dependent on technolugical
tools.

THE MATHEMATICS, SCIENCE AND TECHNOLOGY
TEACHER EDUCATION PROJECT
Although the materials were designed to be implemented by teachers

without specific training, and since this was the first commercially avail-
able package of its kind, it was not apparent what pattern of activities

40 * Martin

would develop in the classrooms of the teachers who used them. The
designers felt that it would be important to support their innovative pro-
gram by specifically training teachers to make the most of the integrated
media and subject matter.

The Bank Street College Mathematics, Science and Technology Teacher
Education Project (MASTTE) was undertaken in order to address the
needs of teachers using The Voyage of the Mimi. Its purpose was to de-
velop a training model for upper-elementary and middle-school teachers
that would focus on the vse of both new and old educaticnal ..chnologies
to promote science and mathematics instruction.

The training was designed to meet teachers’ personal needs for an ex-
planation of the concepts and materials in the Mimi package, for models
of appropriate pedagogical methods, for ideas for handling changes in
classroom activity, and for building broader systemwide adjustments to
the new program. During its first two phases, the MASTTE project uti-
lized a combined workshop, demonstration, and discussion format for a
week of training, and provided participating districts with support after
training in the form of site visits and phone contact with Bank Street
~“tield staff.

The MASTTE Research Program

In the spring of 1985, researchers from the Center for Children and Tech-
nology began to look at what was being accomplisked by teachers and
district personnel in their schools as a result of their training experience,
and at the factors that might be influencing implementation of the mate-
rials and program. Further, in an effort to determine the extent of the in-
formation made available by each technology in instructional situations,
the researchers asked about the nature and content of the activities that
were being conducted, whether the activities were consistently utilized
in all classes, and what elements made districts judge the program worth
continuing.

Between March and june, the research staff of the MASTTE project
visited 16 classes on an average of four visits to each. Structured obser-
vation forms were used in the classrooms, and field notes were taken.
All teachers and staff developers were interviewed toward the end of
the school year. The two Bank Street field trainers who were providing
support for the districts were asked to maintain logs describing each of
their site contacts in participating districts. The Bank Street staff were
periodically interviewed by the researchers.

Many issues concerning science and mathematics instruction arose as
a result of the first phase of our work (March-June, 1985). The focus
here, however, is on the technology. how it was seen to ‘nfluence what
was done in classrooms, and what in turn influenced its use. General

99

Teacher’s Adoption of Multimedia Technologies for Science and Mathematics Instructon ® 41

and specific patterns that emerged in this sample of classes will be de-
scribed and some reasons for the patterns offered.

MASTTE Training Week Participants

In February of 1985, during the first phase of the MASTTE Project, 16
classroom teachers (grades 4, 5, and 6) and ten staff developers from
four New York area districts were introduced to The Voyage of the Mimi in
a week-long training session.

A pretraining questionnaire surveyed the participants’ general teach-
ing experience and technical background, as well as their views about
instruction. The average number of years of teaching experience among
participating teachers was 14; staff developers averaged 17.2 years. All
participants had taken more college courses in science than in mathe-
matics, with only five teachers and two staff developers having taken
mathematics in college. The staff developers had more experience with
computers than did the teachers, six having taught computer work to
others.

According to their responses on the questionnaire, teachers and staff
developers had different views of the need for schools to improve science
and mathematics programs. Teachers tended to stress availability of re-
sources; for example, the need for more lab equipment and teaching
kits. Staff developers’ perceptioris were varied, with some consensus
that teachers needed more hands-cn experience in order to improve pro-
grams. Methodological and support structure needs were rarely men-
tioned.

In a subsequent interview, one teacher expressed a basic dilemma.

I never had to teach elementary science and I was bored with it. The cur-
riculum they give you—no books, not a reference material—you have to find
everything. Then you have to put it at a 3.6 reading level. It's frustrating. By
then, you don’t even want to do it any more....When I said science [to the
children], it was boredom.

RESULTS

The Impact of the Program on Teachers
All 17 teachers and nine staff developers in the phase 1 sample, regard-
less of background, were highly pleased with the materials, in large part
because the format allowed an entry point for everyone. As one teacher
putit: I find the materials very useful and they suit my style of teach-
ing. But my style is not everybody’s style.”

The open-ended nature of the materials related directly to the ieachers’
abilities to reach the students. One teacher expressed it this way. ‘With

o0

42 o Martin

the variety of materials, they’re able to reach every kid, whereas before,
if you used one type of material, you were not reaching everybody.” The
teachers whose schedules allowed them to choose when to teach science
(all but two) reported that as a result of participating in the MASTTE
project they were teaching more science in their classes. At each site, it
was decided that classes would visit the aquarium, the natural history
museum, beaches, and marinas. School librarians, computer teachers,
science teachers, art teachers, and parents became involved in providing
support for the project. Principals in each district reported that their
veteran teachers were newly inspired by working on Mimi activities.
Children who had never before shown an interest in science, or indeed,
in a couple of cases, in school at all, were fascinated by the Mimi. A fifth
grade teacher reported of one child: "’All of a sudden his mother said
he’s interested in science, he wants to be a doctor. . .he wants to go into
research.”’

In class after class, we observed and heard of virtually 100% time-on-
task for the whole class during Mimi lessons. Teachers felt that since the
video showed the functional context of the scientist’s task, it motivated
the children to ask questions and provided a framework for the teachers
to arrange experiments and activities. One teacher reported her surprise
at the children’s eagerness to see the documentaries, they felt that the
programs ‘‘answered some of their questions.”

Other teachers emphasized the significance of these materials for
showing children a fuller context for asking scientific questions and for
using problem-solving tools:

I was surprised they got some of the concepts that they did, like hypo-
thermia. . .since they are fourth graders. We did convection and conduction,
and when I tried to do that earlier with the science textbook, it was impossible.

It is clear that the teachers’ efforts were highly reinforced by student
attentiveness. Children even volunteered for extra work, they gave up
gym, art, lunch, recess, and before- and after-school time to do science
activities. "’I've had them actually say to me, ‘Can we skip art and con-
tinue with The Vbyage of the Mimi'!"’

These are indeed powerfui materials. Considering the demands placed
upon the teacher by the multimedia format—utilizing new technologies
in new ways, arranging experiences of scientific process, and tackling
subject matter in new contexts—it is clear that they can be motivated to
engage in a complex process of change. We conclude that because of the
features of multiple-ent.y level inherent in the current approach to mate-
rials and training, the demands on the teachers we observed were likely
to be regarded by them as manageable, even revitalizing. It is not sur-
prising, therefore, that every district planned to expand its use of the
materials during the subsequent school year.

o7,

Teacher s Adoption of Multimedia Technologies for Science and Mathematics Instruction o 43

The Effects of the Integrated Media

on Instructional Situations:

An assumption of the developers of The Voyage of the Mimi was that each
of the media employed in the program would provide a unique channel
for information to reach the children. Less articulated were assumptions
about the effects of the media on lesson organization. Despite schools’
typically inflexible science and mathematics lesson structures (whole-
group learning and individual "’seatwork’’), segmented (as opposed to
integrated) curriculum, and set time periods, the technological vehicles
of the Mimi package affected the social arrangements of learning. In fact,
some of the most interesting results of our observations pertained to
these effects. Moreover, they have profound implications for the avail-
ability of information in classroom settings. Video, computers, and print
materials offered teachers a choice of how to introduce science and mathe-
matics content. This multiple-entry system supported the teachers in the
early siages of developing teaching objectives to promote inquiry and to
integrate science and mathematics. The media held the interest of chil-
dren and teachers alike as teachers began to assimilate, or “own,’’ the
goal of stimulating children’s curiosity and knowledge.

Toelevision

In the middle-school years, the impact of televised information can be as
powerful as 3-dimensioral experiences are for younger children. Be-
cause the children can comprehend visual narrative and because they
learn from modelled behavior, they seem to remember and to be very
attentive to what they sec on the video screen (Greenfield, 1984). Chil-
dren can readily access science and mathematics concepts and problem-
solution strategies when they are presented in a televised format. As
one teacher commented: ‘’Certainly watching something about whales,
watching it on TV, is just wonderful. Going from concrete to abstract. . .
it took over the lesson much better than I could do.”” Another teacher
observed:

I'saw them sitting there in that room today, looking as if they were there. ..
you're not smelling the salt air, you're not touching [a whale], you're not even
on a ship...but I think they’re there. The viewing was far more of an experi-
ence for them than it was for me.

Referrir ; to the video episude in which the captain of the vessel Mimi
develops hypothermia, a teacher remarked:

Why do these kids get so involved in hypothermia? That’s because that’s
CT’s [a character’s] grandfather that’s lying there unconscious on the beach.
They're totally involved in that. It could be their grandfather or friend or parent
...and that’s where TV has itall over a book. . . . [Referring to the documentary
accompanying another episode] You could read about Mt. Washington until

5’«*.

]

you're sick of reading it, but. .. when Ben [the actor who plays CT] is knocked
over and cannot walk because the wind is so strong and the meteorologist has
to grab him, that’s more graphic than anything you everread. . . .Ithink TV is

great.

The teachers we observed held different theories about television’s
contribution to education. Some felt that video was not the ""concrete’’
experience that the developers were claiming it to be. "It’s recreational,
reading is educational.”” Another, describing what was a widely reported
phenomenon, said:

44 ¢ Martin

When they [the students] go to the reading and the words [after seeing the
video], they recall far more than I thought they would, and it makes the read-
ing more interesting. . .they want to take the books home.

Television was used as a motivator and tool, as a lesson text, and as a
reward, according to what teachers felt the video could accomplish.
Some teachers noted that "’Viewing interest is intense even at the sec-
ond viewing’’; and "My kids act as if it’s a reward’’; but one felt that

to see The Voyage of the Mimi for asecond or third year, I would have trouble
with that. Even theoretically, yes, they could get things that they missed the
first time. I think it would be too costly, time-wise.

Yet, despite the range of attitudes, the video was used regularly and
this caused changes in learning arrangements. When members of the re-
search team visited the MASTTE classes, they were most often shown a
television-viewing and discussion session. The reasons for this may lie
in what the teachers thought the visitors expected, or in the fact that
they might have been more comfortable conducting this type of leszon.
However, what was most striking in these -essions was the rapt atten-
tion of the children during the viewing and the subsequent discussions.

Duriny those lessons that were configured around the video segments
of the Mimi, shifts occurred to change the usual patterns of lesson orga-
nization. First, chairs were pulled out of alignment and grouped closely
together. Second, children sat or draped themselves on the chairs or
desks in relative disarray, rather as if they were in their own living
rooms. In many classes, children would consistently get their Mimi
books out without teacher direction in order to follow the video. This
kind of informality was also reflected in the class members’ interac.ions.
The usual turn-taking and discourse patte.ns were of.en disrupted, the
teacher and the children talked over the video, commented (not just an-
swered or asked questi. ns), and failed to bid for the floor in the style
that generally characterizes a lesson. Informal interactions occurred even
11 cases where teachers did carry on formal questioning during the video
sequences, sometimes stopping the mach.ne in order to pose questions

Teac! er’s Adoption of Multimedia Technologies for Science and Mathematws Instruction » 45

to the students. However, when video viewing took place in the audi-
torium, little informality was noted.

It may be that the relaxed or home-like features of television viewing
have learning implications for children who are not at ease with the
classical whole-group, teacher-led lesson format. Television viewing
may encourage more open-ended exchanges, more personal involve-
ment in the material, and a less teacher-centered focus, all of which may
contribute significantly to children’s learning. It has also been suggested
that if the “elevision channel carries the facts,”” the teachers may be
freed to ask the children other kinds of questions (J. Black, personal
communication, 1985).

Microcomputer Modules

While the use of television in the classroom was a new experience for
some of the teachers, the microcomputer was for all both a novel teach-
ing tool and an unfamiliar medium. During the training period, the
teachers’ reactions to computers ranged from eager to amused to hesi-
tant, and all but one learned to use the software.

The Voyage of the Mimi modules that were available to the teachers—
“Introduction to Compu*ng’” and "’Maps and Navigation’’—were not
equally utilized. Based on Logo, “'Introduction to Computing’’ incorpo-
rates prompts which the developers felt would be of more help to the
children in understanding the features of the programming language
than would a free Logo environment (Hawkins & Kurland, Chapter 14,
this volume). In schools that had a Logo curriculum already in place, the
teachers did not see the advantage of the module (except, in one case,
for use with young children not yet using Logo), despite their positive
comments abor't how the software could facilitate work with program-
ming concepts. However, one lab teacher regularly used the software,
even in non-Mimi classes. The fact that teachers who were not familiar
with Logo also teaded not to use the module might be accounted for in
two ways: First, this module was not as strongly emphasized in the
training week as was the "’Maps and Navigation’’ module. Second, with
the exception of two whale search games, the module’s programming
exercises were not as clearly integrated with the Mimi content or with
the reading matter on computer history. Teachers recognized that this
software did not build directly upon concepts in the show.

The “’Maps and Navigation’’ medule, in contrast, was used in all
classes. It clearly created junctures for teachers and children to interact
around Mimi topics by demanding the use of certain concepts within the
“whole task’’ (Mehan, 1984b) of the navigatior game. The children in
the classes we studied willingly gave up such activities as recess, lunch,
art, and gym for chances to play the simulation games, and thus came in

60

46 o Martin

contact with the educational opportunities believea to exist there. One
teacher said:

I'm supposed to be teaching them some foreign country in social studies. I
found out nabody in this class knew anything about geography. Well, we’re
not going to any foreign countries till we know how to get there. And this par-
ticular navigation thing is perfect for me.

"’Maps and Navigation’’ is made up of three navigation games de-
signed to teach latitude and longitude, speed/time/distance calculation,
and triangulation with a radio direction finder. A fourth game in the
module, "’Rescue: Mission,”’ simulates a navigation problem whose
solution depends on students’ coordinating their use of a variety of "’in-
struments,’” as well as a map and a parallel ruler, and on choosing their
procedures in a strategic sequence. The games are designed to be played
in teams.

Teachers have reported that children have gained fluency with the
concepts embedded in the games, although direct instruction about rate
calculation, measuremer:t techniques, and reading screens appears to be
necessary. Another outcome concerns the organization of learning part-
ners that occurred when children used the software. While the intro-
duction of the machines did not cause any of the MASTTE teachers to
reorganize the physical or temporal arrangements that were in place for
lessons (see Mehan, 1985), several teachers felt they could tolerate
"’noise’’ and so allowed pairs of children to play navigation games while
others in the class worked at their seats. Also, teachers who demonstrated
how to use the computer in front of the class sometimes had children
assisting at the keyboard or reading the screens: ““When I introduce a
game, I'll do all the different techniques that they need and then I'll let
them work on it.”

Since all the teachers taught whole-group lessons and this did not
change, and since the computers were used, small groups of children
were allowed to use the computers primarily during fiee time (i.e.,
lunch, recess, and before and after school). Only occasionally did certain
teachers allow pairs of children to work at the computer during whole-
group lessons. Both for those who planned some computer use during
their lessons and for those wno didn’t, novel peer configurations at the
computer were noted. "I let my brighter ones work on it first, and then
when they’ve mastered it, I mix up groups.”* Zither by design or sponta-
neously:

Boys and girls were seen to work together for the first time.
More experienced children taught less experienced children.
’Quicker’’ learners worked with “’siower’’ learners.
Children paced themselves, recording their own activities.

[3K3

61

S T '——]

Teacher's Adoption cf Multimedia Technologies for Science and Mathematws Instruction o 47

¢ Children distributed tasks cooperatively, for instance, taking the role of
keyboarder, scribe, or strategist.

Interesting shiits in thinking occurred for some teachers who used
the computer in front of their classes. Driring a training discussion on in-
quiry lessons, one teacher made clear his view that teachers must know
all the answers before conducting a lesson. As a result of his making
errors while demonstrating the use of the computer for his class, he later
told his colleagues in the district about the value of ’learning along with
the kids.”” Two teachers who controlled the computer in whole-group
lessons reported that they were using computers at home for the first
time as a result of getting familiar with the machine in school. A staff
developer reported that an experienced teacher asked for advice after an
unsuccessful lesson. "' think the fact that teachers are open to changing
their ways of teaching is really admirable for people who've been in the
system for a long time.”” Thus, although the essential structure of the
lessons did not change, the computer caused changes and reexamina-
tion of social arrangements within the familiar structures.

|

\

|

|

\

Print Materials
In contrast to the novel arrangements generated through the use of the
video and microzomputer, the lessons organized around the Mimi print
materials were consistently traditional. Specifically, we saw lessons in
which children each took a turn in reading a paragraph, children followed
along with the teacher, children looked for answers to the teacher’s
questions in the text, children were instructed to do the activity in the
book, children were instructed to answer the questions in the book.
We may suppose tlat for teachers the children’s books, the teacter’s
manual, and the computer softw are guidebooks all represented a familiar
school format and thus tended to be used in ways similar to other printed
materials. It is possible that the more familiar ‘’school-like’’ fcrmat of
the print materials allowed some teachers a comfortable entry point into
the content of the Mimi package. Most of the teachers in our sample
thought that the print materials were excellent. "’If the children are able
to prepare first with the books, they pick up alot more [from the video].”
Interestingly, several teachers noted that the video caused the books to
become valuable to the children. A few teachers, however, did not find
the print materials useful or special. *’The thing they [the children] liked
least was the textbook because that’s like everyday work."”’
In addition to making new information available to classes by causing
arearrangement of instructional exchange, the mudia caused the teachers
| tc reexamine their lesson objectives by eliminating some traditional
‘ sources of feedback. All teachers were left to their own devices for evalu-
|

62

48 * Martin

ating the activities resulting from the use of the media. One teacher
hoped to develop a "'process’ test, but was disappointed that he was
only able to devise a “’fact’’ test. Some teachers managed to test vocabu-
lary, at the same time recognizing that this was not the point of the Mimi.
A couple of teachers, expressing some bewilderment about how to con-
duct assessmient, gave assignments to the children and simply kept track
of whether or not the work had been completed. One of these teachers
had each child demonstrate to her that s/he was able successfully to play
a computer game before the child was allowed to try another.

Television viewing and computer use, as well as the ciscussion and
questioning that accompany them, do not easily le..d themselves to for-
mal assessment. ‘‘Testing is not in the spirit of the Mimi,”” said one
teacher. Thus, while all the teachers found a way to integrate the media
into their classes, the media demanded that they use new or more indi-
vidually reicrenced means of assessing how the lessons suited their pur-
poses. The different lessons engendered by the media may eventually
help teacher .~ork towards the goals of science and mat.iematics in-
quiry by encouraging a focus on process and problem solving.

The Effect of School Systems on the Adoption of

New Technologles

The enthusiasm we witnessed among teachers is not enough to maintain
the momentum for a project such as MASTTE. The adoption and diffu-
sion of technologica! innovation in classrooms demands district-level as
well as classroom-level planning (Berman & McLaughlin, 1978, Loucks
& Zacchei, 1983). As each district attempted to adopt and incorporate
new and integrated technology, const.aints were 1evealed that operated
upon both districts and individual teachers. Among the MASTTE sites,
district-level planning was shaped, first, kv the nature of the district’s
initial goals for participating in the pr¢,.ct, then by the processes by
which information was exchanged as th. project was implemented and,
finally, by the bases on which support and diffusion came to be struc
tured in the district.

Goals for Participation in the Project

In order to help maintain the effectiveness of the new program in the
districts, the MASTTE training program included opportunities for the
participating school personnel to develop and clarify program plans and
devise strategies for organizing district-level support.

We found that the freedom to experiment afforded by the Mimi’s
multiple-entry design seemed to be the key to individual teachers” ac-
ceptance and use of integrated technologies. "I can use my strengths”,
"It’s good for myself and my background.”” However, as with any in-

63

Teacher’s Adoption of Multimedia Technologies for Science and Mathematics Instruction © 49

novation, in order for individual experiences to affect practices across a
district, the experimentatioi. had to occur in districts which (a) could in-
corporate the project’s goals into their own, and (b) had mechanisms for
detecting and supporting professional growth among staff. In other
words, the elements that sustained individual teachers as they changed
their instructional practices resulted in district change when those ele-
ments became part of a district’s plan for improving science and mathe-
matics instruction.

The districts participating in the MASTTE project varied greatly in
structure and, therefore, in how they addressed the problem of change.
They represented a cross-section of New York area districts, including
urban and suburban schooss, districts with more or less extensive tax
bases, school populations with a variety of ethnic backgrounds in differ-
ent proportions, and districts of varying size:

District M is 4 large, central-city school district serving a mixed ethnic
population, primarily hispanic and black. The participant schools varied
in the extent to which they used educational technology. The personnel
sent for training came from three levels of the system. classroom teach-
ers from two sites, a schocl computer coordinator, and a district science
coordinator who served 23 schools. District M was contacted about par-
ticipation in the training program through the central office, as were the
other districts. Yet, two teachers selected to attend were under the im-
pression that they would be participating in a social studies program.
Although District M did not articulate any districtwide plans for the
MASTTE work, it did express a desire to expand the computer technology
program in one of the participating schools.

District B, a large district in one of the boroughs, also serves a mixed
ethnic population and has limited technology in its schools. Teachers
from three schools and two district-level staff developers (Mathematics/
Computer and ESL/Special Education) responsible for 28 schools were
sent for training at Bank Street. Before the project began, the statf de-
velopers organized a school board meeting, which was attended by
selected principals and included several PTA presentations about the
project. The staff developers worked with the explicit goal of improving
science, mathematics, and technolugy capabiiities throughout the dis-
trict.

South Bay is a small, working-class district in a suburb serving a mixed
ethnic community. Only building-level personnel—teachers, science
coordinators, and one computer coordinator—were sent to Bank Street
for training. The district office, notably the superintendent’s assistant,
gave the project classes "‘carte blanche, "’ that is, exemption from regular

64

)

50 o Martin

curriculum requirements and priority on equipment use. This district
has a strong CAI program and an exemplary mathematics program. Its
participation in the MASTTE project was part of a 3-year effort to up-
grade district science programs.

Chesterfield is a small, upper-middle-class district 'n a wealthy suburb.
A district mathematics facilitator and a science facilator, both experi-
enced with computers, attended the training week at Bank Street, teach-
ers could not be spared from the classrooms. Technological resources are
readily available in Chesterfield, and the district has an elaborate in-
service program. All classes above the third grade have computers. The
facilitators planned to organize their own inservice program on using
the materials immediately after the Bank Street training week. This dis-
trict was interested in exploring the integrative possibilities of the Mimi
materials.

Results indicated that defining a goal for district participation in the
project before traming began was a necessary precondition for later dif-
fusion of the Mimi. Surprisingiy, the degree of a district’s or school’s
technological advancement prior to tite program had no relation to the
extent of diffusion. Those who were delermined to make the program
work organized the needea equipment, while some sites with adequate
technology did not expand the program.

In our sites, goals were critical because they legitimated and clarified
implementation activities. Of the four participating districts, the three
(District B, South Bay, and Chesterfield) that had clear ideas about why
they wanted to introduce technology into their science and mathematics
programs were able to develop districtwide implementation plans for
the commg school vear. These three districts organized their own in-
service programs, which were slated to begin before school reopened in
September. In District M, where the goal of the project had been and
continued to be unfocused despite training and the enthusiasm of the
teachers, technological innovation was not diffused on a districtwide
basis, and barely so within the schools.

Personnel Responsible for Implementation
Carrying out district goals involves training persunnel who are regarded
as key in the implementation process. Depending on whom the districts
chose to send for training, initial support for using the new materials
varied. At most sites, strong connections to the central office proved to
be important for the effective implementation and diffusion of the project.
One of ti.e city districts (District B) sent central office staff developers
for training, with the result that for the first time in that district a link was
established between classroum teachers and the central office. For the

Teacher's Adoption of Multimedia Technologies for Scenve and Mathematus Instnabon * 51

teachers, “"there was a response [from the district]. A living being who
said "yes’ [to experimentation] instead of ‘why didn‘t you?’ * Previously,
the teachers had not even been aware that the district had staff devel-
opers, let alone ones who could offer positive support.

This responsiveness was somewhat unexpected since, according to
our informants, the two city districts we worked with operate heavily on
favoritism and have few resources for staff development. The staff de-
velopers have many schools to work with and little authority, the teach-
ers are often at odds with the district about obtaining the things they
need for their classrooms. Thus, it was encouarging that staff developers
were able to forge links with the teachers in that context.

In the other city district of our sample (District M), the staff developers
sent for training did not work together. One was the computer coordina-
tor of his school; the other worked in schools throughout the district,
but not out of the central office where decisions are made. The support
that these staff developers were able to provide for teachers was limited
or nonexistent since they themselves had so little support from and not
much access to those responsible for allocating resources in the district.
Consequently, acquisition of and access to equipment was difficult to
organize at the beginning of the project.

One suburban district in our sample (Chesterfield), which sent district-
level facilitators to training, has the resources to offer many courses and
workshops at the district office. The teachers are encouraged to design
inservice programs for their colleagues, and money is available for attend-
ing professional conferences. Teachers were given time off for district
training in using the materials, staff developers conducted demonstration
lessoris and, generally, resources were made available to Mimi classes.
In contrast, the other suburban district (South Bay) sent only building-
level personnel for training. Although this district has resources, there
are few interschool or centralized professional activities, indivic "1l
teachers are encouraged to pursue professional development on thex
own. Each building in South Bay was provided with equipment at first,
but then was left to organize its own materials and support for the Mimi
work. This became relatively hard to do for those MASTTE teachers who
worked alone in schools.

Thus, in Chesterfield and District B, implementation was overseen by
trained staff developers who worked out of the central office. Their posi-
tions facilitated the teachers’ getting the materials needed to undertake
the project. In South Bay and District M, implementation proceeded in-
dependently in each school building involved in the project. South Bay
building personnel, however, had a clear framew ork from the district in
which to carry out their work and were assisted in implementing the
program.

bb

52 ¢ Martin

Feedback on Implomentation

Responsibility for implementing the program, for assessing feedback
from this experiment in technology adoption, and for delineating the
next steps of implementation was distributed differently in the districts.
Support for continued experimentation with the technology and for its
diffusion also differed, depending on how heavily teachers’ and staff
developers’ classroom experiences weighed and on the strength of the
communication lines to decision makers.

All districts considered the informal, positive reactions of teachers
and staff developers, and the increased amount of science activities in
classrooms as evidence of the success of the Mimi. When the time came
for deciding what direction the program would take in the coming year,
two of the districts (South Bay and Chesterfield) made decisions about
the diffusion of the materials at the central office level, with :cacher in-
put considered in varying degrees. Chesterfield had in place a planning
and review structure for teachers and staff developers with which to for-
mally assess the program. Although the two Chesterfield staff develop-
ers, in conjunction with the Assistant Superintendent of Instruction,
drew up a diffusion plan before consulting the teachers, teacher input,
in the form of rating scales and discussion, was eventually used to verify
and justify this plan.

In South Bay, decisions about expanding the use of the Mimi tech-
nology for the coming school year also were made centrally, but without
systematic teacher or staff developer input. The opinions of project par-
t:cipants were heard at a group meeting, by the Assistant Superintendent
for Instruction but, based on their knowledge of the district, MASTTE
participants doubted that their comments would carry weight in the dis-
trict office. According to some of the South Bay people involved, making
diffustion decisions without teacher input might work against the nature
of the materials. The teachers felt that excluding them from decision
making meant that budgetary or standard curriculum considerations
were determining the use of the materials, thus overriding what the
teachers had decided was relevant to their students. These feelings were
expressed despite the fa.t that South Bay MASTTE participants were
enlisted to train their colleagues for the coming year. The teachers felt
that, by having the program and the use of particular materials man-
dated for the .oming year, their professionalism had been challenged.
"I feel some resignation about the whole thing.”

Good communication lines to decision makers did not necessarily
mean that central office control was exerted. In District B, for example,
the staff developers used their knowledge of the system’s workings to
keep the program fluid for those teachers who were devising their own
ways of using the materials. The District B staff developers, through
private discussions and . meetings, helped district administrators and

67

Teacher’s Adoption of Multimedia Technologies for Suenve and Mathematies Instrction « 53

principals to understand that teachers needed support for exploring the
best ways of utilizing the materials. In the meantime, the staff devel-
opers organized ways to provide meaningful feedback to administrators
at a later date.

In District M, which neither had clear communication lines nor deline-
ated central goals, interested teachers at each site pursued the project as
best they could. In one school, the principal took active interest in the
materials and sought to involve the science and computer teachers, as
well as other classroom teachers, in the work. In the other school, the
computer coordinator, who had attended training, introduced the mate-
rials to several new ¢ .sses and planned some training for them. At both
sites in District M, the teachers’ positive experiences have kept the proj-
ect alive in the absence of district support.

Yoacher Support
Teachers are professionals who require short-term and long-term sup-
port, especially when asked to change their professional practices. In
our sample, district histories of administrative interest in teachers’
needs, of professional treatment of teachers, and of decision making
affected the implementation of the new technology.

For example, one teacher in District M said:

No one has mentioned to me or Ms. D, “"How’s it going?*’ or *‘Is there
anything I can do to help?*’ There hasn’t been one word—well, one. **Did you
get the computer?”’ That was the extent of it. Not ““if you're using it,” not
“’how the children are reacting to it,” *“what materials did you get,”* nothing.

The teachers in this district struggled to maintain the momentum of their
commitment.

We found that the informed involvement of administ: ators was essen-
tial for supporting teachers’ feelings of professionalism. Teachers felt
that they could earn genuine recognition, were more likely to argue suc-
cessfully for innovations, and could trust that their needs would be met
in the future. Without such involvement, none of these teacher benefits
was assured.

Some of the participants felt that the administrators in their disiricts
did not really understand what the project was about. Teacaers in two
districts expressed resentment of what one teacher called *‘the w hite
glove brigade’'—administrators who were interested in publicity on
technological developments in the district, but who made no effort to ac-
quaint themselves with the actual work being done.

In the districts where administrators and parents were informed and
involved in the adoption process, more activities and more eatended ac-
tivities were taken ap by teachers during the first stages o: implementa-

6y

54 ¢ Martin

tion. The range of projects envisioned for the future was also greater in
those districts.

One way in which district administrators could be helpful to teachers
without being fully acquainted with the details of the project was to pro-
vide them with material support. However, their own roles (e.g., obtain-
ing resources, cutting red tape) needed to be specified, and they did
have to be generally familiar with the project goals. We found, too, that
administrative and parental involvement was not necessarily related to
an efficient process for obtaining equipment. Information short-cuts
were benign only when there was a central support structure for teach-
ers, such as acommunications network. These support structures served
as a guarantee that teachers’ classroom equipment needs would be dealt
with by someone who had access to a decision maker and could thus be
an advocate. For the current group of teachers, a strong support mech-
anism was already in place in two of the districts, in a third, two district-
level staff developers working together were able to construct a support
system.

Diffusion

Although we found clear district goals to be important for undertaking
innovation, there was some evidence that creating a central district im-
plementation plan may have limited the range of innovations possible
with the materials, and restricted the advantages afforded by the multi-
ple-entry approach. By June of 1985, three months after the materials
were introduced, the two suburban districts considered the pilot stage of
the program to be over. The district coordinators knew what they wanted
from the materials, that is, they decided which Mimi materials and activ-
ities were appropriate for particular grade levels and curriculum stiands
In South Bay, for instance, it is now required that the Mimi be taught in
fifth grade, in Chesterfield, a decision dictating the use of the Mimi will
be made at the end of the 1986-87 school year. In both districts, teachers
in grades not using the video episo.. ‘s are still experimenting with the
software modules, but within limits defined by the central office. In
South Bay and Chesterfield, too, certain computer modules are to be
used only in specific grades, video use in Cliesterfield is restricted to one
grade.

Personnel in both districts felt that the program was robust and effi-
cient, and had confidence in their district’s ability to deal with any prob-
lems that might arise, including procuring new equipment and training
teache:s in the use of technology.

The two city disiricts have maintained a ’ pilot’’ state of affairs con-
cerning program implementation, one by default (District M) and the
other deliberately (District B), in part because the staff developers super-
vising the program felt that three months was not enough time to fully
evaluate its utility across grades and teachers. District B staff feel confi-

69

Teacher's Adoption of Multimedia Technologies for Suience and Mathematics Instruction ® 55

dent that the technology will eventually effect broad changes, but their
approach is to involve the school and parent community through demon-
stration and education.

CONCLUSION

The science and mathematics materials comprising The Voyage of the Mimi
attempt to address the pervasive problem of why these topics are often
deemed irrelevant in a child’s life. They do so by contexting science and
mathematics concepts in a story and in integrated mixed-media activities
for the classroom. Their effectiveness in achieving their aim needs to be
understood in light of their impact on how teachers organize information
systems for their students within the whole-school context. As we saw
in the few months of the program, the presence of the new technologies
does not automatically prescribe the nature of the task for the teacher
who is involved in motivating problem-solving activity on the part of the
student.

Teachers were able to tolerate a wide range of conditions for working
with The Voyage of the Mimi materials, despite the fact that many of their
situations were far fromideal. The flexibility of the materials themselves,
both in terms of their content and format, seemed to contribute to the
flexibility with which they were used by the teachers in such a broad
range of circumstances. While this made it necessary for staff developers
to deal with each teacher’s situation as an individual case, it may prove
to be a more efficient outcome overall, since teachers felt they came to
“own’’ the program; they could adapt lessons as they wished without
feeling they were violating a prescribed sequence, skipping content, or
underutilizing the materials.

As teachers become comfortable with the content of the materials, we
anticipate that they will become more open-ended in their lesson arrange-
ments (Guskey, 1986). As judged by the reports we received from the
teachers, the multimedia materials, with suggestions for classroom use
provided through training, inspired them to begin enrichment of their
science instruction. Teachers in every district reported that the responses
of their students to the materials were more powerful and consisteatly
more positive than any they had seen. Not surprisingly, the increased at-
tempts by teachers, following training, to use the materials for integrated
science and mathematics activities revealed a set of teaching practices
that are not always funcu.nal for subject integration. In many classrooms
science is taught as a corpus of facts, and mathematics is a discrete sub-
ject dealt with from 10:00 to 10:45: ""Math class is a separate class.”’ Our
observations suggest that the possibility of revising these practices is
likely to depend less on verbalizations of alterr.ative philosophies than
on the mobilization of district resources that help teachers accommodate

70

56 ¢ Martin

the developing interests of the children, the excitement of the classes
and their own increasing cor:fidence.

In the classrooms we visiteu, the teachers’ work seemed to be as much
influenced by the technology as the technological applications were
shaped by the teachers. Multiple routes into the materials for both inex-
perienced and experienced teachers meant that the materials could be
utilized in some fashion by almost anyone. It is likely that the materials
brought teachers into contact with factors that will encourage their fur-
ther development as teachers of science and mathematics, namely. chil-
dren’s high interest; topics of interest to themselves, the legitimation of
unanswered questions, which makes the teacher a learner too, and re-
sources necessary for building a full program.

The school systems we studied significantly influenced and defined
the project goals for the teacher. They delimited, to greater and lesser
degrees, the boundaries of what was possible in individual classes by
shaping the larger goals and human resources within which teachers
explored the relatively uncharted territory of integrated technology.
Whether or not schools were equipped with technological resources was
of secondary relevance to what was possible (cf. Shavelson, Winkler,
Stasz, Feibel, Robyn, & Shaha, 1984). F.ather, the school systems im-
pinged on the adoption, diffusion, and richness of the program by dint
of their organization of goals, communication, teacher support, and de-
cision making. Individual experimentation by teache:s in classrooms
had different impacts depending on the context of the wider system in
which it occurred.

The content and concepts of science and mathematics are not easily
accessible for either children or teachers, but we found the teachers very
willing to change how children gain access to such information. Accord-
ing to observations made during three months of classroom visits follow-
ing the MASTTE training program, adopting integrated technologies as
tools for change as well as for learning can be a promising enterprise. We
are continuing to investigate factors that seem .o influence the adoption
process, and to determine the ways in which training can address them
systematically.

AUTHOR NOTES

This chapter is based on wuik carried out by the research staff of the Bank
Street College Mathematics, Science and Technology Teacher Education
Project, directed by Regan McCarthy, with resources provided by the
National Science Foundation. The contributions of Mary McGinnis and
Maxine Shirley to the research process were invaluable. The insights
shared with us by the project training staff, Marilyn Quinsaat and Bill
Roberts, and by the classroom teachers are also gratefully acknowledged.

71

CHAPTER 3

FUNCTIONAL ENVIRONMENTS FOR
MICROCOMPUTERS IN EDUCATION

Denis Newman

INTRODUCTION

For the last several years, researchers at the Center for Children and
Technology have been conducting a program of research on the use of
computers in education. One of the central themes of this research is
that the computer is a tool that can be used for a variety of functions or
purposes. Thus, we talk about the computer operating within a ""func-
tional learning environment’’ (FLE). Here, funciional means that the
learning activities have a function or purposc from the point of view of
the child. In this chapter, I discuss three projects undertaken at Bank
Street College in which we implemented and studied such environments.
These studies raise fundamental questions about the design and imple-
mentation of FLEs, particularly the relationship between the children’s
pucposes and those of their teachers. Cocrdination of divergent purposes
within a FLE turns out to be a critical factor in the success of classroom
microcomputer activities. .
While research on microcomputers is re.atively new at Bank Street,
concern for FLEs is quite old. Since its beginning in 1916, the college has
been at the forefront of the progressive education movement founded by
John Dewey. A central theme in Dewey’s (1902, 1938) :. riting on educa-
tion is the notion that classroom activities must be related to the child’s
experiences, interests, and goals. This was a radical proposal for an era
in which the teacher stood at the front of the class and lectured or con-
ducted drills. Although the general notion 1.as found wide acceptance in
United States schools in recent decades, many teachers find itimpossible
to implement because of limited resources, materials, and training. It is
the hope of many people in the fielu of educational computing, including
ste. at Bank Street, that the microcomputer can be a resource for engag-
ing children’s intezest and fostering a more creative learning process.

57

72

58 o Newman

In the sections that follow, I first describe the notion of a FI.E in more
detail, and then present observations about thiee projects that have tried
to create FLEs. These projects concern the use of the Logo language in
Bank Street classrooms, a project on science and mathematics education,
and the creation of a network of microcomputers. In each case, the ob-
servations illustrate the importance of coordinating the goals of children
and teachers.

FUNCTIONAL LEARNING ENVIRONMENTS

We start with two assumptions. (a) that children are intrinsically moti-
vated to work on tasks that are meaningful to them; and (b) that the
most effective educational environment is one that provides meaningful
tasks, that is, tasks that embody some function or purpose that children
understand. While some children enjoy learning about a particular topic
"’for its own sake,”’” in most cases facts and skills are best learned in con-
nection with larger tasks that give them significance or meaning. In this
way, not only are children motivated to maste- the facts and skills, but
they have a framework in which to understand the cultural significance
of the facts and their relation to other facts. For example, a science project
in which children attempt to answer specific questions about whales and
their habitats by constructing a database provides an environment for
learning scientific categorization schemes as well as specific facts about
whaies. It can also demonstrate to the children the variety of resources—
such as textbooks, encyclopedias, and films—that are available in our
culture for obtaining facts, and confront them with the need to cull infor-
mation from several sources.

Our assumptions, however, leave two fundamental questions unan-
swered. First, we must understand where the goals that the children are
interested in co ne from. Are they inventions of the children or are they
imposed by the teacher? Second, we must understand the relation be-
tween the goals that children undertake in the classroom and the tasks
they will be confronted with in the real world outside of school. Unless
students can apply the knowledge and skills they * ive acquired in school
to tasks outside the classroom, any FLE will have peea for naught.

Our approach to the first issue takes a middle position between the
idea that the teacher n.ust impose problems ard the idea that children
must invent their own classroom activiiies. Cn the one hand is the tradi-
tional view of education, and on the other is a radical version of the
child-centered approach to education based on interpretations of the
writings of Dewey as well as Piaget (1973b).

Itis very clear that Dewey felt that the purely child-centered approach
was as erroneous as the traditional view that the teacher must impose

Functional Envircnments for Microcomputers in Education ¢ 59

the classroom tasks. The teacher has very important responsibilities,
which include suggesting tasks and presenting to the children alternative
interpretations of problems. In many respects, Dewey’s approach is more
consistent with the socio-historical approach to child development pre-
sented in the recently published writings of Vygotsky (1978) and Leont’ev
(1981), in which the importance of the teacher-child interaction is empha-
sized, than with the universalist approach of Piaget, which deemphasizes
the cultural context (Laboratory of Comparative Human Cognition, 1983).
According to these theorists, the child’s initial attempts to solve an arith-
metical problem, write a story, or operate a computer program are carried
out in interaction with teachers or more experienced childrer.. What the
child internalizes is not what the expert says, but a version of the inter-
actions that constitute the joint activity. Thus, without coercion, these
interactions guide children toward the cultural interpretation and signif-
icance of the tasks in which they are engaged (Newman, Riel, & Martin,
1983).

Meaningful tasks may come from a variety of sources. One source is
the spontaneous ideas of the children themselves. Most children have
some topic which they simply “’like.’” However, for most school topics
this source may not be the most important. Teachers can make classroom
tasks meaningful by showing children their significance in terms of a
variety of uses for the skills involvea, or in terms of the adult world they
~ill be entering. The FLE created in this way can be a simulation of a real
problem (e.g., role-playing commercial transactions as a context for doing
arithmetic calculations), or it can be a real problem (e.g., actually selling
food at a school fair to raise money to buy a classroom computer). The
FLE can also be of a more abstract nature (e.g., a geometric problem can
provide a meaningful context for calculating the size of an angle, provid-
ing that geometry itself has meaning within the children’s experiences),
A teacher can create interesting FLEs by crossing traditional discipline
boundaries (e.g., by showing how geometric concepts such as triangula-
tion can be used in geography to solve navigation problems).

Our approach to the second issue—the relationship between classrov.n
and real-world goals—is closely telated to the first. We suspect that the
usability of school learning in later life is inseparable from the variety of
FLEs in which it is embedded. Being able to see the same fact from multi-
ple perspectives (i.e., recognizing the different uses it can have) engen-
ders a flexible approach to acquiring knowledge that would otherwise be
absent. This flexibility makes it possible to adapt the knowledge to new
functional environments that cannot be specifically anticipated in the
classroom.

