DOCUMENT RESUME

ED 291 595 SE 048 932

AUTHOR Smith, Carol

TITLE Weight, Density and Matter: A Study of Elementary
Children's Reasoning about Density with Concrete
Materials and Computer Analogs. Technical Report
85-15.

INSTITUTION Educational Technology Center, Cambridge, MA.

SPONS AGENCY National Inst. of Education (ED), Washington, DC.

PUB DATE Jun 85

CONTRACT 400-83-0041

NOTE 76p.; Drawings may not reproduce well.

PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC04 Plus Postage.

DESCRIPTORS Chemistry; Computer Assisted Instruction; Computer
Graphics; *Computer Simulation; *Computer Uses in
Education; Earth Science; Educational Technology;
Elementary Education; *Elementary School Science;
Middle Schools; *Physical Sciences; Physics; Science
Education; Secondary School Science; Teaching
Methods

IDENTIFIERS *Density; Science Education Research

ABSTRACT

Density is the first intensive physical quantity
students encounter that can be understood in terms of an underlying
model, the particulate theory of matter. Learning about density
provides students with explanations for a range of phenomena such as
sinking and floating, and changes of state. Teachers report, however,
that density is a difficult concept for students to grasp.
Researchers conducted pilot studies to determine whether students can
understand a visual analog of density presented in computer graphics
more easily than they can understand the concept of density inferred
from manipulation of real world materials. Second-, fourth-, and
sixth-grade students received two sets of parallel tasks: one
involved manipulation or real materials and the other involved shapes
presented in a computer display. Findings indicate that experience
with computer models can help students to think about the difference
between steel and aluminum cylinders as an intensive one--that 1is,
stemming from the kind, not the amount of the material. Younger
children, however, need help to see the computer analog as a "model"
of density. (CW)

***********************************************************************

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
***********************************************************************




it
. m

U.8. DEPARTMENT OF EDUCATION
Otice of Ed alR and Imp

;YDJCAT!ONAL RESOURCES INFORMATION

CENTER (ERIC)

This document has been reproduced as
teceved (rom the person ot orgamzation
onginating it

O Minor cranges have béen made to improve
raproduction qualty

e Points 0f view Or opinions stated inthis docu-
ment do not necessanly represent otficiat
QERI position or pohicy

WEIGHT, DENSITY AND MATTER

ED291595

A STUDY OF ELEMENTARY CHILDREN‘S
REASONING ABOUT DENSITY WITH
CONCRETE MATERIALS AND COMPUTER ANALOGS

oty

Technical Report

June 1985

(Egr——gvora—y

Harvard Graduate School of Education -
337 Gutman Library  Appian Way  Cambridee MA02138

| « | 2 BEST COPY AYAILABLE




weight, Density and Matter

A Stugy of Elementary Children’s Reasoning About Density
Wwith Concrete Materials and Computer Analogs

Technical Report
June 1985

- prepared by Carol Smith

with the assistance of
* . Micheline Frenette and Barbara Gard

Group members

Michel ine Frenette
Barbara Gard
Maxwell Katz
Grace Leblanc

William Radomski
Judah Schwartz
Carol Smith
Martha Stone Wiske

Preparation of this report was supported in part by the National
Institute of Education (Contract # NIE 400-83-0041). Opinions ex-
pressed herein are not necessarfly shared by NIE and do not repre-

sent Institute policy.

3




Results and discussion

TABLES 1 through 12
FIGURES 1 and 2
REFERENCES

APPENDIX

INEroguction ceeeeeoess

MEtNOOS eseevvssonvsnns

ConClusion .ceeveeeeasns

TABLE OF CONTENTS

i
............................ eeeee 9
|

........ U P )




WE 1GHT, DENSITY AND MATTER:
A STUDY OF ELEMENTARY SCHOOL CHILDREN'S REASONING ABOUT

DENSITY WITH CONCRETE MATERIALS AND COMPUTER ANALOGS

Introduction

The concept of the density of a material has an important role in
elementary and secondary school science curricula. Students are taugnt
about a variety of phenomena which require some understanding of density to
explain: for example, how various materials differ from each other, what
heppens to materials when they change state, why objects made of certain
materials are heavier for their size than objects made of other materials,
why some objects sink in liquids while others float. Further, density is
the first intensive physical quantity students encounter that can be
understood in terms of an underlying mogel, the particulate theory of
matter. This theory holds that matter is composed of a finite numper of
discrete and uniform "bits", each of which weighs something; that the
weignt of an object is a function of the number of bits; and that the
density of the object is & function of how closely packed the bits are.
This model is a major theoretical achievement--built on both observable and
unobservable properties and entities. Teaching students about density,
thus, provides them with exglanations for a range of phenomena as well as
an opportunity to develop their understanding of an intensive quantity and
to engage in real.theory construction.

Teachers have reported, however, that density is & difficult concept
for students to grasp. Our project explores why this should be and whether

there are some simpler, more accessiple notions which can serve as the
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pasis for building a concept of density in students’ minds.

One reason that the notion of the density of materials may be difficult
for students to understand is that density is an intensive quantity.
Intensive quantities are quantities that generally have a ratio structure:
weight/unit volume; number of candies/bag; number of children/classroom.
Students may simply have difficulty representing quantities with a ratio
structure. In support of this hypothesis, Quintero found that students
through the fifth grade had trouble giving visual depictions of simple
intensive quantities, such as "14 candies per bag" or "20 children in each
classroom.” (Quintero, 1980). Additionally, students may have difficulty
with density because it is an intensive quantity which they cannot directly
perceive. Although they can perceive an object’s weight, size, and the .
material it is made of, the density of the material is a quantity which
must be inferred from knowledge of an object’s weight and volume.
Limitations in students’ conceptions of matter, material kinds, and weight
may also prevent them from constructing mental models in which the
densities of different materials are directly represented. For example, if
students think of matter as fundamental 1y continuous rather than
particulate, they cannot represent the density differences of materials in
terms of the crowdedness of underlying particles. Other intensive
quantities, such as the crowdedness of an array of dots, may be easier for
them to grasp because they can directly perceive dot crowdedness. In
support of this hypothesis, Quintero found that highly visualizable
intensive quantities were understood better by elementary school children
than Ones that were less visualizable. If this fs true, then elementary

school children may be helped to understand density better by providing

them with an appropriate visual model .
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Our work this year lays the groundwork for designing ways to teach
students about density. The main goal of our studies has been to determine
whether students can understand a visual analog of density (depicted in
computer displays) more easily than the notion of the density of materials
(inferred from manipulating real materials). If they can, then the visual
analog can provide a base on which to build a notion of density. Our
strategy has been to present children with two fdentically structured sets
of problems: one with real world objects and the other with computer
arrays. To date, we have completed two studies, both of which compare
children’s apbilities with the computer displays and real world objects.
The studies differed, however, in the exact way the intensive quantity was
visually portrayed in the computer displays and in the way children’s
reasoning about intensivé quantities was probed.

In our first pilot study (Smith, 1984, the first Technical Report of
this group), we worked with students from grades i, 2, and 3. The density
task involved presentina them with pieces of steel and aluminum of varying
sizes and weights. Students were shown that a piece of steel was heavier
than & piece of aluminum the same size, and that a large piece of aluminum
equaled a small piece of steel in welght, so that they could infer that
stee| was denser than aluminum. They were then asked to predict whether
two objects could weigh the same, drawing on their knowledge of the
relative sizes of the objects and the materials they were made of. Students
were given a variety of problems, the most critical of which involved
presenting the ch{ld with 8 piece of aluminum which was three times larger
than a plece of steel. This latter type of problem was included to

determine 1f they interpreted "heavier” in the generalfzatfon "gteel s

heavier than aluminum" as absolutely heavier or as denser. If students




interpret heavier as absolutely heavier, they should predict that the steel

would be heavier on these problems. If, however, they correctly

-

interpreted it as denser, they should realize that extensive differences in

the objects can compensate for intensive differences and that the two
objects could weigh the same.

The computer probiems in the first pilot study were similar in
structure to the problems with steel and aluminum. The computer display
presented two shapes—-one outlined in purple, and the other in green--of
varyina sizes . Each shape was filled with dots uniformly spaced. The dot
density in the green shape was, however, four times the dct density in the
purple shape. Again, students were given preliminary experience with the
shapes to learn that the green shapes were more crowded with dots than the

purple shapes. They were then asked to predict from knowledge of the

outline color of a shape and the relative sizes of the shape, whether the
shapes would have the same number of dots in them when they were filled in.

Wwe hypothesized that children would be able to describe and reason
about dot crowdedness better than the density of materials because it was a
directly perceptible intensive quantity. Our results only partially
supported our hypothesis. We found that children did use more precise
language for talking about the computer displays than the real objects
(i.e., children referred to an intensive quantity--crowdedness, number of
dots per row--in describing the differences between purple and green
shapes; in contrast, children used the ambiguous word "heavier” in
describing the di%ferences between steel and aluminum). However, despite
the superiority of their language for talking about the intensive quantity
in tné computer case, children at all ages actually did better making

predictions about the weights of the steel and aluminum objects than they
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did making predictions about the number of dots in the purple and green
shapes.

There were at least two possible explanations for the greater
difficulty of the computer problems. First, one could argue that the two
tasks vary in familiarity. Children may have had previous experience with
steel and aluminum objects, but not with the purple and green computer
shapes. |f we had given children more time to familiarize themselves with
the computer materials, their performance might have dramatically improved.
second, one could argue that the children used different strategies on the
two tasks. In our previous technical report, this fs the hypothesis we
favored. In particular, we argued that children approached computer
problems searching for an exact numeric solution. Their Justifications
indicated that they were asking themselves how many times bigger a purple
shape had to be to have the same number of dots as a green shape. The
problem was that they were coming up with the wrong number: they expected
the shapes to have an equal number of dots when the purple shape was two
times bigger rather than four times bigger. Consequently, when they were
presented with a purple shape that was four times bigger than a green
shape, they said that the purple shape would have more dots. This was
scored as an error, but in fact seemed to result from a sophisticated line
of reasoning, a measurement strategy whose only error was an inaccurate
estimation of the difference in dot crowdedness of the two shapes. If
children had been given a wider range of problems (in which the purple
' shape was two, three, and four times bigger than the green shape), they
might have shown the sophisticated pattern of Jjudging that the shapes would
have the same number of dots when the shapes were in a8 2 to | ratio, and

then judging that the purpie shape would have more dots for larger ratios.
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In contrast, chilaren did not seem to take a numerical approach in
reasoning about the steel and aluminum objects. They noted that steel was
much heavier than aluminum, but did not attempt to say how much heavier.
when they were presented with a piece of aluminum three times larger than a
piece of steel, they said that the two could be equal in weignht. However,
Judgina frcm their justifications, they did not seem to have come to the
conclusion that steel was always three times denser. They seemed only to
reason: the aluminum is much larger, but the steel is much heavier, soO they
could be equal. They might also have Jjudged that pieces of aluminum two or
four times bigger than steel could also be equal to the steel in weight. If
this interpretation of their responses is correct, ther, children were using
a more quantitative strategy with the computer problems than the steel and
aluminum ones.
In our second pilot study, we modified the reaconing task we gave to

the children so that we would be bett''r able to infer the strategy children
used on the computer and real world objects prcoiems from their patterns of
Judgment. In particular, we now gave children a wider range of probiems:
problems where the large object was sO much larger that it was heavier/had
more dots in spite of its being less dense, problems where the two
quantities exactly compensate, and problems where the larger object was not
enough larger for the two quantities to compensate exactly (see Table 1).
Children were exposed to all types of compensation problems in the initial
expioration perfod on each task and were asked to find the palrs that had
the same welght/number of dots. Thus, we restructured the procedures fin
ways that would encourage them to think about the intensive differences
more qﬁantitatfvely on both tasks. We predicted that with this new version

of the procedures, children would be more successful with the computer

10
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displays than the steel and aluminum pieces.