Microcomputers can play a very useful role in FLEs because of their
capacity for simulation and because they themselves are important tools

74

60 ® Newman

for the solution of a variety of interesting real-world problems. They
also provide fluid and manipulable symbol systems in which many inter-
esting abstract problems can be represented and solved. But they cannot
be expected ‘o function on ti*2ir own. A teachrr must build the bridges
between the tool, the school task, the thinking skills, and their func-
tional significance for the culture beyond the classroom.

LOGO IN A CLASSROOM

Logo is a programming language popularized by Seymour Papert (1980)
and colleagues. According to Papert, Logo is an environment in which
children can learn fundamental mathematical concepts and powerful
problem-solving methods without the intervention of teachers. Papert
takes his inspiration from Piaget, who has argued forcefully that

each time one prematurely teach: . a child something he could hav 2 dis-
covered for himself, that child is kept from inventing it ar 1 consequently from
understanding it completely. (1970, p. 175)

One of Piaget’s (1965) earliest examples was the game of marbles
played by boys from preschool to adolesence. In Switzerland, where
Piaget studied the game, adults were not involved. The children learne 1
from each other. Not ualy did the children master the “omplex rules of the
game, but they came to understand that the rules were not absolute but
a matter of convention and agrevment among equals. The same kind of
process is at the heart of Papert’s claims for Logo. Without the imposition
of adult authority and adult ideas, children can come to an understand-
ing of the nature of concepts sucl. as recursion that are as fundamental
to programming as cooperative agreement is to games with rules. Of
course, the peer play group for marbles included undisputed experts,
the same may not be true for programming, which is seldom mastered
by young children. This weakness in the analogy might lead us to ques-
tion peer interaction as a basis for learning programming.

The initial interest in Logo at Bank Street, however, was not in testing
its adequacy as a peer group FLE but with quite a di’‘erent question. Re-
searchers from the Center for Children and Technoiogy set out to see if
experience with programming would enhance planning skills in children.
It was a reasonable hypothesis since writing a program is like creating a
plan for the computer to execute. The question was whcther there was
any transfer from the acw.vity of programming to other experimental tasks
that also required making a plan of action but did not involve computers.

The researchers arranged to do their study in two classrooms at Bank
Street’s School for Children (SFC). The SFC teachers, both highly com-
mitted to the child-centered approach to education, were eager to try out

Functional Environments for Microcomputers in Education * 61

Logo and the pedagogy developed by Papert. Neither teacher was an ex-
pert programmer, although each had taken a course with Papert prior to
the study. They were, however, experts in creating FLEs for children
and approached the new task with enthusiasm.

For two years, the researchers observed and interviewed the children
and teachers in the third and sixth gradc dasses. Pre- and post-tests
were administered using a chore-scheduling task based on the work of
Hayes-Roth and Hayes-Roth (1979). The findings concerning the transfer
of Logo experience to the experimental planning tasks were very clear:
The researchers found no effects at all (Pea & Kurland, 1984a). By the
time the researchers compiied their data, however, the negative findings
came as little surprise. Observations of the children as they interacted
with Logo and with each other showed that very little planning was in-
volved in their programming practices. Thus, there was little reason to
expect programming to make children more planful.

As Pea (1983) observed:

Much more common was on-line programming, in which children defined
their goals, and found means v < ..deve them as they observed the products
of their programs unfolding on tle screen. Rather than constructing a plar,,
then implementing it as a program to achieve a well-defined goal, and after-
wards running the implemented plan on the computer, children would evolve
a goal while writing lines of Logo p.ugramming language, run their program,
see if they liked the outcome, explore a rew goal, and so on. .. .Inmost cases,
children preferred to rewrite a program from scratch rather than to suffer
through the attention to detail required in figuring out where a program was
going awry. As one child put it when asked why she was typing in commands
directly rather than writing a program. "’It’s easier to do it the hard way.”

From the children’s point of view, Logo was for the most part an in-
teresting classroom activity, although vrere were certainly differences
among the children in their level of interest and in the amount of pro-
gramming they learned. But, despite their enthusiasm, th:y did not ex-
plore the more conceptually challenging aspects of Logo in the course of
their discovery learning. They were essentially "'playing.”” In Piaget’s
(1962) terminology, assimilation was dominating accommodation, that
is, the goal was assimilated to the procedures rather than the procedures
being accommodated to a set goal. Whatever worked became the goal
retrospectively.

From the teacher’s point of view, the children were engaged in the
Logo activity but were not learning to program. Experiments involving
the better Logo programmers showed that few had correct understand-
ing of such central concepts as flow of control, conditionals, or recursion
(Kurland & Pea, 1985). As time went on, the teachers began to question
the discovery-oriented approach to teaching programming. It became

o 75

62 ¢ Newman

'

clear to them that T.ogo could not just "happen,’’ but that they, the
teachers, had to have an idea of what they wanted the children to get
out of the activity: Goals had to be set, activities had ‘o be formulated,
and the teachers had to come up with effective ways of getting their
ideas across to the children. The teachers themselves wrote a book based
on their efforts to make Logo part of their classrooms. Their experiences
while attempting to follow the radical child-centered approach advocated
by Papert suggests that in the case of complex symbol systems, the educa-
tional activity must be guided by more mature members of the culture.

When an activity is made functional from the teacher’s point of view,
the children’s activity may change. Those who follow Papert’s child-
cent . >d approach fear that the activity will lose its intrinsic motivation
once tea~hers decide they want to .each programming. This should not
be the casei. " teacher’s role is to guirle rather than to impose the ac-
tivity. However, important changes can result when the activity becumes
part of the children’s schoolwork. For example, children were often
observed working cooperatively while doing Logo. The children’s inter-
views indicated that the relatively high level of cooperative work was a
result of the activity’s not being seen as part of the official schoolwork.
(Hawkins, 1983). There is some concern, even in Bank Street classrooms
where a high value is placed on cooperation, that children will be less
cooperative when the activity is no longer perceived as play and they
have to be accountable to a teacher. FLEs must be functional for both
teachers and children for education to happen. The coordination and
optimization of these functions, however, remains a difficult issue that
demands the attention of educators.

SIMULATING A FUNCTION:
THE VOYAGE OF THE MMl

Another illustration of the importance of the teacher in the structuring of
aFLE is found in Bank Street’s Project in Mathematics and Science Edu-
cation. Materials developed by the project include a television seuies, soft-
ware simulations, and workbooks, all of which emphasize the proces.
and tools of scientific work. My focus here is on one aspect of the project
in which a FLE is based on a multimedia simulation of a navigation prob-
lem. While the content is more specific than is the case with Logo, the
use of the content is still conditioned by the teacher’s interpretation of
its function.

A television series, The Voyage of the Mimi, tells the story of an expedi-
tion to study whales off the New England coast. A group of scientists
and their teenage research assistants charter a schooner captained by an
old szilor. Although the boat is old-fashioned, it is equipped with elec-

Functional Environments for Microcomputers in Education o 63

tron’: navigation equipment, as well as computers and other sophisti-
cated scientific gear. Thirteen episodes take the expedition through a
series of adventures in which the crew learns a lot about the sea, whales,
navigation, survival in the wilderness, and eact other. In one episode, a
bad electrical connection causes several instru..ents to malfunction. The
captain suspects that they have been moving faster than his knotmeter
indicates, so he has one of the assistants use the battery-operated radio
direction finder to establish their position. The assistant calls cown the
compass bearings for two beacons while the captain plots the position of
the boat on the chart. He finds that they are actually much closer to da=n-
gerous shoals than he had thought. This episode illustrates a functional
environment for navigational equipment, as well as for geometry-related
skills concerned with intersecting lines and measurement of angles.

A simulation created as part of this project engages the same skills in
a similar FLE. The game “Rescue Mission’’ simulates a navigational
problem in which the players must determine their own position using a
simulated radio direction finder, locate the position of a ship in distress
using chart coordinates, and then plot a course toward the ship. A simu-
lated radar screen, binoculars, and compass are also available to indicate
the current location of the ship. Children play in teams, each attempting
to be the first to get to the distressed ship.

The episode described above was designed to show how navigational
instruments and geometrical concepts function in a real problem. It
engaged children’s interest both because they could identify with the
teenage characters and because of the emotional and dramatic tension of
the narrative. The "’Rescue Mission’’ game builds on the understanding
of navigational instruments, and adds the motivation of peer interaction
and the fantasy goal of rescue. Together with the print materials—work-
books and study guides to be used in the classroom—the show and soft-
ware provide the basis for FLEs for a number of school-relevant subjects.
However, as we saw with Lcgo, the teacher plays an important role in
determining the nature of the software experience.

Char (1983; Char, Hawkins, Wootten, Sheingold, & Roberts, 1983)
carried out formative research to guide the design of the classroom
materials. Working in fourth, fifth, and sixth grade classrooms, she
observed the way the teachers used the materials and the children’s re-
sponses to them. From the children’s point of view, the materials were a
success. They enjoyed the TV show and were excited by the software
simulation. Interviews with the childrer: showed that after seeing The
Voyage of the Mimi and playing '’Rescue Mission, "’ most understood the
functions of the navigational tools and the concepts of plotting positions
at the level needed to win the game.

From the teachers’ point of view, the results were mixed. The teachers
in the study represented a wide range of expertise in their own scie.ce

78

64 ¢ Newnan

and mathematics training and in their nise of classroom microcomputers.
These teacher differences in training and computer expertise appea-ed
to lead to differences in their interest in and perceptions of the “'Rescue
Mission’’ simulation. Some considered it limited to the function of teach-
ing about navigation, while others found a variety of uses for it across
.he whole elementary curriculum. For the latter, the simulation and the
navigation unit functioned as a jumping-off place for teaching about
geometry, mathematical measurement, estimation, the history of the
whaling industry, geography, and literature.

Interestingly, it was the teachers less familiar with computers and the
teachers responsible for a wider variety of subjects (i.e., those who
taught more than math or science) who found ‘‘Rescue Mission’’ most
useful. In contrast, the science and math specialists, who were also more
familiar with computers, were less receptive to the game’s long-term
use. Chat (1983) points out that these teachers used computers primarily
for programming instruction and were not accustomed to software that
presented specific content. Perhaps as a result, the navigational content
seemed to them to comprise the primary educational function of the ne¢ d
to make explicit the full educational potential of the simulation to th.ose
teachers familiar with computers, as well as to those who are comp ater-
naive.

The formative research on The Voyage of the Mimi materizls clearly indi-
cates the extent to which teachers shape children’s exposure to materials
through the FLEs they set up. It is not sufficient for software developers
to create activities that e.nbed important educational facts and concepts.
A computer program per se constitutes a very limited FLE. The program
must be interpreted by a user or a teacher who understands its signifi-
cance for a variety of culturally important contexts ike any tool, a pro-
gram is most useful in t . hands of someone whu knows how it can be
used.

THE FUNCTIONS OF NETWORKING FOR
CHILDREN AND TEACHERS

The third project, one that will help to illustrate the coordination of
teachers’ and children’s goals in FLEs, has just begun at Bank Street.
However, we can draw on the experience of researchers Margaret Riel
and James A, Levin of the University of Caiifornia at San Diego (USCD)
for examples of how networking can function as a FLE. Networking is a
general term for communications systems that link up computers. Most
microcomputers, when enhanced with a piece of hardware known as a
modem, can send and receive messages, text, and even programs to and
from other computers over phone lines. Networking is becoming a pop-
ular pastime among young computer users who call up computerized

79

Functional Environments for Microcomputers in Education * 65

bulletin board systems to read messages from other people, leave mes-
sages about topics of interest, and exciange software.

We at Bank Street are interested in finding out if nctworking can be
used as a FLE for writing and communication skills. Can we take advan-
tage of children’s strong motivation to communicate with their peers to
create environments in which children can practice writing and learn to
write better? An experimental FLE at UCSD gives reason to be optimis-
tic. The ""Computer Chronicles’’ (Riel, 1983) operated between schools
in San Diego and Alaska, several of which were located in isolated areas.
Children wrote news stories using a word processor, which were then
sent to the other participating classrooms. In each site, the children,
with their teachers’ help, composed a monthly newspaper drawing on
both local stories and those coming from distant places. In many cases,
children edited the stories that came in "’over the wire’’ just as news-
paper reporters would do. In fact, the frequency of editing someone
else’s work for style and meaning using the word processor was much
higher than s often the case when children write their own stories using
the same technology (Quinsaat, Levin, Boruta, & Newman, 1983). Thus,
the production of a newspaper became a FLE that not only encouraged
children to write, but also provided a context for the editing and revision
of their own work as well as the writing of others.

The "’Computer Chronicles’” shows the potential for networking as
the basis for a FLE. It also illustrates a feature of FLEs that have been
suggested as important by our other examples. the coordination cf the
goals of children and teachers. From the children’s point of view, the ac-
tivity was interesting because they were able to communicate with peers
who lived in interesting and exotic places (Alaska and southern Califor-
nia, depending on your point of view). From the teachers’ point of view,
the activity provided a context in which children could practice writing
and were motivated to edit and revise their work. These goals were not
identical, but neither were they in conflict. It was because the teachers
wanted an activity that would encourage writing and revision that they
set up the newswire data, thus giving the children a chance to communi-
cate with interesting peers. However, without the specific structuring, it
is unlikely that the children would have engaged in editing each other’s
writing.

CONCLUSION

Three examples of FLEs have illustrated the importance of the teacherin
creating and interpreting ckildren’s learning environments. While com-
puter software can play a. important role in FLEs as a tool, they should
not be expected to carry the whole burden of education. Teachers are
needed in order to interpret the tools in terms of classroom goals and the

ol

66 ® Newman

larger culture outside of school. Cur examples have all been drawn from
elementary schools where the need is especially clear. We suspect that as
children develop, the role of the teacher as interpreter or as someone to
present another side of the story is gradually internalized, with the
result that the mature college student can be expected tc use books and
manuals to discover multlple points of view on many subjects. Yet, even
mature students require the insights of experts when the subject matter
is particularly complex.

Our focus on the teacher is not meant to detract from a concern for
the children’s poiznt of view. Obviously, a FLE cannot work unless it
makes contaci with the children’s interests and experiences. A well-
desngned FLE is onc that coordinates children’s and teachers’ points of
view so that both the children and the teachers can achieve meaningful
goals.

AUTHOR NOTES

Paper presented at the conference on Mic" scomputers in Education,
Tokyo Institute of Technology, Tokyo, Japan, January 8, 1984.

CHAPTER 4

PREPARING URBAN TEACHERS FOR
THE TECHNOLOGICAL FUTURE

Karen Sheingold, Laura M.W. Martin, and
Mari E. Endreweit

EDUCATION IN THE AGE OF TECHNOLOGY

In 1980, a team of researchers from Bank Street College spent several
months studying the implementation of microcomputers in three very
different school systems. The purpose of the study was to identify issues
that cut across the specifics of implementatior. in each district (Sheingold,
Kane, & Endreweit, 1983). The issues identified then included. differen-
tial access to microcomputers, emergence of new teacher and student
roles (teacher buffs and student experts) in response to microcumputers,
the lack of integration of microcomputers into elen, atary ciassrooms
and curricula; the inadequate quantity and quality of software, the in-
adequate preparation of teachers for using microcomputers, and the lack
of incisive research on the effects and outcomes of the instructional use
of microcomputers.

in 1986 all of these issues remain relevant. In most cases, they are
more critical now than they were five years ago, since the number of
microcomputers in schools has increased independently of solutions to
the problem: of quality software, effective teacher training, or research.
While each of these issues deserves its separate analysis, the focus of the
current report is on teachers—in particular, teachers in urban schools.

Urban school systems must meet the educational requirements of large,
heterogeneous, reiatively poor populat’ns at a time when employment
and resource patterns are undergoing major shifts. Aithough jub oppor-
tunities in the cities are currently decreasing, analysts expect a labor
shortage in the next decade (Bernstein, Therrien, Engardio, Wise, &
Pollock, 1985). Despite a tapering in population growth (United States
Department of Commerce, 1982-83), the big city districts still have the
largest pupil enrollments in the nation (National Center for Education

67

82

)

68 o Sheingold, Martin, and Endreweit

Statistics, 1980). These districts recognize that if their students are to be
part of the future work force, they must share in the educational advan-
tages afforded by the new technologies.

Addressing the unique features of urban schools and urban school
populations is critical in planning for the widespread use of electronic in-
novations. Unfortunately, however, the needs of cities have not been ade-
quately targeted by hardware and software designers and manufacturers,
by policy makers, or by researchers. In describing how < hool systems
are helping teachers to prepare for the future, our report seeks to con-
tribute to explorations about how technology may help the students.

To inform the report, we gathered information by reviewing research,
conducting phone interviews with teachers and computer personnel in
many large school districts, and having in-depth discussions with ex-
perienced teachers and teacher trainers in the New York metropolitan
area. Since we could not visit school districts to observe and evaluate
teacher training, our findings to date are provocative and suggestive,
not definitive.

We begin with the assumption that how teachers are educ. . with
respect to the new educational technologies will prove to be critical in
shaping education in the next ten years. Teachers are faced with a work
situation that is changing rapidly. They must become acquainted with
the possible directions the technology can take andbe p- pared to design
and experiment with options that make sense for them and their stu-
deuts. We argue that programs of staff development are needed that do
nothing less th2n make teachers important builders of the scheol of the
future. All of this is particularly important in urban schools, where a long
iustory of inequality of educational opportunity for poo: and minority
students threatens to repeat itself in the domain of technology.

In what follows, we examine how training and technology issues are
handled in current programs. We discuss how they might be handled to
prepare teachers for the future, especially in the urban setting. Our
discussion necessarily leads us to explore the workplace and visions of
technology uses and users both at work and at school. Finally, we draw
conclusions and make recommendations.

PREPARING STUBENTS FOR THE FUTURE

The introduction of microcomputers into this nation’s public schools has
proceeded at a pace exceeding predictions. Between 1981 and January
1984, the number of school districts with microcomputers almost doubled,
and the percentage of districts with microcomputers rose from 38.2 to 75
:Duality Education Data, 1984). Even more dramatically, the number of
« hools with microcomputers more than tripled in that period, from

83

Preparing Urban Teachers for the Technological Future » 69

around 14,000 to more than 55,000. In the fall of 1983, Quality Education
Data counted almost 300,000 microcomputers in the nation’s schools. It
is generally accepted that there are now at least one million.

Were hardware acquisition our only measure, we could safely conclude
that some important innovation was under way. What makes this con-
clusion uncertain is that the rate of change in education is usually slow,
while that in computer tecknology is very fast. School administrators
know that the computers ...y purchase today will soon be superseded
by newer models. Teachers know that the software they are learning to
use will soon be replaced by something else. While some teachers are
very enthusiastic about the new technology and its potential for student
learniig, others assume that cor puters will go the way of many previous
educational innovations—into the closet.

The closet scenario is unlikely, however, given the large investment
already made in microcomputer technology nationwide, the rapidly de-
creasing cost of the technology, and the powerful forces outside of school
—parents and the work place—that are placing microcomputers in a
prominent educational position.

As for parents, it is hard to think of any previous educational innova-
tion that has so captured their determination and energies. In many
communities, parents have talen the lead in * :inging microcomputers
into the schools, through pressure on school and district administrators
and through their own fundrasing efforts. Many parents believe that
computers hold an important ey to their children’s future, that if their
children do not have opportunities to use computers in school, many
doors to the job market will be closed to them. Some of the same think-
ing lies behind the commitment of many schools to programs of ‘‘com-
puter literacy’” (Center for the Social Organization of Schools, 1983-84,
National Academy of Sciences, 1984). Since computers are becoming an
ever-present technology in today’s society and the work place, so the
argument goes, students should know what they do as well as how to
use and program them.

TECHNOLOGY AND THE WORKPLACE

But just what is the connection between ..noving about computers and
getting jobs? And what are the likely effects of technology on the work
place? The Bureau of Labor Statistics projections (see Lewis, Fraser, &
Unger, 1984; Riche, Heckler, & Burgan, 1983) prompt some analysts,
such as Levin and Rumberger (1983), to conclude that technology will
deskill workers, resulting in large numbers of low-level jobs (food ser-
vice workers, janitors) and relatively small numbers of “high tech’’ jobs.
Others (e.g., Noyelle, 1984a) argue that although jobs may be down-

70 e Sheingold, Martin, and Endreweit

graded in status (salary, benefits, and chances for promotion), technol-
ogy will result in a simultaneous upskilling; that is, many jobs not in
high technology industries per se will require greater conceptual skills.

Several things are clear, regardless of which viewpoint one takes in the
work-force debate. High technology jobs are not likely to be a significant
portion of the work force ten years from now. These jobs represented
6% of the work force in 1982, the same percentage as in 1972 (Riche et
al., 1983). While many workers will be using computers in the 1990s,
few will be high technology scientists and engineers, rather, they will
use computers as powerful tools to accomplish work-relevant tasks.
Technology in tte future is likely to restructure jobs within particular
settings in ways that are somet.mes radical and not easily predicted from
~irrent economic models (Botkin, Dimancescu, & Stata, 1984).

Work in the nation’s cities is changing significantly and the job r-arket
is narrowing. Heavy industry in the mid-Atlantic region, which in the
past employed urban school graduates, is becoming roboticized. Even
when a decline in the heavy industry jobs that previously went to city
youth is balanced by expansion of light industry jobs in the surrounding
suburbs, the city’s high school graduates may not be moving to those
jobs. In the last ten years, for example, Mew York City has lost thousands
of jobs that previously went to youth (Noyelle, 1984c). At the same time,
white-collar employers such as insurance companies and banks have
computerized many entry-level clerical tasks and, more importantly,
eliminated a level of ‘‘back-office’” jobs that used to link entry-level jobs
to middle-management and executive jobs (Noyelle, 1984a,b, Noyelle &
Stanback, 1984). Many service jobs—in hospitals, schools, and municipal
systems—are being streamlined by technology (Levin & Rumberger, 1983).

With technology restructuring some jobs, eliminating others, and
creating new types of work altogether, no one can look forward to doing
the same type of job for life or to a traditional “ladder’’ toward upgraded
job cawegories (Noyelle, 1984b). In this age of technology, neither em-
ployers nor educational reformers (Goodlad, 1984, Sizer, 1984) are call-
ing for students to learn technical skills.

For today’s work place, employers wart high s~ iates tohave

the ability to read, write, reason, and compute; ding of Amer-
ican social and economic life, a knowledge of the v. principles of the
physical and biological sciences, experience with cooperation and conflict res-
olution 1n groups, and possession of attitudes and personal habits that make
for a dependable, reasonable, adaptable, and informed worker and citizen.
(National Academy of Sciences et al., 1984)

Employers rely on the schools to teach these general intellectual and
social skills and are willing to take on the responsibility of detailed

Preparing Urban Teachers for the Technological Future o 71

technical training themselves (National Academy of Sciences et al., 1984,
Noyelle, 1984b).

These changing prospects emphasize the necessity for students to
learn "“movable’” skills that enable them to adapt easily to new situa-
tions. Generalizable skills of literacy, problem solving, decision making,
and co.nmunicating take on greater importance in preparing students to
work. In earlier times, many business tranc _ctions were divided into sep-
arate clerical tasks and a complete paper-work process was not carried
out at one location. With computers, complete transactions can be carried
out by one person. But that individual must understand the goals of the
transaction, its component parts, and the relations among these compo-
nents (Noyelle, 1984a).

Partly because of the ways in which technology is transforming the
work place, general intellectual skills and comprehensive literacy are
now necessary goals for mass education (Resnick, 1985). To the extent
that computers can be enlisted in the service of these critically important
educational goals, their impact on education will be significant. For
those students who wish to have computer science or engineering as an
option for their future, being =ble to study the computer pes se (e.g., pro-
gramming, computer science) may be appropriate. But using the com-
puter as a tool to achieve goals of learning, thinking, and literacy is Iikely
to be of greater relevance to the needs of most students.

ISSUES FOR URBAN SCHOOLS

Preparing students for the future presents particular problems for the
schools in large urban settings. While the general goals of education in
the inner city are no different from those elsewhere, factors such as
limited resources, the large sizes of districts, and the spec’ * needs of
relatively poorer student populations have contributed often to very dif-
ferent educational experiences for innerity children and their suburban
counterparts. Lower test scores, higher dropoutrates, and poorer employ-
ment prospects are a few of the indicators of the widespread inequities
faced by city vouth.

Familiarity with the computer, now _onsidered part of a “‘good educa-
tion’’ (Johnson, 1982), has been seen both as a means to remedy educa-
tional inequities and as a potential source of greater inequities. Concerns
among parents and educators about equity of access to computers means
that urban systems are spending a lot of money to make su.e schools,
particularly high schools, are technologically equipped. While large
school districts have led the way in acquiring mi:rocomputers for in-
structional purposes, in the 1983-84 school year urban schools were
somewhat less likely than wealthy suburban schoois to use microcom-

e 86

72 * Sheingold, Martin, and Endreweit

puters (69.1% to 72.6%) (Quality Education Data, 1984). In addition, dis-
tricts with approximately 50% minority students were less likely to bave
microcomputers than were districts with minority enrollments of less
than 25% (68.4% compared to 81.0%) (Quality Education Data, 1984).

Equal opportunity to have contact with computers is only part of the
issue. The funding by which urban systems often acquire hardware may
limit machine uses (Sheingold, Kane, Endreweit, & Billings, 1981). Such
restrictions may work against the best educational interests of students
in at least two ways. First, where uses are limited to remedial tasks or to
drill, emphasis in mastery of basic skil. becomes the central academic
goal for students. In contrast, students in suburban schools are more
often using computers in the service of more comprehensive literacy and
reasoning goals (Center for the Social Organization of Schools, 1983-84).
Thus, the use of computers can perpetuate a system in which moze priv-
ileged students are expected and helped to achieve more generalizable
literacy skills than are their lesc privileged counterparts. Second, the
machines may be limited to business courses (i.e., word processing,
spreadsheets) and programming courses. This makes it likely that girls
and boys will have different access to the technology (see Hawkins,
Chapter 13, this volume).

A prevalent source of student alienation from school occurs in the mis-
match between patterns of learning in the school and home. Some educa-
tors foresee that the computer, being a new and relatively undefined
entity for everyone, may offer an opportunity for students, teachers, and
parents jointly to decide and describe common educational approaches.
In order to avcid computers’ becoming yet another arena of mismatch,
several large school systems have developed strong paren: involvement
componens, ai.owing parents ‘o borrow machines and thus work on
computer-related school tasks with their children (Chion-Kenney, 1984).

TEAZHING IN AN AGE OF TECHNOLOGY

While there has been a great deal of discuscinn about the potential of
new technologies for the education of students, less has been said about
the ways in which technology may affect teachers and ti.e profession of
teaching. What is true for students is alsv true for teachers. * aey need
preparation for being learners in a dramatically changing fieid, and they
need additional trainiag necessitated by transformations 2t their work
place. At this point, exactly what forms the retraining tak. ..t zeston
a range of untested assumptions, just as curricular innovauavr.. do. We
can, however, attempt to anticipate the changes to come from what we
know about computers, their entry into schools, and the rapidity with
which they are changing (Olson, 19¢4).

87

Preparing Urban Teachers for the Technological Future o 73

Futuristic thinking is always risky; whatever we predict will almost
certainly be wrong to some degree. But for education and technology, it
is more risky not to think about the future. Many believe that the power
of this particular innovation is likely to transform education radically
(e.g., Dede, 1983; Podemski, 1984). While some possibilities are excit-
ing, others are profoundly problematic. Here, it will be useful to distin-
guish between projections that are based on what is already in place and
more visionary speculations about the teacher and school of the future
(asterisked sections).

Developers are already at work on information-management systems
for students, complex performance analyzers, authoring systems with
which teachers can customize programs, and telecommunicative linking
of classrooms. Widespread use of such too!s would affect the content,
structure, and organization of schools, and thas the role played by the
teacher.

Curriculum and Teaching

The content of school curricula (e.g., in mathematics, is already chang-
ing and is likely to change further as a result of an assessment of what
students ought to know and need not " now in a computer age (National
Council of Teachers of Mathematics, 1980). More generally, the greater
emphasis on thinking and learning skills, which educators are calling for
(Adler, 1983; Resnick, 1985), may be heightened by the move to include
computers in schools. If access to vast amounts of information is made
possible through the technology (i.e., large databases accessible via tele-
communications), then learning of facts may become relatively less im-
portant than learning how to search, query, make sense of. and evaluate
information. While these skills are currently being taught, they are
neither given high priority nor are they commonly well defined as cur-
ricular goals. Researchers are only beginning to study the organization
of inquiry, research, problem solving, and decision making in class-
rooms (Hawkins, Char, & Freeman, 1984).

* As curriculum changes, the role of teachers may shift from that of pro-
vid. -s of content-specific information to facilitators of students’ own infcrma-
tion-organization skills (She’ gold et al., 1981). Instructional techniques
might shift away from direct delivery of information toward greater emphasis
onshaping students’ mastery of information and their thinking skills—finding
relevant information, solving prob..ms, asking questions, thinking critically,
and communicating ideas. The teacher of the future would need to know how
to teach procedural and "‘metacognitive’” skills.

Classroom Management
In the near future, a teacher may be managing something very different
from a classroom full of students who are doing individual paper-and-

74 e Sheingold, Martin, and Endreweit

pencil seat work, listening to a lecture, or engaging in large-group discus-
sions (Center for the Social Organization of Schools, 1983-84). Computer
simulations and many computer tool uses, for example, make possible
and support students’ joint problem solving (Mehan & Souviney, 1984).
A teacher guiding students working together on computers ir pairs orin
groups requires observational and management skills different from the
ones she normally applies, as well as new understandings about when
and how to intervene in the student-based a-tivity.

Effective use of computers as information-delivery systems ir. school
settings may enable students to move through some academic content at
an individual pace. Students may work alone much more than they do
now, as some college students do in "‘self-paced”’ classes, or groupe i
with a few others in particular acadernic domains.

With the introduction of computer-based networks, “‘classrooms’’
could include students and teachers who are working together across
long distances.

* To the extent that instruction becomes individualized, the usefulness of
age-graded classrooms may bc called into question (Berliner, 1984). It may e,
too, that the location of learning can be wherever the technology is, nam_ly,
the home, library, or community center. Thus, the purposes and functions of
school buildings my change (Levin & Kareev, 1980).

Measuroment of Student Performance

In some schools, the coniputer manages siinple instruction, that is, the
computer keeps track of students’ performances on drills. In two large
urban areas we contacted, the basic mathematics and language arts cur-
ricula exist as exercises in a cosnputer, accompanied by a vet of diagnos-
tic tests. Teachers test the children every two to three weeks to pinpoint
weaknesses. The hoped-fo: outcome for this kind of assistance is thut
the teacher will be freed for more challenging work.

Computer-based activity of the more open-ended variety an provide
teachers with new insights into what their student, can do. Anecdotal
accounts describe how teachers have learned new things bout their stu-
dents’ capabilities as a result of observing them interacting with peers at
the computer (Burns, Cook, & Dubitsky 1982, Papert, Watt, diSessa, &
Weir, 1979).

With a greater er ,hasis on skills of abstraction and comprehension,
what student achir vement consists of and ho. it is measured will need
to change (Frederiksen, 1984). For example, the advent of the pocket cal-
culator has meant that mathematical operations and estimation can be
emphasized over calculation. Word processors have resulted in a new
emphasis on the writing process, as opposed to spelling and penman-
ship. Stc...dardized tests are already being altered to reflect new peda-

89

Preparing Urban Teachers for the Technological Future 75

gogical goals (California State Department of Public Instruction, 1985,
Eric Clearinghouse on Urban Education, 1984).

Determining whether .. udent is a good problem solver who can en-
vision multiple solutions, plan solution strategies, and estimate out-
comes is very different from counting how many problems a student
answers correctly. A composition may no longer be judged simply by
the number of spelling and grammatical errors it contains.

* Through ;...ure "intelligent’”’ computer systems, it may be possible to
promote and diagnose student performance in new ways (Sheingold et al.,
1981). Based on the sn Jent’s performance, these systems might prompt the
students to reconsider .n answer, demonstrate a different process for solving
a particular problem, or ask the student to indicate why she thought a par-
ticular response was correct.

Other types of intelligent systems might help teachers understand
how students learn and solve problems by analyzing students’ errors
(Burton, 1981). Such diagnostic functions, if developed with the needs
of teachers in mind, could help teachers zero in precisely and effectively
on students’ cor.ceptual difficulties. In order to use such systems, how-
ever, the teachers wou'ld need tolearn new ways of dealing with detailed
information about aspects of students’ cognitive performance.

The Role of Teachers in Shaping the Future

Three characterizations of the teacher in relation to the technology pro-
cess may be distinguished. Each one has clear implications for training.
As bystander, the teacher’s role is considered irrelevant to or unchanged
by the introduction of “"teacher-proof’’ tect.nology into classrooms. This
naive view implies providing teachers with minimal computer-literacy
and classroom-management training. Corsurzer roles attribute a gate-
keeper function to tl.2 teacher, who is trained to decide which products
to use from the array in the educational market. Finally, the charactcri-
zation of the teacher as a builder derives from early classroom computer
innovations in which individual t2achers not only select but redefine
learning activities usir.g technology. In turn, significant ideas for revis-
ing the technology are generated from such onsite experimentation.
This viev implies a long-term professional development process of truin-
ing rather than brief conta “ts with the new educational materials. If the
teacher’s role changes in ways suggested here, the teacher will have to
build new ways of making learning happen in th. classroom.

The work of teachiny is likely to change with respect to curriculum
content, classroom management, and student assessment as a result of
the new educational technologies. Approaches to training that view the
t2acher solely as a bystander to or as a consumer of hardware, s ftware,

. 30

s
.

76 * Sheingold, Martin, and Endreweit

and curricula that others desig.a may be completely inadequate to p-epare
teachers for the future. Perhcps more importantly, such approaches are
unlikely to provide teachers a significant professional role in shaping
that future. Technological transformations will be adopted by teachers
to the extent that the technologv is meaningful and integral to their
teaching situations. This means tnat teachers must be encouraged as
partners in the creative enterprise.

THE STUDY, ITs FINDINGS AND IMPLICATIONS

To ascertain the currer.t state of school computer use and teacher retrain-
ing, a sample consisting of 28 nationally distributed districts was selected
(see below). They represented cities ranging from 300,000 to over 7 million
people, plus fous large districts in either suburban or mixed urban/sub-
urban/rural areas. The’ school populations ranged from 45,000 to over
one million. Minority siudents constituted 9% to 75% of the total school
porulation in the districts (mean=43.2%).

Districts Surveyed
Albuquerque, NM Los Angeles, CA
Baltimore, MD Manhattan, NY
Boston, MA Memphis, TN
Chicago, IL Milwaukee, WI
Clevaland, OH New Orleans, LA
Dade County, FL New York City, NY
Denver, CO Qakland, CA
Detroit, MI Philadelphia, PA
Fairfax County, VA Pittsburgh, PA
Granite County, UT San Diego, CA (TECC #15)
Houston, TX San Francisco (TECC #5)
Indianapolis, IN St. Louis, MO

Jefferson County, CO Tuscon, AZ
Washington, DC

Information about tk- cuomputer programs of the selected sitec was
gathered in several ways. At 23 of the sites, a district person responsible
for computer education was interviewed by phone. Five communities
provided written materials. Finally, 18 people were interviewed who were
employed by communities or involved in training or docunientaion of
school computer programs. These interviews sought to elicit a descrip-
tion of implementation, the concerns of teachers, perceived obstacle:,
and ideas for interventions and activiti.'s that would support school sys-
tems in the development of educational computing.

91

Preparing Urban Teachers for the Technological Future o 77

Five general findings of our research have particularly significant im-
vlications for staff development. These include the fact of ht h demands
for training, the development of “‘top-down’’ approaches t» vlanning, a
trend toward using computers as tools, the presence of ciiplex equity
issues, and the scarcity of resources for computers and for tzai.ng in ur-
ban districts.

DEMANDS FOR TRAINING -

The demands for training teachers in computer use are very high, frc...
both the districts and from the teachers themselves. At least 50% of the
districts surveyed wanted their secondary school teachers to integrate
computer use into the existing curricula of their disciplines, and 75% men-
tioned the goals of computer literacy and awareness for all their teachers.
Few teachers, however, are emerging from departments and schools of
education with appropriate preservice training (J.F. Brown, 1983, Sou-
viney, Martin, & Black, 1984). Fewer still have a level of computer skill
that matches the needs of schools. Since there is a shortage of well-cre-
dentialed new teachers, the need for preparing teachers who are cur-
rently employed is great.

Several states have instituted requirements in computer competency
for teacher certification and others are in the process of doing so, but in
general | articipation in training is voluntary. In :nost cases, voluntarism
is a necessity: Contracts do not perinit mandatory training, districts are
not equipped to handle large-scale training and are reluctant to pay for
alterrative classroom coverage for mandated released-time training. In
inner-ity schools, where educational continuity is already a problem be-
cause of a mobile student population and high absentee rates, teacher
abstxce is seen as particuiarly undesirable. Compulsory training is
therefore usually restricted to those who teach computer science and
those responsible for implementing ccmputer curriculum goals at cer-
tain grade levels. Districts do encourage panicipation in training pro-
grams by offering recertifi. ation credit, graduate credit, and monetary
rewards.

Even under a voluntary system, districts are fir ding no lack of partici-
pants for the programs they offer. While some teachers are skeptical
about the value of technology, many wish to learn computer skills, and
some districts report that the ; can’t keep up with the demand. Several
districts claim to have already trained thousands of teachers. Some dis-
tricts are having such difficulty keepirg up with the demand for computer
training that they are requiring formal apphcu.wn principal recommen-
datnons and, in some cases, fees.

92

78 * Sheingold, Martin, and Endreweit

Voluntarism has specific advantages in the implementation of com-
puter goals. 1! allows teachers to become engaged with computers at
their own pace, to select their own entry point, and to choose among a
variety of courses on the basss of personal interest. In this way, they are
more likely to formulate meaningful goals and to achieve them (Oakes &
Schneider, 1984).

The regative side of this approach is that there may be a poor match
vetween the training available and the classroom situation te.ichers must
face. Teachers sometimes receive training that they cannot put to use in
their classrooms, and the result is frustration. Even when teachers can
use what they have learned, their training is often too inadequate to
make them competent users of computers. In addition, there appears to
be little articulation of needs special to urban educators on the part of
those responsible for teacher training.

Given the innovative potential of computers, the patterns of change
in their use, and the uncertainty about how best to train students and
teachers, it seems important to foster district commitment to *’staff devel-
opment’’—long-term professional growth in the field—rather than to
"inservice training’'—immediate, quick immersion (Lieberman, 1984).
To use the technology effectively, teachers need the chance to learn and
experiment over a ..ng period of time with support from other teachers,
administrators, and experts. Such a long-term approach, with continu-
ing support for training, is most likely to ensure that the training will be
assimilated and that the technology will be put to its best use (Nathan,
1984).

"TOP-DOWN" APPROACH

Mary =chool systems are adopting a top down approach to planning, in
which the teacher is the consumer of a plan developed and implemented
by specialists and administrators at the central office level. Large city
school systems, which must deal with up to a miliion studer. d thou-
sands of teachers, tend to se central planning as the only sensible choice.
They are also highly responsive to local pressure and to demands for
accountability, and it is easier to be accountable when programs are de-
signed and cuatrolled at the central office level.

Twelve of the districts surveyed have already committed themselves
to firmly developed anc., :.1 several instances, highly specified computer
educatior plans. Of these, eight are to be implemented over 3- to 5-year
periods. (n some cases, specific computer applications are being writte..
into curriculum guides.

The top-down approach is a disturbing trend. The large-scale, uni-
form, and prescriptive quality of such an approach may rigidify the use

33

Preparing Urban Teachers for the Technological Future 79

of technology in schools long before the educational potential of the
technology has been developed and researched. Training programs that
are driven by the need to institute change all at once, on a large scale,
may well be less adaptive in the long run than training arising from
classroom needs and individual teachers’ vision of what they want to do
with computers (Berman & McLaughiin, 1978).

When such planned programs o districtwide computer use and teacher
training are developed in district ffices, teachers are essentially left out
of the process, although teacher representatives may sit on district ad-
visory boards. Yet the experienced and thoughtful teacher, given a brief
acquaintance with the possibilities of computers, can contribute greatly
to decisions about how, or whether, to use them, As we have seen,
some of the most imaginative and successful uses of the computer in
schools today have come from teachers who were willing to redesign
learning activities to take advantage of the technology, or who discovered
new dimensions in the technology that could be s” aped and revised for
use in education.

Teachers should be central participants in and builders of the future
of technology in education, not solely the recipients of decisions made
by others, either in the area of training or in tool design. Specifically,
they should be supported and encouraged to adapt computers to their
own and their students’ purposes, to explore the ways in which technol-
ogi€s can alter what happens in the classroom, and to share what they
do and what "“works’’ with other teachers. Their influence should be felt
on what gets created and marketed for schools during the process of
development, not after. Teacher-development programs must support
teachers to shape and engage in "’experiments’’ with technology, expe-
riments that can inform and influence the future of technology in educa-
tion. For districts with large numbers of poor and minority students,
such an approach will make possible local design and implementation of
programs that may be of particular benefit to such students, and to their
teachers.

TRENDS TO TOOL & 'SES OF COMPUTERS

The focus of educational uses of computers has shifted from computers
as objects of study (programming and computer literacy) to computers
as tools for learning. While programming is still a popular activity at the
secondary level, its importance is increasingly questioned in the lower
grades, ar 'only 20% of the districts surveyed defined their educational
computing programs as a computer literacy curriculum for K-12 students.
The current school goal is the integration of computers throughout the
curriculum.

94

80 o Sheingold, Maran, and Endraweit

The ..aost frequently cited activity is word processing, which is no
longer confined to courses intended to prepare students for careers in
business. The computer is ated to become a writing tool of the English
Department and of remedial education, and in places where there is ade-
quate equipment, of the social studies, the sciences, and other disciplines.

Another frequently reported computer activity .s database manage-
ment. The use of popular commercial systems is still taught in computer
science and business courses, but electronic filing systems are also turn-
ing up in social studies and science, home economics, and health educa-
tion. Some school systems are creating local databases that students can
access through a local area network (LAN). Others allow students to go
"’on line’’ through telecommunication systems to access large, nationally
available databases.

The use of electronic spreadsheets is another computer sk:ll that is
teginning to be more widely taught. Business-course students in high
schools are the primary target for this training, but spreadsheet packages
are also turning up in high school math and science classes, and any-
whe. e else that students need to manipulate interdependent, quantitative
variables and teachers understand the applicability of the spreadsheet as
a problem-solving tool.