In addition, we decided to develop another computer model that would
overcome the limitations of the one used in che First pilot study. In the
original computer model it was hard to corvectly quantify the difference in
dot densities of the two shapes. Each dot should be conceived to be at tht
center of an imaginary box, where the area of the box surrounding a purple
{f children

dot was four times the area surrounding a green dot. However,

conceived of an area bounded by the dots themselves, and then counted the

number of dots fn each area, they would not find a 4 to 1 ratio between the

dot densities of the green and purple shapes {see Figure 1a). In this case,

they get a 2.5 to 1 ratio. This ts because they have not really fdentified

comparable areas. When they consider the dots as being in the center of an

imaginary box, they find that the four purple dots are included in a larger
area than the nine green dots (see figure 1b). Thus, they need to aid
itmaainary boxes to the green shape to make the sreas truly equivalent, and
then they would get a 4 to | ratio (see Figure 1lc). This may, In fact, be
one reason so many of them extracted the wrong numerical rule. Further, our
first computer display provided an fncorrect model of the density
differences of materials at an atomic level.l It is not the case that

denser materisls have more closely packed atoms than less dense materfals.

Rather, 8 denser substance has heavier atoms than & less dense substance

(t.e., more mass f{n the nucleus).

1He are {ndebted to Sylvia Shafto for reminding us of this problem with

our model.
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in our new computer model, there are three variables: number of
dots/bunch (some have 3 dots/bunch; others | dot/bunch); total number of .
punches in & shape (bunches are equally spaced, independent of huncn sizel,
and total number of dots in a shape (see Figure 2). In this model, all y
three quantities including the intensive quantity are easy to quantify (3 i
dots/bunch - .. | dot/bunch). Further, the model provides a more correct
representation of the density differences of materials at the atomic level
(bunches correspond to the nuclei of individual atoms which vary in totai
number of particles). Indeed this is & more powerful model than our
earlier one, since intrinsic differences in material kinds are represented
separately from the overall spacing of pbunches. Thus, we believe this
model can potentially helo children understand a wider range of problems
involving density.

The main purpose of our second pilot study was to test the hypothesis
that children would be more successful reasoning quantitatively with the
intensive quantity in our new computer model (#dots/bunch) than with the

intensive quantity of density of materials. We hypothesized that because

the fntensive quantities in the computer display were directly perceptible,
children would bz more iikely to attempt to quantify them and would
frequently extract the correct numeric rule. In contrast, because they
could not directly perceive the densities of steel and aluminum, they
should make fewer attempts at explicit quantification. Further, without
such a visual referent, they should have more trouble using numeric
information to exgract a correct rule about the ratio of the densities.
-That Is. when they are shown that a steel object weighs 3 units and a same
size aluminum object wefghs | unit, they snould still have difficulty

concluding that steel is three times denser than aluminum. [f these

12
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predictions are confirmed, it suggests one way in which having a visual
mocel of an intensive quantity might aid in reasoning about density.

’ There were three additional purposes served by the second pilot study.
fFirst, we wanted to gather more information about how children
spontaneously conceptual izeg weight and density. Do they think that all
matter has weight? What is their concept of the internal structure of
materials—- what kinds of pictures do they draw (if any) when asked to
explain why steel is heavier ‘vaan aluminum? Second, we wanted to sample
children across a broader age range (grade 2 through 6) than we did in
pilot study 1| and we wanted to include children of more civerse ability
levels. Finally, we wanted to probe children’s ability to see analogies

between the computer model and real world objects.

. Methods

Subjects

The study was conducted in a Watertcwn, Mass. elementary school. The
school philosophy might be described as goal-oriented and progressive: the
pupils were encouraged to take on responsibilities (e.g. school newspaper)
and were actively involved in diverse curriculum-enrichment activities and
events. Children of all grade levels also participated in a computer class.
Most of the attending popuiation seemed to be from a middie soc {o-economic
background.

Students Froé grades 2,4 and 6 were selected by their respective
teachers to represent a range of abiiity levels. Teachers were fnstructed
to form pairs of students of equal general ability; given this constraint,

they were also encouraged to include an equal number of boys and giris. The

ERIC 13
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gistribution of 32 subjects by grade, sex and ability level is shown in
Table 2. The subgroups in Grades 4 and 6 contain only 10 pupils because 4
subjects served to pilot the testing procedures and their protocols were.
not included in the data analysis.

The science curriculum in this school was based on the textbook series

Accent on Science (Charles C. Merrill, 1983). The grade 2 children had not

been exposed in any formal way to the concepts addressed by the study. The
grade 4 children had been introduced to the particulate model of matter and
phase changes in the previous year ("Matter and its Changes"), but had not
yet had the fourth grade unit that dealt with the densities of different
rocks. The grade 6 students had received the most fnstruction in these
concepts. In their previous unit in Grade 5 ("Classifying Matter"),
density was introduced as an object’s mass divided by its volume with
illustrations of same-sized containers filled with different materials; in
this unit the particulate mode! of matter was used to explein phase changes
in 8 given material, but was not directly linked to density differences of
different materials. The grade 6 unit {"Interactions of Matter") gave more
details on the atomic structure of matter, the classification of elements
and the combination of atoms.

Overall Design

Subjects were given three tasks in three separate sessions. The
steel/aluminum and computer model tasks were parailel in structure and were
given in counter-balanced order. Half of the children were given the
steel/aluminum problems in the first session and the computer model
problems in the second session. The other half of the children (matched for
grade énd apility level) were given the computer model problems fn the

first session and the steel/aluminum problems in the second session. There

14
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was a minimum of one day between sessions | and 2. In both the

steel/aluminum and computer model tasks, studentg were given preliminary
. experiences to allow them to infer that steel is denser than aluminum and
to learn that agreen shapes have more dots per cluster than red shapes.
They were then given 12 test problems in which they had to predict whether
two objects could weigh the same based on knowledge of the relative sizes
of the objects and the material each was made of and to predict whether two
shapes could have the same number of dots based on knowledge of the
relative sizes of the shapes and the outline color. The playdough and
probe task was the third task which always was presented in the last
session. This task explored children’s beliefs about weight and density
and probed their ability to see an analogy between the computer model and
the steel/aluminum tasks.
Stimuli

Steel and aluminum pieces

A set of steel and aluminum cylinders of varying lengths were designhed

for the study. The pieces were 1.5 inches in diameter for ease of handling
by the child. The steel used was approximately 2.9 times heavier than the
aluminum. Even though stéel is darker, the two metals were also
distinguished by a color sticker on top of each piece (blue for steel and
yellow for aluminum) to facilitate proper identification by subjects. Each
piece was also identifiqd by a letter on the bottom for the experimenter’s
convenience.

The purpose og the preliminary probiems was to allow children to infer
that steel is denser than aluminum. Three steel pieces (2, 3, and 5 inches

in length) and three aluminum pieces (2, 5.8, and 8.7 inches in length)

were used. These pieces could be arranged in different pairs: for example,
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one same size pair made of different materials, two pairs in which the
larger aluminum weighs the same as the smaller steel, one pair in which the
larger aluminum is heavier than the smaller steel, and one pair in which
the larger aluminum is lighter than the smaller steel. Since students
were allowed to weigh and 11ft the objects during this phase of the task,
different cylinders were used in the test phase to insure that they were
not answering based on the remembered weights of specific ftems. Four new
steel pieces (1, 2.5, 4, and 6 inches in length) and six new aluminum
pieces (1, 2.9, 4 , 5, 7, and 11.6 inches in length) were used to
construct the twelve pairs of objects used in the test phase. For each
pair, the subject was asked to predict if the two pieces could weigh the
same and, if not, which piece would be heavier. There were six types of
pairs with two instances of each type. Table 1 lists the six pair types,
along with the the exact dimensions of the instances for each type.

Computer model

Computer analogs of the steel and aluminum pieces were programmed on an
18M microcomputer. These consisted of rectangular shapes that could be
called up on the screen és empty outlines or filled with dots (see figure
2). The matrix consisted of 4 equally spaced points across the width of
the rectangle. The red shape stood for the aluminum plece and was filled in
with one dot at each matrix point whereas the green shape stood for the
steel plece and was filled in with a bunch of 3 dots disposed in a triangle
at each matrix point. Thus a green shape of equal size contains three times
as many dots as a.red shape just as a steel piece of equal size weighs Just

. about three times as much as the aluminum piece.

During the preliminary phase of the task, students were allowed to call
up pairs of filled-in shapes. When a filled-in shape was called for, an
Q
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empty shape first appeared on the screen and the rows of dots successively

Filled in at a fairly rapid rate. This al lowed children to check which
shape had more dots either by visual inspection or py counting. Because
feedback was given during the preliminary phase, different s{ze shapes were
used during the test phase. In the test phase, children were only
presented with shapes in outline form to test their ebility to make
predictions about whether two shapes could have the same number of dots.
The number of rows in the computer shapes could be varied to match the
different heights of the respective metal pieces on a scale of | row per
inch. In this way, computer pairs were constructed to be exactly analogous
to the pairs used in the steel and aluminum task (see Table | again for
description of exact dimensions of the different pair types).

Other materials

A postage scale was used in the steel and aluminum task. Numbered
stickers were placed on the pound intervals to facilitate reading of
weights. This scale also served as a back-up instrument in the conservation
task when the child did not acknowledge the weight of the material used. In
the computer task, 8 reminder card (showing & red shape with single dots
and a same size green shape with bunches of 3 dots) was placed near the
screen. DOuring the exploration period, a card showing coloured outlines of
the shapes that were available and an {nstruction card were posted. Another
card with two empty outlines of equal size, one red and one green, was also
used as a final probe at the end of the preliminaries. Commercial colorless
playdough was used in the consgrvation task. Finally, white sheets of paper

and a set of 8 colored markers were used in the drawing task.