Concurrent with repeated shifts in computer use, teacher training is
reported to have entered a new phase, a phase in which priority is placed
on applications of the computer. In the long run, such emphasis may
promote smaller scale, more personalized ‘raining programs, since ap-
plications lend themselves to multiple uses.

We remain skeptical of the quality of the current state of training and
implementation of tool uses in schools. Using software that was not de-
signed for the classroom environment creates instructional difficulties
(Hawkins & Kurland, 1984). in a series of classroom-based studies on
the use of dat.base management software in Northeast school districts,
it was noted that "‘few schools are currently using them, even fewer are
using them with students in classsrooms, and only a handful of teachers
are making substantial or creative use cf the software’” as thinking tools
(Hawkins et al., 1984). Rather, in the schools visited, the software was
often used to illustrate business uses of software. It was not integrated
into the ‘‘business’’ of classroom learning.

Despite these difficulties, the refocusing of the goals of school districts
on tool uses and on the integration of computers with curriculum are en-
couraging developments. Accomplishing these goals, however, makes
much more serious the role of long-term staff development. Using com-
puters effectively as tools in the classroom requires rethinking hcw
some kinds of work get done in the classroom—both the content and the
social cuntext of that work (Sheingold et al., 1983).

35

-

Preparing Urban Teachers for the Technological Future » 81

EQUITY IN ACCESS TO COMPUTER EDUCATION

The largest school districts have been leaders in the rapid increase in the
use of microcomputers for instructional purposes. This year, students in
large high schools of the nation’s largest school systems are virtuall, cer-
tain to have access to an educational computing program. Junior high
school students in large schools in these systems are the next most likely
to have organized access to computers. Elementary school students are
still the least likely to use computers in their school programs (Quality
Education Data, 1984). School systems that have multiyear plans for
computer purchase and program development tend to start at the high
school level and work down year by year, reasoning that the younger
pupils will eventually have their opportunity for computer exposure.

A widespread concern for achieving computer-access equity for inner-
city students has meant that, in spite of limited response in general,
schools are spending a lot of money in this area. But while urban high
school students are now probably just as likely to be in contact with
computers as are suburban students, students at elementary levels are
not (Quality Education Data, 1984). Favoring secondary over elementary
students may accentuate inequities. The kinds of skills that educational
analysts hope computers will promote are acquired early in the educa-
tional career—that is, before high school (Goodlad, 1984). By the ninth
grade, a selection process is in place, eliminating choices of careers and
courses fur some students, espec.ally for miaority ethnic groups and for
girls in general.

Moreover, inequities may exist in how computers are used. More ad-
vantaged students are more likely to use computers in ways that promut.
new learming, while less advantaged students are more likelv to use theru
for drill (Eric Clearinghouse on Urban Education, 1984, M.nan & Sou-
viney, 1984). To the extent that computer use s increasingly bemng infused
into the curriculum, it may address the problem of equity of access. For
example, where word processing is taught only as part of business
education, it becomes the domain of female students. Where database
management is part of a computer science elective, boys are overwhelm-
ingly the recipients of the training (California Basic Education Data Sys-
tems (1982-83). But when these skills are introduced as part of "nglish,
social studies, or some other part of the curriculum compulsory for all
students, the situation changes. Many students—buys and girls, minority
and majority, at all achievement levels—are at the keyboard learning
computing skills along with their subject area studies.

Urban schools face special ptoblems in integrating computers with
the curriculum. Lack of equipment, security concarns, class size, and
teacher training availability are somz. For some communities, tuv, there

Jb

82 ¢ Sheingold, Martin, and Endreweil

is a critical lack of bilingual software, as well as a lack of support for
developing these educational tools (Diaz, 1984; Moll, 1985).

For a teacher trying to meet the many educational and social needs of
urban students, computer training that is perceived as useful is vital lest
the tecnnology be rejected as one more burden. With fewer resources for
staff development in the inner cities than in more affluent districts, there
is good reason for concern that skepticism on the part of teachers about
the utility of computers will inadvertently be reinforced and that the
hardware now in place will not be utilized to its fullest capacity.

SCARCITY OF RESOURCES

Predictably, many communities cite insufficient funds as a major obstacle
to implementing computer programs in the schools. The school districts
scmpled are some of the largest in the country, and they are beset by
general budget problems: loss of population, a weakened tax base, loss
of federal funds, and budget-capping by the state. They must try to re-
spond to the sacial and financial inequities that exist among different
areas of the community, as well as between inner-city populations and
those of the suburbs)

The cost of providing computers is tremendous. State and federal
funds have been inadequate to meet even minimal needs. In many dis-
tricts, Chapter I funds have been used to equip compensatory education
programs, but access to such programs is limited to those students eligi-
ble by reason of school failure and low socioeconomic status. Chapter II
funds (federal funds administered as block grants through the states) are
more flexible and have been used by several districts. The level of state
funding specifically targeted for computer programs varies greatly.

Community resources also vary widely. In a district with a concen-
tration of business and industry, jocal businessmen may cooperate in
"’adopt-a-school”” programs, providing such support as equipment dona-
tions, technical consulting, and summer employinent for students. Some
districts have large research universities supporting experimental pro-
grams; some have active parent groups that take the lead in organizing,
equipping, and consulting for the school’s computer program. In many
districts, however, limited funding has resulted in difficult decisions
about allocating equipment, especially when the district includes both
low-income areas and more affluent schools where ,ome equipment is
already in place.

Federal and state funding for training is less available than money for
the purchase of hardware. In fact, it is rarely available. Moreover, in
many places expertise for training is in short supply. While, in some dis-
tricts, universities and schools of education have been able to provide

97

-

Preparing Urban Teachers for the Technological Future ¢ 83

training resources, for the most part Higher Education lags far behind
the school systems themselves in understanding and responding to the
need for training,.

Finally, resources for well-researched quality software have not been
forthcoming, either from government or from commercial sources (Na-
tional Academy of Sciences, 1984). There are great limitations in the pro-
grams geared for school use, as well as in the research-based knowledge
about how to create programs most useful for students’ learning and
teachers’ effectiveness. Here, again, we see the need for teachers’ per-
spectives and expertise to inform research and development efforts
(Lesgold & Reif, 1983).

CONCLUSIONS AND RECOMMENDATIONS

Our analysis of the retraining needs of teachers in urban schools for using
computer technology has resulted in a complex story, with both encour-
aging and sobering themes. On the positive side, large urban systems are
committed, as are their suburban counterparts, to making computer edu-
cation available to their students and training accessible to their teachers.
Moreover, there is a widespread and intense demand for training on the
part of teachers. Since such training is almost always undertaken volun-
tarily, the demand indicates high interest and enthusiasm.

In addition, there is a marked shift in priorities for how students and
teachers use computers toward tool uses of the computer and integra-
tion of the computer with the curzicuiui, in contrast to earlier emphases
on the computer as an object of study and as a device for drill and prac-
tice. These are encouraging trends, since tool uses appear more likely to
support the kind of learrung, problem-solving, and information-man-
agement skills required of citizens and workers in the information age.

On the negative side, resources are severely limited. Many systems
are unable to meet the local demand for equipment and training and do
not foresee any improvement in the funding picture. It is also not clear
in what ways issues related to schocling for urban poor and minority
groups are being taken into account in the training of teachers and in
plans for school use of computers. Issues of concern to minorities and
the poor—such as cuitural differences, differences in family demographics
and in home support for school activities, lack of resources, and limited
job prospects—are often ignored by decision makers and leadership in
the field of educational technology. Definition is needed as to what are
the best ways to use the technology to meet the needs of these students
and their teachers for valuable educational experiences. Finally, and per-
haps most distressing, is the trend toward top-down, short-term teacher
training and program implementation in many large districts. While this

SR}

84 o Sheingold, Martin, and Endreweit

trend is understandable, it may well undermine what the districts seek
to achieve—improvement in the quality of education.

Although there are many recommendations we could make, we re-
strict them to those that bear directly on improving teacher training and
on addressing specific needs of urban schools.

1. Identify, support the development of, study, and disseminate effec-
tive models of staff development. Such effective programs of staff devel
opment for computer education should include goals to support urban
school efforts to improve student preparedness for the future, provide
teachers with flexibility for coping with future developments in educa-
tional technology, and involve teachers as shapers of how technology is
used in the schools. They would best be designed to:

* ensure that at least some of what teachers learn will be directly put to use
in classrooms;

¢ include extensive support and consultation systems for tea.hers, both dur-
ing and after training, through special meetings, in-class consultation, op-
portunities to visit other sites and attend conferences, and use of electronic
networking;

* encourage professionalism in teachers by drawing on their skills to shape
educational uses of technology and by providing voluntary, tailored train-
ing options, access to state-of-the-art technology, feedback mechanisms by
which they can reflect on their practices, and dissemination of information
on technology and educational changes.

2. Identify and support the development of effective higher education
programs to create new expertise and new leadership in the field of prac-
tice, research, and development of educational technology for the urban
setting. Higher education should be providing in-depth education to
urban practitioner-leaders and trainers, to those who have or wish to
have policy-making positions, and to those who wish to make research
and/or development in the field o: educational technology their careers.
The development and implementation of such programs deserve en-
couragement and support.

3. Design, implement, and study small-scale experimental projects
with particular relevance for urban schools. Large-scale, comprehen-
sive programs are often prohibitively expensive, difficult to implement
and learn from, and less responsive to teachers’ needs. What is needed
now are smail-scale, clearly focused, experimental projects in technology
adoption by schools for which there are adequate resources to do a good
job of implementation. Building on local involvement and enthusiasm,
they should include support for helping participants reflect on and learn
from what they do as they do it, and for assessing the extent to which
project guais were met. Such experiments should also provide for imagi-

39

Preparing Urban Teachers for the Technological Future © 85

native and powerful avenues of dissemination for the models. Examples
of ideas that might form the core of such experiments include: (a) using
technology to promote comprehensive literacy in urban schools; (b) using
computer networking to support teacher communication within and
among districts; (c) involving parents in school activities with their chil-
dren via computers; and (d) introducing urban schools and teachers to
state-of-the-art software and hardware under development, whose de-
sign they could both learn from and influence.

There are no quick, short-term, or inexpensive solutions to the prob-
lems of helping teachers in urban schools to use technology and assur-
ing that the technology is put to the best use for the students in these
schools. And technology alone, even put to its best use, cannot be ex-
pected to remedy the many deep problems that beset urban schools. But
at this moment in our history, if there is a lever for renewal of education
in this country, it is the microcomputer. Teachers who can use the tech-
nology in the interests of their urban students can be a major force in
helping their students to function effectively as citizens and workers in
the technology age.

AUTHOR NOTES

We are grateful to the Ford Foundation for its support of this work and
of the preparation and dissemination of this paper. The content is solely
the responsibility of the authors. We wish to express our appreciation to
the many district administrators who generously took the time to talk
with us, to the Bank Street College Computer Outreach staff, and espe-
cially Stephen Shuller, who shared experiences and insights with us,
and to the teachers and researchers who contributed their observations
to this effort. Nina Gunzenhauser provided invaluable editorial help.

CHAPTER 5

BEYOND BASIC SKILLS:
LITERACY AND TECHNOLOGY FOR
MINORITY SCHOOLS

Warren Simmons

A changing economy and world have introduced a new standard of
literacy that poses a critica: challenge to schools serving educationally
disadvantaged blacks and H.spanics. Throughout history, the definition
of literacy in Western societies has been shaped by social, economic, and
technological forces, such as th.e invention of the Greek alphabet (Have-
lock, 1976), the development of the printing press (Eisenstein, 1979),
and the 17th century Protestar.t education movement (Resnick & Res-
nick, 1977)—and today, by electronic word processing, publishing, and
telecommunications (Levin, 1982; Pea & Kurland, in press).

The criteria used to define literacy in the United States are being trans-
formed by struciaral shifts in the economy, such as the growth of service
industries (e.g., legal, health, and finance-related businesses), techno-
logical advances in computers and electronic automation, and by global
social problems such as population control, hunger, and human rights.
These changes have important implications for both the objectives and
methods of teaching, implications that threaten tc reverse the educa-
tional gains made by minority students in recent years.

ECONOMIC CHANGES

The rapid growth of service and high-technology industries (e.g., com-
puter hardware and software industries) coupled with the decline of
heavy manufacturing industries (e.g., steel and textile industries) have
created new types of jobs and new demands for literacy in the work
place. Since 1980, the labor force has lost five million blue collar jobs
while witnessing the rapid expansion of service occupations—nurses,

86

101

Beyond Basic Skills: Literacy and Technology for Minority Schools * 87

secretaries, legal assistants, financial advisors (Bastian, A., Fruchter, N.,
Gittell, M., Gréer, C., & Haskins, M., 1985).

A significant feature of the emerging service occupations is their de-
pendence on oral and written communication skills and the ability to use
technology as a tool to manage and distribute information (Sheingold,
Martin, & Endreweit, Chapter 4, this volume). Walberg (1984) estimates
that job-related reading activities "‘may constitute a quarter or a third of
adult work and currently amount to about $500 billion per year in com-
pensated adult time” (p. 2). The increasing role of literacy and tech-
nology in the work place has fostered a host of predictions about the
skills individuals will need to become productive workers and citizens,
both now and into the next century.

REDEFINITION OF LITERACY

Over the past five years, a plethora of reports, commissions, and sur-
veys has attempted to delineate the literacy requirements of what is
commonly referred to as the information age or society (Sheingold et al.,
Chapter 4, this volume). Despite the number of reports on this subject
and their diverse motivations and sources, there has been a considerable
amount of agreement regarding present and future skill priorities. These
generally include the ability to (a) comprehend a wide range of familiar
and unfamiliar texts, (b) communicate effectively both orally and in writ-
ten form, (c) think critically and reason logically, and (d) solve problems
and make decisions (e.g., National Acader vy of Sciences, 1984, National
Commission on Excellence in Education, 1983).

The importance attributed to extensive reading, oral, and written
communication skills for the majority of citizens represents a significant
rise in the standard of literacy applied to the general population. After
World War 1, for example, the literacy criteria for the general population
(as opposed to an educated elite) for the most part involved the ability to
answer questions, follow directions, and derive meaning from relatively
simple texts (Resnick & Resnick, 1977). The literacy standards currently
being applied across the population have in the past been limited to
those interested in postsecondary education as opposed to entry-level
employment after completion of high school.

Society’s increasing need for a highly skilled and literate population
has placed a great deal of pressure on an educational system whose
ability to meet existing, as opposed to new, standards has been widely
criticized. Employers faced with a shrinking entry-level employment
pool and $40 billion in annual training expenditures are expressing an
increased interest in and dissatisfaction with the quality of schooling

88 ¢ Simmons

(Educational Commission of the States, 1985; Walberg, 1984). Educa-
tional statistics, such as a decade-long decline in college admissions test
scores (The College Board, 1985b), an increase in the high school drop-
out rates for white students (Educational Commission of the States,
1985), and a downward trend in the reading proficiency of 17-year-olds
(National Assessment of Educational Progress, 1985) have been taken as
evidence that the natior:’s schools are graduating students who lack the
skills needed to lead productive lives.

This negative depiction of the results of schooling has been reinforced
by qualitative analyses of schooling, which show that students spend
little time engaged in activities that might promote the problem-solving,
oral, and written communication skills that are critical features of many
new occupations (Goodlad, 1984; Sizer, 1984). Moreover, direct compari-
sons of the literacy requirements in a range of occupations and those
faced by students in high school indicate that job-related reading tasks
are more demanding and involve a greater variety of materials than do
school-related reading tasks (Mikulecky, 1982).

In response to declining school performance and the observed dis-
continuities between literacy in school and at woxk, proponencs of the
school reform movementh - posed a 2-pronged approach to school
improvement: (a) the img «won of policies and curricular changes
that will strengthen students’ basic skills; and (b) the introduction of
curricular innovations that will enhance students’ attainment of higher
order literacy, thinking, and problem-solving strategies (e.g., National
Commission on Excellence in Education, 1983). The first of these recom-
mendations has had a significant impact on educational policy and prac-
tice in schools nationwide; the second, much less so.

SCHOOL REFORM AND MINORITY EDUCATION

Unfortunately, the crisis atmosphere in education has obscured the edu-
cational gains achieved by minorities during the so-called decline era.
The late 1960s and early 1970s marked the beginning of compensatory
education programs and the spread of school integration efforts in areas
outside the South. The positive impact of these efforts on minority edu-
cation is mirrored in a variety of statistics. For instance, there was a
slight decline in high school dropout rate for blacks between 1971 and
1981 (The College Board, 1985a). College enrollment 1ates for blacks and
Hispanics also increased during the 1970s. Furthermore, from 1977 to
1972, the average verbal and mathematical SAT scores of blacks and His-
panics increased, while for the most part national averages continued a
decline begun in the late 1960s (The College Board, 1985a,b).

103

Beyond Basic Skills: Literacy and Technology for Minority Schools o 89

MINORITY EDUCATIONAL STATUS IN THE 1980s

The outcomes mentioned above speak to the progress made by minorities
in response to educational programs designed to meet their needs. De-
spite this progress, a significant gap remains between educational attain-
ment of white and minority students. For example, according to the latest
national assessment (National Assessment of Educational Progress,
1985), an average black 17-year-old reads about as well as a 13-year-old
white student. In light of the continuing minority achievement gap, recent
cutbacks in aid to compensatory education, and a reduced commitment
to equity in education, it appears that the era of "’school excellence”’ is
relegating the educationally disadvantaged to a ’second-class’’ form of
school participation. For example, the weakened commitment to com-
pensatory education and equity may have contributed to the recent
decline in minority college enrollment and the rise in the high school
dropout rate among younger (14- and 15-year-old), as opposed to older
(15- to 18-year-old), minority youth (National Center for Education Sta-
tistics, 1984). These trends suggest that in its initial stages the excellence
movement may be doing more harm than good to minority education.

MINCRITY EDUCATION AND THE
REFORM MOVEMENT

The apparent trade-off of equity for excellence is tied to the distinct dif-
ferences in the way excellence recommendations have been implemented
in minority and majority schools. The two central aims of the reform
movement—renewed attention to basic skills, and the development of
higher-order competencies—have been applied unevenly across minority
and majority schools. Minority schools have devoted a large portion of
their resources and energies to strengthening students’ basic skills while,
concomitantly, their counterparts with predominantly white enrollments
have devoted significantly more attention to advancing higher-order
abilities.

The prevalence of this pattern is evident in the stratification of com-
puter use in white and minority schools. Surveys of computer use in
schools reveal that in schools with large minority enrollments, compu-
ters are used primarily to provide basic-skills instruction delivered by
drill-and-practice software (Center for the Social Organization of Schools,
1983-84; Shavelson, Winkler, Stasz, Feibel, Bobyn, & Shaha, 1984). In
contrast, computer use in majority schools is characterized by an em-
phasis on the use of computers as tools to develop higher order literacy
and cognitive skills and as objects of study (e.g., instruction focused on

90 e Simmons

computer literacy and programming) (Center for the Social Organization
of Schools, 1983-84).

The basic-skills approach (traditional or computer-based) to literacy
instruction in minority schools has been criticized for undezmining stu-
dent achievement in three areas: (a) computer literacy, () learner initia-
tive and motivation, and (c) advanced levels of literacy.

COMPUTER LITERACY

The extensive use of drill-and-practice basic-skills software in minority
schools reduces opportunities for students and staff to obtain higher
levels of computer literacy. This type of software limits the level of ex-
pertise required for use; that is, users participate in preestablished exer-
cises and do not actively define or control the sequencing of computer
operations. These restrictive features constrain users’ abilities to control
the technology and acquire deeper insights into the flexibility of its oper-
ation and its power (Mehan & Souviney, 1984, Pea & Kurland, in press).

LEARNER INITIATIVE AND MOTIVATION

Competency-based programs, which receive extensive use in minority
schools, are examples of a paper-based form of instruction that also
limits users’ (i.e., students and staff) control of learning or instruction,
and thereby their insights into the broader purposes of literacy. Boih
types of competency-based curricula (computer-based and paper-based)
have been faulted for undermining student interest by focusing on the
acquisition of isolated sets of skills (e.g., spelling, phonics, learning
vowels and consonants) with little refere.ice to their broader purposes,
and providing few opportunities to apply skills to tasks other than those
tied to the curriculum (e.g., reading newspapers or the classics) (Mehan
& Souviney, 1984).

ADVANCED LEVELS OF LITERACY

Finally, the weight given to traditional or computer-mediated basic skills
instruction in minority schools has been criticized for fostering a 2-tiered
national curriculum that furnishes a basic education for minorities while
offering a fuller range of learning opportunities to other students (Labora-
tory of Comparative Human Cognition, 1985, Sheingold et al., Chapter
4, this volume).

The preoccupation with basic skills in minority schools is especially
surprising and troubling given the results of the latest national assess-
ment and a recent report by the National Science Foundation (1985) on

105

Beyond Basic Skills: Literacy and Technology for Minority Schools * 91

minorities and women in math and science. More than 80% of the black
and Hispanic 13- and 17-year-olds tested in the last national assessment
achieved scores at or above the Basic Proficiency Level, a level defined as
the ability to “’locate and identify facts from simple informational para-
graphs, stories, and news articles’”’ and to "’make inferences based on
short, uncomplicated passages’’ (National Assessment of Educational
Progress, 1985, p. 15).

The results for minority achievement at higher levels were far less en-
couraging. Forty-five percent of the 17-year-old white students tested
obtained reading proficiency scores at or above the Adept Level; that is,
the ability to comprehend, analyze, and summarize complex written in-
formation on familiar and unfamiliar topics (National Assessment of
Educational Progress, 1985, p. 15). Less than 20% of the black and His-
Panic 17-year-olds tested achieved scores at or above this level. These
test re_alts demonstrate that while the literacy gap between whites and
minorities has been narrowed at lower competency levels, the gap be-
tween minority and majority students’ performance is widening at more
advanced levels of ability.

This view receives further support and elaboration in a National Science
Foundation (1985) report on science and math achievement, which indi-
cates that while blacks and Hispanics report taking as many years of math
and science as their white counterparts in junior high and high school,
significantly fewer blacks and Hispanics enroll in advanced science and
math courses such as trigonometry, calculus, chemistry, and physics.
Furthermore, when compared to white students, blacks and Hispanics
are more likely to be enrolled in general, as opposed to academic, courses
during high school.

These findings, together with the recent National Assessment of Edu-
cational Progress data, indicate that there is a widening gap betwee (he
educational achievement and experiences of whites and minorities, par-
ticularly at more advanced levels of school curricula and performance.
This alarming educational problem is not being and cannot be addressed
by basic-skills curricular priorities in minority schools, priorities out of
step with the skill demands of the information society and the educa-
tional needs of blacks and Hispanics. Moreover, the National Assess-
ment of Educational Progress definition of Adept Reading Proficiency is
remarkably similar to analysts’ descriptions of the basic literacy require-
ments of the information age (National Commission on Excellence in
Education, 1983). The emergence of the information society, then, has
not only expanded the upper limits of literacy, it has altered the mean-
ing of literacy at all levels. As aresult, the concept of basic literacy in the
information age is roughly akin to the definition of an advanced reading
level in the industial age.

106

92 e Simmons

The pace of curricular change in education usually lags behind other
educational innovations. As a result, the basic-skills objectives adhered
to by many minority schools do not correspond to recent changes in the
meaning of basic literacy rendered by economic, technological, and
social developments. Curricula that employ a linear basic skills approach
to literacy instruction—that is, one that begins with basic and proceeds
to cover progressively more complex skills—are still in wide use despite
these developments and recent research that has advanced our under-
standing of the nature of literacy.

COGNITIVE RESEARCH ON LITERACY

The linear approach to reading instruction is tied to the strong influence
of formal, as compared to functional, models of literacy on curriculum
developers. For example, developmental (i.e., formal) theories of read-
ing (Chall, 1983; Gates, 1947) outline reading generally in terms of
movement through a series of stages ordercd by the complexity of the
skills which are their determining features, and by the presupposition
that higher stages, which encompass more complex skills, depend on
mastery of lower ones. Chall’s (1983) 5-stage model of reading, for in-
stance, begins with an initial reading phase characterized by a focus on
learning the associations between letters and their corresponding sounds
in spoken language, and proceeds through four higher stages. (a) read-
ing to develop coding fluency, (b) reading to learn new information, (c)
reading that involves dealing with multiple viewpoints, and (d) reading
that leads to the construction of new knowledge and ideas.

As a developmental/hierarchical framework, Chall’s model outlines a
bottom-up progression of skill acquisition based on the order in which
skills first appear. When applied to the reading process, stage models
can lead to the false jinpression that processing also occurs in a linear
bottom-up fashion. This notion has been dispelled by cognitive analyses
of reading done in the last ten years.

Cognitive research on reading has shown that decoding (e.g., recog-
nizing words) and comprehending written language involves the coor-
dination and use of literal (decoding) and interpretive (.omprehension)
processes. Word recognition, forexample, is largely accomplished through
the use of literal processes (e.g., perceptual) that use textual cues (e.g.
individual letters and letter strings) to translate written symbols into
spoken language. These translations, however, also are guided by the
reader’s prior knowledge. Readers use their knowledge about text to
develop hypotheses concerning the words that are likely to appear next
(Adams, 1980; Lesgold, 1983; Perfetti, 1983). The relative importance of
top-down (application of interpretive processes followed by literal ones)

107

Beyond Basic Skills: Literacy end Technology for Minority Schools * 93

and bottom-up (literal followed by interpretive) processes in decoding,
then, depends on the reader’s familiarity with the text. When material 1s
relatively unfamiliaz, de:oding may depe.... largely on deciphering tex-
tual cues (letter strings); where there is a significant overlap between
text information and prior knowledge, the latter can act to facilitate pro-
cessing at lower icvels.

The reader’s familiarity with the text can also influence the level of
top-down and bottom-up processing when comprehension is the goal of
the activity. A number of studies demonstrate that the meaning of teat is
derived from the inferences made by relating written discourse to prior
knowledge (C-ansford, Barclay, & Franks, 1982; Schank & Abelson, 1977,
Spiro, 198C). Some degree of decoding must, of course, occur to allow
the reader to relate information on the page tu knowledge in memory,
but without making connections between presented and previously ac-
quired information, his or her understanding of the material is bound by
the resources provided by the text.

EDUCATIONAL IMPLICATIONS

Cognitive research on reading has furthered ur unjerstanding of the
role and importance of prior knowledge in both decoding and compre-
hension. A view of reading as a generative activity .n which individuals
actively construct the identity and meaning of text has also emerged
from this research. One of the most general and straightforward educa-
tional implications of recent findings is that reading instruction should
encourage students to use their knowledge as a resouice {ar interpreting
text. However, this seemingly simple recommendation requires the use
of materials and instructional strategies that (a) encourage active rather
than passive orientations to literacy, (b) represcnt students’ experience
and knowledge, and (c) promote analytic and infcrential reasoning.

Many existing instructional m«terials and strategies, particularly those
employed in basic-skills programs, fail to meet these requirements. Basie
skills reading texts usually present exercises designed to dev elop isulated
sets of decoding skills (e.g., phonics, spelling, grammar, vocabulary
development). Generally speaking, this approach devotes little atten-
tion to the influence of text content and organization on the reader’s
motivation to learn, his or her ability to apply prior knowledge to the
task at hand, and the extent to which the text elicits interpretive cogni-
tive skills (Markman, 1985; Simmons, 1535).

In many ways, the well-noted inatiility of sizable numbers of students,
especially minorities, to make the transition from literal to interpretive
reading skills in third or fourth grade (Chaii, 1983, I.abov & Robbins, 1973,
Laboratory of Comparative Human Cognition, 1985) attests to the failure

108

94 e Simmons

of basic literacy materials and instructional strategies to move students
beyond basic skills. This problem has prompted several research and
demonstration efforts that use cognitively based curricula to pro.note
interpretive literacy skills among educationally disadvantaged minority
students.

INNOVATIVE LITERACY PROGRAMS

The Kamehameha Early Education Program (KEEP) and a series of literacy
projects in rural North Caroliia described by Heath (1983) are excellent
examples of literacy programs which strive to integrate literal and inter-
pretive skill instruction in the early grades. Both programs combine a
concern for integrating lower and higher order literacy skills instruction
with a sensitivity to the importance of creating learning environments
that do not conflict with the culture of the community.

The KEEP program was initiated in the early 1970s as an effort to im-
prove the reading achievement of Hawaiian children descended from
the original Polynesian inhabitants of the islands (Tharp, 1982). In its
early stages, the program adopted a phonics-oriented approach that met
with little success. After testing and subsequently rejecting a series of
hypotheses that would account for the phonics method’s failure (e.g.,
possibility of dialect interference, lack of appropriate cognitive skills),
the KEEP staff developed a comprehension-oriented program guided by
cognitive/linguistic research on literacy and ethnographic analyses of
relevant aspects of community life (e.g., parents’ and children’s atti-
tudes toward schooling, community uses of literacy, organization of
learning in community settings).

The revised progran. featured small-group reading lessons, which
allowed teachers to relate to children in ways that were compatible with
adult/child interaction in informal learning situations (i.e., those occurring
in the community). Teachers were encouraged to demonstrate warmth
and control, and to emphasize mutual participation in the lessons by
creating opportunities for children and teachers to perform activities
together (e.g., teacher and student take turns narrating a stor * (Au &
Jordan, 1981).

In addition, the lessons were structured in Experience-Text-Relations
(ETR) sequences which helped children to apply and learn a process for
interpreting stories that mirrors strategies used by more advanced read-
ers. Lessons began with discussions about information and ideas related
to the material to be read, with the goal of building and clarifying chil-
dren’s knowledge in reference to the story. The next step entailed the
joint narration of the story by two or more people. Finally, lessons ended
with teachers leading discussions about children’s interpretation of a

‘109

Beyond Basic Skills: Litevccy and Technology for Minority Schools » 95

story uiilizing its content and their own knowledge, and/or questions
regarding the story’s theme.

Comprehension-oriented KEEP reading lessons produced significant
gains in Hawaiian children’s performance as measured by standardized
reading achievement tests (Tharp, 1982). In addition, the program also
banefited students who were not ethnic Hawaiians, though to a lesser

xtent,

Heath’s work with teachers in rural parts of North and South Carolina
showed a similar concern with designing culturally compatible methods
of instruction. Heath participated in a project to increase the writing
skiils of black and white, junior and senior high school students reading
on a third to fifth grade level (Heath, 1981). The effort was guided by the
belief that effective writing instruction must be based on the uses of
writing in students’ present and future lives. Qualitative analyses of
writing in the community and prospective work settings of the students
were done to identify local literacy practices and attitudes toward writing,
and to see how these differed from classroom practices and teachers’
beliefs.

These analyses indicated that the local community and work environ-
ments offered little motivation for learning to write. The recreational
activities of the students, however, did involve cases of writing, and the
project used these instances as a foundation for expanding students’
writing skills by focusing classroom instruction on everyday uses of
writing. For example:

[The] students were asked to '2lk about the writing of others which created
problems for them or their parents. Immediately they pointed out that infor-
mation about social services, warranties and guarantees, and regulations re-
lated to housing were “'too tough’’ to read. When their parents asked agents
in local institutional offices to explain these writings, they talked in the same
language in which the documents were written. Students were asked to try to
rewrite these sources and to interview each other on the meanings of the
documents in order to pinpoint specific questioning techniques needed in
these “’clarification episodes.” Teachers stressed that certain “’legal”’ docu-
ments used special language for the protection of the parties involved, other
documents were not legal and could be rewritten. Initially, the students re-
wrote documents they brought from home or local community social service
offices. These efforts took the studems into several useful areas of language
study. They challenged the merits of readability tests and basic word lists;
they examined high interest-low level readers to determine their characteris-
tics. Thiey tried to determine what made reading "’easy’’—words or length of
sentences, construction of discourse units or printing format and use of illus-
trations. (Heath, 1981, pp. 41-42)

In summary, this project engaged students in writing and learning
about literacy (reading and writing) by starting with familiar content and

110

¢ (:’ 4

96 * Simmons

discourse and moving gradually to analyses of school-related material
and talk (Laboratory of Comparative Human Cognition, 1985). The intro-
duction of everyday literacy materials and problems into the classroom
raised students’ understanding of and desire to learn about literacy, and
increased teachers’ appreciation of their students’ concerns and abilities.

The KEEP program and the writing project described by Heath (1981)
were the result of the combined and intensive efforts of researchers and
practitioners to improve the achievement of educationally disadvantaged
students. Both enterprises used research to identify patterns of social
interaction, areas of pricr knowledge, and forms of communication that
were culturally meaningful and relevant to the goals of instruction. This
information was then used to design classroom activities that helped
students make connections between literacy and important aspects of
their lives, and reading and writing skills and their impact on compre-
hension and effective communication.

The Kamehameha project and the writing project described by Heath
demonstrate the importance of research to the design of effective literacy
curricula for educationally disadvantaged youth from minority cultures.
Most schools serving minority communities, however, lack the resources
and guidance needed to embark on extensive research and demonstration
projects similar to those described above, or to ferret out the instructional
implications of recent research on literacy. In addition, the application of
new literacy technologies in minority schools has thus far been limited
to a few, mainly exploratory, efforts.

LITERACY TECHNOLOGIES FOR MINORITY SCHOOLS

During the past five years, word processing software for children has
been augmented by database programs (e.g., The Bank Street Filer and
the QUILL Library), graphics programs (e.g., The Bank Street StoryBook),
speech synthesis programs (e.g., the Talking Screen Textwriter), and
text-design prompters (e.g., Interlearn’s Expository and Narrative Writ-
ing Tools) to motivate and guide children’s acquisition of reading and
writing subskills. The QUILL Planner, for instance, contains text prompts
that help users generate ideas and identify topics for writing. The QUILL
Library and The Bank Street Filer can be used to store new woras and
their definitions, and t¢ compile categories of information that can be
ased as a writing resource. Voice synthesis programs such as the Talking
Screen Textwriter enable children to explore the relationships between
sounds and individual letters or letter strings. And, finally, software
combining graphics with word processing capabilities (e.g., The Bank
Street StoryBook) allow children to compose text and represent its con-
tent pictorially. In addition, through electronic storytelling, children can

‘ 111

IToxt Provided by ERI

Beyond Basic Skills: Literacy and Technology for Minority Schools * 97

manipulate temporal and spatial relations between words and text (e.g.
control the sequence in which sentences or paragraphs and the adjoin-
ing graphics are presented) to build suspense or em~hasize an idea.

The amount of guidance or support provided by the software use and
integration of various features varies with the educational philosophy
favored by the developers. The Bank Street Writer, for instance, features
a user-transparent design to facilitate use by novices as well as those
who are m" ~e experienced. It is also an entirely open-ended tool that can
be adapted by teachers or students for a number of uses. Other pro-
grams, such as QUILL and Interlearn’s Interactive Writing Tools, furnish
multiple levels of support based on the user’s compete:ice, or a teacher’s
judgment about an individual’s ability (Rubin & Bruce, in press).

These types of writing tools are just beginning to be used in schools to
improve the literacy skills of educationally disadvantaged minority
youth. Thus far, research and demonstration projects using discovery-
learning writing tools (e.g., The Bank Street Writer) and those that take
a more directed approach tolearning (e.g., QUILL) have produced prom-
ising results. For example, Riel (1983) used a set of text prompters and a
word processing program (The Writer’s Assistant) in an exploratory study
aimed at improving the writing skills of educationally disadvantaged
elementary school students (fourth and fifth graders) in San Diego. The
text-prompting programs were used to develop students’ prewriting
skills (e.g., generating ideas and guiding questions, setting goals and
priorities) and to stimulate the production of text. Students used The
Writers Assistant to compose, organize, and revise their writing.

Riel used a laboratory, as opposed to a classroom-based instructional
model. The students left their classrooms to attend the Mental Gym-
nasium, a lab where they could exercise and develop their skills. The
writing activities in the Mental Gymnasium were organized around the
production of articles for a classroom newspaper, the "’Computer Chroni-
cles,” and a newswire involving schools in California and Alaska. Com-
parisons of children’s writing prior to the project and six months after its
implementation were used to assess the project’s impact on children’s
writing skills. The analysis used the average length of the children’s
stories as an indicator of their writing ability. At the end of six months,
the average length of children’s stories had increased to 63 words, as
compared to 29 words on the pretest. Moreover, Riel reported striking
changes in children’s attitudes toward writing. the students were much
more confident and knowledgeable about their writing during the post-
test than they had been on the pretest.

Riel’s work indicates that writing software that offers multiple levels
of support for prewriting, composing, and revision can advance some
aspects of children’s writing when used in a laboratory setting by staff
familiar with computers. However, the generalizability of these findings

112

98 o Simmons

is restricted by the small number of participants in the project (8), the
lack of a comparison group, a1.d a fairly limited set of outcome measures
(students’ attitudes toward writing and the average length of writing
sample in pre- and post-test sessions). In addition, Riel’s work does not
address the impact of compute: based writing activities on performance
measures used by school systems and parents alike to gauge the effec-
tiveness of instruction and the ability of students—standardized reading
tests.

Research done by Pogrow (1985), however, does suggest potential
benefits in this area. Pogrow used a variety of writing tool software, in-
cluding The Bank Street Writer and Speller, Kidwriter, and Wordmaster,
in a project to promote higher order thinking skills (HOTS) among edu-
cationally disadvantaged children in an elementary school in Arizona.
Students in the HOTS project attended a computer lab staffed by teach-
ers trained by the HOTS project team. During the lab, children engaged
in computer-based writing, reading, math, and simulation activities in-
tended to promote planning, problem-solving, and logical reasoning
skills. Standardized tests of reading achievement were included in the
measures used to assess the project’s impact after two years. Although
detailed analyses of the results are not yet available, the preliminary
findings indicate that the test scores of HOTS students increased signifi-
cantly over the 2-year period.

CONCLUSION

HOTS and the Mental Gymnasium represent seminal attempts to im-
prove the literacv skills of minority and educationally disadvantaged
children through the use of computers, writing tool software, and inno-
vative learning arrangements and materials. Although much of the re-
search has been limited, results suggest that interactive writing tool
software, cooperative learning arrangements, and culturally salient
learning activities can be used to increase students” participation in liter-
acy and expand their awareness of the processes involved (e.g., setting
goals, applying their own knowledge to interpret or produce text).
Thus far, the research has been less clear about the impact of compu-
ter-based writing activities on the development of cognitive skills related
to literacy, and on performance on indicators valued by schools (e.g.,
standardized tests). Part of the ambiguity here is due to the limited dura-
tion and scope of the work undertaken. These studies have been small-
scale efforts involving one or two classrooms. In addition, the attention
of researchers has often been divided between studying the ways in
which computer-based writing activities mediate the development of

Beyond Basic Skills: Literacy and Technology for Minority Schools o 99

literacy and formatively evaluating the software under development
(e.g., Barnhardt, 1985; Riel, 1983). These potentially competing goals
cloud the objectivity of some of the work that has been done, and lessen
the attention given to such issues as the extent to which processes learned
and attitudes exhibited during computer-based writing activities are
transferred to other situations where writing takes place.

POTENTIAL FOR CHANGE ON A LARGE SCALE

A popular approach to the use of computers in minority schools has
been their placement in specially created “’laboratories’’ outside regular
classrooms. This means of intervention has limited our understanding
of the feasibility and effectiveness of integrating the technology into
regular classrooms for use by teachers and students. The computer
laboratory approach lends support to the unfounded assumption that
the educational conditions and practices in minority schools are intracta-
ble and thus require the development of learning “’sanctuaries’’ that
function outside the regular classroom.

This approach demeans the ability of regular classroom teachers and
does little to build their computer expertise or alter their approach to
education. We know from research that simply placing computers and
computer tools in classrooms does not guarantee their effective use
(Michaels, 1985; Shavelson et al., 1984). Teachers in general, but particu-
larly those in minority schools, need support to accommodate the tech-
nology to existing conditions and demands. These demands include
such factors as classroom size (students per classroom, as well as physi-
cal space for computers), student and teacher competencies, academic
objectives and materials, computer and software resources, and areas of
conflict and consistency between school and community experience.

A program designed to improve minority education on a sizable scale
should start by upgrading the skills and knowledge of teachers. This
would involve buiiding their ability to understand and apply new tech-
nologies and models of literacy for educational purposes. It would also
involve reducing barriers between school and community experience by
drawing upon the latter as a resource for student learning and literacy.
Such efforts should also be concerned with providing information to
developers about the adequacy of existing software and what elements
toinclude in the design of new software that would best meet the needs
of students and teachers in minority schools.

Finally, parents, community leaders, and social scientists attuned to
the realities and needs of minority schools and youth have to pay special
attention to the educational imperatives of the information age, along

100 e Simmons

with the recommendations set forth by proponents of school reform. Ex-
cellence should be a goal for all of our nation’s children, though some-
what different routes to it may need to be created. Thus far, our schools
are following a map drawn without adequate routes for educationally
disadvantaged minority children.

PART 1I

TECHNOLOGY AND
THINKING PROCESSES

CHAPTER 6

MAPPING THE COGNITIVE
DEMANDS OF LEARNING
TO PROGRAM

D. Midian Kurland, Catherine A. Clemer,
Ronald Mawby, and Roy D. Pea

INTRODUCTION

Vociferous arguments have been offered. for incorporating computer
programming into the standard precollege curriculum (Luehrmann, 1981,
Papert, 1980; Snyder, 1984). Many parents and educators beliave that
computer programming is an important skill for all children in our tech-
nological society. In addition to pragmatic considerations, there is the
expectation among many educators and psychologists that learning to
program can help children develop general high-level thinking skills use-
ful in other disciplines, such as mathematics and science. However, there
is little evidence that current approaches to teaching programming bring
students to the level of programming competence needed to.develop
general problem-solving skills, or to develop a model of computer func-
tioning that would enable them to write useful programs. Evidence of
what children actually do in the early stages of learning to program (Pea
& Kurland, 1984b; Rampy, 1984) suggests that in current practices pro-
gramming may not evoke the kir.ds of systematic, analytic, and reflective
thought that is characteristic of expert adult programers (cf. Kurland,
Mawby, & Cahir, 1984).

As the teaching of programming is initiated at increasingly early
grade levels, questions concerning the cognitive demands for learning to
program are beginning to surface. Of particular interest to both teachers
and developmental psychologists is whether there are specific cognitive
demands for learning to program that might inform our teaching and tell
us what aspects of programming will be difficult for students at different
stages in the learning process.