Procedures

LIRS

The subjects were seen {ndividually by two research assistants. One
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assistant presented the various tasks to the children. The other assistant
recorded their responses and noted some of their reactions.(The complete

interview protocols are contained in the Appendix).

Steel and aluminum task

Preliminaries. The preliminaries introduced children to the tasks so

that they became familiar with the materials and worked out a solution to
the problems at least on a trial and error basis. This part of the
procedure fnvolived several steps: three problem presentations were followed
by an exploration period and then by further probing.

After some greetings and introductory remarks ("1’11 be showing you
some metal pieces 1 want you to look at carefully"), the first pair (!![j)
was presented to the children. They were invited to handle the pieces and
to make a prediction about their relative weights ("Do these pieces weigh
the same?"); they were then allowed to check their response on the scale.
Once the children acknowledged that the steel piece was heavier, the
examiner probed for an explanation: "These pieces are the same size but
they don’t weigh the same. How can that be?" Children were then told that
the pieces were made of steel and aluminum and it was explained how they
could be visually distinguished. Subjects’ previous knowledge of these
metals was also checked. Two more problems (D_._.; !.) were presented.
Children were first asked to make a prediction and then were allowed to
check their prediction.Their reasons for their predictions were also
explored.

Next, all the preliminary pieces were placed in front of the child.
-Children were told that they could explore these objects as they |iked
(e.g.,‘compare the weights of different pairs),and that afterwards, they

would be shown new pieces of steei and aluminum that they would not be

13
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allowed to touch. Once children had eghausted their curiosity, they were
asked to find the steel and aluminum pairs which were equivalent {n weight
(there were two such pairs). Children were allowed several trials and were
helped if necessary. Once the pairs had been located, children were asked
to explain how they had identified such pairs. Finally, a 2 inch piece of
steel and 8 2 inch piece of aluminum were placed on a scale. Children saw
that the steel weighed three units and the aluminum weighed one unit. They
were then asked directly how much heavier the steel object was than the
aluminum object.

Test phase. From this point on, children were not allowed to handle or
weligh the pieces but hed to make predictions about their relative weights
by observaticn of the two pieces placed in front of them. "Here is a piece
of steel and a piece of aluminum, Could these pieces weigh the same? If
not, which one is heavier?" The task included 12 problgms, two of each of
the six types previously described. On four problems, three of which were
compensation ones, children were asked to explain their prediction.

The Computer Model Task

Preliminaries. The computer preliminaries served the same purpose as

in the previous task and closely followed the sequence of steps described
above. The first pair ( _E_D) was presented in filled-in form.
Children were asked which shape had more dots and helped to notice that the
green one had more, following which they were probed for an explanation:
"The shapes are the same size but they don’t have the same number of dots.,
How can that bel?" It was then pointed out that the green one had more in a8
bunch.

For the next two problems (D_-,:l[:]). children were first invited

to make predictions about the relative number of dots from the empty

19
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outlines and queried for their reasons. After the probes, the shapes were
filled in with dots so that children could count them to check their
answers. Children were also shown the model card beside the screen as a
reminder that the red shape was always filled in with one dot per bunch and
the green one with three dots per bunch.

Next, children were told they cculd play with some of the shapes (a
card indicated which ones) and were instructed how to put them up on the
screen. Once they had satisfied their curiosity, they were shown a card
with outlines of different size red and green shapes and were asked to
point to the pairs with equal numbers of dots. Children then checked their
predictions by calling up these shapes on the computer until they found the
tvio pairs which had equal numbers of dots. Finally, children were shown a
2 row red shape (with 8 dﬁts) and a 2 row green shape (with 24 dots) and
were asked how many more dots were in the green shape than the red shape.

The Test Phase. The corresponding computer analogs were presented in

the same order and in the same manner as in the steel and aluminum task.
Empty outlines were called up on the screen and subjects were asked: "Here
is.a red shape and a green shape. Could these shapes have the same number
of dots? If not, which one has more?" The reminder card was Posted during
the task but children were not allowed to check their answers. Children
were asked for justifications on four of the 12 problems, three of which
were compensation problems.

The Playdough and Probe Tasks

The Conservation Task. A medium~sized piece of playdough was brought

out. Children were asked {f it weighed anything and then asked if it still
weighed something when it was not held. Chiidren helped the experimenter

flatten the ball into a pancake shape and were asked if it still weighed

20
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the same when flattened as it did before and whether it still had the same
amount of stuff in it. The ball was reshapeo snd broken into little pieces;
children were asked whether the pieces together weighed the same as the
ball. A tiny piece was then broken off and children were asked whether
this piece would weigh anything, even if only a littie bit. For all

questions, children were asked to explain their judgement.

The Probe Drawing Task. A 4 inch piece of steel and @ 4 inch piece of

aluminum were brought out and children were asked: "What is it about the

steel that makes it heavier?" Children were then invited to imagine the

tiniest piece of steel and aluminum and to draw what they might look 1ike

inside. The drawing was then discussed with the subject for clarification.

The Analogy Probe. The reminder card showing a red shape filled with

single dots and a green shape filled with bunches of dots was brought out

and children were progressively querfed about the analogy between the steel

and aluminum pieces and the computer shapes. Do the shapes remind them of

anything? Do they see any connectfons between the two tasks? Could the

steel and aluminum pieces 1ook 1ike the display of dots insfde and if so,

which shapes would match with the respective metals? The plausibility of

this analogy was checked by asking children if the dot display helped them

understand why steel is a heavier kind of materfal than aluminum, A brief

wrap-up explained the purpose of the study to the children and tested their

acceptance of the particulate model: "Some people say that steel and

aluminum pleces are made up of small bits of stuff 1ike the dots we saw on

the computer. Heavier kinds of stuff have more bits fn a8 bunch but they

have the same spaces between bunches. Does that seem 1ike a good

explanation of why steel {s & heavier kind of stuff than aluminum to youl"
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Results and Discussion

Predictions task: steal and aluminum pieces vs. computer analogs

Tnree aspects of children’s performance in these two tasks were

analyzed and compared: (a3) the language used in describing the differences
between steel and aluminum and red and green shapes; (b) the pattern of

error on the predictions problems in the two tasks and (c) the

justifications of predictions in the two tasks.

Language used for describing the differences between steel and aluminum

obiects and red and areen shapes.

In the preliminary problems of the predictions task, children were
asked to explain why twc objects (shapes) of the same size had different
weights (number of dots) and why two objects (shapes) of different size had
_the same weight ( number of dots). In answering these questions children
typically appealed to some differences between steel and aluminum objects
(materials) and some differences between red and green shapes. Tables 3
ana 4 show the main ways children of different ages talked about these
differences in the two tasks.

In the computer model problems, there were two main ways that children
talked about the differences between the red and green shapes: (a) the
green shapes had dots that were closer together (or in bunches) while the
red shapes had dots that were more spread out (or in singles); and (b) the
green shapes had 3 ber bunch (group, Set, etc.) while the red shape had
only 1-in a group (singles). [In both cases children were referring to an

intensive aspect of the arrays which could be quantified: ;ne closeness of
the dots, the number of dots per bunch. [n the latter case, however,

children explicitly acknowledged the ratio structure of the Quantity "(#
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dots per bunch) and assigned a specific magnitude. Table 3 shows that grade
2, 4, and 6 children talked about the arrays auite similarly. At every
grade, almost all the children characterized the difference between red and
green shapes in terms of an intensive aquantity (dot closeness, # dots per
bunch). Further, the majority acknowledged the ratio structure of this
qQuantity and assigned it a specific maanitude. The two children who say
only "the green has 3 dots, the red has | dot" are probably trying to say
the same thing, althouah they do not verbally mention the denominator
(bunches). Only two of the youngest children do not make any reference to
an fntensive auantity. Instead, they say that the difference between the
red and the green is that the green has triangles while the red has dots.
Note, however, that even these children are focussing on the internal
structure of the red and green shapes and describe an intensive difference.

In problems with concrete materials, there were four main ways that
children talked about the differences between steel and aluminum: (3) steel
{s heavier than aluminum; (b) steel is stronger/fuller than aluminum; (c)
steel is a heavier material than aluminum; and (d) steel is a denser
material than aluminum. Table 4 shows that there are clear age changes in
how children talk about the difference between steel and aluminum, Grade 2
children almost always talk about the steel as being heavier, stronger
and/or fuller than the aluminum, whereas grade 4 and 6 children typically
talk about steel as béing a heavier, denser or more tightly packed material
than aluminum (X2=16. d.f.=2, p=¢.01).

These results highlight two ways our language for talking about the
density of materials is ambiguous: (1) the word "steel" can refer to

obiects made of steel or the material steel; and (2) the word "heavy" can
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refer to absolutely heavy, heavy for size, or dense. With increasing age.

children have a less ambiguous, more precise way of talking about density:
first specifying that they are referring to differences between steel and
aluminum at the material level, and still later specifying that this is a
difference in density and not simply weight. However, because of the
ambiguity of the words they use, it is hard to know what most of the
younger children are intending to refer to without further fnformation. It
is possible that children who say that "steel {s a heavier materfal" or
even that "steel is heavier" really mean to say that it Is a denser
material but do not yet have the language for expressing this fdea.
Children’s actual pattern of predictions on the items where size and
density vary inversely will bear on whether they distinguish weight and
density.

At this point, however, we can conclude that thei'e are at least two
important differences in longuage used on the two tasks. Children have more
precise language for talking about the intensive quantity in the computer
model task; in cuntrast children must stretch their language for talking
about the extensive quantity "weight" to talk about the intensive quantity
"density" fn the steel/aluminum task. Second, children are more aware of
the ratio structure and the sPecific magnitude of the intensfve quantity in
the computer mode{ task. No child talked of the steel objects as being
heavier for their size in the steel/aluminum task, nor fn the early stages
ventured a guess as to how much denser the steel was.

Patterns of Jjudgements: steel and aluminum pieces vs computer analogs.

Children made virtually no errors on the problems where size and the
intensive quantity directly varied (! [O) or on the problems where one

quantity was held constant while the other varied (El[];ll[j) for efther
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task. In particular, 28 of the 32 chiilaren had perfect patterns of
judgement on these six problems in the computer model task and 29 of the 32
children had perfect patterns in the steel and aluminum task. Only che
second grader made errors on these problems for both tasks: systematically

Judging on the basis of size in the computer model task and systematically

judging on the basis of kind of stuff in the steel/aluminum task (she erred
by judging that objects in the (_E_]_ [C1) pairs must have the same weight).
The other five children made only one error on the six ftems for one task
and made perfect predictions for the six items {n the other. Thus, in
generat, children of these ages can simultaneously consider both quantities
in making predictions on these simple problems.

Children made many more errors on the six compensation problems where
size and density varied inversely. There could be two quite different
reasons children made errors on these problems. First, these problems
require that children correctly conceptualize density (dot crowdedness) &s
an fntensive quantity and realize that extensive differences between two
objects can compensate for fintensive differences. If children interpret
wsteel s heavier" as "steel is absolutely heavier than aluminum", then the
child should not realize that a large aluminum object can equal a small
steel object in weight. Instead, whenever they consider the generalization
about the heaviness of steel, they should Jjudge that the small steel object
will be heavier. Second, these problems require that children understand
quantitatively how the two quantities compensate. To have a perfect
pattern of judgment on these ftems, children must realize that the two
quantities exactly compensate when the objects are in a 3 to | ratio.

Careful -examinatfon of children’s patterns of judgement on these six items

should therefore provide clues as to the source of difficulty.
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Children were categorized as showing one of four patterns on the
compensation problems. Recall that compensation problems are those where
the less dense piece is larger in size. There are three types of pairings
fn the compensation problems: (a) those where the larger member of the pair .
is heavier (has more dcts); (b) those where both members are equal 1In
welght (number of dots); and (c) those where the smalier member is heavier

(has more dots). Children with perfect (or exact compensation) patterns

corractly predicted the weights/# of dots on all six problems. Since there
are two items of each type, a perfect pattern would be: LL/EE/SS. These
children clearly realized that the two quantities exactly compensate only
vhen fna 3 to | ratio.

A second group of children made some errors but had patterns which
shewed their responses va}ied systematically as &8 function of ratio

differences. These patterns were called ratio sensitive compensation

patterns. To b¢ credited with this pattern, the subject’s responses had to .
meet two criteria. At Ieaét two kinds of responses among the three that

are possible had to be given and the ordering of the answers had to reflect

a systematic direction {e.g., from picking the larger piece for the larger

ratio differences to picking the smaller pieces as the ratio differences

decreased). However, this transition could occur within a given ratio size

(e.g., LL/(L)(S)/SS or LL/(L)E/(E)S ) as we.i as between different ratio

sfzes (e.g., LL/(L)(L)/SS or LL/(L)(L)/(E)(E) ).

A third group of children showed pon-systematic compensation patterns.
These children are credited with appreciating that size differences in
,object§ (shapes) can compensate for intensive differences because they all .
made some "could be equal"” in weight (number of dots) Jjudgments on these

ftems. Given that these children were perfect on the six noncompensation
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problems (and hence never made the judgment® that "they could be equal" on
any other type of item), it seems likely that these judgments reflect some
understanding of compensation. However, these children did not
systematically vary their responses as a function of ratio differences.
Some of the children judged that the objects "60uld be equal"” on at least
Five of the six compensation problems. Others used several different
responses, but not in as systematic ways as the children with exact
compensation and ratio sensitive compensation patterns. For example, they
went back and forth between two different Judgments for two different ratio
sizes (e.g., L(E)/(L)E/(E)(E) ) or made some clearly inappropriate
judgments for the different ratio sizes (e.g.. L(S)/(LYE/(E)S ). Thus,
their patterns provided less evidence that they knew how to adjust their
response as a function oé ratio differeﬁces.

The last group of children gave no evidence of realizing that size
differences could compensate for intensive differences since ~ :y never
said that the two Objects "could be equal" in weight ( # of dots) at any

point. Instead, they showed one of three patterns: picking the larger

obje~t on at least five of the six items, picking the smaller object as
heavier on at least five of the six ftems, or oscillating between these two
judgments in apparently unprincipled fashion (e.g., LIS)/(LY(S)/(L)S).

Consequent!y this pattern is calied the no compensation pattern.

Table 5 presents children’s pattern of response tb compensation items
for both tasks. There were two matched groups of children: those who had
the steel/aluminum problems first and the computer displays second and
those who had the reverse order of presentation. Results are presented
separately for the two groups because order of presentation had dramatic

effects for the steel and aluminum task. When children had the steel and
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aluminum problems first, only 5 out of 16 children showed patterns that
were clearly sensitive to ratio differences with the metal pleces..In
contrast, 14 out of 16 of children had exact compensation or ratio
sensitive patterns on the steel and aluminum problems when they were
presented after the computer problems (x2=10.5, d.f.=1, p=<¢.0i). Order of
presentation did not affect performance on the computer probiems: the
majority of children had ratio sensitive or exact compensation patterns
regardiess of order (X2=2.12, n.s.). For the children who had the steel
and aluminum problems first, the computer problems were clearly easier: 13
out of 16 had more sophisticated patterns on the computer problems, while 3
hag the same pattern on both. No child had a more sophisticated pattern on
the steel and aluminum problems than on the computer problems (Sign test,
p< .01)., In contrast, fhere was no difference in difficulty in the two
types of problems for the chidren who had the computer problems first: 9
out of 16 had the same pattern on both, 3 had more sophisticated patterns
on the computer problems, and 4 had more sophisticated patterns on the
steel and aluminum problems (Sign test, n.s.).

Table 6 shows children’s pattern on the computer mode! problems as a
function of grade. Children’s performance o1 the computer prcblems at all
ages was remarkably good. Only two children--both second graders--had
patterns which fndicated that they were not making compensation Judgments.
Significantly, these were the only two children who had not talked of the
differences between red and green shapes in terms of an intensive quantity
(they had said the greens had triangles, the reds dots, see Table 3). The
majority of children at every age showed at least ratio sensitive patterns.
'Exact compensat{on patterns were common, however, only among the grade 4

and 6 children.
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Table 7 shows children’s patterns on the stee] and aluminum problems as

tion. Children’s performance at

a function of grade and order of presenta

e when one considers the group that had the steel and

every grade is wors

aluminum problems first. Indeed half the second graders (and one older

» patterns--indicative of failure to understand

child) had " no compensation

the intensive quantity. All these children had talked simply of steel as

further, ratio sensitive

peing heavier in their spontaneous comments.

patterns were rare among grade 2 and 4 children. Children’s performance on

for the group Which had

the steel and aluminum problems was much better

these problems after the computer problems. .In thiz case only 1 second

{1dren attended

grader showed a no compensation pattern and 14 of the 16 ch

tn understanding the compensation. This suggests that

to ratio differences

experience with computer problems both helps the child to think about the

differences between steel and aluminum as an inteﬁsive one and to think

more precisely about the magnitudes of the intensive quantities.

Justifications of predictions

Analyses of children’s justifications of compensation items provide

o the actual

further support for these conclusions and gives insfght int

strategies children were using in solving the compensation problems.

Justifications were found to fall into six mutually exclusive categories:

(1) correct multiplicative rule (i.e., nthe red needs to be three times the

size of the green to be equal'); (2) incorrect multiplicative rule (e.9.,

Al needs to be two times as

"the steel is double the aluminum in weight;

big to weigh the same™); (3) direct estimation of the number of dots in

both shapes either by counting (imaginary dots) or multiplying (imaginary)

rows and columns (used only for computer problems) (4) comparison to 8

remembered standard (e.g., nthis §s smaller than the one before; it would
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have to be bigger to be equail"); (5) consideration of a trade-off between
the two Quantities (e.g., "even though the aluminum is bigger, the steel fis
heavier") and (6) consideration of only one quantity at a time (e.g., "It’s
bigger"; "steel is heavier"; or "the green has bunches").

Table 8 shows children’s Jjustifications on the computer model problems
as a function of grade. These Justifications of computer problems revealed
a great deal of understanding of how the extensive and intensive quantity
compensate. The most common justification, especially among older
children, was to give a correct muitipiicative rule. Two additional
children attempted to give a multiplicative rule, but came up with the
wrong magnitude. (2x instead of 3x-~both had had the steel and aluminum
problems first). Another common strategy on the computer problems was to

attempt to directly estimate the # of dots in each shape: younger children

counted imaginary dots while older children multiplied imaginary rows and

columns. These kinds of justifications--all dealing with specific

magnitudes or counts--involve 50% of the G2 children, 60% of the G4 and 70%
of the G6. Most of the other children mention a trade-off between both
quantitles or make an explicit comparison to a remembered standard. Only
four children simply appealed to one quantity in their justifications.

The jJustifications on the steel and aluminum problems are examined as a
function of the order of presentation (see Table 9). Children who had the
steel and aluminum problems first showed less sophistication in their
Justifications. No child gave a correct multiplicative rule or attempted to
make a direct estiﬁation of the magnitude of the weights. A few formulated
an incorrect multiplicative rule and a couple more attempted to make a
compar}son to a remembered standard. Most commonly, however, they showed

the least sophisticated justification of talking about only one quantity at
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In contrast. the children who had the steel and aluminum problems
second were able to articulate greater understanding. Four gave the correct
multiplicative rule, two gave incorrect rules, and four more made
comparisons to a remembered standard. Only three children made reference to
a single quantity. Thus, in both patterns and justifications, the children
with the computer model problems first showed greater understanding of
these problems.

A final analysis revealed that there was a clear relation between
children’s patterns of Judgments and their Jjustifications. For both tasks
children with perfect patterns gave correct muitiplicative rules and
children with no compensation patterns referred to only one quantity.
Further, on the steei ané aluminum problems, children with ratio sensitive
compensatioh patterns typically gave justifications in terms of an explicit
rule or in terms of a comparison to & remembered standard, while children
with non-systematic compensation Patterns at best mentioned the trade-off
between quantities. There was no systematic difference in justification
type for these two patterns on the computer patterns; children typically
gave sophisticated justifications for both patterns.

Convictions: Weight, Density, Analogies

In the final interview, children were asked questions which probed
their conceptualization of weight and density. They were alsn asked
whether they saw any similarity between the computer and steel and aluminum
problems. '

Children’s conception of weight

Five aspects of children’s conception of weight were probed. These

included thefr belief: (1) that a large scale object (i.e., a ball of
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playdough) weighed something; (2) that this object weighed something even
when they were not holding it; (3) that this object weighed the same amount
when flattened into a pancake or (4) divided into pieces, and (5) that even
a small piece of this object weighed something. Table 10 shows the number
of children at each grade level who gave evidence of holding each of these
beliefs.

The majority of children at each grade level gave evidence of correctly
holding the first four beliefs about weight. In contrast, there were
dramatic changes in answer to the question about whether a small piece of
playdough weighed anything. Only 25% of the grade 2 children said that it
did while 90% of the grade 6 children agreed with this this statement
(x2=9.4, d.f.=2, p=<.01). Children’s Justifications of their answers to
these questions provide clues as to the meaning of this shift. Children
who said the small piece of playdough weighed something almost always
Justified their answer by saying that "everything weighs something" or
"{t’s matter" or "it‘s still something". Further, many of these children
had articulated this viewpoint earlier in the interview as well. In
contrast, those who denied it would weigh anything had not made such
statements earlier in the interview. When they got to the small piece of
playdough question, they simply said "it is too small to weigh anything".
Thus, this question about whether a small piece of playdough weighs

anything seemed to act as a probe of their belief that weight is &

fundamental property of matter; older children believe that it is while

younger children do not.