In the first part of this chapter, we explore factors that may determine
the cognitive demands of programming. In the second part, we report

117

103

104 = Kurland, Clement, Mawby, and Pea

on a siudy of these ccgnitive demands conducted with high school stu-
dents lexrning Logo. The premise for the study was the belief that, in
order for programming to hslp promote the development of certain
high-level thinking skills, students must attain a relatively sophisticated
understanding of progrumming. Therefore, we developed two types of
measures: measures to assess programming proficiency; and measures
to assess certain ke cognitive abilities, which we hypothesized to be in-
strumental in allowing _tudents to become proficient programmers. The
relationship between these two sets of measures was then assessed.

Issuas In Determining the Cognitive Demands
of Programming ,
One of the main issues in conducting research on the cognitive demands
of programming is that the term "’programming’’ is used loosely to refer
to many different activities invelving the computer—activities ranging
from what a young child seated i froat of a computer may do easily using
the immediate command modein a language such as Logo, to what college
students struggle over even after several years of programming instruc-
tion. Contrary to the popular conception that young children take to
programming "“naturally”” while adults do not, what the child and the
adult novice are actually doing and what is expected of the.n is radically
different. Clearly, the cognitive demands for the activities of the young
child and the college student will also differ. Thus, what is meant by
programming must be clarified before a discussion of demands can be
undertaken.

Defining programming and assessing its cogiitive demands are prob-
lematic because progr. mming is a complex configuration of activities that
vary according to what is being programmed, the style of programming,
and how rich and supportive the surrounding programming environment
is (Kurland et al., 1984; Pea & Kurland, 1984b).

One consequence of the fact that programming refers to a configura-
tion of activities is that different combinations of activities may be in-
volved in any specific programming project. These activities include, at a
general level, problem definition, design development and organization,
code writing, and debugging (see Pea & Kurland, 1984b). Different com-
binations of activities will entail different cognitive demands. For exam-
ple, a large memory span may facilitate the mental simulations required
in designing and comprehending programs. Or analogical reasoning skill
may be impcrtant for recognizing the similarity of different programming
tasks and for transferring programming methods or procedures from one
context to another. An adequate assessment of the cognitive demands of
programming will depend on analyses of the programming activity and
examination of the demands of different component processes.

118

Mapping the Cognitive Demands of Learning to Program « 105

Specifying Lavels cf Programming Expertise

In assessing the cognitive demands of programming, specifying the in-
tended level of expertise is essential since different levels of expertise en-
tail different cognitive demands. In many Logo programming classrooms,
we have observed children engaging in what we term *‘brute-force para-
graph” programming, or what Rampy (1984) has termed “’product-
oriented”” programming. This style is analogous to so-called spaghetti
programming in BASIC: Students decide on desired screen effects and
then write linear programs, lining up commands that will cause the screen
to show what they want in the order in which they want it to happen.
Students do not engage in problem decomposition or use the powerful
features of the language to structure a solution to the programming
problem. For example, if a similar shape is required several times in a
program, students will write new code each time the effect is required,
rather than writing one general procedure and calling on it repeatedly.
Programs thus consist of long strips of Logo primitives that are nearly
impossible to read, modify, or debug, even for the students who have
written them. Although students may eventually achieve their goal, or
at least end up with a graphics display with which they are satisfied, the
only “’demands’ we can imagine for such a linear approach to pro-
gramming are stamina and determination.

Thus, as a first step in determining the cognitive demands for learn-
ing or doing programming, we need to distinguish between linear and
modular programming (i.e., between learning to program elegantly and
efficiently, and using a style that emphasizes the generation of effects
without any consideration of how they were generated).

The beginner’s linear style of constructing programs, whether in Logo
or BASIC, contrasts with modular programming—a planful process of
structured problem solving. Here, component elements of a task are iso-
lated, procedures for their execution developed, and the parts assembled
into a program and debugged. This type of programming requires a rela-
tively high-level understanding of the language. Modular programming
in Logo, where programs consist of organized, reusable subprocedures,
requires that students understand the flow of control of the language, as
well as such powerful control structures as recursion and the passing of
values of variables between procedures. The cognitive demands for this
kind of programming are different from the demands for linear pro-
gramming, as are the potential cognitive benefits that may result from
the two programming styles.

Distinguishing Between Product and Process

In assessing the demands for different levels of expertise, however, it is
important not to equate level of expertise with the effects the students’

119

106 ¢ Kurland, Clement, Mawby, and Pea

programs produce. We must distinguish product from process (Werner,
1937). We have seen very elaborate graphics displays created entirely
with brute-force programming. One characteristic of highly interactive
programming languages such as Logo and BASIC is that students can
often get the effects they want simply by trial and error, that is, without
any overall plan, without fully understanding how effects are created,
without the use of sophisticated programming techniques, and without
recognizing that a more planful program could be used as a building
block in future programs.

Furthermore, in school classrooms we have often seen students borrow
code from each other, and then integrate the code into their programs
without bothering to understand why the borrowed code does what it
does. Students therefore can often satisfy a programming assignment by
piecing together major chunks imported from other sources. Although
such “code stealing’’ is an important and efficient technique widely em-
ployed by expert programmers, an overreliance on other people’s code
that is beyond the understanding of the borrower is unlikely to lead to a
deeper understanding of programming. Therefore, if we simply correlate
students’ products with their performance on particular demands or
programming proficiency measures, we are likely to find the correla-
tions greatly attenuated.

Compensating Strategles

Identification of the cognitive demands of programming problem is fur-
ther complicated by the fact that any programming can be solved ir. many
ways. Different programmers can utilize a different mix of component
processes to write a successful program. This allows for high levels on
some abilities to compensate for low levels on others. For example, a pro-
grammer may be deficient in the planning skills needed for good initial
program design, but may have high levels of skills needed to easily debug
programs once drafted. Thus, it will not be possible to identify the unique
set of skills that are necessary for programming. Instead, different pro-
grammers may possess alternative sets of skills, each of which is suffi-
cient for programming competence.

The Programming Environment

The features of the programming environment may also increase or
decrease the need .or particular cugnitive abilities that are important for
programming. We cannot separate the pure demands for using a pro-
gramming language from the demands and suppvurts provided by the in-
strumental, instructional, and social environment.. For example, an
interactive language with good trace routines can decrease the need for
preplanning by reducing the difficulty of debugging. Similarly, :mplemen

120

Mapping the Cognitive Demands of Learning to Program * 107

tations of particular languages that display both the student’s program
and the screen effects of the code side by side in separate **windows,’*
such as Interlisp-D, can reduce the difficulty in understanding and fol-
lowing flow of control.

The instructional environment can reduce certain cognitive demands
if it offers relevant structure, or can increase demands if it is so unstruc-
tured that learning depends heavily on what the students themselves
bring to the class. For example, understanding the operation of branch-
ing statements of the IF-THEN-ELSE type requires an appreciation of
both conditional logic and the operation of truth tables. If students have
not yet developed such an appreciation, doing programs that require
even simple conditional structure can be very confusing. However, with
appropriate instruction, an understanding of how to use conditional
commands in some limited contexts (such as conditional stop rules to
terminate the execution of a loop) can easily be picked up by students.
Thus, in the absence of instruction, conditional reasoning skill can be a
major factor in determining who will learn to program. However, with
instructional intervention, students can pick up enough functional
krowledge about conditional commands to take them quite far.

Instruction is important in other ways as well. It has been our experi-
ence that students are very poor at choosing programming projects that
are within their current ability and at the same time will stretch their
understanding and force them to think about new types of problems.
They are poor at constructing for themselves what V -gotsky has described
as the *’zone of proximal development’’ (Rogoff & Wertsch, 1984). Con-
sequently, too little guidance on the part of the teacher can lead to ineffi-
cient or highly frustrating programming projects. On the other hand,
too much teacher-imposed structure can make projucts seem arbitrary
and uninteresting, with the result that they are less Lkely to evoke stu-
dents’ full attention and involvement. Finding the right balance be-
tween guidance and discovery will have a major impact on the kinds of
cognitive abilities students will have available to them when engaging in
programming tasks.

Finally, the social context can mediate the demands placed on an indi-
vidual for learning to program, since programming—particularly in ele-
mentary school classrooms—is often a collaborative process (Hawkins,
1983). The varying skills of student collaborators might enable them to
create programs that any one of them alone could not have produced.
While teamwork is typical of expert programmers, it raises thorny assess-
ment problems in an educational system that stresses individual account-
ability.

In summary, several factors complicate the identification of general
cognitive abilities that will broadly affect a child’s ability to learn to pro-

121

PLE

108 ¢ Kurland, Clement, Mawby, and Pea

gram. In asking about d2mands, we must consider level of expertise, the
impact of supportive and.or compensatory programming environments,
and the role of ir.structional and social factors that irteract with children’s
initial abilities for mastering programming.

ANALYSIS OF THE COGNITIVE DEMANDS
OF MODULAR PROGRAMMING

Two central motivations for teaching programming tc precollege students
are to provide a tool for undesstanding mathematical concepts and to de-
velop general problem-solving skills. But achieving these goals requires
that students learn to program extremely well (Mawby, 1984). To use a
language like Logo to develop an understanding of such mathematical
concepts as variable and function requires that students learn to program
with variables and procedures, generate reusable code, and understand
the control structure of the language. Students must also become reason-
ably good modular programmers before Logo can be effective in teach-
ing problem solving or planning. A rational analysis of the cognitive
requirements of designing and comprehending modv™ programs sug-
gests that students will first need to be sk.led in means-ends procedural
reasoning and in decentering.

We would expect procedural reasoning ability to be one of the impor-
tant skills underlying the ability to program, since programmers mus?
maice explicit the antecedents necessary for different ends and mwust
fallow all the possible consequences of different anteceder:t conditions.
Designing and following the flow of control of a program necessitates
understanding different kinds of relations between antecedent and con-
sequent events, and organizing and interrelating the local means-end
relations (modules) leading to completion of the program. Procedural
reasoning thus includes understanding conditional relationships, tem-
poral sequencing, hypothetical deduction, and planning.

Decentering also may be an important skill in programming, since
programmers must distinguish what they know and intend from what
the computer has been instructed to execute. This is important in both
program construction and debugging. In the .ormer, the program de-
signer must be aware of the level of explicitness required adequately to
instruct the computer, in the latter, he or she must differentiate between
what the program should do from what it in fact did. We have found
that such decentering is a major hurdle in program understanding at the
secondary school level (Kurland & Pea, 1985).

On the basis of this rational analysis, we designed a study to investi-
gate the relationship of measures of procedural reasoning and decenter-
ing to the acquisition of programming skill.

122

Mapping the Ccgnitive Demands of Laarning to Program * 109

METHOD

To investigate the relationship between these cognitive abilities and pro-
gramming competence, we studied novice programmers learning Logo.
Logo was chosen in part because of the high interest it has generated
within the educational community, and in part because the Logo lan-
guage has specific features that suppost certain important thinking skills.
For example, the strategy of problem decomposition is supported by
Logo’s modular features: Logo procedures may be created for each sub-
part of a task. The procedures may be written, debugged, and saved as
independent, reusable modules and then used in combination for the
solution of the larger problem. Efficient and planful problem decomposi-
tion in Logo results in flexibly ..eusable modular procedures with variable
inputs. While the same can be true of languages such as BASIC, the for-
mal properties of Logo appear tc be more likely to encourage students to
use structured programming.

PARTICIPANTS AND INSTRUCTIONAL SETTING

Participants in the study were 79 eighth to eleventh grade female high
school students enrolled in an intensive 6-week summer program de-
signed to improve mathematics skills and introduce programming. The
goal of the program was to improve students’ mathematical understand-
ing while building their sense of control and lessening their anxiety about
mathematics (see Confrey, 1984, and Confrey, Rommney, & Mundy,
1984, for details about the affective aspects of learning to program). Those
admitted to the program were generally doing very well in school and
had high career aspirations, but were relatively poor in mathematics and
in some cases experienced a great deal of mathematics-related anxiety.

Each day the students attended two 90-minute mathematics classes,
as well as lectures and demonstrations on how mathematics is involved
in many aspects of art and science. Each student also spent 90 minutes 2
day in a Logo programming course. The teachers hoped that the pro-
gramming experience would enable students to explore mathematical
principles and thus lead them to new insights into mathematics. The
guiding philosophy of the program, which influenced both the mathe-
matics and Logo instruction, was constructivist. This Piagetian-inspired
philosophy of instruction holds that a person’s knowledge and repre-
sentation of the world is the result of his or her own cognitive activity.
Learning will not occur if students simply memorize constructions pre-
sented by their teachers in the form of facts and algorithms. Thus, stu-
dents were expected to construct understandings for themselves through
their direct interactions with and explorations ot the mathematics or pro-
gramming curricula.

123

-

110 ¢ Kurland, Clement, Mawby, and Pea

The Logo instruction was given in small classes, with the students
working primarily in pairs—that is, two students to a computer. There
was a 6:1 student-teacher ratio and ample access to printers and resource
materials. In order to provide structure for the students’ explorations of
Logo, the program staff created a detailed curriculum designed to provide
systematic learning experiences involving the Logo turtle-graphics com-
mands and control structures. While the curriculum itself was detailed
and carefully sequenced, the style of classroom instruction was influenced
by the discovery-learning model advocated by Papert (198C). Thus, stu-
dents were allowed to work at their own pace and were not directly ac-
countable for mastery of specific concepts or commands. The instructors
saw their primary role as helping students develop a positive attitude
toward mathematics and programming. In this respect, the program
seemed by our observations to have been very successful.

The emphasis of the course was on learning to program. The teachers
repeatedly called attention to the underlying mathematical principles at
work in the assignments, and at the same time tried to bring students to
an adequate level of programming proficiency. Thus, the curriculum
was designed around a series of “’challenges’” (i.e., worksheets) which
the students were to work though systematically. These challenges in-
cluced creating graphics using Logo primitives, unscrambling programs,
predicting program outcomes, and coordinating class projects to produce
large-scale programs. It was assumed that the students would find the
challenges and the opportunity to work at the computer enjoyable, and
would as a result be largely self-motivated.

MEASURES

We were interested in how students’ level of programming proficiency
would relate to the specific cognitive abilities that our earlier analysis
had indicated to be potentially important. We therefore developed the fol-
lowing measures of cognitive performance and programming proficiency.

Cognitive Demands Tasks

Two cognitive demands tasks were developed and administered to stu-
dents at the beginning of the program. The first, procedural flow of con-
trol, was designed to assess students’ ability to use procedural reasoning
in order to follow the flow of control determined bty conditional rela-
tions. In this task, students had to negotiate a maze in the form of an in-
verted branching tree (see Figure 6.1). At the most distant ends of the
branches were a set of labeled goals. To get to any specific goal from the
top of the maze, students had to pass through "‘gates’” at each of the
branching nodes. The conditions for passage through the gates involved

124

Figure 1. Procedural flow of control task to assess students’ ability to use pro-
cedural reasoning.

START

oz
el ZMR

oMy
ZT» v
PZAme <

WO
MO Zy»> 0

112 ¢ Kurland, Clement, Mawby, and Pea

satisfying either simple or complex logical structures (disjunctive or con-
junctive). Passage through gates was permitted by a set of geometric
tokens with which the student was presented at the beginning of each
problem. Each gate was marked with the type(s) of tokens required to
gain passage. Forexample, a circle token allowed students to pass through
a circular gate but not through a square gate. If they had both a square
and atriangle token, they could pass through a joint square-triangle gate
but not through a joint square-circle gate.

The task consisted of two parts. In the first part, students were pre-
sented with five problems in which they had to find paths through the
maze that did not violate the conditions for passage through the gates.
They were given a set of tokens and asked to discover all the possible
goals that could be reached with that set.

In the second part of the task, we desigried two problems, based on a
more complex maze, to add further constraints and possibilities for find-
ing the optimal legal path to the goals. Unlike part 1, at a certain point in
the maze students could choose to trade one kind of token for another.
In addition, as they passed through each gate, they forfeited the token
that enabled them to get through it. This feature introduced additional
planning and hypothetical reasoning requirements, since the studcnts
had to foresee the sequential implications for choosing one path over
other possible paths. This task allowed for several possible solutions
that met the minimum requirements of the task (i.e., reaching a specified
goal). However, some solutions were more elegant than others in that
they used fewer tokens. Thus, it was of interest to see whether students
would choose to go beyond an adequate solution to find an elegant one.

The task was designed using non-English symbolisms so that verbal
ability and comprehension of the IF THEN connectives would not be
confounding factors. In natural language, IF-THEN is often ambiguous,
its interpretation depending on context. We therefore did not include
standard tests of the IF-THEN connective in propositional logic because
computing truth values, as these tests require, is not strictly relevant to
following complex conditional structures in programming.

The procedural flow of control task, therefore, involved a system of
reasonable, albeit arbitrary and artificial, rules not easily influenced by
the subjects’ prior world know ledge. The nested conditional structure of
the tree and the logical structures of the nodes were designed to be
analogous to the logical structures found in computer languages.

The second cognitive demands task was designed to assess decenter-
ing as well as procedural and temporal reasoning. In this debugging
task, students were to detect bugs in a set of driving instructions that
had supposedly been written for another person to follow. Students
were given the set of written directions, a map, and local driving rules.

126

Mapping the Cognitive Demands of Learning to Progam ¢ 113

They were asked to read over the directions and then, by referring to the
map, catch and correct bugs in the direction so that the driver could suc-
cessfully reach the destination. In order to follow the instructions and
determine their accuracy, students had to consider means-ends relation-
ships and employ temporal reasoning. They had to decenter by making
a distinction between their own and the driver’s knowledge. The kinds
of bugs students were asked to find and correct included:

Inaccurate information bug. Instructions were simply incorrect
(e.g., telling the driver to make a righthand turn at a corner instead of a
left).

Ambiguous information bug. Instructions were insufficiently explicit
to enable the driver to make a correct choice between alternative routes
(e.g., telling the driver to exit off a road without specifying which of two
possible exits to use).

Temporal order bug. One line of instruction was given at the wrong
time (e.g., telling the driver to pay a token to cross a toll bridge before in-
dicating where to purchase tokens).

Bugs due to unusual input conditions and embedded bugs, in which
obvious corrections failed because they introduced and/or left a bug (e.g.,
telling the driver to make a detour in response to a rush hour traffic
rule, but failing to note that the obvious detour violated a second traffic
rule).

Programming Proficiency Tasks

In order to determine skills in modular programming, we developed
measures for three aspects of programming proficiency. flow of control,
program decomposition, and reusability of code. In designing the test,
we were concerned less with students’ knowledge of individual com-
mands than with assessing their comprehension of the overall strucure
of the language and the pragmatics of programming. The test consisted
of three parts: one production task and two comprehension tasks.

Production task. The production task was a paper-and-pencil test
designed to assess students’ skills in planning, problem decomposition,
and features of programming style such as the conciseness and general-
ity of procedures. Students were shown a set of seven geometric figures,
represented in Figure 6.2.

The students were instructed to select five of the seven figures and
write Logo programs to produce them. The taskied for students first
to indicate the five figures they would write programs for, and then to
number them in the order in which the programs were to be written. It

127

114 * Kurland, Clement, Mawby, and Pea
Figure 2, Program production task to assess students’ skills in planning, problem
decomposition, and features of programming styles.
— -t . 4 dd -4 434 A 4 -yt 4 of =t -
- 133339733
1 H- } BEEAEEEPEEEREEN RN
4414 : -4 U 8 IS o N I
n 1317 113 3T
4343- 431533334443 2.13 434
o et et] i 5 QU S o 444-1: dd i f
1334433333339 334 33393 e
144399371433 333493433- '.':‘: {344 J2
1733309333373
i
et 4t f = d . PN v
——----<j< —<--:<-—q- ;'
239907113333733713 933 43304 1135473 .3.'«". 133310 {_Y"'
1434 33 s
1] 414343444
RRESEREERERER] *
was hoped that this instruction would encourage the students to plan
before writing their programs. Students were free, however, to alter the
choice and/or order of their figures once they began to code. For each of
their five programs, they were to write the code and give the run com-
mand needed to make the program produce the figure.
Q .

128

IToxt Provided by ERI

Mapping the Cognitive Demands of Learning to Program o 115

The task sheet included an area labeled ""workspace,”’ analogous to
the Logo work space, in which students would write the procedures to
be called by their programs. The layout of the task sheet, two sample
problems, and explicit instructions made it clear that once written in the
work space, the procedures were available to all programs.

The task was designed to encourage planning for modular procedures
that could be reused across programs. In fact, figures B, C, E, F, and G
could be programmed by writing three general-purpose procedures. An
optimal solution would be to write a procedure with two variable inputs
to produce rectangles, a “move over’” procedure with one input, a "move
up’’ procedure with one input, and then to use those three procedures
in programs to produce figures B, C, E, F, and G. Also, Figures Band G
could be most efficiently produced using recursive programs, although
recursion was not necessary.

Figures A and D were included as distractor items. Unlike the other
five figures, they were designed nof to be easily decomposed and could
not easily be produced with code generated for any of the other figures.

The task could be solved by planful use of flexible modules of code. It
could also be solved in many other ways, such as writing low-level, in-
elegant linear code consisting of long sequences of FORWARD, LEFT,
and RIGHT commands, thereby never reusing modules of code. We were
particularly interested in this style dimension since a linear solution
gives no evidence that the student is using the Logo constructs that sup-
port and embody high-level thinking.

Comprehension tasks. Each of the two comprehension tasks pre-
sented four procedures: one superprocedure and three subprocedures.
The students were asked first to write functional descriptions of each of
the procedures, thus showing their ability to grasp the meaning of com-
mands within the context of a procedure. Then they were asked to draw
on graph paper the screen effects of the superprocedure when executed
with a specific input. To draw the screen effects, students had to hand
simulate the program’s execution, thus providing a strong test of their
ability to follow the precise sequence of instructions dictated by the pro-
gram’s flow of control.

In the first comprehension task, the superprocedure was named
TWOFLAGS and the subprocedures were CENTER, FLAG, and BOX.
Figure 6.3 presents the Logo code for the procedures and a correct draw-
ing of the screen effect of TWOFLAGS 10.

The second comprehension task included procedures with two inputs,
and a recursive procedure with a conditional stop rule. The task was de-
signed to make the master procedure progressively harder to follow.
The superprocedure was named ROBOT, and the three subprocedures
BOT, MID, and TOP. Figure 6.4 presents the Logo code and correct draw-
ing of the screen effects of ROBOT 30 25.

e 129

116 * Kurland, Clement, Mawby, and Pea

Figure 3. First Logo comprehension task with correct drawing of the resulting
screen effects.

Logo Prodedures Drawing of Screen Effects

TWOFLAGS 10

TO CENTER
PENUP
HOME
PENDOWN

END

TO FLAG :X
FORWARD 15
BOX :X
CENTER
END

TO BOX :SIDE
REPEAT 4 [FORWARD :SIDE RT 90)
END

TO TWOFLAGS :X

CENTER

FLAG 15

PENUP

RT 90 FORWARD 20 LT 90
PENDOWN

FLAG :X

END

Both programming comprehension tasks were designed as paper-and-
pencil tests that did not require the use of the computer. Students were
given a sheet that listed the programs, a sheet on which to write their
descriptions of what procedure would do, and graph paper on which to
draw their predictions of what the program would do when executed.

PROCEDURE

The cognitive demands measures were administered to the students on
the first day of the program, along with a number of mathematics, prob-
lem-solving, and attitude 1neasures (see Confrey, 1984, for a discussion
of the attitude measures). The students were tested together in a large

130

Mapping the Cognitive Demands of Learning to Program ¢ 117

Figure 4. Second Logo comprehension task with correct drawing of the resulting
screen effects.

Logo Procedures Drawing of Screen

Effects of ROBOT 30 25

TO BOT :X :Y
FORWARD :X
RT 90
FORWARD :Y
END

TO0 MID :X :Y¥Y E—

BOT :X :¥Y

RT 90-

BOT :X :Y -
END

TO TOP :X

IF :X 5 RT 90 BACK 10 STOP
REPEAT 4 [FORWARD :X RT 90)
FORWARD 5 LT 90

TOP :X - 10
END

TO ROBOT :X :Y
HT

MID :X :Y

BACK 15 LT 90

BOT :X - 10 :Y - 15
RT 90 PU FORWARD 50 PD
TOP :¥ - 10

END

auditorium. Instructions for each test were read by the experimenters,
who monitored the testing and answered all questions. Students were
given 17 minutes for the procedural reasoning task and 12 minutes for
the debugging task.

In the final week of the program, the students were administered the
Logo proficiency test. Testing was done in groups of approximately 30
students each. Again the experimenters gave all the instructions and
were present throughout the testing to answer students’ questions. Stu-
dents were given 30 minutes for the production task and 15 minutes
each for the comprehension tasks.

131

118 ¢ Kurland, Clement, Mawby, and Pea

RESULTS

Programming Proficlency Tasks

To use Logo as a tool for high-level thinking, one must employ relatively
sophisticated Logo constructs, such as procedures with variable iaputs
and superprocedures that call subprocedures. To write and understand
Logo programs using these language constructs, one must understand
something about the pragmatics of writing programs and have a good
grasp of Logo’s control structure; that is, how Logo determines the order
in which commands are executed. The empirical question addressed here
is whether students can develop such an adequate understanding after
five weeks (approximately 45 hours) of intensive Logo instruction.

Comprehension tasks. Assessments of Logo proficiency at the end of
the course indicated that mastery ol Logo was limited. On the TWOFLAGS
task, 48% of the students correctly drew the first flag, which required
simulating the execution of TWOFLAGS through its call to FLAG in line
2. But only 21% correctly drew the second flag, with 19% of the students
correct on both flags (showing that in almost all cases performance was
cumulative).

One-third of the students were partially right on the second flag. Analy-
sis of errors on this flag indicated that more students had trouble follow-
ing the flow of control than keeping track of the values of the variables.
An error in place on the second flag suggests that the student’s simula-
tion did not execute all the positionir., lines of code, especially the call to
CENTER in the last line of FLAG. This reveals an error in flow of con-
trol. An error in size on the second flag suggests that the student did not
correctly pass the variable from TWOFLAGS to FLAG to BOX.

On the ROBOT task, 65% of the students correctly drew the body of .
the robot, which involved simulating the execution of ROBOT through its
call to MID, Thirty-seven percent correctly drew the leg, which involved
following the execution through ROBOT’s call to BOT in line 4. TOP is a
recursive procedure with inputs to ROBOT of 30 25; it executes three
times. The first time TOP draws the head, the second time it draws the
nose, and the last time it draws the mouth and then stops. Sixteen per-
cent of the students correctly drew the head, 13% succeeded with the
nose, and only 2% were able tc follow the program execution all the way
through to the mouth. The cumulative percentages were within 3% of
these absolute percentages.

Again, analysis of the errors of students who were partially correct
showed that more of them correctly passed the values of variables than
followed the flow of control. In partially correct drawings, the parts of
the robot were more often correctly sized than correctly placed.

132

Mapping the Cognitive Demands of Learning to Program « 119

The students’ written descriptions of the procedures in both the
TWOFLAGS and ROBOT tasks showed that many had a general, albeit
vague, understanding of the procedures. Often students seemed to
understand the code in that they gave adequate glosses of individual
lines. But when tested by the drawing task, many revealed that they did
not understand Logo’s control structure well enough to trace the pro-
gram’s execution. This became especially clear when the order of the
lines in a listing of the program differed from the order in which the
lines were executed.

Some students failed to grasp the fact that, since variable values are
local to the procedure call, values can be passed among procedures
under different names. Even more failed to understand the most basic
fact of flow of control: After a called procedure is executed, control
returns to the next line of the calling procedure.

Production task. In the production task, students made very little
use of variables and reusable subprocedures, While most are able to gen-
erate these figures, many did so following the linear programming style.
Only 21% of the students avoided both distractor items. An additional
35% avoided either A or D singly. Thus, 44% of the students wrote pro-
grams for both A and D. Given a low level of pregramming proficiency,
choosing the distractors was reasonable because, by design, linear pro-
grams for the distractors were easier than linear prograrns for figures B
and G (and comparable to C and F).

Among the possible approaches to the task are analytic and synthetic
decomposition. By analytic decomposition, we mean analyzing a single
figure into component parts, writing procedures for the parts, and hav-
ing the program call the procedures. By synthetic decomposition, we
mean decomposition of the entire problem set into components, writing
procedures for the parts, and then having each of the five programs call
the appropriate modules of code. Note that while the five nondistractor
figures contain only rectangles, the rectangles are of different sizes.
Thus, high-level synthetic decomposition, unlike analytic decomposi-
tion, requires a general procedure with variable inputs for producing the
rectangles.

Students were much more likely to use analytic than synthetic decom-
position. In fact, 88% wrote, used, and reused a procedure at least once,
thus giving evidence of some analytic decomposition. XJowever, only 20%
of the students gave evidence of synthetic decomposition by using a
procedure for more than one program.

Figure 6.5 and Table 6.1 provide more detail on the features used by
Logo students to produce the individual figures. In the analysis repre-
sented by Figure 6.5, we wished to know, for each figure, whether

133

Figure 5, Performance of students on program production task.

ir44

[s0% tnterval

I Range
S0 — Mecan
0 Number of commands in

an optimal solution
of the 5-figurc task

Number
of
Commands

107

3
!

figurc A figure D figurc E figurc F figure C figurc B figure G o
O -

=1 [“Y SDDDD — 1

Q 12 ‘x
ERIC

Aruitoxt provided by Eic:

Mapping the Cognitive Demands of Learning to Program » 121

Table 1
Performance of Students on Program Production Tasks
Figures

Performance

(percentages) A B C D E F G
% who did it 73 60 96 51 91 91 31
workable program 86 47 85 % 91 80 48
variables used 5 43 10 2 14 12 4G
repeat used 8 49 65 2 49 84 78
recursion used 0 4 0 ¢ 0 0 8

students could write code to produce it and whether they could correctly
use REPEAT, variables, and recursion. The REPEAT command is the
simplest modular feature in Logo. Variables go further in transforming
procedures into reusable functions, making the prucedure more general,
and hence more useful. Recursion is an extremely powerful Logo con-
struct in which a procedure can call on copies of itself from within other
copies. These features of Logo make modular code possible, and thus
support problem decomposition strategies.

The number of commands used to produce the program is a good sum-
mary indicator of style, For these tasks, elegant programs use few com-
mands. We counted each use of a Logo primitive as one command. Each
procadure call was counted as one command, and on the first call to a
pr>cedure the commands within the procedure were counted. On sub-
sequent calls to that procedure only the call itself was counted.

The graph at the top of Figure 6.5 displays several statistics concern-
ing the number of commands used. the range, the mean, and the region
containing the middle 50% of the scores. For comparison, we also in-
clude the number of commands used in an optimal solution of the task
as a whole. This particular optimal solution synthetically decomposes
the five rectangular figures with three subprocedures, and produces the
programs in the order E, F, C, B, G.

The figures fall into three groups: the distractors A and D, C, E, and
F; and B and G. As noted, nearly half of the students chose figures A
and D, and 90% of the students who chose these figures were able to
write a Logo program to produce them. As expected from the design of
the figures, less than 10% of these programs used variables or REPEAT.
Most of the code was low-level, brute-force style, which could not be
reused in other programs, Thus, while the students wrote programs to
produce the figure, their programming style gave no ind.. ation that they
were engaged in the high-level thinking that Logo can support.

The group of figures C, E, and F was chosen by over 90% of the stu-
dents, and nearly 90% of these wrote workable programs. More than half

135

122 * Kurland, Clement, Mawby, and Pea

of ..1e students correctly used REPEAT, Logo’s simpler, within-procedure
modular construct. Less than 15% of these programs correctly used varia-
bles. This more elegant, across-program construct was largely ignored.
As aresult, most students needed more than the optimal number of com-
mands to write programs for Figures F and C.

Figures B and G were chosen by the least number of students (60% and
31%, respectively), and proved to be the most difficult since only half of
the students wrote workable programs. These programs used REPEAT
and variables relatively often (REPEAT: 49% in B, 68% in G; variables:
43% in B, 40% in G). Thus, it seems that the skilled students who chose
these figures did quite well. Of the other students who chose these
figures, about half did not attempt to use variables, and half used varia-
bles incorrectly. Again, because few students did synthetic decomposi-
tion, most programs had more than an optimal number of commands.

No one tried to write a recursive program for any of the ‘igures except
B and G, and fewer than 10% of the students who chose figure B or G
wrote correct recursive programs. This powerful Logo construct was
conspicuous by ite absence.

What factors may have kept these students from using the powerful
and elegant features of Logo? It is unlikely that students did not notice
the geometrical similarity among, for instance, figures C, E, and F. But
in order to do a synthetic decomposition of the task, it is necessary to
write procedures with variables. Moreover, coo1dinating subprocedures
in a superprocedure requires a good understanding of Logo flow of con-
trol. Performance on the comprehensica tasks showed that students
had a fair understanding of individual lines of Logo code, but had dif-
ficulty in following program flow of control.

Cognitive Demands Tasks

There was a fairly broad range of performance on the cognitive demands
tasks (Mawby, Clement, Pea, & Hawkins, 1984). Many students showed
moderate or high levels of reasoning skills as assessed by these tasks,
and a few found the tasks fairly difficult.

Procedural flow of control task. The two parts of this task were ex-
amined individually. The first part included a seriez of problems for
students to solve, each of which posed a different set uf constraints
and.'or goals for going through the maze. Difficult problems required a
more exhaustive testing of conditions than did the others (i.e., the given
tokens satisfied many . odes early on). Some problems were best solved
using alternate strateg.es, such as searching from the bottom up rather
than from the top down. Perfurmance was relatively low on the more
difficult problems (30%-40% correct as opposed to 55%-70% correct on

136

Mapping the Cognitive Demands of Learning to Program e 123

the less complex problems). This indicated that when many possibilities
had to be considered, and th~ve were no easy shortcuts to reduce the
number of possibilities, students had difficulty testing all conditions.

In the second part, there weze three levels of efficiency among correct
routes corresponding to the number of tokens required to successfully
reach the goal. Only 14% of the students on the first problem and 21%
on the second problem found the most efficient route, while 41% of the
students on the first problem and 79% on the second problem were un-
able to reach the goal at all. Few students tested the hypotheses needed
to discover the most efficient route.

Debugging task. Table 6.2 shows the percentage of students detect-
ing and correcting each of the tour types of bugs in the task. As shown,
inaccurate information and temporal bugs were easiest to detect and cor-
rect (72%-91% success). Students found it more difficult to successfully
correct the ambiguous instructions. Only 48% were able to write instruc-
tions that were explicit enough for a driver to choose correctly among
alternate routes. For the lines with embedded bugs, only 21% fully cor-
rected the instructions; 40% caught and correcied one bag but not the
other.

Results indicated that students had little difficulty detecting first-
order bugs and correcting them when the corrections were simple, for
exarriple, changing a number or direction to turn. However, when stu-
dents had to be explicit and exhaustively check for ambiguity and for ad-
ditional bugs, they were less successful.

Relationship of the Demands Measures

%0 Programming Proficiency

Analysis of the relationship between these cognitive demand tasks and
the assessment of programming proficiency yielded an interesting set of

Table 2
Debugging Task
Task
Catch No Catch Some Catch &
Bug Type No Change Fix Fix Fix
% of students (n=70)
Wrong Instruction 3 6 na? 91
Ambiguous Instruction 1 41 n.? 48
Temporal Order Bug 16 1 na? 73
Embedded Bugs 29 10 40 21

4 not applicable

o . 137

15

124 o Kurland, Clement, Mawby, and Pea

results. As can be seen in Table 6.3, the cognitive demands measures
correlated moderately with composite scores on both tests of programm-
ing proficiency.

Examination of correlations with subscores on the programming pro-
duction task showed that students’ ability to write an adequate, runnable
program was less highly correlated with cognitive demands measures
than were appropriate use of variables, the use of subprocedures within
programs, or the use of a minimum number of commands to write pro-
grams (one indication of program elegance).

Other subcomponents of the production task that we assumed would
correlate highly with the cognitive demands measures—in particular,
whether students reused procedures across several programs or used re-
cursion—were not highly correlated. However, so few students engaged
in either of these forms of programming that a floor effect may have
masked this correlation. Interestingly, although few students used the
more advanced programming techniques, many seemed to manifest suf-
ficiently high levels of reasoning skill on the cognitive demands :nea-
sures. Perhaps other knowledge specific to the programming domain 1s
required in addition to the underlying cognitive capacity to reason in the
ways we assessed.

In general, the correlations of the cognitive demands measures were
higher with programming comprehension than with programming pro-
duction. The design of the production task may have contributed to
these findings. Students could write linear programs and still succeed
on the task, and most did so. This was true even for those who at times
in their class projects had utilized more advanced programming tech-
niques. In contrast, the comprehension task required students to display

Table 3
Correlations of Demands Measures with Measures of Programming Proficiency

Measures of Programming Proficiency
Demands Measures A B C D E F G

(n=70)

Procedural Reasoning Part 1
Procedural Reasoning Part 2
Debugging Task

Math Level

Production Proficiency
Comprehension Proficiency
Teacher Rating

. 38¢ g2¢ - - -
45¢ 19% 39¢ - .
54 50¢ 45¢ 59¢ 6b - -
300 202 22 37¢ b s4c

OmMmIOw>
W,
-

? p<.05
bp<.01
¢ p<.001

138

Mapping the Cognitive Demands of Learning to Program e 125

their understanding of sophisticated programming constructs. Thus,
while the comprehension task was better able to test the limits of pro-
gramming novices” understanding of tt. language, a production task
such as the one we employed may prove to be the better indicator of
programming proficiency for students once they attain a more advanced
level of ability.

We examined the relation between mathematics achievement level
(assigned on the basis of grade point average, courses taken in school,
and scores on matherr...tics tests administered on the first day of the pro-
gram) and Logo proficiency. Mathematics level was as good a predictor
of programming proficiency as the specific cognitive demands measures
taken individually. However, when mathematics level was partialled
out of the correlations, they all remained significant at the .01 level or
better, with the exception of the correlation between part 2 of the pro-
cedural reasoning task and program production proficiency. Thus, our
cognitive demands measures appear to tap abilities that are independent
of those directly tied to mathematics achievement.

When both mathematics achievement and performance on our de-
mands measures were entered into a multiple regression analysis, with
Logo proficiency as the dependent variable, the multiple correlations
were .71 and .52 for programming comprehension and productior., respec-
tively. Thus, one-quarter to one-half of the variability in tested program-
ming proficiency was accounted for by mathematical understanding and
specific cognitive abilities bearing a rational relationship to programming,

DISCUSSION

The present study was aimed at identifying the cognitive demands for
reaching a relatively sophisticated level of programming proficiency. We
examined students learning Logo in an instructional environment that
stressed self-discovery within a sequence of structured activities, but with
no testing or grading. Given this setting and the amount of instruction,
we found that for the most part students managed to master only the
basic turtle-graphics commands and the simpler aspects of the program
control structure. While they gained some understanding of such pro-
gramming concepts as procedures and variables, most did not develop
enough understanding of Logo to go beyond the skill level of “‘effects
generation.” Thus, for example, although they used variables within
procedures, they seldom passed variables between procedures, used re-
cursion, or reused procedures across programs, There was little mastery
of those aspects of programming requiring a more sophisticated under-
standing of flow of control and the structurz of the language. Without
this understanding, students cannot use the powerful Logo constructs

134

126 ¢ Kurland, Clement, Mawby, and Pea

which engage and presumably encourage the development of high-level
thinking skills.

Nonetheless, we did find moderate relationships between the ability
to reason in ways that we had hypothesized would be critical for ad-
vanced programming and performance on our measures of programm-
ing proficiency. The magnitude of the correlations indicated that the
students who developed most in programming were also those who
tended to perform better on tests of logical reasoning. However, our
observations of the students during the course of their instruction and
their performance on the Logo proficiency measures suggest that for
many students the actual writing of programs does not require that they
use formal or systematic approaches in their work. Programming can in-
voke high-level thinking skills, but such skills are not necessary for
students to generate desired screen effects in the early stages of writing
programs.

CONCLUSIONS

The field of computer education is in a period of transition. New lan-
guages and more powerful implementations of old ones are rapidly being
developed, and more suitable programming environments are being
engineered for both the new and established languages.

We can best assess the cognitive demands of programming when we
are clear about our goals for teaching programming and how much we
expect students to learn. However, to understand the cognitive demands
for achieving a particular level of expertise, we must consider the charac-
teristics of a specific language (such as its recursive control structure),
the quality of its implementation, the sophistication of the surrounding
programming environment (the tools, utilities, and editors available),
and the characteristics of the instructional environment in which it is
being presented and learned.

Our results indicate that certain reasoning abilities are linked to
higher levels of achievement in learning to program, but that most stu-
dents opt for a programming style that negates the need for engaging in
high-level thinking or planful, systematic programming. Thus, the cogni-
tive demands issue remains clouded by inherent characteristics of interac-
tive programming languages, which promote the use of a trial-and-error
approach to program production, and the particular characteristics of
the instructional environment in which learning occurs.

In conclusion, we have argued that uncovering the cognitive demands
of programing is far from simple. On the one hand, programming ability
of one form or another is undoubtedly obtainable regardless of levels of
particular cognitive skills. On the other hand, if by learning to program

140

Mapping the Cognitive Demands of Learning to Program o 127

we mean developing a level of proficiency that enables programming to
serve as a tool for reflecting on the thinking and problem-solving pro-
cesses, then the demands are most certainly complex and will interact
with particular programming activities and instructional approaches.

Programming can potentially serve as a fertile domain in which to
foster the growth and development of a wide range of high-level think-
ing skills. However, if this potential is to be realized, studies are needed
on two fronts:

First, more work is needed to discover what kinds of instructional en-
vironments and direction are best suited for achieving the many goals
educators have for teaching programming to children of different ages.
We are only beginning to understand how to teach programming. In-
deed, many parents and educators who read Mindstorms (Papert, 1980)
too literally are surprised that programming has to be taught at all. But
the unguided, free exploration approach, while effective for some pur-
poses, does not lead all students to a deeper undertanding of the struc-
ture and operation of a programming language, and thus does not lead
them to use or develop such high-level thinking skills as problem
decomposition, planning, or systematic elimination of errors.

Second, our ability to design effective instruction will depend in part
on further experimental work to tease apart the roles various cognitive
abilities play in influencing students’ ability to master particular pro-
gramming commands, constructs, and styles. A better understanding of
the cognitive demands of using a programming language should help us
to focus our instruction and identify those aspects of programming that
will be difficult for students. While this study demonstrated a relation be-
tween conditional and procedural reasoning ability and programming,
we conjecture that, at a more fundamental level, these tasks correlated
with programming proficiency because they required the ability to reason
in terms of formal, systematic, rule-governed systems, and to operate
within the limitations imposed by such systems. We feel that this may be
the major factor in determining whether students will obtain expert
levels of proficiency. What remains to be determined is whether extended
programming at proficiency levels below that of the expert require and/or
help to develop high-level cognitive skills and abilities.

AUTHOR NOTES

The work reported here was supported by the National Institute of
Education (Contract No. 400-83-0016). The opinions expressed do not
necessarily reflect the position or policy of the National Institute of
Education and no official endorsement should be inferred.

141

CHAPTER 7

INTEGRATING HUMAN AND
COMPUTER INTELLIGENCE

Roy D. Pea

The thesis to be explored in this chapter is that advances in computer
applications and artificial intelligence have important implications for
the study of development and learning in psychology. I begin by review-
ing current approaches to the use of computers as devices for solving
problems, reasoning, and thinking. I then raise questions concerning
the integration of computer-based intelligence with human intelligence
to serve human development and the processes of education.

EXPERT SYSTEMS AND
INTELLIGENT TUTORING SYSTEMS

Until recently, written texts have been the principal means for 'Jring
the knowledge needed to solve complex problems. Computers ha. _ro-
vided a radically new medium for stoning and making use of expert
knowledge. Expert systems are programs that embody the knowledge of
experts in making judgments in a field. Such systems emulate the reason-
ing and problem-solving abilities of human experts, and they are widely
used as advisory aids in human decision making. They vary greatly in
their representations of knowledge, its accessibility, its ease of modifica-
tion, and in the degree to which it attempts to teas.. its user. Today,
dozens of such systems serve as powerful conceptual tools for the exten-
sion and redefinition of human intellectual efforts in science, medicine,
industry, programming, and education. Excellent accounts of existing
expert systems and their grow ing importance are provided in Feigenbaum
and McCorduck (1983). Prominent examples include MYCIN (Shortliffe,
1976), a medical expert system; MOLGEN (Friedland, 1979), an expert
system used to design experiments in mojecular genetics, and DENDRAL
(Lindsay, Buchanan, Feigenbaum, & Lederberg, 1980), an expert chem-

Integrating Human and Computer Infelligence » 129

istry system used in determining the molecular structure of unknown
organic compounds. Expert systems are also used as aids in ill-defined
creative tasks, such as the design of integrated circuits (Stefik & de
Kleer, 1983).

The heart of the process of transferring expertise to the machine lies
in reducing experts’ know-how to chunks of knowledge specified, for
example, in terms of productions or if-then rules; that is, if specific con-
ditions are present in a situation, then a certain action is taken (Davis &
Lenat, 1981; Hayes-Roth, Waterman, & Lenat, 1984). Methods for mining
experts’ knowledge are related to both the clinical interviewing tech-
niques familiar to developmentalists and the think-aloud protocols com-
mon to cognitive psychology. The aim is to work with the experts to help
them articulate what they know. Then, the domain-specific facts, algo-
rithms, heuristics, general problem-solving strategies, and systematic
understanding of a domain (e.g., causal laws, probabilities) that the ex-
perts have available can be codified in computer programs that mimic
the solution of novel real-wor]” _-oblems at an expert level of perfor-
mance. The system comes to emulate human expertise through recursive
iterations that eliminate the differences between experts’ judgments and
those of the expert system.

The problem of transfer of expertise (Barr, Bennett, & Clancey, 1979)
raises a host of developmental concerns:

For an expert system to be truly useful, it should be able to learn what
human experts know, so that it can perform as well as they do, understand
the points of departure among the views of human experts who disagree,
keep its knowledge up to date as human experts do (by reading, asking ques-
tions, and learning from experience), and present its reasoning to its human
users in much the way that human experts would (justifying, clarifying, ex-
plaining, and even tutoring). (Barr & Feigenbaum, 1982, p. 80)

This passage implies that system users and knowledge sources (the "‘ex-
perts”) are in relevant respects homogeneous in knowledge. However,
the knowledge in an expert system and its power are not immediately
accessible to a novice, much less to a child. Most expert systems act as
advisers for consultation on specific problems. They can rarely solve
problems autonomously. Thus, many techniques need to be learned in
order to make effective use of expert systems.

Creating systems that children can use constitutes an important prob-
lem for education and developmental psychology. The developmentalist
asks the reverse of the knowledge engineer’s question. How can the ex-
pertise transferred from human adults to computers be transferred back
by computer to the child? The adult version (how can novices effectively
use and understand the problem-solving activities of an expert system?)
s now being addressed in the design of intelligent expert systems. Intell-

143

130 ¢ Pea

gent expert systems give correct answers or useful advice in problem sit-
uations. They also use concepts and reasoning processes that resemble
those that the system user might employ. A major problem in engineer-
ing such systems has been in creating facilities that can give an explana-
tory account, in terms that one expects from a human, of the reasoning
that underlies the advice offered.

What s the potential for expert systems for human learning and devel-
opment? Can expert systems eventually offer students better access to
knowledge and opportunities for development than either most teachers
or spontaneous experience alone can provide? We come closer to answer-
ing these questions by considering intelligent tutoring systems—systems
that go beyond possessing expert knowledge and attempt to model both
the student’s knowledge and the learning process for acquiring expertise.
These intelligent tutoring systems are designed to support students in
gaining access to the expert system. For example, SOPHIE (Brown, Bur-
ton, & de Kleer, 1982) functions both as an expert system and as a teach-
ing system in prompting the student to form and test hypotheses about
an electronic power supply circuit. SOPHIE has two different modes:
One poses troubleshooting problems for a single person; the other simu-
lates a gaming situation in which one team sets a fault for another team
to diagnose. In the solo mode, the system sets a fault for the student to
diagnose in a power supply circuit. The student can measure voltages
and currents in different parts of the circuit by asking questions of the
system; the aim is to figure out which component is faulty. The system
evaluates the student’s hypotheses about the fault by analyzing what it
has told the student up to that point about the values in different com-
ponents of the system and by comparing these values with the values
that would obtain under the student’s hypotheses. This kind of compar-
ison involves very sophisticated circuit simulation and fault propagation
techniques. The same capabilities are used to tutor students in the team
gaming option. Other systems that attempt to understand the user are
DEBUGGY (Burton, 1982) and ACM (Langley, Ohlsson, & Sage, 1984),
which diagnose students’ procedural errors in base-ten subtraction, the
WHY system (Stevens, Collins, & Goldin, 1979), which teaches the geo-
graphical aspects of rainfall distribution by initiating a Socratic dialogue,
and Boyle and Anderson’s (1984) system for teaching proof procedures
in high school geometry, which explicitly tutors problem-solving
st-ategies for the construction of geometric proofs. These systems vary
in the degree to which their cognitive diagnostics are theor dcally and
empirically substantiated.

From a developmental perspective, the educational use of expert sys-
tems miust be concerned with how the novice can be supported in learn-
ing from and making use of this form of knowledge storage. Certain
types of expert systems must be guided by the nzed to address students’

i

144

Integrating Human and Computer Intelligence + 131

lack of knowledge about either the expert domain or the methods for
operating the systems that use such information storage. An important
task remains in creating systems capable of providing interactive envi-
ronments that succeed in integrating students’ intuitive theories of do-
main knowledge constructed through everyday experience, such as in
physics (diSessa, 1983), with formal domain knowledge. Research is
needed on how children’s use of such systems affects the relation be-
tween cognitive development and learning. For example, how does the
child novice differ from the adult novice for particular content domains,
such as geometry? In the context of this question, such computer-based
systems appear to have theoretical import for developmental psychol-
ogy, in ways now to be addressed.

CHANGES IN VIEWS ON COGNITIVE DEVELOPMENT

After describing some characterizations of cognitive development as the
construction of an invariantly ordered sequence of universal stages, 1
will review some recent challenges to these universal descriptions.
These considerations will lead to an examination of potential uses of
computer expert systems and intelligent tutoring systems for the recon-
ceptualizing of cognitive development and to more drastic reformula-
tions of the agenda for developmental studies.

Constructivism and Stages in Developmental Psychology

In recent decades, developmental psychologists have been preoccupied
with the ongoing debate concerning research into stages of cognitive
development. Driven by the seminal studies of Piaget (1983), develop-
mental psychologists throughout the world have sought to substantiate
and finely delineate the broad universal stages of cognitive development
that Piaget proposed.

Piaget defined four Lroad stages of intellectual or cognitive develop-
ment: the sensorimotor, the preoperation. ., the concrete operational,
and the formal operational. Although recent formulations (Case, 1985,
Fischer, 1980) differ in emphasis, they maintain a roughly comparable
picture. Stages are major qualitative breaks in cognitive functioning
that, according to Piaget (1973a), have four characteristics. First, they are
ordered in sequence. Second, they are integrative, in that earlier stages
are an integral part of later stages. Third, they are characterized by a
"'whole structure,”” which in the case of intelligence means by an under-
lying system of logical operations. Fourth, in any series of stages, there
is a distinction between the process of formation and the final forms of
equilibrium, that is, they are progressively constructed without total
preformation.

Y ;140

132 * Peq

In describing the formation of the stages, Piaget placed central em-
phasis on constructivism, the perspective that emphasizes the interac-
tion of the endogenous character of the organism and environment in
the organism’s construction of progressively more advanced stages of
knowledge. Piaget (1973a) emphatically contrasted the ‘’spontaneous”’
or subject-initiated discovery, learning, and inventing that contribute to
the construction of these broad systems of operations with “other”’
learning, such as the learning that occurs in schools:

I'have in mind only the truly psycholoyical development of the child as op-
posed to his school development or to his family development, that is, I will
above al! stress the spontaneous aspeci of wnis development, though I will
limit myself to the purel, intellectual and cognitive development. Actually we
can distinguish two aspects in the child’s intellectual development. On the
one hand, we have what may be called the psychosocial aspect, that is, every-
thing the child receives from without and learns in general by family, schenl,
educative transmission. On the other there is the development which c. . be
called spontaneous. For the sake of abbreviation I will call it psychological, the
development of the intelligence itself—what the child learns by himself, what
none can teach him and he must discover alone, and it is essentialy this
development which takes time...it is precisely this spontaneous develop-
ment which forms the obvious and necessary condition for the school devel-
opment. (pp. 2-3)

As I will later suggest, symbolic activities with the computer may neces-
sitate a reformulation of the concept of spontaneous learning, since the
worid uf physical objects fur child play and action is vemarkably expand-
able through programmable symbols.

Challenges to the Plagatian Enterprisa

There have been several areas of rescarch that converge as problematic
for Piaget’s conceptions of development. I will review three fundamen-
tal areas. findings on the role of sociocultural factors in learning and
development, on giftedness and prodigies, and on the role of knowledge
in computer expert systems.

Pi«get has been extensively c.iticized for underplaying the contribution
¢ suciocultural factors to development (Rogoff & Lave, 1984). Contem-
porary work has been influenced by the theores of the Soviet psycholo-
gist L.S. Vygotsky (Laboratory of Comparative Human Cognition, 1983,
Rogoff & Wertsch, 1984), who saw sociocultural factors as having impor-
tant consequences on higher level cognitive development, Formal opera-
tions are nonuniversal, particularly in cultures without schooling, a
finding that was troubling even for Piaget (1972). What Piaget described
as spontaneous learning is apparently insufficient to enable humans to
think in terms of operations on operations, the definition of formal
thought. Educational processes of sociocultural transmission, especially

146

Integrating Human and Computer Intelligence o 133

those involving abstract symbolic systems such as logic, mathematics,
and written language, piay an essential role in the formation of such
thought patterns (Laboratory of Comparative Human Cognition, 1983;
Olson & Bruner, 1974).

Research inspired by Vygotsky has great significance for computer-
based extensions and redefinitions of human intelligence. Vygotsky's
(1978) dynamic conception of the “’zone of proximal development’’ con-
cerns phases in ontogenesis in which a child has par’*; mastered a skill
but can act more effectively with the assistance of a more skilled peer or
adult. The zone of proximal development is the region of skill effective-
ness that lies between the child’s independent functioning and the child’s
functioning with social support. Intelligence is viewed as a collective ac-
tivity jointly accomplished between the child and more able others
before the child can function intelligently on his or her own. In contrast
to Piaget, Vygotsky (quoted by Rogoff & Wertsch 1984) argued that

instruction is only good when it proceeds ahead of development. It then
awakens and rouses to life those functions which are in a stage of maturing,
which lie in the zone of proximal developnent. It is in this way that instruc-
tion plays an extremely important role in development. (p. 3)

The central implication is that the problem-solving system formed by
child and more competent others—broadened here to include computer
systems—is an especially appropriate unit of analysis for studies of the
development of problem-solving skills.

Findings on Giftedness and Prodigles
Further evidence against the universalist architecture of Piagetian theory
is found in cognitive studies with children identified as gifted or prodigi-
ous in their performance in such domains as mathematics, music, chess,
or composition. Research on giftedness and prodigy performances among
children (Feldman, 1980, 1982; Gardner, 1983) demonstrates that such
individuals are not in an advanced Piagetian stage of development
across tasks but that they perform on Piaget-based measures much like
their same-age cohorts, even as they outperform most adults in their
forte. Prior attainment of the general logical structures defining the
Piagetian formal operational period is not, as these exceptional in-
dividuals illustrate, necessary for high-level domain-specific intellectual
performances.

According to Gardner (1983), a pluralistic approach to cognition,
which focuses on the domain specificity of intellectual performances
rather than on transdomain universal stages, posits that,

irrespective of domains, there should (in proper Piagetian fashion) be a
stagelike sequence through which any individual must pass. However, indi-
viduals differ greatly from one another in the speed with which they pass

. 147

134 * Pea

through these domains, and, contra Piaget, suciess at negotiating one domain
entails no necessary correlation with speed or success 1n negotiating other do-
mains. . ..Moreover, progress in a domain does not depend entirely on the
solitary individual’s actions within his world. Rather, much of the info.ma-
tion about the domain is better thought of as contained within the culture
itself, for it is the culture that defines the stages and fixes the limits of in-
dividual achievement. One must conceive of the individual and his culture as
embodying a certain stage sequence, with much of the information essential
for development inhering in the culture itseif rather than simply inside the in-
dividual’s skull. (p. 27)

This perspective on the development of intelligence has provocative im-
plications for marrymng the problem-solving capabilities of child and
computer. Since there are distinct developmental trajectories for dif-
ferent content domains, rather than a general logical engine on which
the development of cognitive skills in specific domains depends, then
integrations are in principle possible between childhood thinking and
expert or intelligent tutoring computer systems that provide develop-
mental technologies. These integrations would serve as mental catalysts
for engineering the development of high-level cognitive skills. The child
would not need to await the development of general logical structures in
order to become a powerful thinker.

The Role of Knowledge in Export Systems
Similar arguments are provided by research on artificial intelligence (Al)
systems. Cognitive scientists have found that extensive knowledge is
necessary for expert-level performance in solving problems in every con-
tent area studied. Waldrop (1984) reached the conclusion that “‘the es-
sence of intelligence seems to be less a matter of reasoning ability than of
knowir.y;, a lot about the world.” (p. 1279). This presents a clear problem
for the Piagetian approach, in whit 1 the underlying logical schemes in-
volved in the reasoning behind a task are considered to be the core of in-
tellectual functioning. The principal mechanisms distinguishing what
Piaget described as the stages of intelligence are, for example, defined in
terms of the logical operations of reasoning characteristic of that stage.
What is the role fur knowledge? Here Piaget introduced the convenient
abstraction of decalage in order to deal with the theoretically inconvenient
differences in the average age at which, for example, the concept of con-
servation is acquired for the different materials of weight, volume, and
number (different content domains). Specific knowledge is accorded a
minor role.

What are we to co, then, with knowledge in an age in which intelli-
gent behavior is being modeled by computers and in which reasoning
mechanisms, al:hough necessary, are far less important than the web of

48

Integrating Human and Computer Intelligence » 135

propositions and rules that define knowledge and cog.itive skill? If the
weak end of the machinery of cognitive development lies in building up
the appropriately organized store of knowledge structures (Carey,
1984), how then can knowledge be better acquired? How can computers
as intelligent tutoring systems and learning machines in their own right
help the student to develop such knowledge?

Although in broad outline the interactionist perspective that Piaget
offers may be correct, the three grouaps of studies just reviewed imply a
different vision of what constitutes the interaction envirunment basic to
learning and development and of what experiences warrant the descrip-
tion of spontaneous learning though solitary discovery. The culture, as
expressed through more knowledgeable others, provides apprentice-
ship models for the development of cognitive skills and offers advice
and hints to help structure the child’s discovery space as he or she pro-
ceeds through the zones of proximal development. Left to her or his
own spontaneous discoveries, the child as intuitive scientist arrives ivo
often at theories of how the physical or mathematical world works that
are at odds with appropriate formal theories {A.L. Brown, 1984. Gentner
& Stevens, 1983). We find eroding the artificial distinction between what
one discovers alcne (what Piaget chauvinistically describes as true devel-
opment) and what one discovers with the aid of others, however indirect
that aid may be. Chil.ren need not—indeed, in most instances, they will
not—reinvent through spontaneous discovery the conceptually adequate
theories about the world that science has taken centuries to identify and
formulate.

DEVELOPMENTAL THEORY AND
HUMAN-COMPUTER SYSTEMS

In this section, I consider some major questions that the possibility of
human-computer intelligent systems raises for developmental theory
and some of the rich prospects they offer for psvchological research and
for the promotion of education and development.

Two possibly but not necessarily interconnected roles for the creation
of such systems may be distinguished. The first is as research tool for
developmental and cognitive psychology, the second is as educational
tool. In terms of the first role, by configuring the system in different
ways, different explanatory models of learning and development can di-
rectly be tested. These models might be concerned with one or another
of several issues. assessing whether systems that give the student prompts
to promote seli-questioning, planning, and monitoring lead to more ef-
fective metacognition and learning to learn (J.S. Brown, 1984b, Palincsar

149

136 * Pea

& Brown, 1984), ascertaining the kinds of prodevelopmental roles of
conflict or of confrontation of “*bugs’* in student understanding in de-
velopmental reorganizations of knowledge systems (Siegler, 1983), test-
ing our understanding of the heuristics that expert teachers use to model
a student’s understanding and provid.ag new learning experiences and
environments at the appropriate level {Collins & Stevens, 1982, Sleeman
& Brown, 1982); and providing testing grounds for knowledge assess-
ment and cognitive diagnostics and explicit tests of intervention hy-
potheses in trainir.,g studies (Boyle & Anderson, 1984). In terms of the
second role, for edu..ational purposes, systems can be constructed to be
used autonomously oy students as tools for learning new fields of knowl-
edge and for acquiring problem-solving and problem-<' >fining skills for
specific domains.

In the paragraphs that follow, major challenges to devilopmental
psychology posed by the coupling of human a- .mputer intelligence
are roughly ordered from the conservativetoti lical in their implica-
tions. At the conservative end, they merely carry rorward modifications
to the Piagetian enterprise, at the radical extreme, they portend the co-
evolution of human and computer intelligence.

Computers and the Zene of Proximal Development

It is possible that future versions of Al syctems could serve as tools tor
helping chilcren move through the zones of proximal developn..nt by
extending the “’socal’” environment for cognitive growth by interactively
providing hints and support in problem-solving tasks !ike the ones ad: lts
provide, Computers playing this role will be the information age sequel
to concepts of a zune of proximal development (ZPD), in which the adult
human plays the tutorial role of coconstructing w.th the child his or her
later:t developmental capabilities. In this case, the zone of proximal de: el-
opment is traversed with the complementary capabilities of the human-
computer system. However, unlike those who have conducted. most ZPL
studies, I do not assume that self-sufficiency is the telos of such learning
activities, Many forms of cognitive activity may require the continuing
intervention of an intelligent computer system, for effectiveness ur be-
cause of their complexity. Similarly, not all cognitive tasks for which
Z”Ds can be arranged should be ones that the child is expected to inter-
nalize for subsequent solo performances. Solv performances are not real-
istic in terms of the w ays in which intelligent activities are organized and
accomplished in thereal world. They are often collaborative, depend on
resources beyond an individual’s long-term memory, and require the use
of informaticn-handling tools. If we {vok away from practicing thinkers
and practitioners what we take away from children to assess their cogni-
tive functioning, scientists could not do science, mathematicians could

Integrating Human and Computer Intelligence o 137

not do math, historians could not do history, and policy makers could
not make policy. The level of task understanding necessary for the child
alone is an empirical question that remains to be answered, domain by
domain. For example, in arithmetical understanding, educators now
emphasize estimation skills over calculation skills as the use of calcula-
tors has become widespread.

In terms of computer-based ZPD tools, there are two major ways of
transforming the zone of learning environments in which interactions
toward development emerge. First, microworlds, which are fairly conser-
vative in their implications, can be created for the promotion of domain
expertise; second, there are cognitive trace systems, which are more
radical in their potential powers.

Microworld Pedagogic Systems

Pedagogic systems focus on cognitive self-sufficiency, much like existing
educational programs, in contrast to pragmatic systems, which allow for
precocious intellectual performances of which the child may be incapable
without the system’s support. We thus need to distinguish between sys-
tems in which the child uses tools provided by the computer system to
solve problems that he or she cannot solve alone and systems in which
the system establishes that the child understands the problem-solving
Processes thereby achieved. We can call the first kind of system pragma-
tic and the second pedagogic. Pragmatic systems may have the peripheral
consequence of pedagogical effects; that is, they may contribute to under-
standing but not necessarily. The aim of pedagogic systems s to facilitate,
through interaction, the development of the human intelligent system.
While there is a grey area in between, and some systems may serve both
functions, clear cases of each can be defined.

Pedagogic systems that use microworlds provide rich opportunities
for development and learning. A microworld is a structured environ-
ment that allows the learner to explore and manipulate a rule-governed
universe, subject to specific assumptions and constraints, that serves as
an analogical representation of some aspects of the natural world. Micro-
worlds have other properties that cannot be described here (Papert,
1980). Pedagogic systems can use microworlds to further redefine the
objects of the spontaneous learning that Piaget considered integral to
development when he argued that each time one prematurely teaches a
child something he could have discovered for himself, the child is kept
from inventing it and consequently from understanding it completely
(Piaget, 1983). But discovery by oneself is not well defined, and inter-
active software can further blur the distinction. Computer objects could
be programmed so that the child would be subtly guided to discover
them. They could provide discovery situations that conflict with the 1n-

138 * Pea

ferred worldview of the child because they are ‘’smart’’ with knowledge
of the flawed theories that children construct en route to expertise. For
such pedagogic systems to work in promoting learning and develop-
ment, we need research on the prodevelopmental roles of conflict or dis-
equilibrium and a theory of how and when hints toward discovery are
successful (Sleeman & Brown, 1982).

Microworld pedagogic systems could provide envir.aments enabling
students to learn skills and knowledge in specific domains by observing
modeling of the process of solving example problems, by doing, by dis-
covery, and by instruction. An aim can be to replicate the coincidences
(Feldman, 1980, 1982) of factors that appear to lead to prodigious cogni-
tive performances. This involves providing suitable models, a learning
environment with cognitively appropriate help facilities that embody
cultural knowledge and that is sufficiently engaging to command the
child’s intensive efforts.

Pedagogic Cognitive Trace Systems
Pedagogic systems could alsu be created that transform what will hap-
pen in the learning environment in ways that cannot be anticipated
without building prctotypes and doing observations. Cognitive trace
systems can provide a major lever for cognitive development by provid-
ing tools for reflection. The fundamental idea of a cognitive trace system
is that the intermediate products of mind are externalized through the
process of interacting with knowledge-bascd computer systems. These
traces expand the cognitive work space to include a trail, as it were, of
where one has been in an episode of problem solving. Thus, remember-
ing where one has been does not interfere with ongoing prucesses of
creation or problem solving. Such traces would provide richer sources
for assessing the student’s knowledge than any teacher only observing
student behaviors without the system could ever process and use for ef-
fective instruction.

Cognitive trace systems may have dramatic consequences for how
human beings develop cognitive skills. These systems aie instances of
the thinking tools provided by other symbolic media—writing, mathe-
matics, logic, and programming—that render human thought processes
external for inspection, analysis, and reflection and that have forever
transformed our world of thought and action (Ong, 1982).

Three major functions can be imagined for such traces. First, for the
child, an examination of these cognitive traces, possibly prompted by
the computer at appropriate junctures of thought, could lead to an emer-
gent awareness of errors in understanding. In some cases, this could
also lead to an understanding of errors of exe cution, which misdirect the
search for solution. Second, for the psychologist or teacher, such traces

152

Integrating Human and Computer Intelligence o 139

could be used to diagnose a child’s understanding and potentially bug-
ridden ideas of the domain under study and to identify the learning ex-
periences that are necessary for instructional remediation. Third, for the
computer, such traces could be used to build a model of the child’s
understanding and then provide next-step responsive environments.

A prototype of such a cognitive trace system has been built by John
Seeley Brown and colleagues at the Xerox Palo Alto Research Center
(J.S. Brown, 1984b). In this system, called AlgebraLand, the computer
carries out low-level procedures for transforming equations while stu-
dents focus on their strategies for choosing the procedures that the com-
puter will perform on equations. The cognitive trace function is expressed
in an updated topological graph of the student’s problem-solving steps.
With this trace path, the student can "’read’’ the alternative solution
paths that she or he tried in order to learn from experience why some
were successful and others less so.

As Boden (1979) notes in discussing Piaget’s work on the develop-
ment of purposive self-knowledge, children can or try to do many tasks
without knowing how they do so, often without being able to correct
their failures. She discusses Piaget’s (1976, p. 340) account of how con-
sciousness moves from periphery to center, since deliberate action first
involves awareness only of the goal and of whether success or failure oc-
curs, ““while the fact that the scheme that assigns a goal to the action
immediately triggers off the means of affecting it may remain uncon-
scious.”” Later, largely because of the child’s search for the reasons
underlying his or her errors, consciousness ‘‘moves in the direction of
the central regions of the action in order to reach its internal mecharusm:
recognition of the means employed, reasons for their selection or their
modification en route, and the like.”” Cognitive trace systems could act
as prime movers toward the child’s grasp of consciousness in different
domains by contributing to the development of this metacognitive knowl-
edge, so important for expertise (Brown, Bransford, Ferrara, & Cam-
pione, 1983). But, we first will need research to determine whether such
cognitive trace facilities do indeed make developmental contributions.

Integrating Child and Computer information-Processing

Systems

It is now commonplace to note limitations in human symbol manipula-
tion abilities. As Siegler (1983) observes, many

processing limitations can prevent people from attaining their goals. limi-
tations on the number of symbols that they can manipulate simultaneously,
on the speed with which they can manipulate symbols, on the depth to which
they can search memory, and on their resistance to interference, to name but
four. (pp. 129-130)

153

140 ¢ Pea

It has become a central goal cf cognitive and developmental psychology
to document how we utilize strategies to overcome these processing
limitations of short-term memory (through such mnemonic strategies as
rehearsal, elaboration, and organization) and long-term memory (through
books and other materials).

Integrating the powerful information-processing systems of the com-
puter and the frail information-processing system of the human mind
may be possible. If such integration is successful, it may have great con-
sequence for cognitive development. Empirical studies during the past
decade have extensively demonstrated young children’s precocious
understanding of such complex concepts as causality, number, conserva-
tion, proportions, and logical deduction in simplified task environments
that avoid taxing the limits of their information-processing systems (for
reviews, see Carey, 1984; Case, 1985; Donaldson, 1978). Yet it is still con-
ventional wisdom that student access to many disciplines, such as statis-
tics, must await a certain age. In principle, we may be able to close much
of the gap between the information-processing capabilities of child and
adult ar.d ultimately of humans and computers by integrating our infor-
mation-processing systems.

One central hope is that such integrated systems may provide a path
out of the breakdowns of rational thinking that have been extensively
catalogued recently and that appear to result in large part from the bot-
tlenecks of human information processing. The work of Kahnemann,
Slovic, and Tversky (1982) on judgment under uncertainty, of Wason
and Johnson-Laird (1972) on the attentional bias to positive evidence in
deductive reasoning, of Luria (1976) and Scribner (1977) on the emprrical
bias in logical reasoning, of Shweder (1980) and others on statistical
thinking, and of Nisbett and Ross (1980) on errors in social judgment has
revealed the widespread use of heuristics for thinking that leads to erro-
neous conclusions. We have already noted the nonuniversality of formal
operational thinking, particularly in cultures without schooling. There
should be more effective ways for people to develop these problem-
solving powers. Too many people have trouble learning the formal rule-
and model-oriented disciplines that pervade the mode.n information
age—ranging from physics and mathematics to the genetic code in biology
and computer programming—and the kinds of problem-solving skills re-
quired for job and life successes. We are so prone to errors of judgment,
errors of reasoning, and lack of monitoring and evaluation in our deci-
sion making that most of us most of the time could usefully be propped
up and reminded to become more effective.

Could Al systems be used to buttress these well-known human frail-
ties? Could they serve educational processes of cultural transmussion and
redefinition in a computer age? With the integration of human and com-

154

Integrating Human and Computer Intelligence o 141

puter intelligent systems, we may be able to attenuate human processing
limitations. One possible way of dealing with the problem posed by the
cognitive interface between software and the child’s mind is to work at
providing the set of computational tools necessary so that intermediary
cognitive work, which usually goes on in the child’s mind and strains
age-related memory and processing limitations, can become virtually
perceptual work, unrestricted by such limits. The store and processes of
the mind needed for problem solving can be those of the child-computer
system, rather than of the child only. The cognitive work space could be
expanded to include the computer screen and other computational de-
vices.

With such systems, we may thus extend the forms of thought made
possible by the symbols that Vygotsky (1978) describes as "‘external
memory aids’’ to the mind—mathematics, written language, logic, and
programming languages. For any content domain, from Siegler’s (1983)
balance beams to correlations, we should be able to build devices that
enable children to circumvent the processing limitations that hamper
their ability to engage in higher forms of reasoning and thinking, such as
concrete and formal operational thinking. The principal caveat is that we
have to show how such adjuncts to processing capacity can be designed
and developed for specific knowledge domains. Only then will we find
the practical obstacles to their effective use in childhood education.

Pragmatic Cognitive Tools for Higheor Level Achievements

To go further, one can imagine the inverion of powerful cognitive tools
that would support problem solving in domains previously considered
to be difficult or even impossible for young children. In other words,
programs could be devised that would serve as “’cognitive props’’ for
complex problem solving. F.r example, by using these programs chil-
dren who were not formal operational thinkers would solve abstract
problems that require formal operations.

Dennett (1978) argues that when a system, such as a software system,
gets sufficiently complicated, we change the focus of descriptions from
physical to intentional properties. As observers, we adopt the intentional
stance and describe the system as thinking, believing, and with other in-
tentional terms. The same is true when we discuss human-computer
systems. We adopt the expert stance by attributing to such systems ex-
pertise and intelligence that we normally reserve for the human adult.
We say that the system is formal operational, or clever, or very good at
solving algebra problems rather than focus on the individual as the unit
of develo *mental analysis. In fact, we can extend the well-known Turing
test, a thought experiment proposed by Alan Turing (1950), to the 1dea
of human-computer intelligent systems. In this test, a blind evaluation

142 ® Peq

question-and-answer format is used to determine whether an object
possesses thought. However, the Turing test is nondevelop.uental, that
is, it does not distinguish qualitatively different levels of intelligence.
Given a developmental revision, such a test might be used to evaluate
behaviors of an integrated human-computer intelligence system. Con-
sider a child who approaches a formal operational task. The child alone
may not be formal operational in his or her thinking. However, working
with the computer system, the child may indeed to able to successfully
solve formal operational cognitive tasks (such as control of variables or
proportional reasoning). The integrated child-computer system is evalu-
ated by the Turing test as formal operational.

This argument rests on the genetic epistemology of symbol systems.
What are the implications of a tool of human intelligence for cultural
development? Just as other symbol systems, such as mathematics, logic,
and written language, have transformed our intellectual powers, so in
principle can intelligent computer systems transform them. The concept
of intelligent human-computer systems is simply an 2xtension of this
generally recognized developmental empowering by symbol systems.
What makes the computer unique is its potential for modeling human
intelligence. As thinking tools, computers have considerably greater
potential than tools of the past, because effective use of such intellectual
tools as mathematics and writter. language is constrained by our limited
memory and information-processing abilities (Minsky, 1983, Simon,
1977b). We now have extensive gaps between competence and perfor-
mance in cognitive functioning, but these gaps may narrow when human
and computer intelligence are married.

This argument contrasts with Piaget’s contention that better teaching
and earlier experiences of the right kind cannot lead to precocious intel-
lectual performance. He responds to the so-called American question (of
accelerated instruction) by criticizing Bruner’s (1960) claim that any 1dea,
problem, or body of knuwledge can be presented in a form simple enough
that any particular learner can understand it. Piaget (1971) argues that
"intellectual growth contains its own rhythm. Speeding up cannot be
indefinitely continued” (p. Z1). Piaget’s argument is essentially that
education can at best accelerate stage development vvithin certain mats.
Successive 1corganizations of knowledge exemplified by the stages are
time-consuming and take much experience

But we may resurrect these questions, sin.e the potential of Al systems
may change the terms of the acceleration debate. One may agree with
Piaget’s notions about the structural limitations to educational accelera-
tion. However, Piaget’s reservations were based on the performances of
a solitary child. Yet children’s problem-solving skills may be stretched
beyond their potential when they receive aid fr. . others, such as peers

156

Infegrating Human and Computer Intelligence « 143

or adults. Performance in what Vygotsky called the zone of proximal
development has important implications for intelligent tutoring systems
that can in principle be extended to human-computer intelligent sys-
tems. It has even more radical implications for Piaget’s objections to the
American question.

The radical implications center on the capabilities of young children
when supported by intelligent computer systems. Some developmental-
ists have been dissatisfied with the ZPD studies because they also view
the solitary performance of the child as the fundamental unit for devel-
opmental analysis (seeing additional aids, coaching, and prompting by
an adult as “’cheating’” in this respect), yet the issue becomes more con-
troversial when the child is part of a human-computer intelligent sys-
tem. Imagine a typical 9-year-old working with an expert system to solve
formal operational problems on correlations that involve multiple varia-
bles. The child-computer system solves the problem through the inte-
gration of the computer and the child’s currently functioning solitary
intelligence. As already noted, the system would be considered formal
operational by the criteria of the Turing test. What does this mean in
terms of the child’s intelligence?

At first, one is inclined to say that children are only as intelligent as
they are capable of demonstrating alone, without the technological aid
supplied by the computer. But this will not do. The reason is that this
technological aid is similar to other aids that we readily allow and would
never rip away from the child in our crudest assessments of a child’s
solo intelligence: such symbol systems as written language and mathe-
matics. These systems are truly technologies, as are the symbolic arti-
facts of computer programs. If the child can use the computer symbol
system as an aid in solving complex problems, it should be just as ad-
missible as the thinking tools provided by written language (e.g., by
note taking during arithmetic calculations, or Ly list making in a formal
operational experiment). Like mathematical and language notation, the
symbolic notations used in the computational environment provide a
powerful means for the child’s thinking.

The consequences of these integrations are profound for develop-
mentalists (including Piaget) bound to the assessment of intelligence in
solitary settings. We should consider what these new possibilities say
about stage conceptions of human intellectual development. What types
of problems will emerge in the student modeling necessary for integrat-
ing computer and human intelligence, and for developing usable pro-
grams from the child’s perspective? As intelligent systems become widely
available, what are the implications for the emergence of nighly creative
mental acts in the arts and sciences throughout society? What complex
ethical problems will be raised by such fusions?

157

144 ¢ Pen

Systems for the Coevolution of Human-Computer

Intelligence

Tikhomirov (1981) has asked the profound question of how the media-
tion of mental processes by computer differs from mediation by signs.
For example, does the computer introduce qualitatively different changes
into the structure of intellectual processes? And how can a new stage be
distinguished in the development of human mental processes?

The most speculative but also the most spectacular possibility is that
human and computer intelligence will coevolve. Perhaps only by joining
the strengths of human intelligence with the strengths of the computer
can the potential of either be realized. It will soon be necessary for any
theory of learning and development to explain not only human or com-
puter learning (Michalski, Carbonell, & Mitchell, 1983) and development
but also their symbiotic union. This speculative discussion casts aside
reservations about the need for human self-sufficiency in intellectual
functioning, because integration between human and computer intelli-
gence will be the norm in future decades. Just as the human body is no
longer the major tool for physical labor, and just as a carpenter need not
use only hand tools, so will mental functioning no longer be the sole
province of the human mind.

To carry this speculation further, we can submit that computers will
not always be so obviously external to humans in their functioning as
mental tools as they now are. They may ultimately be use-transparent
and serve as literal organs of intelligence, even to the extent of being in-
tegrated with the physical confines of the body, if we so desire. Hard-
ware differences between the machinery of the mind and of the computer
will e glossed over, and integration un the physical level will character-
ize human computer intelligent systems. The insight comes from cogni-
tive science. Intelligence does not need human hardware (the nervous
system) to run, it is independent of hardware. The consequence is that
an intelligence system (that is, a system that has the programs needed
for achieving intelligent performances) need not be based in the nervous
system. Until recently, we have conceived of human intelligence (realized
through the nervous system) and artificial intelligence (realized through
microcircuitry) as distinct. But these two intelligences can in principle be
integrated, since the hardware differences need not serve as a barrier for
a new hybrid intelligence. Already, microprocessors have been inte-
grated with artificial limbs to provide a form of internal integration of
human-computer systems. Of course, there are caveats. Complex ethical
issues of personal identity, rights, and dominion will emerge. But we
cannot begin such discourse without charting the possibilities.

It is important to observe that computers, as components of such sys-
tems, can serve to bootstrap human intellectual development under

Integrating Human and Computer Intelligence « 145

human control and choice. Just as adults have been able to solve complex
problems with computers that they were unable to before, so children
should be able to go beyond their current developmental capabilities
with computer assistance. Human-computer intelligence systems will
serve to extend and ultimately to reorganize what we think of as human
imagination, intelligence, problem-solving skills, and memory.

CONCLUSIONS

As Tikhomirov (1981) reminds us, the computer only creates possibilities
for human development, to be realized whea certain technical, psycho-
logical, and social conditions are met. While . have argued that we have
the technical capabilities needed for integrzting human and computer
intelligence, there are few exemplars to demonstrate that the psycho-
logical conditions of effective integration have been met. And, social
corditions have not been adequately considered. What are the goals for
com'puter use in our society?

One consequence of the information age is that what children will
need to know to learn and develop will be drastically different from what
our educatior.al system now provides. Today, we spend decades learn-
ing the three Rs and memorizing facts that are often already outdated. A
culture pervaded by Al-based developmental tools for all the basics, and
also thinking tools in creative processes (such as design and invention)
will lead to new definitions of intelligence. These definitions may high-
light the skills that have long been the aim of a liberal arts education.
Cognitive skills of information management, strategies for problem solv-
ing that cut across domains of knowledge, such mctacognitive skilis as
planning, monitoring, a- .. learning how to learn, and communication
and critical inquiry skills will come to be valued more highly. Teaching
the basic facts of the disciplines will not only not provide for an educated
citizenry that can use the thinking tools of this age, but it will not even
be feasible because of the information explosion.

In this chapter, there has been little opportunity to address the tough
research questions that must be raised if we are to achieve success in the
various levels of human and computer intelligence. Developmental re-
search is needed to elaborate the theory of cognitive tasks, the theory of
stages of competence by domain, and the theory of interventions and
stage transitions (Resnick, 1984) integral to the creation of computer-
based developmental tools. Too little is known about how stages of
knowledge are transcended to become new and more adequate con-
structs. Also, we know little about the expert teaching that we hope
such systems would model, although substantial progress has been

15y

146 © Pea

made in unpacking procedures of inquiry teaching or Socratic dialogue
(Arons, 1984; Collins & Stevens, 1982).

This enterprise will depend on interdisciplinary collaborative work
among the computer and cognitive scientists who build Al systems and
the developmental psychologists, content area specialists, and educators
who know so much about how the work and play of learning and devel-

. opment take place. Such groups can together study learning and devel-
opmental processes while simultaneously providing tools to transform
the very activities of learning and development. There are no precedents.
The printing press had profound cognitive and social consequences,
especially in education (Eisenstein, 1979), but its effect will not compare
with the consequences of interactive information tools that function with
the basic currency of human thought processes, the symbol.

CHAPTER 8

ON THE COGNITIVE EFFECTS
OF LEARNING COMPUTER
PROGRAMMING

Roy D. Pea and D. Midian Kurland

There are revolutionary changes afoot in education, in its contents as
well as its metheds. Widespread computer access by schools is at the
heart of these changes. Throughout the world, but particularly in the
U.S.A,, educators are using computers for learning activities across the
curriculum, even designing their own software. But virtually all educa-
tors are as anxious and uncertain about these changes and the directiuns
to take as they are optimictic about their ultimate effects. ‘’Now that this
admittedly powerful symbolic device is in our schools,’” they ask, ‘’what
should we do with it?”

We believe that educators and social scientists are at an important
watershed in American education. Important new opportunities abound
for research and development work that can influence directly the qual-
ity of educatior.. Hard questions are emerging about the design of educa-
tional activities that integrate the computer with other media. The volatile
atmosphere of choices for schools (and parents), as n.2w hardware and
software appear daily, calls for principles and knowle’ge that educators
can use, derived from systematic empirical studies in laboratories and
classrooms, of how children learn with these new information technolo-
gies. We also need theoretical debates on the aims and priorities for edu-
cation in an information age. We believe that a developmental approach
to the understanding of information technologies will be required, one
that incorporates the new insights of cognitive science, and that will guide
both research on, and design of, computer-bascd learning environments.
Such a discipline of developmental cognitive science would merge theury
and practice to dovetail the symbolic powers of human thinking with
those of the computer in the service of human development.

147

161

148 ¢ Pea and Kurland

In this essay our goals are considerably more modest, but nonetheless
a timely subtask of the larger enterprise. Our aim is to examine two
widespread beliefs about the mental activities engaged by programming
a computer and their expected cognitive and educational benefits. The
two beliefs are polar opposites and neither is acceptable. Together, they
express the two predominant tendencies in thinking about learning to
program today.