Children’s conception of density

Children’s conception of density was probed in the final interview by

asking children to explain why a piece of steel was heavier than a piece of
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aluminum the same size. They were also asked to pretend that they could
1ook inside the tiniest pieces of steel and alum}num and to make a drawing
of what it might look like inside.

Tabie 11 shows the number of children at each age giving drawings of
different types. A common type of drawing among the G6 children was to
draw for each substance littie particles which differed in terms of how
densely packed they were. This kind of representation was rarely drawn by
the younger children. Instead, younger children usually gave one of three
other types of drawings/explanations: (1) drawings which portrayed steel
and aluminum as solid but differing in color; (2) drawings in which steel
{s portrayed as solid and aluminum {s portrayed as hollow fnside, or in
which steel i{s shown to be filled with gomething heavy (i.e., 8 heavy
1iquid or bricks) while aluminum is Fllied with something light (i.e.,
cotton balls); and (3) drawings fn which steel is portrayed as solid while
aluminum is permeated with air holes. In all these drawings, materials were
portrayed as essentially solid masses which at most can be hollowed out or
have air holes. There was no hint of a belief that matter Is essentially
particulate instead of continuous. Further, many of the children did not
think of steel and aluminum as homogeneous materials. Some children made a
clear distinction between the outer appearance and inner composition of
meterials. Steel might be solid on the outside but filled with a liquid or
bricks on the inside; aluminum might be solid on the outside but hollow or
filled with cotton balls on the inside. One child even explained that
steel was heavier because there was a small piece of aluminum on the
fnside.

Overall, children at every age appealed to intensive differences

between steel and aluminum in their drawings (color differences, empty/full
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differences, differences in dot crowdedness). However, there were three
respects in which young children’s conception of density differed from
older children’s. First, young children did not assume matter is
fundamentally particulate whereas older children did. Second, young
children frequently failed to represent materials as homogeneous whereas
older children did not. Finally, younger children focused on intensive
differences which were not quantities (red/green; empty/full) while older
children focused on intensive differences which were quantifiable
(crowdedness of dots). Significantly, all four children who had perfect
patterns on the steel and aluminum problems (predictions task) portrayed
density differences in terms of variations in particie density in their
drawings. Further, ali the children who gave these kinds of particulate
drawings had given evidence of believiné that weight is a fundamental
property of matter.

Children’s ability to see analogies between the two tasks.

Several children (2 second graders, and 1 fourth and and | sixth
grader) spontaneously commented on the simflarity between the two
prediction tasks when the second task had been presented. At the end of the
interview, all children were probed to determine if they could see the
similarity between the two tasks. Children were first probed indirectly.
They were asked "Do these computer shapes remind yYou of anythina?" and then
if there was no answer, "Do you see any connection between these shapes and
the steel and aluminum pieces?" "What kind of connection?" They were then
probed very directly: they were toid that one of the shapes was 1ike a

“steel plece and one 1ike an aluminum piece and were asked to make the
match.

Table 12 shows the number of children at each grade level who were able
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to articulate the connection between the two tasks both for the more
open-ended probes and the directed match. Virtually all the chiidren could
see the analogy when asked to make a directed match. Further, the majority
of grade 2 and 6 children were able to articulate the analogy in more .
open-ended questioning as well. However, articulati;n of the analogy does
not always imply acceptance of the analogy. Indeed many of the grade 2

children had theories of matter which were at odds with taking the analogy

seriously.

Conclusion

‘There were three purposes of the present study: (1) to determine how
elementary children spontaneously conceptualize the density of materfals;
(2) to determine {f they could understand the fntensive quantity presented

in computer displays better than the density of materials; and (3) to

determine {f they could understand the perallels between the computer

displays and the steel and aluminum objects.

The resuits suggested that some second graders may have diffficulty
distinguishing density from weight, but by grades 4 and 6 this is generally
not & problem for children. The prediction problems in which sfze and
density Inversely vary directly tests whether chiidren distinguish welight
from densipy. These probiems require that the child realizes that the
difference between steel and aluminum s 8an intensive one. If they realize
the difference {5 intensive, then it follows that extensive differences
between two objects can compensate for intensfive differences: a large

aluminum piece can equal a small steel plece in weight. However, if
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children think of the difference as an extensive one (i.e., steel objects
are absolutely heavier than aluminum objects), then they will not - .
understand that size differences can compensate for weight differences.
Instead, children should be p~rplexed by these problems and forced to
consider one generalization at a time. When they consider their
general ization about the weight differences between steel and aluminum,
they should predict that the steel piece will be heavier. When they
consider their generalization that big things tend to be heavy, they should
predict that the large object will be heavier. We found that half of the
second graders (among those who had the steel and aluminum problems first)
never made the Jjudament that the large aluminum piece could equal the small
steel piece in weight on any of the compensation problems: one
systematically picked thé small steel piece as heavier, one systematically
picked the large aluminum piece as heavier, and one oscillated between
picking the biggér piece and small piece in no priﬁcipled manner. Further,
these children only referred to one quantity in justifying their
judgments--the one they had based their judgment on. Thus, there is no
evidence from either their justiffcations or patterns of Judgment that they
realize the two quantities can compensate. In contrast, all but one of the
grade 4 and 6 children made the judgment that a large aluminum piece could
equal a small steel piere in weight. Further, the majority indicated in
their justifications that they were simultaneously considering both
quantities and realized that they could compensate.

There were, however, limitations fn the older child’s conception of
‘density. These limitations were revealed in two ways. First, in their
pattern of judgments and justifications on the predictions task; and

second, fn their drawings portraying the essential differences between very
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small pleces of steel and aluminum. Consider first their responses in the
predictions task. Among the children who had the steel and aluminum
problems first, few grade 2 and grade 4 children had patterns that showed
they were systematically taking ratio information into account in making
Judgments about how size and density compensate. Further, these children
typfcaily do not give Justifications involving an explicit multiplicative
rule. Instead, they efther comment on only one quantity or they simply
refer to the fact that the two quantities can compensate (i.e., "although
the aluminum {s bigger, the steel is heavier, so they could be equal™).
Thus, they are taking a more qualitative than quantitative approach to
these problems: they are noting that the aluminum is bigger than the steel
but not worrying about how much bigger. Similarly, they are noting that
the steel is heavier thaa the aluminum, but not worrying about how much
heavier.

The drawings of the grade 2 and 4 children also reveal some of the
limitations in their conceptions of the densities of materials. There are
three main types of drawings produced by these children: 1) drawings which
portcray steel and aluminum as solid but differing in color; 2) drawings
which portray steel as full and aluminum as hollow or filled with a lighter
substance/or object; and 3) drawings which portray steel as solid and
aluminum as essentially solid, but with some air holes (& la Swiss cheese).
wWhile all three types of drawings are depicting an fntens{ve difference
between steel and aluminum, rione of them {s explicitly representing an
fntensive quantity. Rather, they all are categorical differences: dark
color/light coler, empty/full, full/air holes. Thus, although children’s
models of density help them to see its intensive aspect (and hence

distinguish density from weight), they do not help them see it as a
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quantity. These same children (those who were presented with the steel and
aluminum problems first) had a much better understanding of the intensive
quantity in the computer displays. This better understanding was revealed
in several ways: by the way they talked about the quantity and by their
patterns of performance and justifications on the predictions task. Three
of the four children with no compensation patterns on the steel and
aluminum problems had ratio sensitive compensation patterns on the computer
proslems. The seven children with non-systematic compensat ion patterns on
the steel/ aluminum problems also moved up to ratio sensitive compensation
patterns with the computer displays. Finally, three of the four children
who had shown ratio sensitive compensation patterns with the steel and
aluminum problems, now showed exact compensation problems with.the computer
displays. This more sophisticated performance with the computer problems is

associated with their having a more pPrecise way of talking about the

intensive quantity. All but one of the chiidren saw the red and green

shapes as differing in an intensive quantity.

Why do these children do better with the computer problems than with
the steel and aluminum problems? The improvement cannot be a nonspecific
order or practice effect. If children did better with the computer
problems simply because they came second, then one would expect that the
children who had the computer problems first would do worse. However, the
two groups performed equivalently (note: these two groups had been matched
by the teacher by §bility level, making it less likely that one group was
simply "more sophisticated". ) We propose that the reason children do
better with the computer problems is that the intensive quantity fs
directly represented in the computer displays in a form distinct from the

two extensive quantities and in a form lending itself to quentification. In
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contrast, the only quantities which are directly perceptually available in
he steel and aluminum task, are weight and size. Thus, the child needs to
construct the quantity of density from knowledge of the weights of two
equal size pieces. Further, the models of density the young child has
available (because of conceptions of matter in which the notion of density
is embedded) do not help him to see ft as a quantity. The models simply
reinforce its intensive aspect. Children this age are, hcwever, capable of
understanding models which do represent density as an fntensive qQuantity.
This suggests, then, that their understanding of density could be
significantly enhanced by Presenting them with the computer displays and
teaching them about the particulate model of matter.

In fact, the present study provides some direct 2vidence that
experience with the computer simulation'can help students with steel and
aluminum problems. In particular, when children had the steel and aluminum
problems after the computer problems, there was no longer an advantage for
the computer display tasks. Children perform at a high level on both tasks.
There are at least two reasons specific experience with the computer
problems may enhance children’s performance with steel and aluminum .
First, it provides them with experience focusing on an intensive quantity
which is easier to conceptualize (i.e. not confusable with an extensive
quantity) and with practice co-ordinating this fntensive quantity with an
extensive quantity. This may prime children to focus on density 8s an
inter sive quantity as well. Second, it provides them with the opportunity
to come up with a specific strategy for solving the problem: to check if
the red shape {s three times bigger than the green shape. This specific
strategy is directly applicabie to the steel and aluminum problems since

their densities are in @ 3 to | ratio as well. Note that in either case for
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transfer to occur, it is necessary that the child sees some analogy between
the problems. Direct evidence that the child does have the capacity to see
relevant analogies between the two systems came from the last auestions in
the interview. In particular, we asked children both a more open-ended
question ("Do you see some connection between the computer shapes and the
stee] and aluminum pieces? What connec.ion? ") and a more dirocted question
("Do you think the steel and aluminum piecescould look 1ike this inside?
which one would be the steel? Why do you think that? ") to assess their
understanding of the analogy. The results showed that at all ages children
were aware that the green shape was more |fke steel, because having more
dots is |ike being heavier. Further, both the G2 and G6 children typically
artfculated this analogy before they were given the more directive probe.

The findings of the present study suggest, then, that it is easfer for
children to conceptualize the intensive quantity in the computer displays
.than to conceptualize density. Further, there was evidence that nxperience
with the computer displays may help children to think about density more
clearly as an intensive quantity. We do not, however, think that this
brief experience with the computer problems brought ~hout a deep
re-organization in children’s conception of densfity. Children’s existing
conceptions of density were sufficient for them to see some analogy between
these two systems. At the same time, their existing conceptions of matter
and material kind probably prevented them frcm regarding those analogies as
deep ones. In parFicular, most grade 2 children and many grade 4 children
as well did not yet regard wefght as a fundamental property of matter.
Further, virtually all of th' - regarded matter as essentially continuous
rather than particulate.

One question for future research is wh_ther elementary children can be
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taught to take the computer displays as a model of density. This would
involve meking basic changes in their conceptions of matter and material
kind, which is notoriously hard to do. Another question fs to what extent
children need to take the computer displays as a model of density in order
for them to be helpful as a pedagogic tool. Our present results suggest
that it may not be necessary for children to take the displays as a formal
model of density in order for them to be helpful since grade 2 children
penefited as much, if not more from the experience than G6 children.
Indeed, the reverse might even be the case: experience with using the model
to successfully solve density related problems (i.e., problems such as
those used in the present study; or sinking and floating problems, where
the densities of objects are directly represented in computer displays and
where there is a dynamic component as well) may provide the child with some

motivation for taking the particulate model of density serijously.
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Table 1

Test item types:
Steel/aluminum and computer model tasks

Compensation probiems:size and density vary inversely

Type Definitjon Sxmboll Dimensions2

1 Larger object is hea- b) 5:1 c) 11.6:2.5
vier/has more dots

1 Both ob.jects equal in
weiaht/number of dots

f) 2.9:1 g) 11.6:4

111 Smaller object is hea-
vier/has more dots

i) 7:4 j) 4:2.5

Non—-compensation problems

. Type Definition Symbo| Dimensions2

v Size constant/
density varies

1) 1:1 m) 4:4

v Size and density o) 1:4 p) 5:6
covary
Vi Density constant/ r) 2.5:1 s) 11.6:5
size varies [:]

lEmpty boxes stand for aluminum (or red shapes filled with single dots):
full boxes stand for steel (or green shapes filled with clusters of dots).
The pairs depict relative size but are not to scale. Single underlining in-
dicates heavier weight (or more dots); double underlining indicates equali-
ty of weight (or of number of dots).

2The letters correspond to the letter of the items on the interview proto-
cols in the Appendix. The numbers refer to inches for the metal pieces and to

rows for the computer model;the fractions were rounded to the next higher num-
number in the case of rows.
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Table 2

Number of subjects by grade, sex and ability level

Grade
2 4 6

Male Female Male Female Male Female

{n=6) (n=6) (n=5) (n=5) (n=5) (n=5)
Ability
Low 2 2 - 2 2 2
Average 2 2 2 - 2 2
Hignh 2 2 3 3 1 1
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Table 3

Computer analoqs:
Language used in describing the difference
petween red and green shapes

Grade
2 4 6
{n=12) (n=10) {n=10)

Explanation of difference
Green has triangles; 2 0 0
Red has dots
Green has 3 dots; 1 | 0
Red has 1 dot
Green is in bunches 3 3 3
(dots closer together);
Red in singles
{dots spread out)
Green has 3/bunch; 6 6 7
Red has single dots
or l/bunch
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Table 4

Concrete materials:
Language used in describing the difference
between steel and aluminum

Grade
2 4 6
(n=12) (n=10) (n=10)

Explanation of difference
Steel is heavier 8 1 0
Steel is fuller/stronger 3 3 3
Steel is a heavier | 6 4
material/substance
Steel is a denser 0 0 3

substance/material




Response pattern

Exact compensation

Ratio sensitive
compensation

Non-systematic
compensation

No compensation

Taple 5

Response patterns as a function of
task ang order of presentation

Order of presentation

Steel and aluminum first Computer first
St & Al Comp St & Al Comp
{n=16) {n=16) (n=16) (n=16)

1 5 3 3

4 10 11 9

7 0 1 3
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Table 6

Computer model task:
Response patterns as a function of grade -

Grade
2 4 6
(n=12) (n=10) (n=10)

Response pattern
fxact compensation ] 3 4
Ratio sensitive compensation 8 7 4
Non-systematic compensation ] 0 2
No compensation 2 0 0
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Response Pattern

fxact compensation

Ratio sensitive
compensation

Non-systematic
compensation

No c¢.mpensation

Table 7

Steel and aluminum task:
Response patterns as a function of
order of presentation and grade

Order’of presentation

Steel and aluminum first

2 4 6
(n=6) (n=5) (n=5)

Grade

Computer first

2 4 6
(n=6) (n=5) (n=5)




Table 8

Computer model task:
Justifications as a function of grade

Grade
2 4 6
(n=12) (n=10) (n=10)

Justification
Correct rule | 5 4
lncorrect rule | | 0
Direct estimation 4 0 3
of numper of dots
Comparison to remembered ] 0 ]
standard
Trade-of f between 2 2 4 1
quantities
One guantity only 3 0 1
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Table 9

Steel and aluminum task:

Justifications as a function of

order of presentation and arade

Order of presentation

Steel and Aluminum first

Computer first

Grade
2 4 6 2 4 6
(n=6) (n=%) (n=5) (n=6) (n=5) (n=5)

Justification
Correct rule 0 0 0 0 1 3
Incorrect rule ] 1 ] 0 2 0
Comparison to a 0 0 2 3 0 1
remembered standard
Trade-off between ] 3 0 1 | 1
two quantities
One guantity only 4 1 2 2 1 0




Table 10

geliefs about the weight of piece of playdough

as a function of grade level ” .
Grade
2 4 6
(n=12) {n=10) (n=10)

Belief
Large piece of playdough 9 8 10
weighs something
Playdough has weight 8 9 9

even when not holding it

Playdgough weighs same 8 8 10
even when flattened

Playdough weighs same 10 8 9
when divided

Small piece of playdough 3 5 9
weiahs something
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Types of adrawings as a function of arade level

Type of drawina

Color or surface
appearance

Empty/full
Solid/air holes
particle density

Other

Taple 11
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Table 12

en who sé€ appropriate

Number of childr
ade level

analogy as a function of ar

Grade
2 4
(n=12) (n=10)
Type of probe
Open-ended probe 9 4
10 10

Directed match
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The problem of findin
the dots serve to define the boundaries of the area

a)
b)

c)
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when the dots are contained in the center of an imaginary
areas are seen to be not equivalent

g comparable areas from which to extract a ratio.

(incorrect)
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the number of bexes containing green dots needs to be increased to

make the areas comparable




FIGURE 2

Print-out from Computer Display:

A. Outlines and filled-in shapes
for compensation problem type I

{Red shape has more dots)

Screen 1
RED GREEN
Screen 2

RED 55 GREEN




FIGURE 2 (ct'd)

Print-out from Computer Display:

B. Outlines and filled-in shapes
; for compensation problem type II
(Shapes have equal number of dots)

Screen 1

RED GREEN




FIGURE 2 (ct'd)

Print-out from Computer Display:

C. Outlines and filled-in shapes
for compensation problem type III
(Green shape has more dots)

Screen 1

RED GREEN
Screen 2

RED GREEN




FIGURE 2 (ct'd)

Print-out from Computer Display:

D. Outlines and filled-in shapes
for non-compensation problem type IV
(Green shape has more dots)

Screen 1

RED GREEN

Screen 2




FIGURE 2 (ct'd)

Print-out from Computer Display:

E. Outlines and filled-in shapes
for non-compensation problem type V
(Green shape has more dots)

Screen 1

RED GREEN

Screen 2

Q RED GREEN
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FIGURE 2 (ct'd)

Print-out from Computer Display:

F. Outlines and filled-in shapes
(for non-compensation problem type VI
(Large shape has more dots)

Screen 1

L

GREEN GREEN

Screen 2
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APPENDIX

List of interview protocols

A. Steel and Aluminum Preliminaries
B. Stee! and Aluminum Problem Set
C. Computer Model Preliminaries
D. Computer Model Problem Set

E. Playdough and Probe.
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A. STEEL AND ALUMINUM PRELIMINARIES

NaME: GRANE: BAY / GIRL  DATE:

eten A,

[-LL BE SHOWING YOI SOME METAL PIECES AND T WANT YOO TO LOOK AT THEM VERY
CAREFULLY.

NG TCD LIKE YOI TD TAKE THEZE Twl PIECES AND TELL ME IF THEY WEIGH THE
SaME? (Hand the pieces to the child)

Yes /. Nn

—

. If no ask WHICH IS HEAVIER - (S / A )

Shew balances scale and exnlain:i

DO YR KNOW WHAT TH
USE IT TO WEIGH TH
IT GOES, THE HEAVI

15 IS CALLED? WHAT IS IT WUSED FOR? HOW DOES I7 WORKT WE
INGS., THIS HAND TELLS US HOW HEAVY THINGS ARE.THE FARTHER
ER THINGS WEIGH.

LET*S PUT THEIE PIECES ON THE SCALE AND SEZ HOW MUCH THEY WEIGH. DO THEY
WEZRN THE SAME?

Yes (incorrect response, show child)

Ne . . WHICH IS HEAVIER . .. £/ A

ARE THEY THE SAME SIZEY Yes / No . . . (show they ars same)

1ECES ARE THE SAME SIZE BUT THEY DO NOT WEIGH THE SAME. HW CA

CAN YOU TELL ME WHAT YOU MEAN . . . (Use child’s words),




T (d)

53"
al’
&
M=B

THEZE PIECEZ ARE MADE QF DIFFERENT KINDS OF STUFS (MATERIALSI. DO YOU KNoW
THE NAMES OF WHAT THEY ARE MALE OF 2

THIS GONE I3 MALE OF ALUMINLIM AND THIS ONE 15 MALDE OF STEEL.
CAN YOU TELL ME WHAT IS DIFFERENT ABROLT STEEL AND ALUMINUM?

YOU CAN SEZ THAT THE STEEL ONE IS DARKER AND THE ALUMINUM IS LIGHTER . WE
ALZ0 HAVE PIIT THESE DOTS ON TO HELP. THE BLUE DOT IS ON THE STEEL PIECES
AND THE YELLQW DOT ON THE ALUMINUM,

NOW, T WANT YOLI TO LOOK AT THESE TWd PIECES, BUT I DON‘T WANT YOU TO LIFT
THEM UP UNTIL LATER.