The first belief is linked to an atomistic, behaviorist tradition that
views learning narrowly. This is the traditional and deeply engrained
idea that learning is simply an accumulation of relatively autonomous
“’facts.”” On this view, what one learns when learning to program is the
vocabulary of commands (primitives) and syntactic rules for construct-
ing acceptable arrangements of commands. This belief underlies most
programming instruction. Its other facet is that what one learns when
learning programming is just a programming language.

The contrasting belief, in part a reaction to the first belief, is that
through learning to program, children are learning much more than pro-
gramming, far more than programming “’facis.”” It is said that children
will acquire powerfully general higher cognitive skills such as planning
abilities, problem-solving heuristics, and reflectiveness on the revisionary
character of the problem-solving process itself. This belief, although
new in its application to this domain, is an old idea in a new costume
which has been worn often before. In its common extreme form, it is
based on an assumption about learning—that spontaneous experience
with a powerful symbolic system will have beneficial cognitive conse-
quences, especially for higher order cognitive skills. Similar arguments
have been offered in centuries past for mathematics, logic, writing
systems, and Latin (e.g., Bruner, 1966a; Cole & G ’ffin, 1980; Goody,
1977; D.R. Olson, 1976; Ong, 1982; Vygotsky, 1978).

The intuitively plausible claims for the cognitive bunefits of program-
ming have broadened in scope and in public attention. Although evidence
does not supg ort these claims as yet, their presumed validity is nonethe-
less affecting important decisions in public education, and leading to
high expectations for outcomes of programming in the school and home.
In the current climate of uncritical optimism about the potential cogni-
tive benefits of learning to program, we run the risk of having naive
"“technoromantic”’ ideas become entrenched in the school curriculum by
affirmation, rather than by empirical verification through a cyclical pro-
cess of research and development. Already at the pre-high school level,
programming is taught primarily because of its assumed impacts on
higher cognitive skills, not because proficiency in programming is itself
an educational goal. This assumption takes on added significance since
several million pre-cullege age children in the U.S.A. are already receiv-

162

On tie Cognitive Effects of Learning Computer Programing o 149

ing instruction in computer progrsmming each year, and France has
recently made programming con:, .lsory in their precollege curriculum,
on a par with mathematics and native language studies.

With the rapid rise in the teaching of programming, it has become
critical for decision makers in education to understand how programming
is learned, what may be the cognitive outcomes of leacning to program,
what levels of programming skills may be required to obtain different
types of outcomes, and what the relationships are between the cognitive
constraints on learning to program and its cognitive consequences. Re-
search directly addressing these questions is only beginning.

Throughout this chapter, we highlight major issues and fundamental
complexities for researchers in designing studies resporsive to these
critical questions. We discuss these issues in terms of a hybrid develop-
mental framework, incorporating cognitive science and developmental
psychology, and review relevant research in cognitive science and its
cognate disciplines. This synthesis recognizes the inadequacies of either
an extreme knowledge-building account of learning to program, or the
naive technoromanticism that postulates spontaneous higher order cog-
nitive skills as outcomes from programming experiences. Although
claims about the spontaneous cognitive impacts of programming have
an intuitive appeal, we show them to be mitigated by .onsiderations of
factors involved in learning and development. We also demonstrate
how, embodied in practice, the fact-learning approach to programming
often leads to incomplete programming skills. Cognitive studies of what
expert programmers know, the level of the student’s programming skills,
the goals and purposes of those learning to program, the general duffi-
culty of transferring *’powerful ideas’” across domains of knowledge, all
contribute to our rejection of these two views. Programming in the class-
room may fundamentally alter the ways in which learning and cognitive
development proceed. But we must examine whether such bold claims
find, or are likely to find, empirical support.

We have felt throughout our analysis of these issues that a develop-
mental perspective that incorporates the seminal work in the last decade
of the interdisciplinary field of cognitive science will illuminate our
understanding of the potentialities of information technologies for ad-
vancing human cognition. Fundamental contributions to thinking about
and concretely establishing the educational roles of information technol-
ogies could be gained from the synthesis of these two important theoret-
ical traditions.

Developmental theorists such as Piaget and Inhelder (1969), Werner
(1957), and Vygotsky (1978) have provided accounts of developmental
processes ith profound implications for the roles of technologies in
education. On all these views, cognitive development consists not of an

163

150 * Pea and Kurland

accumulation of facts, but of a series of progressive reorganizations of
knowledge driven by the child’s active engagements with physical and
social environments. In these views, learning (i.e., the accumulation of
new knowledge) is important for driving the developmental processes,
but at the same time is mediated by the current developmental capabili-
ties of the learner.

In the field of cognitive science dutiug the last decade, researchers in
the constituent disciplines of cognitive psychology, computer science,
linguistics, anthropology, and philosophy have begun intensive collabo-
rative research projec's {e.g., Gentner & Stevens, 1983, Greeno, Glaser,
& Newell, 1983; Nor.nan, 1981). The combination of careful analysis of
cognitive processes and the techniques of computer simulation has iec
to important new insights into the nature of mental representations,
problem-solving processes, self-knowledge, and cognitive change.
Cognitive science has revealed the enormous importance of extensive,
highly structured domain-specific knowledge and the difficulty of devel-
oping general-purpose problem-solving strategies that cut across differ-
ent knowledge domains. Also, within particular domains, cognitive
science research has been able to specify in great detail the naive “‘men-
tal models’* held by novices, such as Aristotelian beliefs about vbjects in
motion, which are often very resistant to change through spontaneous
world experiences (Gentner & Stevens, 1983).

Cogpnitive science shares with the older tradition of developmental
psychology a concern with how new learning must be integrated with
prior knowledge, but it transcends earlier work in analyzing problem-
solving and learning processes for specific knowledge domains, and
finds little role for general structural principles invoking ‘‘stages.”

For a student interacting with a progrsmming environment, for exam-
ple, adevelopmz=ntal perspective would indicate the importance of study-
ing how these students’ cutrent knowledge of the computer system is
organized, how they regulate and menitor their interactions with it, and
how their knowledge and executive routines affect the ease or pace of
acquisition of abilities to use new programming constructs. Also, it
would investigate the students’ exploration of the system, and the ways
that they are able to assimilate it to their current level of understanding
and to appropriate it in terms of their own purposes, including play and
competition. Learning to use the programming language may require
successive developmental reorganizations not only of the students’
naive understanding of the language being learned, but also of the com-
puter system as a whole. Complex cognitive changes are un'ikely to oc-
cur through either spontaneous exploration or explicit instruction alone,
since students must be engaged in the task in order to interpret the new
concepts. This perspective suggests that rather than arguing, as many

164

On the Cognitive Effects of Learning Computer Programing e 151

currently are, over global questions such as which computer language is
"’best”” for children, we would do better in asking: How can we organize
learning experiences so that in the course of learning to program students
are confronted with new ideas and have opportunities to build them into
their own understanding of the computer system and computational
concepts?

In complementary terms, cognitive science raises such important
questions as: How can common systematic misconceptions in particular
domains of knowledge be diagnosed and remediated through either in-
formal or formal learning activities? For example, what does a student
specifically need to know in order to comprehend and use expert strate-
gies in designing a computer program? What component mental pro-
cesses are engaged in programming activities?

The synthesis of developmental cognitive science focuses on diagnos-
ing the mental models and mental processes that children as well as
adult novices bring to understanding computer programming, since
these models and processes serve as the basis for understanding transfor-
mations of their systems of knowledge as they learn. Beyond the typically
agenetic cognitive science, a developmental cognitive science would ask:
How are the various component mental processes involved in expert
programming constructed and reconfigured throughout ontogenesis,
and accessed and organized during problem-solving episodes? Through
what processes of reorganization does an existing system of thought
become more highly developed? Through what learning activities in
what kinds of environments does the novice programmer develop into
an expert? Developmental cognitive science asks how the mind and its
ways of knowing are shaped, not only by biological constraints or physi-
cal objects, but by the available cultural interpretive systems of social
and educational interaction. As we shall see, the currently available re-
search is impoverished in response ta these questions, but current prog-
ress in understanding the development of mathematical and scientific
thinking (reviewed, for example, in Siegler, 1983) leads us to be opti-
mistic about the prospects for comparable work on the psychology of
programming,.

The critique of the literature on learning to program that we present
below has been strongly influenced by this developmental cognitive
science perspective. We do not adopt the usual computer programming
perspective assuming that all programming students are adults or have
the same goals as mature learners. Instead, the perspective is geared to
the learning experiences and developmental transformations of the child
or novice adult in interactive environments. The kinds of preliminary
questions that we ask from this perspective in addressing tne question:
"’What are the cognitive effects of le..-ning to program?”’ lead us to draw

165

152 o Peqa and Kurland

on studies from diverse fields that we see as relevant to a developmental
cognitive science of programming, and we have categorized them accord-
ing to the topics of “‘What are the developmental roles of contexts in
learning to program?’’ “’What is skilled programming?’’ *‘What are the
levels of programming skill development?’’ and ““What are the cognitive
constraints on learning to program?’’ First, however, we will begin by
examining the bold claims about the effects of learning to program.

CLAIMS FOR COGNITIVE EFFECTS
OF LEARNING TO PROGRAM

Current claims for the effects of learning programming upon thinking
are best excmplified in the writings of Papert and Feurzeig (e.g., Feur-
zeig, Horwitz, & Nickerson, 1981; Feurzeig, Papert, Bloom, Grant, &
Solomon, 1969; Goldstein & Papert, 1977; Papert, 1972a, 1972b, 1980;
Papert, Watt, diSessa, & Weir, 1979) concerning the Logo programming
language, although such claims are not unique to Logc (cf. Minsky,
1970).

Early Claims

Two key catalysts underlic beliefs that programming will discipline
thinking. The first is from artificial intelligence, where constructing pro-
grams that model the complexities of human cognition is viewed as a
way of understanding that behavior. In explicitly teaching the coniputer
to do something, it is contended that you learn more about your own
thinking. By analogy (Papert, 1972a), programming students would
learn about problem-solving processes by the necessarily explicit nature
of programming, as they articulate assumptions and precisely specify
steps to their problem-solving approach. The second influence is the
widespread assimilation of constructvist epistemologies of learning,
most familiar through Piaget’s work. Papert (1972a, 1980) has been an
outspoken advocate of the Piagetian account of knowledge acquisition
through sclf-guided problem-solving experiences, and has extensively
influenced conceptions of the benefits of learning programming through
"a process that takes place without deliberate or organized teaching”’
(Papert, 1980, p. 8).

Ross and Howe (1981) have summarized Feurzeig et al.’s (1969) four
daims for the expected cognitive benefits of learning programming. Ini-
tially, most outcomes were postulated for the development of mathemati-
cal thought:

On the Cognitive Effects of Learning Computer Programing * 153

1. that programming provides some justification for, and illustration of, * -
mal mathematical rigour;

2. that programming encourages children to study mathematics through ex-
ploratory =tivity;

3. that programming gives key insight into certain mathematical concepts,
and

4 that programming provides a context for problem solving, and a language
with which the pupil may describe his own problem solving. (Ross &
Howe, 1981, p. 143)

Papert (1972b) argued for claims (2) and (4) in noting that writing pro-
grams of Logo turtle geometry is a

new piece of mathematics with the property that it allows clear discussion
and simple models of heuristics [such as debuggir.g] that are foggy and confusing
for beginners when presented in the context of more traditional elementary
mathematics {our emphasis].

He provides anecdotes of children "spontaneously discovering’’ phe-
nomena such as the effects that varying numerical inputs to a procedure
for drawing a spiral have on the spiral’s shape. He concludes that learn-
ing to make these "’small discoveries”” puts the child *‘closer to mathe-
matics”” than faultlessly leaining new math concepts.

Recent Claims
We find expanded claims for the cognitive benefits of programming in a
new generation of theoretical wiitings. In Mindstorms, Papert (1980) dis-
cusses the pedagogy surrounding Logo, and argues that cognitive bene-
fits will . merge from taking ""powerful ideas’ inherent in programming
(such as recursion and variables) in “‘mind-size bites’’ (e.g., procedures).
One of the more dramatic claims is that if children had the extensively dif-
ferent experiences in thinking about mathematics that Logo allows. 'I see
no reason to doubt that this difference could account for a gap of five
years or more between the ages at which conservation of number and
combinatorial abilities are acquired’” (p. 175). Papert is referring to
extensively replicated findings of 1 large age gap between the early con-
servation of number (near age 7) and later combinatorial abilities (e.g.,
constructing all possible pairings of a set of different colored beads, near
age 12).

Feurzeig et al. (1981) provide the most extensive set of cognitive out-
comes expected from learning to program. They argue that

the teaching of the set of concepts related to programming can be used to
previde a natural foundation for the teaching of mathematics, and indeed for
the notions and art of logical and rigorous thinking in general.

167

S

154 ¢ Pea and Kurland

Learning to program is expected to bring about seven fundamental
changes in thought:

1. rigorous thinking, precise expression, recognized need to make assump-
tions explicit (since computers run specific algorithms);

2. understanding of general concepts such as formal procedure, variable,
function, and transformation (since these are used in programming),

3. greater facility with the art of ‘’heuristics,’’ exolicit approaches to prob-
lems useful for solving problems in any domain, >cch as planning, finding
a related problem, solving the problem by decomposing it into parts, etc.
(since “’programming provides highly motivated models for the .rincipal
heuristic concepts”’);

4. the general idea that ‘’debugging’’ of errors is a ‘‘constructive and plann-
able activity’’ applicable to any kind of problem solving (since it is so
integral to the interactive nature of the task of getting programs to run as
intended);

5. the gereral idea that one can invent small procedures such as bulding
blocks for gradually constructing solutions to large problems (since pro-
grams composed of procedures are encouraged in programming),

6. generally enhanced ‘’self-consciousness and literacy about the process of
solving problems’’ (due to the practice of discussing the process of prob-
lem solving in programming by means of the language of programming
concepts?);

7. enhanced recognition for domains beyond programming that there is rarely
a single “best’’ way to do something, hut different ways that have com-
parative costs and benefits with respect to specific goals (learning the dis-
tinction between "’process’’ anc "‘product,’’ as in Werner, 1937).

Asking whether programming promotes the development of higher
cognitive skills raises two central issues in developmental cognitive sci-
ence. First, is it reasonable to expect transfer across knowledge domains?
Even adult thinkers are notorious for their difficulty in spontaneously
recognizing coni.ections between “’problem isomorphs,’’ problems of
identical logical structure but different surface form (Gick & Holyoak,
1980; Hayes & Simon, 1977, Simon & Hayes, 1976), and in applying strat-
egies for problem solution that they have developed in one context to

! Hopes that learning the concepts and language that underlie programming will
change the way a leainer thinks of nunprograrumuny, problems recalls the strong formula-
tion of the Sapir-Whorf hypothesis. that available Linguistic labels constrain avaidable
thoughts. The strong form of this hypothesis has been extensively refuted (e.g., Cromer,
1974), only a weak version is consisi=nt with evidence on language-thuught relationships.
Available labels in one’s language ma, facilitate, but are neither necessary nor suffiuent
for partivalar forms of thinking, or conceptual distinctions. Categuries uf thuught may pro-
vide the foundation for linguistic vategories, not unly the reverse. The same point apphes
to the language of programming.

On the Cognitire Effects of Learning Computer Programing o 155

new problem forms. With problems of “near” transfer so acute, the pos-
sibility of spontaneous transfer must be viewed cautiously. In later discus-
sions, we provide a tentative developmental model for thinking about
relations between different types of transfer beyond programming, and
different levels of programming skill.

The second and related question is whether intellectual activity is
guided by general domain-independent problem-sclving skills or by a
conjunction of idiosyncratic domain-dependent problem-solving skills
(Goldstein & Papert, 1977; Newell, 1980; Simon, 1980). An extensive
literature on metamemory development indicates that the tasks used to
measure the functioning of “’abstract thinking’’ are inextricably linked to
the specific problems used to assess metacognition (e.g., A.L. Brown, in
press). As Ross and Howe (1981) note, “/in most problem-solving tasks,
it is impossible to apply the supposed context-free skills without initially
having essentially domain-specific knowledge.’” Within domains, how-
ever, better performances by learners are commonly accompanied by re-
flection on the control of their own ment-! activities (Brown, Bransford,
Ferrara, & Campione, 1983).

THE DEVELOPMENTAL ROLE OF CONTEXTS
IN LEARNING TO PROGRAM

For a developmentalist, there is a major problem pervading each of
these characterizations of the effects on higher thinking skills expected
from learning to program. Programming serves as a "’black bux, * an un-
analyzed activity, whose effects are presumed to irradiate those exposed
to it. But questions about the development of programming skills re-
quire a breakdown of the skills into component abilities, and studies of
hew specific aspects of programming skill are acquired. They require
especially serious consideration of the developmental roles played by
the contexts interpenetrating the black box. the programming environ-
ment, the instructional environment, and the relevant understanding
and performances of the learner.

The question of the role of conte.. < iz learning programming is com-
plex because programming is not anitary skill. Like reading, it is com-
prised of ~ large number of abilities that interrelate with the orgenization
of the learner’s knowledge base, memory and processing capacities,
repertoire of comprehension strategies, and general problem-solving
abilities such as comprehension monitoring, inferencing, and hypothesis
generation. This lesson has been etched in high relief through intensive
efforts to develop artificial intelligence systems that “‘ur.derstand’* natural

156 ¢ Pea rnd Kurland

language text (e.g., Schank, 1982; Schank & Abelson, 1977). Skilled
reading also requires wide experience with different genres (e.g., narra-
tive, essays, poetry, debate) and with. different goals of reading (e.g.,
reading for gist, content, style). As realing is often equated with skill in
decoding, learning to program in schools is often equated with learning
the vocabulary and syntax of a programming language. But skilled pro-
gramming, like reading, is complex and context-dependent, so we must
begin to unpack the contexts in which programming is carried out and
learned.

Environments in which children learn to read are usually overlooked
because adequate environments (e.g., plenty cf books, good lighting,
picture dictionaries, good readers to help with hard words, vocabulary
cards, phonics charts) are taken for granted. By contrast, good program-
ming environments are not generally available to schools. Determining
how children develop programming skills will not be possible without
due consideration of the programming environment in which learning
and development take place, and of how learning activities are organized.

Programming Environment

The distinction between a proy.amming language and a programming
environment is crucial. A programming language is a set of commands
and rules for command combinations that are used to instruct the com-
puter to perform specified operations. The programming environment,
on the other hand, is the larger collection of software (operating systems
and programming tools) and hardware (memory, disk storage, hard copy
capability) available to the programmer. It can include an editor program
to facilitate program writing, code revising, and copying useful lines of
code from one program to another, debugging aids, elaborate trace rou-
tines for following the program’s flow of control; automatic docu-
menters; cross-reference utilities for keeping track of variables, and
subroutine libraries.

Good programming environments (e.g., those most extensively devel-
oped for working on large computers in Lisp and PL/I) make the coding
aspect of programming far more efficient, allowing the programmer to
concentrate on higher level issues of program design, efficiency, and ele-
gance. In contrast, the programming environments provided for today s
school microcomputers are so impoverished (typically consisting of only
a crude editor and limited trace functions) that entering the code for a
program and just getting it to execute correctly is the centra! problem.

Finally, despite vigorous arguments about the educational superiority
of different programming languages, there are no data on whether dif-
ferent languages lead to significant differences in what children need to

On the Cognitive Effecte of Learning Computer Programing o 157

know prior to programming, or what cognitive benefits they derive from
it. Although such differences between languages may exist, they do not
affect our point, since these differences can be manipulated radically by
restructuring ‘he programming environment. Attention is best directed
to general isst.2s about programming, rather than to those that are pro-
gramming language specific.

Instructional Environment
While features of the programming environment are important for learning
to program, how successfully a child will master programming also
depends on the instructional environment and the way in which resource.
such as computer access time and file storage are allocated. Each of these
points concerns the context of cognitive abilities, which we know from
cognitive science and developmental psychology to be critical to the
level of performance achieved in cognitive tasks (fc: reviews, see Brown
et al., 1983; Laboratory of Comparative Human Cognition, 1982).
Deciding how to introdu. . programming and assist students in learn-
ing to program is hampered today by the paucity of pedagogical theory.
That current “fact-learning’’ approaches to programming instruction
are inadequate has become apparent from studies of the kinds of con-
ceptual errors made by novice programmers instructed in that way. For
example, novice adult programmers reveal deep misunderstandings of
programming concepts, and of how different lines of programming code
relate to one anotner in program organization (Bonar & Soloway, 1982,
Jeffries, 1°82; Sheil, 1980, 1981; Soloway, Bonar, & Ehrlich, 1983; Solo-
way, Ehrlich, Bonar, & Greenspan, 1982). As expected from what they
are taught, they know the vocabulary and syntax of their programming
language. Their misunderstandings are much deeper (Jeffries, 1982),
such as assuming that all variables are global (when some may be specific
to one procedure), and expecting that observing one pass through aloop
allows them to predict what will happen on all subsequent passes
(although the outputs of programming statements which fest for certain
conditions may change what will happun during any specific loop). Re-
search by Mayer (1976), L.A. Mille: (1974), and Sime, Arblaster, and
Green (1977) has revealed that adult novice programmers have ¢ difficult
time generally with the flow of control concepts expressed by conditionals
(for a review of these findings, see duBoulay, C ‘Shea, & Monk, 1981).
These conceptual difficulties, even amor.g professional programmers,
havebeen lamented by such programming polymaths and visionaries as
Minsky (1970) and Floyd (1979) as due to problems with how program-
ming is taught. Too much focus is placed on low-level form such as
grammar, semantic rules, and some p:eestablished algorithms for solv-

171

¥

E

RIC 172

158 ® Pea and Kurland

ing classes of problems, while the pragmatics? of program design are left
for students to discover for themselves. Irterestingly, these complaints
about writing programs ave similar to those voiced about how writing in
general is taught (e.g., Scardamalia & Bereiter, 1983).

What do we know about conceptual problems of children learning to
program? Problems similar to those of adult novices are apparent. To
take one example, in our research with 3- to 12-year-old Logo program-
wers (Kurland & Pea, 1985), we find through their think-aloud protocols
and manual simulation of programs that children frequently adopt a
systematic but misguided conception of how control is passed? between
Logo procedures. Many children believe that placing the name of the
executing procedure within that procedure causes execution 0 ““loop”’
back through the procedure, when in fact what happens is that control is

2 One may distinguish for (artificial) programming languages, just .. in the case of
natural languages, between three major divisions of semrotics, or the scientific study of
properties of such signaling systems (Crystal, 1980). These three divisior.s, rooted in the
philosophical studies of Fairce, Carnap, and Morris, are:

Semantics, the st.dy of the relations between linguistic expressiuns and the objects
in the world which they refer to or describe, syntactics, the study of the relation of these
expressions to each other, and pragmatics, the study of the dependence of the mearung
of these expressions n their users (including the social situation in which they are
used). (p. 316)

Studies of natural language pragmatics have focused on the

study of the language from the point of view of the user, especially of the choices he
makes, the constraints he encounters in using language in social interaction, and the
effects his use of language has on the other participants in an act of communication.
(p. 278)

Although there are important disanalogies to natural language, a pragmatics of pro-
gramming languages concerns af least the study of programming languageis) from the
viewpoint of the user, especially of the (design) choices that he or she makes in the
organization of lines of programming code within prugrams (or software systems), the
constraints that he or she encounters (such as the requirements of a debuggable program
that is well documented for future comprehension .nd modification) in using program-
ming language in social contexts, and the effects that his or her use of programming
language have on the other participants (such as the computer, as deal interpreter, or
other humans) ir. an act of communication involving the use of the programming language.

3 The concept of "flow of control” sefers to the sequence of operations that a computer
program specifies. The need for the term emerges because not all control 1s linear. In linear
control, lines of programming instructions would be executed in strict linear order. first,
second, third, and so on. But in virtually ail programming languages, various * control
structures’ are used to allow nonlinear control. For example, one may GOTO other lines
in the program than the next one in BASIC, in which case flow of control passes to the line
of programming code referred to in the GOTO statement. Because a program's flow of
control may be complex, programmers often utilize programmung flowcharts, either to
serve as a high-level plan for creating thei program, or tc document the flow of control in
their program.

2

Aruitoxt provided by Eic:

On the Cognitive Effects of Learning Computer Programing o 159

passed to a copy of the executing procedure, This procedure is then exe-
cuted, and when that process is complete, passes control back to the
procedure that last called it. Children adopted mental models of flow of
control which worked for simple cases, such as programs consisting of
only one procedure, or tail recursive procedures, but which proved in-
adequate when the programming goal required more complex program-
ming constructions.

In other developmental studies of Logo programming skills (Pea, 1983),
evenamong the 25% of the children (8- and 9-year-olds; 11- and 12-year-
olds) who were extremely interested in learning programming, the pro-
grams that they - ‘rote reached but a moderate level of sophistication
after approximately 30 hours of on-line programming experience during
the year. Children’s grasp of fundamental programming concepts such
as variables, tests, and vecursion, and of specific Logo primitive com-
mands such as REPEAT, was highly context-specific. For exanple, a
child who had written a procedure using REPEAT which repeatedly
printed her name on the screen did not recognize the applicability of
REPEAT in a program to draw a square. Instead, the child redundantly
wrote the same line-drawing procedure four different times. We exj.ect
that carefully planned sequences of instruction will be important to en-
sure that programming knowledge is not “’rigid’’ (Werner, 1957), or
"'welded” (Shif, 1969) to its contexts of first learning or predominant
use. Such rigidity is a common finding for early developmental levels in
diverse domains (Brown et al., 1983).

More broadly, in the National Assessment of Educational Progress
survey of 2500 13-year-olds and 2500 17-year-olds during the 1977-1978
school year (National Assessment of Educational Progress, 1980), even
among the small percentage who claimed to be able to program, “’per-
formance on flowchart reading exercises and simple BASIC programs
revealed very poor understanding of algorithmic processes involving
conditional branching”’ (cited by R.E. Anderson, 1982, p. 14).

Educators often assume that adult programmers are not beleaguered
by conceptual problems in their programming, but we have seen that they
are. Once we recognize that programming by “intellectually mature’’
adults is not characterized by error-free, routine performances, we might
better understand difficulties of children learning to program, who
devote only small amounts of their school time to learning to program.

These findings lead us to two central questions about programming
instruction, which we defisie broadly to include the direct teaching pro-
vided by educators as well as the individual advice, modelling, and use
of metaphors with which they support instruction and learning. How
much instruction, and what types of instruction, should be offered?
How much direct instruction is best for children to learn programming 1s

173

160 ® Pea and Kurland

a controversial question (e.g., Howe, 1981; Papert, 1980). At one ex-
treme, schools teach programming as any other subject with "‘fact
sheets”” and tests; at the other, *hey provide minimal instruction, en-
couraging children to explore possibilities, experiment, and create their
own problems tc solve. This second approach, popularized by Papert
(1980), argues that little overt instruction is necessz.y if the programming
language is sufficiently engaging and simple to use, while at the same
time powerful enough for children to do projects :hat they find mean-
ingful. Though this discovery-learning perspective .c not universally
shared, even by Logo devotees (Howe, 7981), it has had a pervasive in-
fluence over uses of Logo by schools.

What type of instruction should be offered, and when in the course of
programming skill development specific concepts, methods, and advice
should be introduced are also critical questions. Two central factors are
implicated by cognitive science studies. One is the current mental model
or system of knowledge that the student has available at the time of in-
struction. A cecond is the goal-relevance of the problem-solving activity
required of the student. On the first point, there are no careful studies of
the success of different instructional acts as a function of a student’s
level of understanding for programming akin to those carried out by
Siegler (1983) for such concepts as time, speed, and velocity. At a more
general level, Mayer (1979, 1981) has shown that a concrete conceptual
model of a programming system aids college students in learning BASI
by acting as an advance organizer of the details of the language. With
the conceptual model, learners were able to assimilate the details of the
programming language to the model rather than needing to induce the
model from the details.

On the second point, we would ask how compatible are the teaciier’s
instructional goals with children’s goals and purposes in learning pro-
gramming? Recent developmental cognitive science and cross-cultural
studies of cognition (e.g., A.L. Brown, 1982, Laboratory of Comparative
Human Cognition, 1983) have shown that assessing task performance
within a goal structure familiar to the person is necessary for determin-
ing the highest developmental level of an individual’s performances.
For learning to program, goals of the programming activity need to be
contexted for the child in terms of other meaningful and goal-directed
activities, connecting either to everyday world affairs, to other aspects of
the curriculum, or to both. Papert (1980) has described this as *’syntonic”
learning. For example, in our studies Logo classroom children found
two contexts especially motivating. creating videogames and simulating
conversations. The most intensive and advanced programming efforts
were in the service of children’s goals such as these. Dewey’s (1900)
point about the importance for any learning that deveiopments in the

On the Cognitive Effects of Learning Computer Programing + 161

new skill serve as more adequate means for desired ends thus again
receives new support. A similar emphasis underlies the successful use
of electronic message and publishing systems in classrooms (e.g., Black,
Levin, Mehan, & Quinn, 1983; Laboratory of Comparative Human Cogni-
tion, 1982). Embedding computer programming activities of increasing
cognitive complexity in children’s goal structures may promote learning
to program and support the transfer of what is learned in programming
to problem-solving activities in other domains.

Our point throughout this section has been that programming is not
taught by computers or by programming languages but by teachers,
with the aid of the supports of a programming environment. How effec-
tively children of different ages and with different background knowl-
edge learn programming will be contingent upon the capabilities of their
teachers, the appropriateness of their learning activities to their current
level of understanding in programming, and the features available in
their programming environment. Studies to date have not incorporated
these considerations that a developmental cognitive science perspective
recognizes as central.

WHAT IS SKILLED PROGRAMMING?

How to define and assess the constellation of skills which comprise pro-
gramming has long been a major problem for industry (Fea & Kurland,
1984b), and is becoming so for schools. We define the core sense of pro-
gramming as the set of activities involved in developing a reusable prod-
uct consisting of a series of written instructions that make a computer
accomplish some task. But in order to move from definition to instruc-
tion, or.2 must begin to unpack “programming skill,” in contrast to the
black-box approach to programming prevalent in schools. Promising
moves in this direction have already be.n provided by careful analyses
of what expert programmers do, and wk.t types and organizations of
knowledge they appear to have in memory ...at they access durirg pro-
gramming. This research strategy, characteristic of cognitive science,
has revealed significant general features of expert problem-solving skills
for diverse domains, such as algebra (Lewis, 1981), chess (Chase &
Simon, 1973), geometry (Anderson, Greeno, Kline, & Neves, 1981),
physics (Chi, Feltovich, & Glaser, 1981; Larkin, McDermott, Simon, &
Siron, 1920), physical reasoning (deKleer & Brown, 1981), and writing
(Bereiter & Scardamalia, 1982), and it is providing new insights into
components of programming skill. In t.rms of what a programmer does,
a set of activities is involved in programming for either novices or ex-
perts, which constitutes phases of the problem-solving process (e.g.,
Newell & Simon, 1972; Polya, 1957). These activities, which may be in-

175

162 * Pea and Kurland

voked at any time and recursively during the development of a program
are: (a) understanding the programming problem, (b) designing or plan-
ning a programming solution, (c) writing the programming code that
implements the plan; and (dj comprehension of the written program
and program debugging. An extensive review of these cognitive sub-
tasks of programming may be found in Pea-and Kurland (1984b).

In terms of what an expert programmer knows, findings on the knowl-
edge schemas, memory organizations, and debugging strategies which
expert programmers possess are of particular interest. Recent studies of
programmers char1cterize high-level programming skill as a giant as-
semblage of highly specific, low-level know ledge fragments (Atwood &
Ramsey, 1978; R.E. Brooks, 1977). The design of functional *’program-
mer’s apprentices’’ such as Barstow’s (1979) Knowledge Based Program Con-
struction, and Rich and Shrobe’s ’Lisp programmer’s apprentice’’ (Rich
& Shrobe, 1978; Shrobe, Waters, & Sussman, 1979; Waters, 1982), and
the MENO Programming Tutor (Soloway, Rubin, Woolf, Bonar, & John-
son, 1982) has involved compiling a “’plan library”’ of the basic program-
ming schemas, or recurrent functional chunks of programming code
that programmers are alleged to use. Observations of programmers sup-
port these introspective analy ses of chunks of programming knowledge.
Eisenstadt, Laubsch, and Kahney (1981) found that most novice student
programs were constructed from a small set of program schemas, and
Jeffries (1982), in comparing t..e debugging strategies of novice pro-
grammers and graduate computer science students, found that experts
saw whole blocks of code as instantiations of well-known problems such
as calct.ating change. Soloway and colleagues (Bonar, 1982, Ehrlich &
Soloway, 1983; Johnson, Draper, & Soloway, 1983, Soloway & Ehrlich,
1982; Soloway, Ehrlich, Bonar, & Greenspan, 1982, also see Kahney &
Eisenstadt, 1982) postulate a model in which programmers use recurrent
plans as chunks in program composition, and identified such plans in
programs written by Pascal novices (e.g., the “‘counter variable plan’).
But for developmental cognitive science we will need studies of how stu-
dents mentally construct such plan schemas from programming instruc-
tion, experience, and prior knowledge.

A related aspect of programming skill is the set of rules that experts
use to solve programming problems, but again we lack geretic studies.
In an analysis of a programmer’s think-aloud work on 23 different prob-
lems, R.E. Brooks (1977) demonstrated that approximately 104 rules
were necessary to generate the protocol behavior. Similarly, Green and
Barstow (1978) note that over a hundred rules for mechanically generating
simple sorting and searching algorithms (e.g., Quicksort) are familiar to
most programmers.

A third aspect of programming skill is the ability to build detailed
“‘mental models’’ of what the computer will do when a prugram runs. An

176

—4*

O: the Cognitive Effects of Learning Computer Programing o 163

expert programmer can build dynamic mental representations, or “‘runn -
able mental models’’ (Collins & Gentner, 1982) and simulate computer
operations in response to specific problem inputs. The complexities of
such dynamic mental models are revealed when skilled programmers
gather evidence for program bugs and simulate the program'’s actions by
hand (Jeffries, “982). Not all program understanding is mediated by
hand simulation; experts engage in global searches for program organi-
zational structure, guided by adequate program documentation, a strat-
egy akin to what expert readers do (A.L. Brown, 1983, Browi & Smiley,
1978; Spiro, Bruce, & Brewer, 1980). How individuals develop such rich
procedural understandings is currently unknown.

Expert rrogrammers not only have available more knowledge schemas,
strategies, and rules applicable to solving programming problems, but
they perceive and remember larger chunks of information than novices.
The classic Chase and Simon (1973) finding of short-term memory span
advantages for chess experts uver novices for meaningful chessboard con-
figurations but not for random configurations has been replicated for pro-
gramming (Curtis, Sheppard, Milliman, Borst, & Love, 1979, McKeithen,
Reitman, Rueter, & Hirtle, 1981; Sheppard, Curtis, Milliman, & Love,
1979; Shreiderinan, 1977). For example, McKeithen et al. (1981) found
that experts clustered keyword commands according to meaning (e.g.,
those functioning in loop statements), whereas novices clustered accord-
ing to a variety of surface ordinary language associations (such as ortho-
graphic similarity and word length), intermediates falling between the
two Similarly, Adelson (1981) found that recall clusters for experts were
functionally or ““deeply”’ based, those of novices were based on "'surface’’
features of programming code. This is a major developmental transforma-
tion, but we do not understand how it occurs. DiPersio, Isbister, and
Shneiderman (1980) extended this researct. by demonstrating that perfor-
mance by college students on a program memorization/reconstruction
task provides a useful predictor of programming test performances.

Itis also a widely replicated finding that expert programmers debug
programs in different ways than novices (Atwood & Ramsey, 1978;
Gould, 1977; Gould & Drongowski, 1974, Youngs, 1974). Jeffries (1982)
found that program debugging involves comprehension processes anal-
ogous to those for reading ordinary language prose. Experts read pro-
grams for flow of control (execution), rather than line by line (as text).
But how do programmers shift from surface to deep readings of pro-
grams as they develop debugging skills?

In conclusion, we make one important o>servation. Expert program-
mers know much more than the facts of programming language seman-
tics and syntax. However, the rich knowledge schemas, strategies,
rules, and memory organizations that expert programmers reveal are
directly taught only rarely. Many students appear to run aground in

1727

o o

164 * Pea and Kurland

programming for lack of such understandings. This does not mean that
they could not be taught, but for this to take place ffectively will require
considerable rethinking of the traditional computer science curriculum.
These cognitive qualities appear instead to be a consequence of an active
constructive process of capturing the lessons of program writing ex-
perience for later use.

LEVELS OF PROGRAMMING SKILL DEVELOPMENT

To date, observations of level of programming skill development (c{.
Howe, 1980) have been extremely general and more rationally than em-
pirically de.ived. Accounts of novice-expert differences in programming
ability amorg adults coupled with observations of children learning to
program provide a starting point or develuping a taxonomy of levels of
programmung proficiency. This taxon.omy can guide our research by pro-
viding a developmental framework within wh.ch to assess a student’s
programming expertise and make predictions for types of transfer
beyond programming as a function of a student’s level of expertise.

We believe that at least four distinct levels of programming ability can
be identified that have distinct implications for what types of skiis might
transfer as the result of their achievement. These levels represent pure
types aad may not be characteristic of an indi.idual, but they capture
some complexities in what it means t. ‘evelup programming skills. We
view these levels only as guides tow ard more adequate characterizations
of the development of programming abilities. Further differentiation
will inevitably be required, in terms of the cognitive subtasks involved in
the levels, and refined sublevels.

Ltevel I: Program User

A student typically learns to execute already written programs such as
games, demonstrations, ur computer-assisted instruction lessons befure
beginning instruction in how to program. What is learned here is impor-
tant (i.e., what specific keys do, how to boot a disk, how t. use screen
menus), but does not reveal how the program works or that a program
controls what happens o.. the screen. For many computer users this level
is sufficient for effective computer use (e.g., for word processing, game
playing, electronic mail). But to be more in control of the com.puter and
able to tailor its capabilities to one’s own guals, some type of program-
ming is required.

From this level ~ve would expect relatively little transfer beyond com-
puter use, but some ‘ransfer on computer liter2.y issues. Fui example,
given sufficiently wide exposure to different types of programs, a stu-
dent would be expected to know what comput. s are capable of doing,

IToxt Provided by ERI

On the Coguitive Effects of Learning Computer Programing o 165

what they cannot do, and fundamental aspects of how they function in
their everyday lives. As users, then, children might learn when com-
puters are appropriate tools to apply to a problem.

Level II: Code Generator
At this level the student knows the syntax and semantics of the more
common commands in a language. He or she can read someone else’s
program and explain what each line accomplishes. The student can
locate ""bugs’’ preventing commands from being executed (e.g., syntax
errors), can load and save program files to and from an external storage
device, and can write simple programs of the ype he or she has seen pre-
viously. When programming, the student does very little preplanning
and does not bother to document his or her programs. There is no effort
to optimize the coding, use error traps, or make the program usable by
others. A program created at this level might just print the student’s
name repeatedly on the screen or draw the same shape again and again
in different colors. The student cperates at the level of the individual
command and does not use subroutines or procedures created as part of
other programs. This level of understanding of the programming pro-
cess is sufficient for creating short programs. But to .. ate more useful
and flexible programs, the student needs to progress 1o at !sast the next
level,

At level II, more specific types of computer literacy related transfer
would be expected. Students should develop better skills for dealing
with more sophisticated software tools of the .y pe which are rapidly per-
meating the business world. Coraputer-naive users of office information
systems, even calculators, have many problems (e.g., Mann, 1975; Nick-
ersor, 1981) and construct naive, error-ridden mental models of how
they work (Mayer & Bayman, 1981; Newman & Sproull, 1979; Young,
1981). Knowledge characteristic of this level may be required to attenuate
ihese problems. Sheil (1980, 1981) provides corapelling arguments that
most systems require low-level programming if the user wishes to take
advantage of system options, a basic competency he has designated as
"’procedural literacy.”’

While potential computer literacy transfer from low -level programming
exposure seems a reasonable expectation, what types of cognitive trans-
fer should occur from this level of programming expertise is disputable.
Our observativns of children programming at this level suggest that
some appreciation of the distinction between bugs and errors, degrees
of correctness, and the valuc of decomposi..g program goals into man-
ageable subparts may develop and transfer to other domains, but that a
student’s attention is typically so riveted to simply getting a program to
work that any appreciation fc: more general cognitive strategies is lost.

179

166 ® Pea and Kurla.:d

Level iil: Program Generator

At this level the student has mastered the basic commands and is begin-
ning to think in terms of higher level units. He or she knows that se-
quences of commands accomplish program goals (e.g., locate and verify
a keyboard input, sort a list of names or numbers, or read data into a
program from a separate text file). The student car read a program and
explain its purpose, what functions different parts of the program servc,
and how the different parts are link=d together. The student can locate
bugs that cause the program to fail to function properly (e.g., a sort
routine that fails . correctly place the last item in a list) or bugs that
cause the program to crash as a result of unanticipated conditions or in-
puts (e.g., a division-by-zero error when the program is instructed to
find the mean of a null list). The student can load, save, and merge files
and can do simple calls to and from files from inside the main progran..
The student may be writing fairly lengthy programs for personal use,
but the programs tend not to be user-friendly. While the student sees
the need for documentation, he or she does not plan programs around
the need for careful documentation or clear coding so that the program
may be maintained by others. For this general level, one can expect to
identify many sublevels of programming skill.

Within this level of expertise, students should develop sore appreci-
ation for the process of designing a successful program. Such under-
standing has potentialiy powerful imvlications for their work in other
domains, particularly if such relatic.ships are explicitly drawn by the
teacher for students, or exemplified in other domains. However, it.ap-
pears from our classr .um observations and interviews with teachers that
for students to spontaneously transfer computational concepts or lan-
guage constructs used in one area of program:rung to other programming
projects is a major accomplishment. Ideas about when to use variables,
or the value of planning, as in designirg program components o that
they can be reused in the future, and fullowing systematic conventiors
(such as beginning all graphic:, designs at their lower left corner) to make
merging components into programs easier are all important accomplish-
ments at this level that should not be taken for granted.

Level IV: Sof{«:are Developer

Finally, at this level the student is ready to write programs that are not
only complex and take full adva. .tage of the capabilities of the computer,
but are intended to be used by otners. The student now has a full under-
standing of all the features of a language and how the language interacts
with the host computer (e.g., how memory is allocated or how graphics
buffers may be protected from being overwritten). When given pro-
grams to read, the student can scan the code and simulate mentall-

150

On the Cognitive Effects of Learning Computer Programing ¢ 167

what the program is doing, see how the goals are achieved and how the
programs could be better written or adapted for other purposes. Pro-
grams are now written with sophisticated error traps and built-in tests to
aid in the debugging process and to ensure that the program is crash-
proof. Beyond writing code accomplishing the program’s objec.iive, the
student can optimize coding to increase speed and minimize the memory
required to run a program. To decrease the time needed to write pro-
grams, he or she draws heavily on software libraries and programming
utilities. Finally, he or she often crafts a design for the program before
generating the code, documents the program fully, and writes the pro-
grain in a structured, modular fashion so that others can easily read and
wodify it. Major issues in software engineering at high sublevels within
thiz level of expertise are discussed by Thayer, Pyster, and Wood (1981).

Itis at this levei of programming sophistication that we would expect
to see most extensive evidence for cognitive transfer. The student can
distance himself or herself sufficiently from the low-1.vel coding aspects
of program generation to reflect on the phases and processes uf problem
solving involved. The issues of programming which the student is con-
cerned with at this level—issues of elegance, optimalization, efficiency,
verification, provability, and style—begin to transcend low-level con-
cerns with program execution, and may lead him or her to consider
wider issues. The need at *his level to be conscious of the range of in-
tended users of programs forces the student to take the audience fully
into account, a skill that has wide applicalility in many other domains,
such as writing.

Implicit in these distinctions between levels of programming skill and
their linking to predictions about types of transfer is a theory of program-
ming at odds with the naive technoromanticism prevalent in educational
computing. While it is conceivable that even low levels of programming
skill are sufficient to produce measurable cognitive transfer to nonpro-
gramming domains, we contend that on the limited cvidence available,
this would be unlikely. Students who can barely decode or comprehend
text are not expected to be proficient writers. Similarly, we doubt that
students with a low-level understanding of programming and the skills
that f rogramming entails will write func*~ ~ ' arugrams or gain insights
into other domains on the basis of * programming skill.

COGNITIVE CONSTL...INTS ON
LEARNING TO PROCGRAM

Beyond asking what general cognitive characteristics may be prerequisite
to or subsiantively influence a child’s leaining to program, some ask
what "developmertal level” children must be “at’’ in order to learn

181

—_—

168 e Peg and Kurland

from programming experiences. The concept of developmental level at
the abstract theoretical planes of preoperational, concrete operational,
and formal operational intellectual functioning has proved to be useful
for instructional psychology .. nderstanding children’s ability to
benefit from certain types of learning experiences (e.g., Inhelder, Sin-
clair, & Bovet, 1974). But the very generality of these stage descriptions
is not suitably applied to the development of specific domains of knowl-
edge such as programming skills.

We have two reasons for not pursuing the development >f program-
ming skills in terms of Piagetian developmental levels. First, there is
strong evidence that the development and display of the logical abilities
defined by Piaget is importantly linked to content domain (Feldman,
1980; Gardner, 1983; Piaget, 1972), io the eliciting context (Laboratory of
Comparative Human Cognition, 2983), and to the particular experiences
of individuals (Price-Williams, Gordon, & Ramirez, 1969). Since it is not
apparent why and how different materials affect the developmental
level of children’s performances within Piagetian experimental tasks, it
is not feasible to predict relationships between learning to program and
performances or: the Piagetian tasks. Our second objection is that learning
to program has reither been suhjected to developmental analysis nor
characterized in terms of its component skills that may develop, although
such analyses are necessary for articulating measures that indicate the
availability and developmental status of these skills for particular
learners.

While no research has been directly aimed at defining the cognitive
prerequisites for learning programming, at least six factors are frequently
mentioned. mathematical ability, memory capacity, analogical reasoning
skills, conditional reasoning skills, procedural thinking skills, and tem-
poral reasoning skills. These cognitive abilities, each of which has a com-
plex and well-researched developmental history, ..e presumed to impact
on learning to program, and cculd be promising directions for research.

Mathematical Ability

Beyond ‘“general intelligence,’’ programming skill is said to be linked to
general mathematical abi .y. Computers were first developed to help
solve difficult mathematical problems. Although many computer uses
today are nonmathematical (e.g., database management, word process-
ing), the notion persists that to program one must be mathematically
sophisticated. Media accounts of children using computers in schools
have perpetuated the belief that progtamming is the province of math
whizzes. Although we doubt that math and programming abilities are
related once general intelligence is factored out, mathematical ability

On the Cognitive Effects of Learning Computer Programing o 169

cannot be ruled out as a prerequisite to the mastery of certain levels of
programming skills.

Processing C.spacity

Programming is often a memory-intensive enterprise requiring great
concentration and the ability to juggle values of a number of parameters
at a time. Individual differences in processing capacity zre thus a likely
candidate for influencing who becomes a good programmer, Forward
and backward span tasks, and more recently developed transforma-
tional span measures (cf. Case & Kurland, 1980; Case, Kurland, & Gold-
berg, 1982) assess how much information one can coordinate at a given
moment, and appear to index processes basic to learning. Performances
on such tasks have reliably correlated with generai intelligence, Piagetian
developmental level, and ability to learn and use probiem-solving strate-
gies (e.g., Hunt, 1978).

Analogical Reasoning

A student may have background knowledge and capacities relevant to
programming and yet neither connect them to the programming domain,
noi transfer krowledge acquired in programm'ag to other domains.
This “access” of knowledge is absolutely fundamental to learning ar.u
problem solving throughout life (e.g., A.L. Brown, 1982). Transfers of
knowledge and strategies, both "into’” and “’out of’’ learning to pro-
gram, may depend on analogical thinking skills. Tasks designed to mea-
sure abilities for engaging in analogical thinking (e.g., Gick & Holyoak,
1980; Sternberg & Rifkin, 1979) may predict level of programming devel-
opment and transfer outcomes. Mayer (1975, 1981) argues that students
learn programming by comparing the flow of control intrinsic to compu-
tational devices to that of physico-mechnical models that they arready
possess. Also, duBoulay and O’Shea (1976) and duBoulay et al. (1981)
have successfully used extensive analogical modelling to expl:in com-
puter functioning to novice 12-year-old progiamming students.

Conditional Reasoning

Working with conditional statements is a major part of programming,
since they guide th~ operation of loops, tests, input checking, and other
programming functions. It is thus reasonable to ¢ edict that a student
who has sufficient understanding of conditional logic, the various “if. . .
then” control structures and the predicate logica! connectives of nega-
tion, conjunction, and disjunction, wiil be a . ccessful program-
mer than a student who has trouble moniton.,, :.e flow of control
through cenditional statements.

183

170 o Peq and Kurland

Procedural Thinking

Several kinds of quasi-procedural® everyday thought may influen.e how
easily a learner masters the "’flow of control’’ procedural metapl.or cen-
tral to understanding programming, including giving and follcwir.g
complex instructions (as in building a model), writing or followirg
recipes, and concocting or carrying out directions for travel. Presumably,
learners more familiar with these linear procedures, analogous to the
flow of control for computer operations expressed as instructions in a
computer program, will more readily come to grips with the *’proce-
dural thinking”” touted as a central facet of programming expertise
(Papert, 1980; Sheil, 1980). However, the development of procedural
thinking has been little studied to date.

Temporal Reasoning

The activity of temporal reasonirg is related to procedural thinking, but
with a distinct emphasis. Creating and comprehending programs re-
quires an understanding of the temporal logic of sequential instructions.
"it is the intellectt al heart of iearning hovs to program’’ (Galanter, 1983,
p. 150). In teaching programming, G. _anter says:

The central theoretical concept that guided this effort was that classical
forms of spacial-geometric-pictorial thinking must be augmented, and occa-
sionally replaced, by temporal-imaginative-memorial logic. The child must
learn to substitute an inner temporal eye for the outer spacial eye. (p. 163)

Going somewhere in the program next, running one subroutine or
procedure before another, ensuring one counter does not exceed a certain
value until another operation is performed—these fundamental opera-
tions all require temporal understanding. Yet understanding temporal
terms is a major developmental achievement, a challenge for children
yonunger tha= 7 to 8 years (e.g., Friedman, 1982; Piaget, 196¢,. Futurity
also presents complex conceptual problems for the pianning activities
involved in programming, such as imagining outcomes of the possible
worlds generated by program design options (Atwood, Jeffries, & Polson,
1980), or the "’symbolic executions’’ while writing programming code
(R.E. Brooks, 1977).

* What is “'quasi-procedural” rather than “procedural’’ about givir.g and following
task instructions, directions, and recipes is that unlike prucedural instructions in a com-
puter program, there is oft.n ambiguity in the everyday examples such that the instruc-
tions, directions, and recipes are not always unequivocal in meaning. They are also not
constrained by strict sequentiality. One may often choose to bypass steps in a reaipe ur set
of ir.structions, or reorder the steps. Neither option is available in the str.ct procedurality
of programmed instructions. Yet similarities between the e.eryday cases and program-
ming instructions are compelling enough to make their designation as quasi-procedural
understandable.

184

On the Cognitive Effects of Learning Computer Pr._ aming o 171

In sum, the cognitive constraints on developing programming skills
are currently unknown. Although a developmental cognitive science
perspective predicts that a student’s attainable level of programming
skill may be constrained by cognitive abilities required in programming,
no studies relate level of programming skill to the abilities we have de-
scribed. Children may have conceptual and representational difficulties
in constructing dynamic mental moc:ls of ongoing events when the
computer is executing program lines that constrain their level of pro-
gramming skill. Also, systematic but ‘’naive’’ mental models o1 intuitive
epistemologies of computer procedural functioning may initially mislead
children’s understanding of programming, as with adult novices. Since
learning to program is difficult for many students, there is a serious
need for research findings that will guide Jecisions about tailoring pro-
gramming instruction according to a student’s relevant knowledge prior
to learning to program.

EVIDENCE FOR COGNIT!VE EFFECTS
OF PROGRAMMING

We now return to evidence for the claims for broad cognitive impacts of
programming experience, with greater awareness of the complexities of
learning to program and issues of transfer. In sum, there is little evi-
dence for these claims.

Dramatic accounts have been offered of how some school-aged chil-
dren’s thinking about their own abilities to solve problems is transformed
through learning to program (e.g., Papert et al., 1979; Watt, 1982; Weir,
1981; Weir & Watt, 1981). Important social interactional changes have
been demonstrated in classrooms where children are learning Logo pro-
gramming (Hawkins, Sheingold, Gearhart, & Berger, 1982), and for some
children programming is an important and deeply personal intellectual
activity. Similarly, many teacher reports focu. or. social ard motiva-
tional rather than cognitive aspects of this experience (Sheingold, Kane,
Endreweit, & Billings, 1981; Watt, 1982). It} ' not yet clear what the cog-
nitive benefits of programming for such children may be in terms of the
transfer claims reviewed eatlier.

On the cognitiv~ side, Ross and Howe (1981) have reviewed ten years
of relr .nt research to evaluate Feurzeig et al.’s (1969) four general
claim’ on the cognitive impacts ¢. programming. The relevant research
has been with Logo, and in nonrepresentative private schools. Below we
summarize Ross and Howe’s review, and integrate summaries of other
studies relevant to these claims. In terms of our account of levels of pro-
gramming skill and expected transfer outcomes from them, we must
caution that studies so far, including our own, have an important limuta-

172 o Peqg and Kurland

tion. They have all looked at what we have designated as high-level or
cognitive-transfer outcomes, expected to emerge only at the higher
levels in ou: account of programming skill, whereas the levels of pro-
gramming attained by the students in these studies were low because
they only did six weeks to a year or so of programming. In other words,
there has been a mismatch of “'treatment’’ and transfer assessments
because of a failure to appreciate the different kinds of transfer to in-
v~-*gate and their likely linkage to different kinds of transfer to investi-
gate and their likely linkage to different levels of programming skill. For
example, there are no studies that have assessed the low-level transfer
or applic ation of programming concepts such as ‘’variable’’ in different
types of programming within a language (e.g., graphics versus list pro-
c2ssing in Logo), or from one programming language to another, or of
computer literacy outcomes.

First, there are no substantial studies to support the claim that pro-
gramming promotes mathematical rigor. In a widely cited study by Howe,
O’Shea, and Plane (1979), researchers who were highly trained pro-

~mmers spent two years teaching Logo programming to eleven 11-yea:-

ld-boys of average or below average math ability. The first year they
studied Lcgo, the second math with Logo, each boy working for one
hour per week in a programming classroom. After two years, when
Logo students were compared to nonprogrammers (who on pretest had
significantly better scores on the Basic Mathematics Test, but equivalent
scores on the Math Attainment Test), they had improved in Basic Math
enough to eliminate the original performance gap with the control
group, but fell significantly behind on the Math Attainment Test. Such
global math score differences do not support the *'rigor’’ claim. The oft-
cited finding is that the Logo group learned to argue sensibiy abuut
mathematical issues and explain mathematice! difficulties clearly, but
the finding is based only on differences in ratings of Logo and control
students in teacher questionnaires (Howe et al., 1979). The reliabiiity of
such ratings is questionable, since the math teachers should have been
blind to which students learned Logo.

Second, there are nc reports demonstrating that programming aids
children’s mathematical exploration. Reports by Dwyer (1975) for children
learning BASIC, and Howe et a!. (1979), Lawler (1980), and Papert et al.
(1979) for th. se using Logo, do dJocument children’s goal-directed explor-
tion of mathematical concepts such as “variable’’ on computers. Though
encouraging, since math exp'oration and ‘mathland’” vlay are likely to
suppor* inuth learning, studies have not shown any effects of math ex-
ploration during programming outside the programming environment.

Third, although Feurzeig et al. (1969) suggest that the twelve 7- 15 9-
year-old children to whom they taught Logo can : to “‘acquire a mean-

185

On the Cognitive Effects of Learning Computer Programing o 73

ingful understanding of concepts like variable, function and general
procedure,” they provide no evidence for the claim that programming
helped the children gain insight into these mathematical concepts.

Finally, we ask whether programming has been shown to provide a
context and langua,,> that promotes problem solving beyond >rogram-
ming. Papert et al. (1979) conducted a Logo project with sixth graders for
six weeks, and reported anecdotes that children engage in extensive
problem-solving and planning activities in learning programming.
Whether . ich activities had cognitive effects beyond programming was
not studied. However, Statz (1973) carried out a study to assess this
claim. Logo programming was taught to sixteen 9- to 11-year-old children
for a year. Statz chose four problem-solving tasks with intuitive, ill-
specified connections to programming activities as transfer outcome
measures. The experimental group did better on two of these tasks
(word p 7zle and a permutation task), but no better on the Tower of
Hanoi task or a horserace problem that Statz had cesigned. She ir...r-
prets these findings as .nixed support for the claim that learning Logo
programming promotes the development of more general problem-
solving ski'ls.

Soloway, Lochhead, and Clement (1982), in reaction to the finding
(Clement, Lochhead, & Monk, 1979) that many college science students
have difficulty translating simple algebra word problems irto equations,
found that more students solve such problems correctly when they are
expressed as computer programs rather than as algebraic equations.
They attribute this advantage to the procedural semantics of equations
in programs that many students lack in the algebraic task. This effect is
much more restricted than the increments in general problem-solving
skill predicted by the cognitive transfer claims.

A very important idea is that not only computer programs, but one’s
own mental activities can lead to “‘buggy’’ performances and misunder-
standings. Tools for diagnosing different types of bugs in such pro-
cedural skills as place-valuz= arithmetic (Brown & Bu:ton, 1978, Brown &
VanLehn, 1980; VanLehn, 1981) have resulted from: extensive program-
ming effo: .5 to uild ““bug diagnostic systems’” (Burton, 1981). One may
argue that the widespread recognition that systematic bugs may beset
performances in other procedural skills, such as high school algebra
(Carry, Lewis, & Bernard, 1979; Matz, 1981), reflects a kind of transfer
beyond programming. No evidence indicates that programming stu-
dents demonstrate such transfer.

Planning in advance of problem solving, and evaluating and checking
progress in terms of goais, are important aspects of a reflective attitude
to one’s own mental activities (Pea, 1982). We have seen that the devel-
opment of planning abilities is one major predicted cognitive benefit of

187

174 * Pea and Kurland

learning to program. We therefore developed transfer task for assess-
ing children’s planning (Pea # Hawkins, 1364). We reasoned that a
microgenetic method (Flavell & Draguns, 15*'7} :llowing children to de-
velop multiple plans was comparable to the rounds of revisions carried
out during programming, and would allow for a .. tailed study of plan-
ning processes. Children planned alcud while form *.* ~~, over several
attempts, their shortest-distance plan for doing a ».. familiar class-
room chores, using a pointer to indicate their routes. 3ave the task
twice, early and late in the school year, to eight children ... each of two
Logo classrooms (8- and 9-year-olds; 11- and 12-year-olds,, and to a con-
trol group of the same number of same-age children in the same school.
There were six microcomputers in each classroom, allowing substantial
involvement with programming.

Asin related work on adults’ pianning processes by Goldin and Hayes-
Roth (1980; also B. Hayes-Roth, 1980; Hayes-Roth & Hayes-Roth, 1979),
our product analyses centered on ’‘plan goodness’’ in terms of metrics
of route efficiency, and our process analyses centered on the types and
sequencing of pJanning decisions made (e.g., higher level executive and
metaplanning decisions such as what strategic approach to take to the
problem, versus lower level decisions of what route to take between two
chore acts). Results indicated that the Logo programming experiences
had no significant effects on planning performances, nor on any of the
plan efficiency or planning process measures (Pea & Kurland, 1984a).
Replications of this work are currently under way with children in other
schools (Kurland, Pea, Clement & Mawby, in press).

CONCLUSIONS

As our society comes to grips with the information revolution, the ability
to Jeal effectively with computers becomes an increasingly important
skill. How well our children learn to use computers today will Lave great
consequences for the society of tomorrow. The competence to appropri-
ately apply highier cognitive skills such as planning and problem-solving
heuristics in mental activities both with and without computers is a
critical aim for education. As one contribution to these issues, at the
beginning we argued for and then throughout documented the need for
a new approach to the pervasive questions abaut the cognitive effects of
computer programming. This approach, which we characterize as devel-
opmental cognitive science, is one that does not merely adopt the com-
mon perspective that computer programmers are all like adults, but is
instead geared to the learning experiences and developmental transfor-
mations of the child or novice, and in its research would be attentive to
"he playing out of those processes of learning and development in the

183

IToxt Provided by ERI

On the Cognitive Effects of Learning Computer Programing « 175

instructiona' and programming environments in which the novice gains
expertise.

So, can children become effective programmers and does "’learning to
program’’ positively influence children’s abilit*~s to pian effectively, to
think procedurally, or to view their flawed problem solutions as ““fixable’’
rather than ““wrong’’? We have shown that answers to these questions
depend on what “’learning to program’’ is taken to mean. We reviewed
cognitive science studies revealing that programming involves a complex
set of skills, and argued that the development of different levels of pro-
gramming skill will be highly sensitive to contexts for learning, including
processes of instruction, programming environment, and the background
knowledge the student brirgs to the task. We found few studies that
could inform this new understanding, although many | romising research
questions were defined from this perspective.

We dismissed two prevailing myths about learning to program. The
myth embodied in most programming instruction that learning to pro-
gram is “learning facis’ of programming language semantics and syrt-
tax is untenable, since it leads to major conceptual misunderstandin 15
even among adult programmers, and since what is taught belies what
cognitive studies show good programmers do and know. These stud;.2s
have direct implications for new content and methods for programming
instruction that are under development in several quarters. Studies of
learning to program and of transfer outcomes are not yet available for
cases where instruction has such nontraditional emplases, for example,
on task analysis and problem-solving methods that take advantage of
what we know expert programmers do. We also delivered arguments
against the second myth, of spontaneous transfer of higher cognitive
skills from learning to program. Resistance in learning to spontaneous
transfer, and the predicted linkages of kinds of transfer beyond pro-
gramming to the learner’s level of programming <’ ill were major points
of these critical reviews.

So, wiien thinking abcut children learning to program, what levels of
skill can be expected? Reports of children learning to program (Howe,
1981; Levin & Kareev, 1980; Papert et al., 1979; Pea, 1983), including the
learning disabled, the cerebral palsied, and the autistic (Weir, 1981; Weir
& Watt, 198" suggest that most children can learn to write correct lines
of code (level II in our account). This is no small ackievement since writ-
ing grammatically correct lines of code is all that many collzge students
of programming achieve in their first programming courses (Bonar &
Soloway, 1982). This level of programming skill may depend on the
same abilities necessary for learning a first language.

However, for programming skills that are functional for solving prob-
lems, “grammatical”” programming alone is inadequate, the student

ERIC 189

176 ¢ Pea and Kurland

must know how to organize ccde and “‘plan schemas’’ to accoraplish
specific goals. Development to these higher levels, where one becomes
facile with the pragmatics of programming, may require strategic a:.d
planful approaches to problem solving that are traditionally considered
““metacognitive,” ad more characteristic of adolescents (Brown et al.,
1983) than primary school children. Further, the experience of the child
in an elementary or junior high school program who spends up to 30 to 50
hours per year programming is minuscule when compared to the 5,000
hours which R.E. Brooks (1980) estimates a prcgrammer with only three
years of experience has spent on programming. Since it appears unrea-
sonable to expect children to become advanced programmers in the few
years available to them in most school programming courses, our educa-
tional goals should be more realistic and achievable. We do not currently
know what levels of programming expertise to expect, but in our experi-
ence children who are programminy, experts are not common. There are
thus large gaps between what is meant by learning to program in the
computer science literature, and what “‘learning progtamming’ means
to educators interested in exposing this domain to children. These dis-
crepancies should temper expectations for the spontaneous effects of
children’s limited programming experiences in school on their ways of
thinking, at least for how programming is taught (or not taught) today.
Whether research on learning to program with richer learning experi-
ences and instruction will lead to powerful outcomes of programming
remains to be seen. In place of a naive technoromanticism, we have pre-
dicted that the level of programming abilities a student has mastered
will be a predictor of the kinds of concepts and skills that the student
will transfer beyond programming. Although findings to date of transfer
from learning to program have not been encouraging, these studies suf-
fer in not linking level of programming skill to specific outcomes ex-
pected, and the critical studies of low-level transfer expected from levels
I and II programming skills remain to be carried out. Even more impor-
tantly, with thinking skills as educational goals, we may be best vif pro-
viding direct guida. ce that teaches or models transfers as a general
aspect of highly developed thinking processes (Chipman, Segal, & Glaser,
1985, Smith & Bruce, 1981). For these purposes programming may pro-
vide one excellent domain for examples (Nickerson, 1982, Papert, 1980).

Throughout, we i.ave emphasized how developmental research in this
area is very much needed. We need empirical studies to refine our char-
acterizations of leveis of programming proficiency, extensive evalua-
tions of the extent of transfer within and beyond programming in terms
of different programming and instructional environments, and studies
to help untangle the complex equation involving cognitive constaints,
programmung experience, and programming outcomes. We believe all of

150

On the Cognitive Effects of Learning Computer Programing « 177

these questiors could be addressed by careful longitudinal studies of the
learning and development process by which individual students become
proficient (or not-so-proficient) programmers, and of the cognitive conse-
quences of different levels of programming skill. Such studies would pro-
vide far more relevant information for guiding the processes of education
than standard correlational studies. A focus on process and the types of
interactions that students with different levels of entering skills have with
programming and instructional environments is critical for understand-
ing how developments in programming skill are related to other knowl-
edge. We are optimistic that others will join in work on these questicns,
for progress must be made toward meeting the educational needs ¢f a
new society increasingly empowered by information technologies.

AUTHOR NOTES

We would like to acknowledge with thanks the Spencer Foundation and
the National Institute of Education (Contract 400-83-0016) for supporting
the research reported here, and for providing the opportunity to write
this essay. The opinions expressed do not necessarily reflect the position
or policy of these institutions and no official endorsement should be in-
ferred. Jan Hawkins, Karen Sheingold, Ben S.ineiderman and a group
of anonymous reviewers provided very useful critical discussions of the
data and issues covered in this report.

CHAPTER 9

LOGO AND THE DEVELOPMENT
OF THINKING SKILLS

Roy D. Pea, D. Midian Kurland, and Jan Hawkins

With the growing presence of computers in educational settings, ques-
tions about their importance and likely effects for children’s learning
have become a focal concern. Studies that draw conclusions about th~
impact of computers on children’s development and thinking are begin-
ning to emerge. It is important that we take a critical luok at the contexts
in which these studies are being carried out and at the assumptions that
underlie them. Understanding the effects of any learning experience is a
complex, multileveled enterpiise. Ideally, studying how and what chil-
dren learn in school contexts should allow for revisionary cycles in
which variations in the important features of learning c.periences and
methods of measurement can be explored and improverients made. Too
often this is not done.

For the past several years we have been carrying out a series of studies
conducted to understand in detail one system for using computers with
children that has received great attention in the educational community.
teaching children to program through Logo. The Logo programming lan-
guage is designed to be easily accessible to children (Abelsun & diSessa,
1981), and experience with Logo is associated with general problem-
sulving abilities as well as with specific skills in p- sramming (Byte, 1982,
Coburn, Kelman, Roberts, Snyder, Watt, & Weiner, 1982, Papert, 1980).
Our research was designed to answer questions about the cognitive and
sucial impact of Logo in elementary school classrooms. One major strand
of this work is summarized in this chapter. whether learning to program
affects the development of other cognitive skills. An interwoven theme
will be how our assumptions and understandings vencerning the nature
of programming and its necessary cognitive requirements changed as
we became increasingly familiar with the programming **culture’* emerg-
ing in the classrooms we were studying.

192

178

Logo and the Development of Thinking Skills * 179

We began with a basic framework for conducting our work. Logo was
awell-designed symbol system for programming. Many claims had been
made about the power and uniqueness of this system as an environment
in which children could explore through discovery learning and develop
problem-solving skills that would spontaneously transfer beyond the
practices of programming (Papert, 1980). Since this learning environ-
ment was being made available on a mass scale, it was important to ex-
amirie these claims in the context of general use—elementary school
classrooms. Our intent was to investigate the effects of Logo learning on
cognitive skills (Pea & Kurland, 1984b), but we had the parallel problem
of documenting the cocreation of Logo learning practices in classrooms
by teachers and children in which cognitive skills were to be used. In the
Logo discovery learning environment, how did children encounter new
information? What were the problems that engaged them? How was
Logo integrated into the work of the classroom?

In the next section we briefly review some of the key findings from
one line of our research—the question of whether problem-solving skills
were gained through Logo programming that transferred beyond pro-
gramming practices However, our main purpose will be to reflect on
how these studies enabled us to look more closely at the distinction be-
tween the cognitive skills that can be practiced through some uses of
formally elegant symbol systems such as Logo and the ways that these
systems evoke particular praciices in the classrooms.

RESEARCH SETTING

The studies took place over a 2-year period in one third/fourth grade and
one fifth’sixth grade classroom in a private : chool in New York City. The
children in the studies represented a variety of ethnic and socioeconomic
backgrounds and a range of achievement levels. Many of :he children
were, however, above national norms in school achievement and came
from upper-middle-class and professional families. Each classroom had
six microcomputers during the 1981-1982 school year. In each class, chil-
dren were learning Logo.

The teachers received intensjve training in Logo. They had regular
contact with members of the research staff as well as with the members
of the team who developed Logo throughout the two years of the otudy.
The computer programming activities during the first year were intended
by the teachers to be la. .ely child initiated so as to encourage the child-
centered, Piagetian "’learning without curriculum’” advocated for Logo
(Papert, 1980). While teachers in the first year of the study gave the chil-
dren some simple instruction in Logo during the first several weeks and
occasionally held group sessions to introduce new aspects of Logo dur-

11933

180 ¢ Pea, Kurland, and Hawkins

ing the year, their self-defined role was principally that of constructively
responding to students’ questions and problems as they arose. Students’
primary activities were the creation and development of their own com-
puter programming projects.

Teachers scheduled computer use for students in their classrooms so
that everyone would have equal access—about two 45-minute work
periods per week. There were additional optional times for computer
use throughout the day—before school and during lunch periods--when
computers were available on a first-come, first-served basis. Logs kept at
each computer over the course of the year showed that, on the average,
the children spent about 30 hours programming in Logo, although several
spent as many as 60 hours.

The second year differed from the first in that both teachers decided
to take a more directive role in guiding their students’ explorations of
Logo (see Hawkins, Chapter 1, this volume, for a more detailed descrip-
tion of the teachers’ changing views of the role of programming in their
classrooms). The teacher of the younger class gave weekly group lessons
to introduce key computational concepts and techniques, and to demon-
strate how they function in computer programs. The older students
were also given more group lessons and were required to complete spe-
cific assignments centering on Logo concepts and programming methods,
such as preplanning. In both classrooms, the focus of the work remained
the development of individual programming p15jects.

In these classrooms, we carried out a number of studies concerning
both cognitive and social questions. The studies we will focus on here
concerned the effects learning to program had on students’ planning
skills. Before examini; g more closely why we ciiose planning as one of
our key topics, we will briefly discuss the relationship of computer pro-
gramming to the development of general thinking skills such as planning.

PROGRAMMING AND THINKING SKILLS

The current claims about effects of learning to program on thinking have
been most extensively stated by Papert and Feurzeig (e.g., Feurzeig,
Horwitz, & Nickerson, 1981, Feurzeig, Papert, Bloom, Grant, & Solomon,
1969; Goldstein & Papert, 1977; Papert, 1972a,b, 1980; Papert, Watt,
diSessa, & Weir, 1979). Such claims are not unique to Logo, but have
been alleged for programming in general (Minsky, 1970; Nickerson,
1982).

Two key catalysts appear to have contributed to the belief that program-
ming may spontaneously discipline thinking. The first is from artificial
intelligence, wnere constructing programs that model the complexities
of human cognition is viewed as a way of understanding that behavior.
The contention is that in explicitly teaching the computer to do some-

[l‘ .1 9 4

Logo and the Development of Thinking Skills ¢ 181

thing, you learn more about your own thinking. By analogy (Papert,
1972a), programming students would learn about problem-solving pro-
cesses by the necessarily explicit nature of programming, as they articu-
late assumptions and precisely specify steps to their problem-solving
approach. The second influence is the widespread assimilation of con-
structivist epistemologies of learning, most familiar through Piaget’s
work. Papert (1972a, 1980) has been an outspoken advocate of the Pia-
getian account of knowledge acquisition through self-guided problem-
solving experiences, and has extensively influenced conceptions of the
benefits of learning to program through “learning without curriculum’’
in "'a process that takes place without deliberate or organized teaching’”
(1980, p. 8; also pp. 27, 31). (It should be noted that Piaget never advo-
cated the elimination of organized teaching in schools.)

ON PLANNING

One of the claims made about the positive effects of programming on
thinking has been in the area of planning (Feurzeig et al., 1981). From
this framework it is believed that programming experience will result in
greater facility with the art of ""heuristics,”” explicit approaches to prob-
lems useful for solving problems in any domain, such as planning, find-
ing a related problem, or solving the problem by decomposing it into
parts.

Planning was selected as our principal reference topic because both
rational analysis of programming and observations of adult program-
mers show that planning is manifested in programming in important
ways. At the outset of our studies, there was little evidence of how this
symbol system was learned by children in classroom settings. Since
there was no information about practice in this “culture,”” we developed
our transfer measures based or. a rational analysis of the cognitive re-
quirements of writing computer programs and from examination of the
problem-solving activities of expert programmers in settings other than
classrooms.

Examination of expert performance reveals that once a programming
problem is formulated, the programnier often maps out a program plan
or design that will then be written in programming code. Expert pro-
grammers spend a good deal of their time in planning program design
(F.P. Brooks, 1982), and have many planning strategies available, such
as problem decomposition, subgoal generation, retrieval of known solu-
tions, modification of similar code from related programs, and evaluative
analysis and debugging of program components (e.g., Pea & Kurland,
1984b). Doe: the effectiveness of plaraing become mcre apparent to a
person learning to program? Does the development of planning skills
for more general use as thinking tools become more likely when a per-

195

182 e Pea, Kurland, and Hawkins

son learns to program? And, fundamentally, does programming by its
inherent nature entail planning as an unavoidable constituent process?
These were the questions we set out initially to examine.

PLANNING AND PROGRAMMING

The core of computer programming is that set of activities involved in
developing a reusable product consisting of a series of written instruc-
tions to make a computer accomplish some task. As in the case of theories
of problem solving in general, cognitive studies of programming reveal a
set of distinctive mental activities that occur as computer programs are
developed. These activities are involved throughout the development of
a program, whether the programmer is novice or expert, because they
constitute recursive phases of the problem-solving process in any general
theory of problem solving (see Heller & Greeno, 1979; Newell & Simon,
1972; Polya, 1957). They may be summarized as follows: (a) understand-
ing/defining the programming problem, (b) planning or designing a pro-
gramming solution, (c) writing programming code that implements the
plan; and (d) comprehension of the written program and program de-
bugging. We discuss each of these cognitive subtasks in detail elsewhere
(see Pea & Kurland, 1984b).

One may raise the objection that it is possible to bypass planring in
program development, that is, one may first make an initial reading of
the problem and then compose code at the keyboard to achieve the task.
Although such planning-in-action is certainly possible to prodrice some
programs, it seemed likely that such a plan-in-action might cr-ate prob-
lems for the inexperienced programmer. While expert progra:nmers can
draw on their knowledge of a vast range of plans when creating pro-
grams (Atwood, Jeffries, & Polson, 1980; Soloway, Ehrlich, Bonar, &
Greenspan, 1982), the novice programmer has neither the sophisticated
understanding of programming code nor the experience of devising suc-
cessful programming schemas necessary for engaging ir. planning-in-
action.

What are we to make of these observations in terms of defining plan-
ning as a distinct cognitive subtask in programming? Is it optional? The
answer to this question certainly has consequences for thinking about
the cognitive outcomes of programming. However, in th.e absence of any
actual observations of how novices, especially children (and particularly
children engaged in a discovery-learning approach), create programs, it
seemed reasonable to base our predictions about what the potential
effects of programming for planning would be on a formal model of pro-
gramming’s entailments built on this adult model cf expert program-
ming.

196

Logo and the Development of Thinking Skills e 183

ASSESSING PLANNING SKILLS

We were guided in the design of our studies by key features of planning
processes (see Pea, 1982; Pea & Hawkins, 1984, for further details). Spe-
cifically, we felt the tasks should (a) represent situations that are con-
gruent with what is known about plan construction, especially when
planning is likely to occur, and (b) externalize the planning process to
allow observers to see and record processes of plan construction.

With respect to the former, the planning context should (a) be one
where a child might be expected to see planning as appropriate and
valuable; (b) be complex enough so that the means for achieving a goal
are not immediately transparent and the possibility of alternative pians
is recognized; and (c) involve a domain where children have a sufficient
knowledge base so that action sequences can be planned and conse-
quences of actions anticipated.

With respect to the second point above, the task should reveal (a)
whether alternatives are considered; (b) whether the planner tests alter-
natives by simulating their execution; (c) what kinds of revisions or de-
buggings of a plan are made; and (d) what different types and levels of
planning decisions are macle.

Planning is appropriately characterized as a revisionary process. As a
consequence of considering alternatives, effective planners revise their
plans. They work between top-down planning strategies, which create a
Plan from successively refining, the goal into a sequence of subgoals for
achievement in sequence, ard bottom-up planning strategies, which
note the emergent propertie; of the plan or the planning environment
and add data-driven decisions to the plan throughout its creation (Hayes-
Roth & Hayes-Roth, 1979; Pea, 1982).

We decided that a classroom chore-scheduling task, analogous to a
planning scenario used by Hayes-Roth and Hayes-Roth (1979), met this
series of requirements for a planning task. Nonetheless, it constituted a
""far’’ transfer measure because it had very few surface similarities to pro-
gramming —for instance, it did not involve a computer. We found from
classroom observations that all children had to carry out certain class-
room chores on a regular basis (washing the blackboards, watering the
plants, and the like). The task was made novel by requiring children to
organize a plan that would allow one person to accomplish all the chores.
We designed a classroom map as an external representational model to
support and expose planning processes.

A transparent Plexiglass map of a fictitious classroom was developed
for the task (see Figure 9.1). Children were to devise a plan to carry out
six major chores. The chores could be accomplished with a minimum of
39 distinct chore acts. Some of the acts are subgoals, because they are in-
strumentally necessary to accomplish others (i.e., the water can is needed

ERIC 197

IToxt Provided by ERI

184 e Pea, Kurland, and Hawkins

Figure 9.1 Diagram of classroom model, Study 1.

% &

Plent Plent

Loose
:um Bench

Tresh

a |/

a~esov rnunwl

l -’////g ANBOT X OO D I

Ereser / —
N
N
— L Er
N Chalrs
/ ‘/_! Bench
/ Tabl
e
Table |\ N 2 A
- —
/ Table
Paint

<N /@t/!;‘“"

trazh Ld
Vatering (@») ﬁ
-'Doorl = lmur ¢ 'oodl Cen @[Sink | Sponoe
i

to water plants, the sponge is necessary or washing tables and black-
boards). Finding the cptimal sequencing of these chore acts is thus a
challenging task.

STUDYING PLANNING SKILLS:
THE FAR TRANSFER TASK OF YEAR ONE

In the first year we videotaped children from the programming class-
rooms individually (6 boys and 6 girls) and a matched set of same-age
controls as they worked in this planning environment. Each child was
told that the goal was to make up a plan to do a lot of classroom chores.
The child was asked to devise the shortest spatial path for doing the
chores, and that he or she could make up as many plans as were needed
to arrive at the shortest plan. The child was instructed to think out lov 1
while planning, and to use a pointer to show the path taken to do the
chores. The child was given a pencil and paper to make notes (rarely

198

Logo and the Development of Thinking Skills * 185

used), and a list of the six chores to keep track of what she or he was
doing. The same task and procedure was administered early in the school
year, just as the students were beginning to learn Logo, and again four
months later.

We were interested in examining three aspects of children’s plans: (a)
the plans considered as products; (b) the plan revisions children made in
terms of the features that contributed to plan improvement; and (c) the
planning process, espedially in terms of the types and levels of abstrac-
tion of component decisions. On the basis of what programming was
assumed to be, these areas were selected because we felt they were the
ones most likely to differentiate between the programming and nonpro-
gramming students. Complete descriptions of the analyses and results
are available elsewhere (Pea & Kurlana, 1984a). Here we will simply
review the major findings.

Product Analysis

The sequence of chore acts for * '-n was recorded, and the distance
calculated that would be trave.._ . . plan were tobe executed. Route
efficiency for a plan was a function of the distance covered in executing
the plan relative to the optimal distance for doing the chores. There were
no significant differences in the mean number of plans attempted be-
tween children of different ages or between programming and nonpro-
gramming groups.

Route efficiency score significantly increased with age, from first to
last plan within session and across age groups. The Logo programming
group, however, did not differ from controls for any plan constructed at
the beginning of the schooi year or at the end of a school year of Logo
programming. Finally, each age group, regardless of programming ex-
perience, improved in efficiency from first to last plan.

Our next question concerned how plan improvements were made. For
the most part, we were able to characterize the children’s substantive
revisions of structure to improve their plans as resulting from “seeing’’
the chores differently over time (e.g., Bamberger & Schon, 1982, diSessa,
1983; Heller & Greeno, 1979).

More specifically, the initial formulation of our task as the carrying
out of a set of named chores ("’ cleaning tables,”” "’washing blackboards, "’
"pushing in chairs”’) is a frame or set for problem understanding that
must be broken for the task to be accomplished effectively. Performing
each named task, in whatever order, is not an effective plan. Each chore
must be decomposed into its component acts, and the parts must then
be reconstructed and sequenced into an effective all-encompassing plan.
The child’s understanding of part-whole relations for the task is thus

198

186 ¢ Pea, Kurland, and Hawkins

transformed during plan revision. To move toward the optimal solution
of this planning problem, a child must reconfigure the chore “‘chunks’’
in terms of their spatial distribution on the classroom map. Major break-
throughs in plan structuring occur through discovering spatial clusters —
from a list of named chores to a list of spatial clusters of chore acts.

Children’s plans were analyzed in terms of these plan features. More
efficient organization of chore acts into clusters was highly correlated to
shorter plan distance for first and last plans in both sessions.

The mean plan cluster score significantly improved for each age
group across plans and sessions, but Logo programmers did not differ
from the control groups on any of these comparisons. The children re-
organized their plans into more efficient clusters during the revision
process whether or not they had programmed.

Process Analyses

We also wished to compared planning processes across children and
plans. In creating their plans, did our Loge programmers engage in more
advanced decision-making processes than the nonprogrammers, even
though their plans were not more efficient? We examined the process of
plan construction by categorizing each segment of the children’s think-
aloud protocols in terms of the type of planning decision being made
and its level of abstraction (as in Goldin & Hayes-Roth, 1980, Hayes-Roth
& Hayes-Roth, 1979).

For the process analysis, we asked whether the organization of the
planning process in terms of the types, levels, and sequences of planning
decisions was different for thc programmers tha.. for the nonprogram-
mers with respect to the following. (a) frequencies of different typ~s of
planning decisions, (b) decision-choice flexibility, and (c) relationships
between the amount of “executive” and ““metaplanning’” activity dur-
ing the planning process and decision-choice flexibility.

In brief, the Logo programming group did not differ frum the control
groups on any of the comparisons for types of planning decisions. None-
theless, we found interesting differences in when and by whom <uch
higher level decisions were made. Children made significantly more
high-le vel decisions in their first plans than in their last in session 1, and
older children produced more high-level decisions than did younger chil-
dren. There were no age effects for the second session.

As afurther index of planning processes, we determined the flexibility
of a child’s decision making during the planning process in two ways.
(a) by looking at the number of transitions a child made between types
of decision making while creating the plan, and (b) by looking at the
number of transitions made between levels of decision making, irrespec-
tive of the decision type. For both sessions, the mean number of type

200

Logo and the Development of Thinking Skills » 187

transitions per plan is highly correlated with the mean number of level
transitions per plan. The programmers did not differ from the nonpro-
grammers on these indices of decision-choice flexibility.

Relationship of Product to Process Measures

We also iooked at how decision-making processes were related to the ef-
fectiveness of the plan as a product, and found that none of the process
and product measures were significantly related. We also tested for a
relationship between the frequency of high-level planning decisions and
mean cluster scores. The nonsignificant relationships indicate that chil-
dren revise their plans to accomplish the acts more efficiently without
necessarily using (verbally explicit) metaplanning resources. Only for
the last plan of the younger children in the first session are these vari-
ables significantly correlated.