ONE IS MALDE OF STEEL AND ONE IS MADE OF ALUMINUM, JUST LIKE THE FIRST
WE SAW, CAN YOI SHOW ME WHICH ONE IS STESL AND WHICH ONE IS ALUMINLM 72
(Show calne markeer),

TWO

DO YOU THINK THAT THEZIE TWO PIECES COULD WEIGH THE ZAMES

Yes / No = if no asks ¢

. +WHICH IS HEAVIER 2 _ S / A

WHY DO YOU THINK £07

LETS SEZ (have child out them an the crals )

D THEY WEIGH THE SAME?

Yes / No . o (if no help them see that they are the same )

ARE THEY THE SAME SIZE ? Yes / Na




B. STEEL AND ALUMINUM PROBLEM SET

NAME: GRADE BOY/GIRL DATE:

—————————

For precosntation 1 thraych 12 ash the fallamwing

DO YOU THINK THESE COULD WEIGH THE SAME ? If NO, ask WHICH IS HEAVIER ?

e #1. HERE ARE TWO PIECES MADE OF ALUMINUM -
COULD THESE TWO PIECES WEIGH THE SAME ?

5'
‘ \ Yes / Na

oo if no ask WHICH IS HEAVIER tall / short i

~

2. HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. DO YOU THINK THESE
COULD WE:IGH THE SAME? “

K2
(b)
51!
lﬂ
j ©2 Yes / Mo
= A

ee if no ask WHICH IS HEAVIER ? steel /_aluminum

#3. HERE IS A PIECE OF STEZL AND A PIECE OF ALUMINUM. DO YOU THINK THESZ

. T (5) COLLD WEIGH THE SAME ?
"
Ef[::] }sz Yes / Na
. . oo if no ask WHICH IS HEAVIER ? st2al / aluminum
LG WHY ?
X (%) #4, HERE IS A PIECE OF STEZL AND A PIECZ OF ALUMINUM, DO YOU THINK THEZE
23" ) COULD WEIGH THE SAME ? :
|
7} Yes / No
5 = ee if no ask WHICH IS HEAVIER ? stezl / aluminum
% #S. HERE IS A PIECE OF STEZL AND A PIECZ OF ALUMINUM. DO YOL! THINK THESE
I Y COULD WEIGH THE SAME ?
O\ % Yes / No
X c .o if no ask WHICH IS HEAVIER ? gtsel / aluminum
i (9. #6. HERE IS A PIECE OF STESL AND A PIECE OF ALUMINUM. DO YOU THINK THEZE
[j 25" COULD WEIGH THE SAME ?
] .
- " Yes / No
K ¢ -

ee if no ask WHICH IS HEAVIER ? gtoel / aluminum
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Prabe Questian

(place proliminarv piecse (S RDF / At T M) in front of child)

CAN A PIECE OF STEEL ANDI ALUMINUM WEIGH THE SAME 7 Yes / No

oo IT _Na say :LETS MAKE SURE. CAN YOU FIND A FIECE OF ALUMINLUM
THAT WEIGHS THE SAME AS THIS PIECE OF STEELT
{place piece B of steel in frant of child
(help child to select S/4 pair "B/M" or "0O/O")
(weigh the pieces)

.« It Yes  say: CAN YOLl SHOW ME WHICH PAIRS OF S/A PIECES WEIGH THE SaME?
picks :S:__ A3

LETS WEIGH THEM AND SEE. DO THEY WEIGH THE SAME? Yes / Nao
o if Yes say YOU WERE RIGHT, CAN YQL! FIND ANOTHER PAIR THAT WEIGHS

THE SAME ? {zhack on scale)
picks :S: AL (B/M or D/0)

.o if Na  say THEY DON“T WEIGH THE SAME. CAN YOU FIND ANOTHER PAIR THAT
DO WEIGH THE SAME? (help child as necessary to find pair)
picks :S: Hf-H (B/M or D/0) (check an scale)

CAN YOLU FIND ANOTHER PAIR THAT WEIGHS THE SAME =
picks :S: tA: (B/M or D/0) (check an scale)

HOW CAN YOU KNOW THAT THIS PIECE OF ALUMINUM WEIGHS THE SAME AS THIS PIECE
OF STEEL (point to first pair), AND THAT THIS FIECE OF ALIUMINUM AND THIZ
PIECE OF STEEL WEIGH THE SAME (paint teo second pair)?

(paint to 2"steel (B) and say ¢

YaU SAID THAT THIS ONE (B) WEIGHS THE SAME AS THIS ONE (M),
COULD THERE BE ANOTHER PIECE OF ALININUM THAT WEIGHS THE SAME AS THIS PIE-S
OF STEEL? (pizce “B")

Yes / N

. if Yes say WHICH ONE(S)

place 2"steel "B" and 2" aluminum “I" in fraont of child and sav:

HERE IS A PIECE OF STEEL AND A PIECE OF ALUMINUM. HOW MUCH HEAVIER DO YU
THINK THE STEEL IS THAT THE ALUMINUM ?  HOW D3 YGU KNOW THAT?
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THESE PIECES WEIGH THE SaME BUT THEY ARE NOT THE SAME SIZE. HOW CAN THAT
BE?--

(Fraom here. child must answer auyestions hefare checlingd,

ﬂ (CV) sten ¢,

5" N HERE ARE TWO PIECES OF STEEL. COULD THESE PIECES WEIGH THE SAME?
3
% & Yes / if No_
¢ O . WHICH ONE IS KEAVIER - tall / short

HOW COME / WHY DO YQU THINK.....(child’s words]

N LZT5 SEE IF YOL’RE RISHY (Let child handle aiccec and weigh themd,

if right say: YOU WERE RIGHT

it wrona say: THE SCALE SHOWS THIS ONE IS HEAVIER. HOW CAN THAT BE™

cston d.

Ewclaration perind. Mavimum 2 minutes, Record child’s nlav., Time:
Jse oreiiminary precas anlv,

1 HAVE SOME MORE PIECES TO SHOW YOU. BUT BEFORE WE DO THAT, I“LL LEV YOU
LOOK AT THESE PIECES A LITTLE LONGER.YOU CAN HOLD THEM TN YQUR HANL OR FUT
’ THEM ON THE SCALE IF YOU LIKE. (record child’s respons.. )
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HERE I3 A PIECE OF STE:L
COULD WEIGH THE SAME ?

Yes / Mo

.. if no ask WHICH

HERE I» A PIECE OF STE:ZL
COULD WEIGH THE SAME ?

e« if no ask WHICH

AND A PIECE GF ALUMINUM. DO YO THINK THE:IZ

1S HEAVIER ? st22) / aluminum

AND A PIECE OF ALUMININY. DO YOU THINK THEZEZ

15 HEAVIER ? ste21 / aluminum

HERE IS A PIECE OF STEEL
COULD WEIGH THE SAME ?

Yae / No
oe iT no ask WHICH

WHY

AND A PIECE OF ALUMINUM. DD YO THINK THESE

18 HEAVIER ? steal / aluminum

HERE ARE TWO PIECES OF STED.. DO YOU THINK THESE TWd PIECES COULD

WEIGH THE SAME ?

Yes /_No

.. if no ask WHICH 1S HEAVIER ? fail / short:

HERE IS A FTECE OF ALUMINUM AND A PIZCE OF STEZ DO YQU THINK THEZZ
TWQ PISCES OULD WEIGH TAE 3AME ?

Yes / Na

<. iT no ask WHICH IS HEAVIER ? g+2al / aluminum

WHY

HESE IS A PIESE OF STEEL AND A PIECE OF ALUMINUM. DO YO THINK THEZ:
TWO PIECES COULD WEIGH THE SAME 2

Yes / No

.. if no ask WHICH IS HEAVIER 7 gtz21 / aluminun

(op
ce
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C. COMPUTER MODEL PRELIMINARIES

NAME 2 GRALDE: BOY/GIRL  DATE

I“M GOING TO BE SHOWING YOU SOME SHAPES aND I WANT YOU 1O LOON AT THEM VERY

CAREFULLY. HERE IS THE FIRST ONE. -
stzo a,
press  (P=-P+)

ONE OF THEZE SHAFEZ HA3S
BOTH OF THEM ARE FILLED

A RED QUTLINE AND THE OTHER HAZ A GREEN OUTLINZ.
WITH DOTS.

DIES THE RED SHAPE HAVE THE SAME NUMBER 0OF DOTS AS THE GREEN SHAFE 2
Yes / Nao

. . if No say WHICH ONE HAS MORE red 7/ gresn

. if Yes say VYES, THEY DO HAVE THE SAME NUMBER OF BUNCHES (CLUST R3), BUT
THE GREEN ONE HAS MORE DOTS IN A BUNCH/CLUSTER THAN THE RED
ONE, DD THEY HAVE THE SAME NUMEER OF DOTS 2
(heln child count the dats to ces the arceen ane hae mara)

ARE THEY THE SAMT SIZE 7

Yes / No (if no correct child)

THEY ARE THE SAME SIZE, BUT THE GREEN ONE HAS MORE DOTS5. HOW CAN THAT BE 7

THAT’S RIGHT/ THEY HAVE THE SAME N. JER OF BUNCHES, BUT THE GREEN ONE HAS
MORE DOTS IN A BUNCH/CLUSTER THAN THE RED ONE.

NOW I“M GOING TO SHOW vou
OUTLINES OF SHAFEZ (press
BE FILLEL' IN WITH BLINCHEZ

SOME MORE SHAPES. I7LL BEGIN BY SHOWING YOU JUST
p-p+) IF IT'S A RED ONE YOS MUST REMEMEER IT WILL
THAT LOOK LIKE THIS (point to red exampie on card’

IF ITS A GREEN ONE YOU MUST REMEMBER IT WILL BE FILLED IN WITH BUNCHE:
WHICH LOOK LIKE THIS (point to green example on card)

step b.
press (l1-n+)
HERE IS AN OUTLINE OF TWO NEW SHAFES. REMEMEER THE GREEN ONE IS ALWAY3S

FILLED IN LIKE THIS (point to card), AND THE RED ONE IS ALWAYS
FILLED IN LIKE THIS (point to card ).
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DO YQU THINK THAT THESE TWO SHAFES COULD HAVE THE SAME NUMBER OF DOTS?

Yes / Neo
e« if no ask WHICH ONE HAS MORE DOTS green / red

WHY DO YO THINK S0 2

LETS COUNT AND CHECK IF YOU ARE RIGHT, (press L-P+)

(heln them count so thev see thev have the same number of dats)

ARE THE SHAPES THE SAME SIZE No

THEY ARE NOT THE SAME SIZE BUT THEY HAVE THE SAME NUMBER OF DOTS.
HOW CAN THAT Bt ?

TEI (qé) stan ¢, pracs {(mé+n+)

Mme
- 5 % é3 HERE ARE TWO GREZN SHAFEZ, COULD THESE TWD SHAPES HAVE THE SAME NUMBES OF

DOTa?

Yes/ No
.. 1f no ask WHICH ONE HAS MORE BOTS large / small

WHY DO YOU THINK THAT?