DISCUSSION

On the face of it, these results suggest that a school year of Logo pro-
graraming did not have a measurable influence on the planning abilities
of these students. While an average of 30 hours of programming is small
compared with what professional programmers or college computer
science majors devote to such work, it is a significant amount of time by
elementary school standards.

The failure of the programming student to show any advantage over
nonprogrammers on the classroom planning task could have been attrib-
utzd to any one of a number of pcssible sources. A prime concern was
that our basic assumptions about programming, based on a formal analy-
sis of its properties and expert programmer data, were inadequate for cap-
turing what transpired in the classroon.. Based on parallel ethnographic
studies in Logo classrooms (Hawkins, 1983, Chapter 1, this volume), we
were beginning to understand that the actual classroom practice of Logo
had developed in ways that made programming activity quite different
from what had been anticipated. For example, particular pieces of stu-
dents’ knowledge about spedific programming concepts appeared to be
tightly wedded to the specific contexts in which they were learned, unlike
the knowleuge of expert programmers. Programming constructs for the
students had local functional meaning that they did not tend to generalize,
even to other closely related pregramming problems. Although the plan-
ning task had features that made it formally similar to the characterization
of planning in programming that was available in the literature on pro-
gramming, the surface structure of the task was quite different from the
way programming was actually done in the classrooms. Students may

188 ® Pea, Kurland, and Hawkins

have failed to recognize the task as an opportunity to apply insights from
programming.

Therefore, in the second year of the study we set out to create a new
version of the planning task that resembled programming on its surface
as well as in its deep structural features. Thus, for example, the new
task, while not requiring any previous programming experience (there-
fore making it suitable for the control groups of students), consisted of a
computer-based microworld environment similar to the programming
environments with which the students were familiar, and provided on-
line feedback on the success of planning efforts analogous to the feed-
back programmers get from executing their programs in the process of
creating them.

In addition, most children appeared to do little preplanning in their
programming work. Planning as a component of programming was in-
troduced to the students, but not insisted upon, and possible program-
planning aids (such as worksheets) were not explicitly provided. Students
tended to write and revise their code in terms of the immediate effects
that commands and sequences of commands produced.

The nature of the Logo programming environment changed during
the second school year. At the end of the first year, teachers expressed
disappointment with the quality of students’ programming work, and
decided to provide more structure to tiue learning environments for the
second year. In addition to conducting *’lessons’’ and group discussions
on specific topics, teachers worked with children to develop more suitable
individual projects, and at the beginning of the year provided some pro-
gram-planning aids for the children. These aids, however, were seldom
used. Students preferred to write programs interactively at the keyboard.

STUDYING PLANNING SKILLS IN A
NEAR TRANSFER PROGRAMMING MICROWORLD

In the beginning of the second year, the original planning task was ad
ministered to new groups of students in the two programming class-
rooms and to two same-age control groups. We found again that stu-
dents’ last plans were better than their first plans, and that there were
no differences beiween the prugramming and nunprugramming groups
at the beginning of the school year.

Near the end of the year, the new planning task was given. This re-
vised task incorporated new design features that made the task bear a
far closer resemblance to prugramming as it was practiced in these class-
rooms than did the Plexiglass map task. The new task consisted of four
components. (a) a colored diagram of a classroom, (b) a set of goal cards,

Logo and the Developmen! of Thinking Skills « 189

each depicting one of the six chores (such as wiping off the tables and
watering the plant), (c) a microcomputer program that enabled students
to design and check their plans with the support of the experiinenter,
and (d) a graphics interface that enabled students to see their plans en-
acted in a realistic representation of the classroom (see Figure 9.2).

The computer program created a graphics robot programming and
testing environment within which children could develop their plans.
The children could “*program’” a robot using a simple, English-like pro-
gramming language, and then see their plan carried out.

The commands in the robot programming languagg consisted of a set
of six actions (WALK TO, PICK UP, PUT DOWN, WIPE OFF, WATER,
STRAIGHTEN UP), and the names for all the objects in the classroom.,
Each action-object pairing constituted a move in the plan. As the student
talked through a plan while looking at the classroom diagram and goal
cards, the experimenter keyed each move into the computer, which
listed it for the student to see. If the student gave a command that could
not be carried out at that point in the plan (e.g., telling the robot to wipe
off the table before telling it to go to pick up the sponge), the computer

Figure 9.2. Diagram of classroom model, Study 2.

Paasid
——
-

')

190 e Pes, Kurland, and Hawkins

program immediately rejected the move and provided a precise context-
specific error message on the screen (e.g., I'M NOT CARRYING THE
SPONGE). If a student indicated that his or her plan was done when
there was actually one or more chores still remaining, the program pro-
vided a message to this effect, and a list of the vutstanding chores
appeared on the screen A message alw _ > displayed on the screen in-
formed students that they could at any time ask to see the list of remain-
ing chores or review their plan by having it listed on the screen. Together,
these features es..ured that all the students would develop runnable,
albeit not necessarily optimal, plans.

The second part of the new classroom chore-scheduling task was a
graphics interface designed to provide feedback to the stud.nt on the
adequacy of his or her plan. There were four types of feedback. (a) a
readout of t! ¢ total time the student’s just-completed plan would take if
carried ou! in action, (b) a representation of a classroom displayed on a
high-resolution screen, on which a step-by-step enactment of the stu-
dent’s plan could be carried out under the student’s control, (c) a step-
by-step readout of each move the student had entered and the time it
took the robot to carry out each move, and (d) a hard-copy printout of
the student’s plan that could be referred to during subsequeat planning
attempts.

In individual sessions, children were told to imagiae that they had a
robot who could understand and carry vut :ommandds to perform class-
room duties. Their task was to devise a plan for the. robot to clean up a
classroom in the least possible amount of time, overing the shortest
possible spatial path. Students were told thai they would create three
plans, in which they would be able to impivve on their previous plans
(see Pea & Kurland, 1984a, for further details of the procedure). A clock
inside the computer was used to record the intervals Fetween the stu-
dent’s moves (‘‘thinking time*). This enabled us to dete.rmine how re-
flective each student was while creating each plan, and where in the
planning process the students spent time thinking.

Students were given as much time as they needed to think about
what to do and to call vut each individual move. The experimenter typed
each move into the computer, where it was either accepted and added to
the plan list or immediately rejected and the student told what was
wrong. The computer did all the monitoring and error checking, and
gave the only feedback the child received. When all the chores were
completed and the robot was directed out of ti. Jassroom door, the
program calculated and then displayed how long the just-entered plan
would take.

In order to determine the effects ot feedback fron. actual plan execu-
tion on revisions in later plans, two different task conditions were used.

204

Logo and the Development of Thinking Skills o 191

Half of the students went on to do a second and then a third plan imme-
diately upon completion of their first one. The other half of the students
saw a representation of the classroom on the graphics screen after they
had completed each plan. Simultaneously, the first move of the plan
was printed on the text screen. The student was given a hand-held but-
ton that, each time it was pressed, took the program through the plan
one move at a time. A line corresponding to cach move was drawn to
indicate the path the robot would follow in carrying out the plan, accom-
panied by the name of the move on the text screen (such as WATER THE
PLANT). A time counter was displayed indicating the total time needed
by the robot to carry out the plan up to the current move. The student’s
plan was printed out so that, when devising subsequent plans, he or she
could see exactly what had been done on the earlier attempts.

We hypothesized that students with programming experience might
differ from their nonprogramming peers in four major respects:

1. Programmers should be better planners overall. Therefore, lengths of
p1ans for the programming students should be less than those for nonpro-
grammers.

2. Programmers should make more and better use of the feedback available,
since programming teaches the utility of debugging partially correct pro-
ceciures. This means that programmers should ask more often to see a list-
ing of their plans (review plan) and refer more often to the list of remaining
chores (checklist) than nonprogrammers. In addition, in the programming
group, differences on these dimensions between students in the feedback
and no-feedback conditions should be greater than in the nonprogram-
ming group.

3. Programmers, relative to nonprogrammers, showuid spend more time early
in their first plan thinking over alternative plans (i.e., significantly more
pauses and longer mean thinking time in the first third of the first plan). On
subsequent plans, their thinking time should become more evenly distrib-
uted across the plan a» they concentrate on debugging different parts of it.

4, Programmers should seek to improve or debug their first plan through
successive refinements in subsequent plans, rather than trying a different
approach each time. This means that, relative to the nc. .ugrammers, the
degree of similarity between successive plans for programmers should in-
crease across plans.

Older students produced better (i.e., shorter) plans overall than did
younger students. In addition, first plans were significantly different
from both second and third plans, but the second and third plans did
not differ significantly from each other. Even the best group did not pro-
duce optimal plans with respect to execution time. There were nu differ-
ences between the programming and nonprogramming groups in the
time their plans would take to carry out. In addition, there was no differ-

205

" (Y8

192 o Pea, Kurland, and Hawkins

ence in their use of the available feedback aids such as checking over
their sequence of moves or requesting to see a listing of the remaining
chores. Students rarely used these features of the task environment.
even though there was a message on the screen at all times indicating its
availability. In addition, the group of students who executed their plans
between each attempt tended not to spend much time watching the plan
enactments, nor did they refer to the printed copy of earlier plans when
creating a new plan. Plans were created without much attention to the
details of previous attempts. i

When the pause data (indicating thinking time) were examined, there
were again no differences between the programming and the nonpro-
gramming groups. Students paused to think more during the first plan
than during their second or third, but the amourt of time spent thinking
in their second and third plans did not differ. When thinking time was
broken down into thirds (beginning, middle, and end of the plan), it
was found .hat more thinking time occurred in the beginning third of a
plan than into the middle or end third. Thus, while the pattern of think-
ing time for the programmers conformed to what we had hypothesized,
it did not differ as predicted from the pattern for nonprogrammers.

Finally, we examined the amount of overlap from plan to plan (plan
similarity). The successive plans for all groups tended to overlap from
plan to plan by 35% to 55%. Yet again there was no difference between
the programming and ncnprogramming students or between the stu-
dents with and without benefit of feedback. Thus there was no evidence
that the programmers were more likely to follow a model of plan debug-
ging by successive refinement than nonprogrammers. Additional analy-
ses indicate that students who modified previous plans, leaving larger
portions intact, did not develop appreciably better plans than students
who varied their approaches from plan to plan.

Discussion

On the basis of these results, we concluded that students who had spent
a year programming did not differ on varivus developmental compari-
sons of the effectiveness of their plans and their prucesses of planning
from same-age controls who had not learned to program. The results
from this study are particularly striking because the computerized "'near”
transfer planning task was designed to have a strong resemblance to
programming, including feedback in different representational media
(picture of plan in execution, list of moves in plan, and so on), which,
because of their planning experience, programmers might have used to
greater advantage. The programming groups clearly did not use the cog-
nitive abilities alleged to be develuped through experience with Logo in
these tasks designed to tap them.

206

Logo and the Development of Thinking Skills e 193

What were we to conclude from these findings? That there does not
appear to be automatic improvement of planning skills from learning
Logo programming appeared clear, but why? Two major categories of
potential explanations come to mind.

The first category concerns the design of the transfer tasks. There
could be objections to the tasks we used and our resultant data. Perhaps
these tasks did ot tap planning skills. However, the tasks had greater
surface validity, and the route efficiency measures in particular were
developmentally sensitive. The developmental gap between actual per-
formance and optimal performance could have been influenced by the
greater development of planning abilities through programming. Yet
whether or not a student programmed did not account for the variability
we found in planning task performances.

Another objection to our planning ta-xs was that thev were not close
enough to programming tasks for the transfer of planning skills from the
programming domain. But according to claims made about the general
value of programming for thinking, transfer of the concepts and practices
of planning to other problem-solving situations should occur sponta-
neously, not because of resemblances of the target task to the program-
ming domain.

The second category of explanations concerns the nature of Logo
programming. Here we may distinguish among four different kinds of
arguments. First, there are problems with the Logo programming envi-
ronment (not the instructional environment) as a vehicle for learning
these generalizable cognitive skills. Second, the quality of learning about
and developing such planning skills with .he Logo discovery-learning
pedagogy is insufficient for the development of generalizable planning
skills. Third, perhaps the amount of time students spent in the Logo
pedagogical avironment was not sufficient for us to see the effects on
planning of Logo programming experience.

On the basis of the two studies, we could not tease apart these first
three alternatives. However, as we were simultaneously learning more
and more about what the students were actually doing in the classrooms
—what the prac*ices of programming actually were—a fourth, and funda-
mentally different, interpretation of these studies became apparent.

To understand this interpretation it is useful to reflect on a set of issues
similar to those we were pursuing in programming—those tuat relate to
the cognitive consequences of literacy. The acquisition of literacy, like
programming today, has long been claimed to promote the development
of intellectua! skills (Ong, 1982). Prominent historians and psychologists
have argued that written language has many important properties that
distinguish it from oral language, and that the use of written language
leads to the development of highly gencral thinking abilities, such as
logical reasoning and abstract thinking.

194 o Pea, Kurland, and Hawkins

But studies bearinig on this claim have traditionally been done in
societies such as Senegal or Mexico, where literacy and schooling were
confounded. Perhaps schooling is responsible for these changes in think-
ing, rather than the use of written language per se. In an extensive 5-year
research program, Scribner and Cole (1981) examined the cognitive ef-
fects of li.eracy independently of schooling. The society they studied was
the Vai, an African people who do not transmit literacy in the Vai lan-
guage th- sugh formal schooling. Their reading and writing are practiced
and learned through the activities of daily life. The Vai invented their
written language a mere 150 years ago, and have continued to pass liter-
acy on to their children without schools.

Like most psychologists, Scribner and Cole brought with them stand-
ardized psychological testing instruments and stimuli for experiments
on concept formation and verbal reasoning. But as Scribner and Cole
looked over their results from several years of work, they could see no
general cognitive effects of being literate in the Vai script. For example,
the literate Vai were no better than the nonliterate Vai in categorization
skills or syllogistic reasoning.

Before continuing with their initial research strategy with a refined set
of tasks, Scribner and Cole realized that there was a radically different
way to think about their project, in terms of specific effects. They had
begun by looking for general effects of literacy. But after several years of
survey and ethnographic observations, they had also come to understand
the tasks that Vai literates encounter in their everyday practices of literacy.
The Vai use their written language primarily for letter writing, and for
recording lists and making technical farming plans. New tasks were de-
signed for assessing literacy effects that were based on those particular
skills required by the literacy practices they observed.

Results from these studies demonstrated dramatic cognitive effects of
literacy, but they were more local in nature. For example, letter writing,
a common Vai literacy practice, requires more explicit rendering of
meaning than that called for in face-to-face talk. A communication task
where the rules of a novel board game had to be explained to someone
unfamiliar with it revealed that performances of Vai literates were vastly
superior to those of nonliterates on either version of this task.

Our results concerning the learning of programming can be examined
from a similar framework (Pea, 1984). But for programming languages,
unlike written language, we do not have the benefit of known historical
and cultural changes that appear to result in part from centuries of use of
the written language. In tl 2 absence of evidence about actual program-
ming practices in these classrooms, we were guided by the rationale that
"programming intelligence’’ and the kinds of programming activities
carried out by adults would affect children too.

ERIC 208

IToxt Provided by ERI

Logo and the Development of Thinking Skills * 195

In addition to examining carefully the formal properties of programming
and the planning tasks, we can also take a functional or activity-based
approach to understanding our results. We can consider programming
not as a given, the features of whicli we know by virtue of how adults do
it at its best, but as a scf 5f practices that emerge in a complex goal-
directed cultural framework. Programming is as various and complex an
activity matrix as literacy. Just as one may use one’s literacy in Vai society
to make laundry lists rather than to analyze and reflect upon the logical
structures of written arguments, so one may achieve much more modest
activities in programming than dialectics concerning the processes of
general problem solving, planning, precise thinking, debugging, and
the discovery of powerful ideas. One may, in particular, write linear
brute-force code for drawing simple pictures.

From a functional perspective we may see that powerful ideas are no
more attributes inherent "’in’’ Logo than powerful ideas are inherent
"in”” written language. Each may be put to a broad range of uses. What
one does with Logo, or written language, or any symbol system is an
open matter. The Vai have not spontaneously gotten into the logical fea-
tures of written language, philosophy, and textua! analysis that written
language allows. Likewise, most of our students—in these as well as
others of our studies from grade school up through high school—have
not spontaneously gotten into the programming practices (such as struc-
tured planful approaches to procedure composition use of conditional or
recursive structures, or careful documentation and debugging) that
Logo allows.

For the Vai, one could imagine introducing new logical and analytic
uses of their written language. Similarly, orie could imagine introducing
to children the Logo programming practices many educators have taken
for granted will emerge. In either case, we would argue that without some
functional significance to the activities for those who are learning the
new practices, there is unlikely to be successful, transferable learning.

It is our hunch that wherever we see children using Logo in the ways
its designers hoped, and learning new thinking and problem-solving
skills, it is because someone has provided guidance, support, anc ideas
for how the language could be u_ed. The teachers in our studies began to
work out such a supportive approach. They found this to be a complex
enterprise because they found they had to think through the problems
of what should be known about the system, and the sequence appropri-
ate to comprehension. They also found that helping children to find
functional goals for their Logo work was problematic throughout the
two years.

There are many consequences of this more general account of what is
involved in thinking about Logo as a potential vehicle for promoting

209

N

196 * Pea, Kurland, and Hawkins

thinking and problem-solving skills. A functional approach to program-
ming recognizes that we need to create a culture in which students,
peers, and teachers talk about thinking skills and display them aloud for
others to share and learn from, and that builds bridges to thinking about
other domains of school and life. Such thinking skills, as played out in
programming projects, would come to play functional roles, not because
of some abstract inherent characteristics of programming, but because of
characteristics of the context in which programming gets embedded. Dia-
logue and inquiry about thinking and learning processes would become
more frequent, and the development of general problem-solving skills
so important in an information age would be a more common achieve-
ment of students.

Where are we left, then? It is encouraging that there are so many posi-
tive energies in education today. The enthusiasm for Logo as a vehicle of
cognitive change is an exhilarating part of the new processes of education
one can see emerging. But we must first recognize that we are visitors in
a strange world—at the fringe of creating a culture of education that
takes for granted the usefulness of the problem-solving tools provided
by computers, and the kind of thinking and learning skills that the do-
main of programming makes so amenable to using, refining, and talking
about together.

Learning thinking skills and how to plan well is not intrinsically guar-
anteed by the Logo programming environment, it must be supported by
teachers who, tacitly or explicitly, know how to foster the development
of such skills through a judicious use of examples, student projects, and
direct instruction. But the Logo instructional environment that Papert
(1980) currently offers to educators is devoid of curriculum, and lacks an
account of how the technology can be used as a tool to stimulate stu-
dents’ thinking about such powerful ideas as planning and preblem
decomposition. Teachers are told not to teach, but are not told what to
substitute for teaching. Thinking-skills curricula are beginnir.g to appear,
but teachers cannot be expected to induce lessons about the power of
planning methods from self-generated product-oriented programming
projects.

AUTHOR NOTES

We would like to thank the Spencer Foundation and the National Insti-
tute of Education (Contract 400-83-0016) for supporting our research and
the writing of this chapter. The opinions expressed do not necessarily
reflect the position or policy of these institutions, and no official endorse-

Logo and the Development of Thinking Skills o 197

ment should be inferred. Our colleagues at the Center for Children and
Technology have contributed to these studies in the past several years,
and we appreciate their help and support. Of course, our unnamed
teachers and the Logo students deserve the lion’s share of gratitude for
their efforts throughout the research enterprise.

cHAPTER 10

THE MICROCOMPUTER AS
A SYMBOLIC MEDIUM

Karen Sheingold

Picture a classroom of young children. There is a young boy in a smock,
paintbrush in hand, excitedly putting brush to paper, creating his own
work. The smell of the paint and the fecl of the brush on paper are anin-
tegral part of his experience. Two young girls are building a farm in the
block corner, discovering that their stable is not sufficiently large for 12
plastic horses to be housed there. In the book corner, a group of young
children are creating a story together, which their teacher commits to
writing.

What role could or :hould a microcomputer possibly play in such a
lively environment wheie children are actively working with materials
and inventing their own wsorlds? The computer, a piece of electronic
’adult’ technology, certainly doesn’t smell like paint or feel like blocks.
It is not an object in the world the way the class guin2a pig is. Does it
have a legitimate place in a classroom for young child:en, or, once it ar-
rives, will it supplant these more important activities?

These are the kinds of questions on the minds of many educators of
young children. They want to know whether children younger than 8
years of age should use microcomputers. I have been a witness to and a
participant in many lively debates on this topic in the last few years. The
intensity and passion with which views are expressed has led me to
reflect on what underlies both the questions and their intensity. It is im-
portant to ““unpack’’ these general questions to discover what the real
issues are and how they can be addressed. The purpose of this chapter is
to proviae such an analysis.

In the absence of a substantial base of theory and research relating to
young children’s use of microcomputers, this analysis is difficult to
accomplish. That no one knows much about what it means for young
children to use microcomputecs, however, provides an arena ripe for re-

198

212

The Microcomputer as a Symbolic Medium o 199

flection, experimentation, debate, and cooperation among educators
and researchers. Examining educators’ questions about microcomputers
leads inevitably and fruitfully into research questions, which then lead
back into questions about educational practice. In the following pages I
will suggest some reasons for the deep concerns I hear aboat using micro-
computers with young children, and relate these to ideas about develop-
ment, about what the microcomputer is or could be, and to how the
power of this educational innovation is interpreted. Wherever possible,
I will point to important research issues.

SYMBOLS AND REALITY

It is not possible to talk about young children or microcomputers with-
out first talking about symbols. By a symbol, I mean anything that repre-
sents some kind of information. A word is a symbol because it refers to
or denotes a thing, idea, or feeling. Symbols—pictures, numbers, words,
gestures—convey meanings. Symbol systems, such as language, mathe-
matics, and dance, are organized, complex, and related patterns of sym-
bols that, taken together, comprise broad cultural systems of meaning.
Symbolic products—stories, poems, songs, symphonies, scientific experi-
ments—are the results of our active engagement with these systems.
Symbolic products are created in particular media or materials.

There is a sense in which symbols are not "’real.” A picture of a tree,
or the word tree, are not the same as the tree. Looking at a real tree is a
different experience from looking at a picture of one or reading a story
about one. Symbols are about the world and how we give meaning to it.

What do:s this have to do with young children and microcomputers?
Firstamong the concerns that I hear about young children’s use of micro-
computers is that this new technology is not real in the way other class-
room materials are—such as paint, clay, crayons, or rhythm instruments.
The microcomputer is fundamentally a symbolic machine. We use it to
represent and manipulate symbol systems—language, mathematics,
music—and to create symbolic products—poems, mathematical proofs,
compositions. In this sense it is about the world and not of it.

Butis a symbolic machine incompatible in some fundamental way with
young children—with what they know, what they do, and how they learn
and develop in the early years? What we know about early develop-
ment, about how and in what realms children learn and develop during
these years can help answer this question.

Early Symbolic Development
While for many years it was difficult to characterize development be-
tween infancy and the school years except in negative terms (the child is

200 » Sheingold

preoperational, iliogical, and so forth), research in the last decade has
modified this view in two significant ways. First, it has b ~come clear that
the young child is capable of many cognitive activities at first thought ac-
cessible only to older children. Researchers (Gelman & Baillargeon,
1983; Siegler, 1981) have shown that the ways in which tasks are struc-
tured for young children dramatically affect what they can demonstrate
about what they know. In carefully designed situations, for example,
young children reveal that they are not entirely egocentric or perception-
bound (Gleman, 1978; Lempers, Flavell, & Flavell, 1977), and they can
achieve some success on many tests of concrete operations (Donaldson,
1978; Siegel & Brainexd, 1978). Wha! young children know, however,
tends to be implicit rather the. explicit. That is, these children demon-
strate skills and knowledge that they are not aware of and cannot tell us
about except by their actions in tasks of the psychologist’s design.

The second way in which our views of early childhood have been
modified is that there has emerged a more positive characterization of
early childhood as a time of aczumpi:shments in the development of sym-
bolization (Gardner, 1983; Gardner & Wolf, 1979). During this period
there is a genuine flowering of symbolic capacities and activities, such
that by age 5 the child has ““first draft knowledge’” (Gardner, 1983, p.
305) of symbolization in language, pictures, 3-dimensional objects
(blocks, clay), dance, music, and pretend play, as well as some number
and logical knowledge. Between the ages of 5 and 7, children acquire the
rudiments of notational systems—systems which themscives refer io
symbol systems. So the child begins to learn a written language, which
itself refers to a spoken language.

Symbaolic Machine
The lack of “"realness’’ that is attributed to the microcomputer derives, I
believe, from the fact that the microcomputer is a symbolic machine.
When children use a microcomputer they are interacting with syinbols—
words, numbers, pictures, graphic representations. But much of the activ-
ity young children naturally engage in is also symbolic—communicating
with gestures, speaking, pretend play, counting, tapping a raythm,
singing, making a picture or a clay object. In the classroom described at
the beginning of this chapter, the children were all making symbolic
products—a painting, a block scene, a story. The symbolic nature of the
microcomputer per se does not make it in.ompatible with or inappropri-
ate for use by young children. One could, in fact, make just the opposite
argument. To do so out of hand, however, would be to ignore the critical
1ssue of how the child engages with a particular symbol system via the
microcomputer.

There is a direct, active involvement of children with crayons and
blocks that is assumed to be absent with the microcomputer. But is this

214

The Microcomputer as a Symbolic Medium ¢ 201

absence intrinsic to working with a microcomputer? The image many
people have of microcomputer use in schools reflects the drill-and-prac-
tice software that has dominated the educational software marketplace.
Used this way, the microcomputer gives children questions to answer or
problems to sclve, and then tells them whether or not their answers are
correct. In some cases, the drill and practice is "’dressed up’’ to look
more like a game, but the basic format is the same. For young children, a
very large proportion of existing software is devoted to letter and num-
ber recognition.

This type of activity is relatively passive. Children respond to ques-
tions. Answers are correct or incorrect. There are few degrees of freedom
in what they do, and no opportunities for invention, for shaping the
medium to make their own products or achieve thuir own goals. This
type of activity, however, is an extremely small and limited subset of the
ways in which children can interact with the machine.

Within any given symbol system represented on the microcomputer,
there are many different kinds of activities a child can do, some of which
are more and some less constrained by the software itself. Take graphics,
for example. A program can ask a child to do one of several things. One
program might ask the child simply to detect correspor.dence among
specific shapes. Another might provide an array of shapes and objects
that the child can arrange in a design of his or her choosing. A third
might provide the equivalent of paint and brushes and permit the child
to create picturcs or designs from scratch. Not only are these all different
kinds of tasks requiring different skills, but the options cpen to the child
increase as we move from the first program to the third. In both the sec-
ond and third examples, the child can make something, rather than
simply respond. At least in principle, the microcomputer js a medium
that the child can use for making, doing, and creating.

Moreover, there are many different ways of giving information «v he
microcomputer, the keyboard being the most familiar as weil as the most
indirect. Mice, paddles, and joysticks, for example, are analog devices
that make possible a direct mapping betw een the child’s hand and finger
movements and what happens on the screen. Many games make use of
paddles and joysticks for controlling moves on the screen. Children can
even manipulate directly what happens on the screen by touching it
with a light pen. Special keypads have been developed for young chil-
dren, and others could be, which have larger, fewer, and/or different
symbols from what is on the keyboard. So, not only can the microcom-
puter be a medium for making and doing, but it can be more or less simi-
lar to other media with which the child is familiar.

The microcomputer is not one thing or one kind of experience, for
young children or anyone else. Its flexibility presents a great challenge
to our imaginations. The challenge is to determine whether and how the

215

202 * Sheingold

microcomputer can be made interesting, appropriate, and useful for
young children.

POSSIBILITIES FOR MiCROCOMPUTER USE
WITH YOUNG CHILDREN

What would we have this technology be for the yourg child? What
would we use it for? Such questions are difficult to answer in the
absence of careful research and development work, but there are four
possibilities that come to mind. Not an exhaustive list, these are ex-
amples of how w. might think about using microcomputers with young
children. I propose these as hypotheses to be tested, not as answers.
First, we could use the micrccomputer to acquaint the child with proper-
ties that are unique to it, such as dynamic movement and programmabil-
ity, and thus provide experiences not possible with other classroom
media. Second, we could use the microcomputer to support learning so
that children can explore aspects of experience that would normally re-
quire skills they do not yet have. Third, we could use the microcomputer
as a way for children to better understand what they do in other media.
Fourth, we could use the microcomputer to help children gain a broaces
view of what the computer is as an important piece of technology in the
world.

Exploring Unique Properties of the Microcomputer

There is no doubt that young children will approach the microcomputer
as they do other new objects—with curiosity and excitement—and sub-
ject it to whatever means of exploration they have at their disposal so
that it reveals its properties and “’secrets’’ to them. But since the micro-
computer is not just one thing, teachers must decide which software to
use, whicn properties children might profitably explore.

One question that many educators ask themselves is whether or not
microcomputer-based activity offers anything that is substantially dif-
ferent from what can be obtained in the classroom by other means. In its
programmable and dynamic properties the microcomputer is different
from most other media children with which interact. Introducing young
children in simple ways to these properties may provide interesting learn-
ing opportunities. For example, children could explire the dynamic
properties of movement by having a set of objects that they could cause
to move on the screen in ways that they would specify. Children could
convey their ir..tructions via simple, specially designed input devices
(e.g., keypads, mice, light pens). With a dynamic teolkit of shapes and
movements, children could construct their own moving pictures and
scenes. In this new medium, children could make something interesting
to look at, play with, share with others, and redesign at will.

R16

The Microcomputer as a Symbolic Medium * 203

Programmability is another property unique to computers, and one to
which I believe young children can be exposed in simple form. What
might a young child learn about programmability? First, that a person
can make a choice or give an instruction to the microcomputer to make
something happen, and, second, that instructions can be combined io
make a sequence of events occur. Programmability could be taught with
respect to a number of different symbol systems, but graphics and music
come to mind as ones that are likely to be particularly interesting for
young children. These "'simple ideas’’ about instructions and sequence
could be introduced to young children without using programming lan-
guages per se.

These ideas that I refer to as simple are not necessarily so, and it will
be important to discover whether or not young children are able to com-
prehend and use them with fluency. I have no doubt that young children
will find it easy and interesting to give instructions to the microcom-
puter that result in events occurring on the screen. Many older children
do. But there may be a problem in our interpretation of what is under-
stood by the child. In working with older children, we find that they are
capable of producing impressive arrays on the screen without having a
flexible or deep understanding of the program that resulted in that array
(Mawby, 1984; Pea, 1983). Programming languages are, it turns out,
very complex symbol systems, the mastery of which takes much time
and intensive effort (Kurland, Mawby, & Cahir, 1984: Pea & Kurland,
1984b). So, while I think it worthwhile to introduce young children to
ideas about programmability, it is equally as important for educators
and researchers to look carefully at what is actually learned and under-
stood. We cannot assume that if a child can cre te some sequenced in-
structions on the microcomputer he or she “*knows how to program.”’

Microcomputer as Cognitive Support

The second way in which it might be beveficial to use the microcomputer
is as a support for or facilitator of activities that youug children would not
normally be able to do. It is widely assumed that there are sequences of
skills that must be learned befure being able to produce a symbolic prud-
uct. So, in most cases one learns a musical instrument and musical nota-
tions before attempting to cmpose. Yet it is not clear that such skills are
prerequisite to composing. While composing is generally reserved for a
small segment of skilled musicians, we know that children as young as 2
years of age make up their own songs (McKernon, 1979). In a similax
vein, one must be able to put letters and words on paper before being
able to write a story. Again, it is not clear that composing with language
depends on being able to form those letters and words. Young :hildren
are good at telling stories (Sutton-Smith, 1972), yet writing them down
poses difficulties of many kinds. Can young children create these com-

217

204 e Sheingold

plex symbolic products without having mastered the notational systems
and all of the cognitive skills an adult or older child would bring to the
enterprise?

A microcomputer might afford such opportunities. To begin with,
much-simplified versions of ex.sting word processors and music editors
are required. Making such software simple enough and simple in the
right ways is a significant design chullenge. By aliowing children to
bypass some of the physical and cognitive obstacles in a particular arena,
we may make it possible for them to enjoy creative expariences that
would be difficult, if not impossible, to obtain without such support.

There is, however, another sense in which microcomputer-based work
may serve to support and extend children’s cognitive activities. It turns
out that, for older children, microcomputer-based work in classrooms
tends to be collaborative (t1awkins, Sheingold, Gearhart, & Berger, 1982,
Levin & Boruta, 1983). Children work together and use each other as
resources while they do such v=-icd activities as programming, writing
stories and articles, engaging in games and simulations, or simply figur-
ing out how to get the microcomputer to work. This kind of joint activity
provides a kind of “scaffolding” o” the social environment for children
to accomplish what they might nut be able to on their own. Here we have
the intriguing possibility that the microcomputer may serve as a kind of
cognitive support, not by itself, but because of its impact on the social
life of the classroom. When teachers allow it, micr omputer-based ac-
tivities ““invite’* collaboration, which can assist accomplishments for
children both as individuals and in groups.

Roflecting on Other Activities

The computer, rather than being a superbrain, teaching us with its consis-
tent and logical *"thinking,” is instead a fantasy world which, like a L.l of
murrors, reflects back to us images of vur cuommonsense ways of making things
and making sense. (Bamberger, 1983, p. 1)

In these words Jeanne Bamberger proposed that we think about the
microcomputer in yet another way —as a medium that can help us dis-
cover and reflect on what we already know intuitively. By playing with
what we make in the microcomputer world, she suggested, we <ome to
see familiar actions and objects in new ways.

She described, for r.xamnple, how, in translating a drummed rhythm
into a simple program for the microcomputer, we discover new proper-
ties of the rhythmic structure. Her general argument was that we have
implicit knowledge about many things—how to clap a rhythm, build a
block tower, draw a picture. Having to program that same activity on
the microcomputer requires making explicit the knowledge that we have

The Microcomputer as a Symbolic Medium o 205

“in our muscles.” In so doing, we know differently and better what we
knew before.

Does this argument apply to young children? I think it does, if made
more broadly. Since there is more than one way of knowing, giving chil-
dren access to multiple ways of knowing may lead *o better understaid-
ing in a particular domain (Dewey & Bentley, 1960) If some kinds of
microcomputer experience offer ways of knowing that differ from what
the child does with other media in the classroom, then it is precisely
through the connecting of these related, but different, kinds of experiences
that new learning may be possible.

To try but one example, let’s give the child an opportunity to paint
with a microcomputer. With a typical paint program, the child chooses a
brush thickness and can even choose the type of pattern the brush will
make as it moves around on the screen. Colors can be selected, mixed,
and tried out. Shapes can be created and made smaller or larger. Many
possibilities can be explored alone or in combination, erased, changed,
or moved. Painting with the microcomputer could make children aware
of choices and possibilities that they would otherwise accept as givens
when they use paint and paper. With such rapid experimentation the
child may make discoveries in microcomputer painting that enable him
or her to attempt new things with paint and paper.

The flaw in this argument rests on how the child makes connections
from one medium to another. Research conducted with older children at
the Center for Children and Technology leads me to doubt that such
connections will come naturally or easily . For example, children learning
to program were often unable to apply a command or concept they had
used successfully in one program to another program (Pea, 1983), that
is, making connections within programming was difficult. Moreover,
there was no general transfer of planning and problem-solving skills to a
noncomputer task by children who had learned programming for a year,
compared with those who had not (Pea & Kurland, 1984a). It follows,
then, that if we are to use the microcomputer to help children see and
reflect on connections from one medium to another, teachers will need
to structure children’s experiences and provide support to make this
possible.

Microcomputer as Objoct

I want to conclude by go.ng back to the original assumption about the
microcomputer as something that is not truly real because it is a sym-
bolic medium. There is, of course, a sense in which it is very real, and
will become increasingly so for the young child. It is an object in the
world, with its own physical and tactile properties. It is also a very
powerful tool with which pevple can do 1nany important and interesting

206 * Sheingold

symbolic tasks, from writing a book to designing a house to construct-
ing a budget to communicating with people on another continent.

As children use microcomputers at home and in classrooms, they will
develop their own ideas about what this machine is and what it is for
(Mawby, Clement, Pea, & Hawkins, 1984). It will require serious and
clever research to find out just how it is that young minds comprehend
this peculiar and flexible object. There is no doubt, however, that chil-
dren’s notions will be influenced by the kinds of experiences they have
had with the machine and the kinds of interpretations of it offered by
teachers and peers. What they think it is and what they think it is for
will, at least in part, reflect what they do with it and what they see
others doing. Therefore, educational choices about how children use
microcomputers in classrooms have implications for children’s initial
understanding of a significant piece of cultural technology.

My personal view is that I would like children to approach this
machine matter-of-factly. I would want them to understand at some level
that this is a tool that does more than one thing, that people use it for their
own purposes, and that children, too, have a variety of purposes for
which its use is appropriate. Such a view would be fostered in a classroom
where the technology was treated matter-of-factly, where children were
helped to use the machine in a number of ways, and where they could
make use of it when they were interested or had something to do with
which they thought the microcomputer could be of help.

In such a classroom the functionality and purposes of the microcompu-
ter—the ways in which it helped teachers and students to do things, its
connections to other classroom activities—would get worked out over
time as uses were discovered, tried, and found to be productive. The
microcomputer, then, would not be a thing apart. It would simply be
another material for the classroom. As with other media, some children
would find it more interesting than would other children. And there
would be individual differences in the ways children chose to use the
machine. In their imaginative play, children wouldn't “’play computer,”’
just as they don't “'play telephone.’’ Rather, they would incorporate the
microcompute;: into their play about other things.

SHAPING AN INNOVATION

I believe that the greatest source of concern about having microcom-
puters in classroomis for young children is that the microcomputer activi-
ties will supplant the many activities children do with ‘‘real”’ materials.
Having a microcomputer in a classroom means, it is feared, these other
activities will disappear in the face of their computerized versions.
There is no doubt that working with materials is important for young

22()

Q. 221

The Microcomputer as a Symbolic Medium * 207

children, and it would be unimaginable, not to say absurd, to have a
microcomputer replace the water table, block corner, or pet rabbit.

What seems to underlie this concern is a sense that the microcomputer
innovation has a life of its own proceeding at an intense, unstoppable
pace. Such a fear is understandable when schools are acquiring micro-
computers at an ever-accelerating rate, when parents are playing an
active role in urgng schools to buy microcomputers, and when advertise-
ments for microcomputer hardware and software attempt to make us
believe that serious cognitive deprivation and/or failure to get ahead in
life will result if children do not have access to microcomputers at an
early age.

On the other hand, this view implies that the technology will take
over, that what teachers do or believe will not matter. Whatever research
knowledge we have on this issue suggests quite the opposite—that what
school systems and teachers do with computers—what they use them
for, how they interpret them, how they present them to children—has
an enormous effect on what happens in a particular system or classroom
(Char, Hawkins, Wootten, Sheingold, & Roberts, 1983; Sheingold,
Hawkins, & Char, 1984; Sheingold, Kane, & Endreweit, 1983). The tech-
nology does not have a life of its own, nor does it stand on its own. It is
always used by people in a social context. Because it is such a flexible
tool, people make choices in using it and thus shape its use in important
ways. What teachers do does matter and will continue to matter.
Teachers will help to share this innovation by their decisions about how
to use this new technology, by their willingness to experiment with it
and to share what they learn, and by their involvement in research and
software development efforts. Finally, they will have an impact on this
innovation by their willingness to say "'no’’ to uses of technology that
they believe are not in the best interests of young children.

As I see it, questions about whether and how microcomputers can be
used by young children cannot be answered in the abstract. Nor can
these questions be answ ered simply by putting currently available soft-
ware into classrooms and “’seeing what happens.’’ There is a complex,
cooperative enterprise called for among teachers, researchers, and de-
velopers. We need software that is well designed for the young child,
teachers who are willing to experiment with interesting uses for it in
their classroome, and researchers who can ask insightful questions
about the learning that the technology affords. With endeavors in place
that are interactive among teachers, researchers, and developers, we
will gradually be able to answer some of our questions about the use of
microcomputers by young children. We will also discover new ques-
tions, which will require new research, development, and classroom im-
plementation to answer. At each stage of this recursive process, we may

-

208 ¢ Sheingold

learn more about questions that have always intrigued us—how it is that
children learn and develop, how new technologies transform and support
such learning, and how sensitive practitioners create effective learning
environments for young children.

AUTHOR NOTES

I would like to thank my colleagues Jan Hawkins, Denis Newman, Roy
Pea, and Edna Shapiro for their thoughtful comments on an earlier ver-
sion of this chapter.

222

-

I
PART 1II

SHAPING THE
TECHNOLOGY

CHAPTER 11

CHARTING THE COURSE:
INVOLVING TEATHERS IN THE
FORMATIVE RESEARCH AND DESIGN
OF THE VOYAGE OF THE MIMI

Cynthia Char and Jan Hawkins

Over the last few years, there has been increased awareness of the criti-
cal role that teachers play in shaping the nature of students’ computer
experiences in schools (Char, 1983; Char & Tally, 1985; Hawkins, Char,
& Freeman, 1984; Hawkins & Sheingold, 1985; Mehan, 1985; Michaels,
1984; Riel, 1984). T2 ways in which computers are incorporated into
classrooms often bear a distinct stamp that reflects individual teachers’
personal views and interpretations of the educational functions of the
technology. This phenomenon has appeared across a variety of computer
applications, such as in students’ learning of a programming language
or in their use of word processors, simulations, interactive videodiscs,
and databases. For instance, one teacher might use database software as
an example of a computer application in business, whereas, for another
teacher, it might serve as a vehicle for encouraging students to think
critically about concepts of information organization (Freeman, Hawkins,
& Char, 1984).

The influence of teachers upon computer use, however, is only half the
story. There is a system of mutual influences. Educational technologies
can offer teachers opportunities for considering new kinds of learning
goals and patterns of interaction for their students (Sheingold, Hawkins,
& Char, 1984). For instance, since word processors can free students
from writing out multiple copies of work by hand, teachers can focus
greater attention on the process of revising and editing written prose,
and on creating collaborative projects in classrooms, such as class news-
papers.

Attention to this 2-way interaction has guided Bank Street’s Project in
Science and Mathematics. The project has produced an integrated multi-

211

ERIC 224

IToxt Provided by ERI

212 o Char and Hawkins

media set of materials for upper-elementary school children. At the core
of the