LETS CHECK IF YOU ARE RIGHT rass (M++)

step d.

I-M GOING TO BE SHOWING YOIl SOME MORE SHAPES, BEFORE I DO YOU CAN PLAY WITH
TH. w'AFES FIRST. HERE IS A CARD WHICH SHOWS YOU THE DIFFERENT SHAPES AND

THE LETTER TO PRES3 TO PUT IT ONTD THE SCREEN. (leave 5 minutes for play )

record play




Probe Questions

{place card with outlines of shapes P O ML 1 in front of child)
CAN A GREZN SHAFE HAVE THE SAME NUMBER OF DTS AS A REDI SHAPE”  Yes / Nz

.. if NO say: LETS MAKE SURE. CAN YU FIND A RED QOUTLINE THAT HAS
THE SAME NUMBER OF DOTS A% THIS GREEN OUILINEZ
(place outline F+ in front of child, help child select
outline G/R pair P+/L= or 0+/1-3 put on screen, connt dots)d

.. if YES say: CAN YDU SHOW ME WHICH SHAPES HALE THE SAME NUMEER OF DOve™
picks :G3 SR

LETS COUNT THE DOTS AND SEE., [DW) THEY HAVE THE SAME NUMBER OF DOTSY  Yes/No

.. if Yes say: YOU WERE RIGHT. CAN YOI FIND ANDTHER PAIR OF SHAFES THAT
HAVE THE SAME NUMBER OF DOTS? (check on screen, count dots)

picks 3i5¢ tRe

.. if No say: THEY DON‘T HAVE THE SAMZ NUMBER OF D73, CAN YOI FIND
ANGTHER PAIR OF SHAFES THAT HAVE THE SAME NUMESR 0OF novs”
(heln child ag needed to fing pair Fe/L= or O+T1-)
pichks 3138 I (check on screen, count dots)

caN you FIND ANDTHER FAIR OF SHAFES WHICH HAVE THE SaME
NUMEER OF DOTS?
picks sG:___ RiI__ (check on screen, count dats)

HOW CAN YOU KNOW THAT THIS GREEN SHAPE AND THIS RED SHAPE (pt to 1st pair)
AND THIS GREEN SHAPE AND RED SHAPE (pt te 2nd pair) HAVE THE SAME NUMEER OF
DOTS?

{oonint to pt+ and sav)s

—

voU SAID THAT THIS ONE (F+) HAL “HE SAME NUMEER F DOTE AT THIZ ONZ, ©COULD
THERE BE ANOTHER RED SHAFE THAT HAS THE SAME NUMEER 0OF DOTS A% THISZ DREZEN
SHAPE?

Yes / Na

. . if Yes say WHICH ONE(S)

point_to ot and p—~ and sav:

HERE 1S A GREEN SHAPE AND A RED SHAFE. HOW MANY MORE poTS DO YOL! THINK THERE
ARE IN THIS GREEN SHAPE THAN IN THIS RED SHAPE?
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D. COMPUTER MODEL PROBLEM SET
NAME: GRADE: MALE / FEMALE Date:
For presentation 1 through 12 ask the followingd DO YOU THINE THERZ HAVE
THE SAME NUMEES OF DDTS5? If Ne, ask WHICH ONE HAS MORE DGT3 7 -
#1 ress f-m— HERE ARE TWO RED SHAFSZ. COULD THESE TWD SHARZ:
HAVE THE SAME NUMBER 0OF D073 ?
Yes / Na
es if no ask WHICH ONE HAS MORE DOTS ? bia /7 Tittle
(8. press mea+ HERE IS A RED SHAPS AND A GREZN SHAPE. COULD THEZE TWO
SEAFES HAVE THE SAME NUMBIR QF [WIT3S 7
Yes / No
.. if nn ask WHICH ONE HAS MORE DOTS 2 red/ars2aq
42. presc m-l+ HESEZ IS A RED SHAFE ANDI A SRZSN ZBAFE.  COULD THEIE TwWo
SHAPEZ HAVE THKE SAME NUMEESS QF D73 ?
Yes / No
.. if no ask WRICH ONE HAZ MORE DOTS 7 r2d / gresr
WHY 2
#4, recs o-a+ HERE IS A RED SHAFE AND A SREZN SHAFE. COULD THZIE TWa
SHASES HAVE THE SAME NUMBER OF DOTS 2
Y<s / No
.. if no ask WHICH ONE HAS MORE DATS ? r2d / qrzen
S. przsz n-n+ HE=E IS A RED SHAFEZ AND A RESN SHAFE, COULT THEEIE TWd
SHAFZS HAVE THE SAME NUMBER OF DOTS ?
Yes / Nn i
.o if no ask WHICH ONE HAS MORE DOTS ? red / araszn
#6. press h-1+ HERE 15 A RED SHAPE AND A GREZN SHAPE. CALULD THESE TWO
SHAFES HAVE THE SAME NUMEER OF DOTS ?
Yes / Ni
.« if no ask WHICH ONE HAS MORE DOTS ? red / qreoen
#7. press o—f+ HERE IS A RED SHAFPE AND A GRESEN SHAPE. COULD THEZE TWO
SHAPES HAVE THE SAME NUMBER OF DOTS ?
Yes / No 1
s if no ask WHICH ONE HAS MORE DOTS ? red / greoen



1 ézg4+
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#3., press a-n+ HERE ARE A RED SHAFE AND A GREEN S
SHAFES HAVE THE SAME NUMEER OF DOT.

HAGFE, D THEIZ Twd:
3

it no ask WHICH ONE HAZS MOREZ DOTS ? red /o aresn

#9. press f-n+

WHY ?

HERE IS A RED SHARE AND A GREEN SHAFE, COLD THEIE TwO
SHAFES HAVE THE SAME NUMBER OF DOTS 2
if ne ask WHICH ONE HAS/MDRE noTs ? red /o greer

#1490, press h+n+d HERE ARE TWO GREEN SHAFEZ, COLILD THESE HAVE THE SAME

NUMBER OF DOTS 7

Yes / Na
o 1f no ask WHICH ONE HAS MGRE QT3S ? big / smail
211, precs k-n+ HERE IS A RED SHAFE AND A GREEN SHAFS, CIOULD THE:SE HAVE ,

THZ SAME WUMBER OF DOT3?

Yes / Ne

. 1T no ask WHICH ONE HAS MORE DOTS ? red / gqrzen

2. press k-b+  HERZ IS A RED SHAPE AND A GREEN SHAPE, COULD THESE HAVE

THE SAME NIIMEBER OF DOTS ?

. 1T no asic WHICH ONE FaS MOFE DOTE? red / aqrese
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E. PLAYDOUGH AiND PROBE

GRADE: BOY/GIRL DATE:

NAME :

HERE IS A PIECE OF PLAYDOUGH.
a. DOES THIS PIECE OF PLAYDOUGH WEIGH ANYTHING?

I'
Y/N

WHY DO YOU THINK THAT?

(if child says that the piece isn't big enough to weigh
anything, add more to the piece until the child agrees

that it has weight, before going on)

1> WOULD THE PIECE OF PLAYDOUGH STILL WEIGH SOMETHING EVEN
WHEN YOU AREN'T HOLDING IT? Y/N

HOW DO YOU KNOW THAT?

c. (change the shape of the playdough--flatten into a pancake--
as the child watches or have the child help you)
‘COULD YOU HELP ME FLATTEN THIS BALL OF PLAYDOUGH INTO A

- PANCAKE. GOOD. DOES THE PLAYDOUGH WEIGH THE SAME NOW

AS IT DID BEFORE? Y/N

WHY DO YOU THINK SO?

DOES IT HAVE THE SAME AMOUNT OF STUFF IN IT AS IT DID BEFORE? Y/N

HOW DO YOU KNOW THAT?

d. (make the playdough back into a ball, and let the child hold
it) CAN YOU HELP ME AGAIN? THIS TIME I WANT TO BUT THIS
BALL OF PLAYDOUGH INTO LITTLE PIECES (have child help). DO
ALL THE PIECES TOGETHER WEIGH THE SAME AS THE BALL OF PLAYDOUGH

DID BEFORE? Y?N

BHY DO YOU THINK SO0?

e. (pick up a tiny piece c¢f playdough). DOES THIS LITTLE
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PIECE OF PLAYDOUGH WEIGH ANYTHING? Y?N
HOW DO YOU KNOW THAT?

If no: Could it weigh a tiny bit or nothing at ali?

Let”s take a Yook at these 2 pieces of ste=l and aluminum (4'pair,
E & K). Do you remember that even though these twe pieces are the
the same sicZe, the steel one weighs more than the aluminum ope?

What is it about-the steel -piece that makes it heavier/waigh more?

Can vou tell me what you mean?

Lets pratend w2 could Yaok inside the tinies® pisczs of stea’ and
aluminume I want you to male me 2 drawing of what you think stael
might look inside and what vou think aluminum might Took 1nside.

Tell me about you drawing. (cade)
Sieel: (clusters / shading / particles / spacina / movement
ALUM @ (clusters / shading ¢ particles / spacina / movement

DO YOU REMEMBER THE SHAPES WE SAW ON THE COMPUTER (show
card with dots x dots) The red shanes alwags had dots which

looked like this and the green shapes always had dots which
looked 1like this.

DO THESE SHAPES REMIND YOU OF ANYTHING? Y/N
If yes: WHAT DO THEY REMIND YOU OF?

DO YOU SEE ANY CONNECTIONS (SIMILARITIES) BETWEEN THESE :
SHAPES AND THE STEEL AND ALUMINUM PIECES? Y/N
If yes: WHAT KINDS OF CONNECTIONS?

‘DO YOU THINK THAT THE STEEL AND ALUMINUM PIECES COULD LOOK
LIKE THIS INSIDE? Y/N

If yes: WHICH WOULD BE THE STEEL?] dot cluster/3 dot cluster
WHICH WOULL BE ThHe AL? 1 dot/ 3 dot

WHY DO YOU THINK THAT?

D N34
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DO YOU THINK THIS HAS ANYTHING TO DO WITH THE FACT
THAT STEEL IS A HEAVIER KIND OF STUFF THAN

ALUMINUM?

WHY DO YOU THINK THAT?

SOME PEOPLE SAY THAT STEEL AND ALUMINUM PIECES
ARE EACH MADE UP OF SMALL BITS OF STUFF, LIKE
THE DOTS WE SAW ON THE COMPUTER. THINGS MADE
.OF HEAVIER KINDS OF STUFF HAVE MORE BITS IN .4
BUNCH, BUT THEY HAVE THE SAME SPACES BETWEEN
BUNCHES. DOES THAT SEEM LIKE ? ~OD EXPLANATION
OF WHY STEEL IS A HEAVIER KIND OF STUFF THAN
ALUMINUM TO YOU? .




