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ABSTRACT

The estimation processes used by students in grades five

through eight as they responded to computational estimation test

items were examined. Interview-based process descriptons were

cross-validated using large group test data. Students had a

strong mental set to round numbers to the nearest leading power of

ten even when the items required other estimation processes.

Performance differed by item format, types of numbers and operations

in the items, and grade level of students.



Computational estimation has long been recognized as a basic

mathematical skill, and recently it is receiving a great deal of

attention in sets of curriculum recommendations (Reys, Rybolt,

Bestgen, & Wyatt, 1981). While estimation can certainly be viewed as

a skill, recent writers and researchers in the area emphasize its

role in mathematical understanding. There appears to be an

inextricable link between estimation in a number domain and

understanding mathematical concepts in that domain such as order and

number size, number properties, and meanings of operations. This

general point is made repeatedly, although from different

perspectives, by Trafton (1986), Reys (1986), and Carlow (1986). A

more specific version of the same point is made by Leutzinger,

Rathmell, & Urbatsch (1986), who emphasize critical links between

estimation and conceptual understanding in the early stages of

learning. Other writers make this connection in the domains of

common fractions (Behr, Post, & Wachsmuth, 1986), decimal products

(Vance, 1986), and percents (Allinger & Payne, 1986).

If this connection between estimation and conceptual

understanding is as strong as these writers suggest, then it would

seem to follow that an important by-product of learning to estimate

is better conceptual understanding. Conversely, there are concepts

that must be understood in order to acquire the flexible set of

processes and decision-making rules needed to be a proficient

estimator. Estimation should surely be a powerful and important

corequisite for conceptual understanding.
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Lending empirical support to the link between estimation and

concept learning, Reys et al. (1981) found that good estimators in

grades 7 through 12 and selected adults used a variety of estimation

processes. In fact, the authors also point out that, among other

characteristics, the good estimators had a good understanding of

place value and number properties. Reys and his co-investigators

identified the following three key processes used by the good

estimators:

1. Reformulation (including various kinds of rounding and front-

ending) or altering numerical data to produce a more mentally

manageable form, but leaving tha structure of the problem intact;

2. Translation or changing the mathematical structure of the

problem to a more mentally manageable form, such as changing a sum of

several nearly equal numbers to a product, and;

3. Compensation or adjusting an estimate to reflect numerical

variation that came about as a result of translation or

reformulation.

Unfortunately, what little computational estimation there is in

textbooks and classrooms at present often fails to make this

connection with conceptual understanding. Estimation is commonly

viewed as equivalent to the following steps:

1. Round the numbers to be computed using the standard rules for

rounding;

2. Mentally compute with the rounded numbers; and

1. Call the result the estimate.
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This approach to estimation is one useful process that can give a

reasonable estimate, yet it can surely be and sometimes is taught and

learned as essentially a rote skill with no connection to

understanding of any sort (Schoen, Friesen, Jarrett, & Urbatsch,

1981). However, Schoen et al. found that a meaningful approach to

teaching estimation was better than rote practice in that it resulted

in higher levels of transfer to verbal problem settings.

Estimation must clearly be taught from a broader perspective than

just following the three rules above if the potentially powerful link

between estimation and meaningful learning is to be made. Many

authors, including those cited in the previous paragraphs, have put

forth suggestions for teaching estimation in meaningful ways.

However, as Reys (1986) points out, if estimation is to become a part

of the curriculum then it is important that ways be designed to test

the ability of students to estimate, and much needs to be done in

that regard. Benton (1986) also cites testing difficulties as a

major factor in limiting the number of research studies dealing with

estimation. Few would argue with the need for concurrent development

of the teaching and testing of estimation, but tests can only be

viewed as facilitating meaningful teaching of estimation if the skill

and understanding that are tested reflect accurately the processes

and concepts that are the goals of teaching. For example, if a

student can score very well on an estimation test by using the three

rote skill steps descriLed in the previous paragraph, the test may

not facilitate the meaningful teacMng of estimation. On the

contrary, teachers and students may be tempted to focus on practicing

this simple skill in order to do well on the test at the expense of
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the more important goals of estimation instruction. In that case,

the test may affect the quality of instruction negatively, not

positively.

Several different testing approaches and item formats have been

used to test computational estimation (Reys, 1986). These approaches

and item formats appear to test different processes and draw on the

understanding of different concepts. It seems crucial that these

testing approaches be studied to 'determine whether they test the

broader goals of estimation instruction, thereby encouraging

meaningful estimation instruction. One study that examined testing

approaches was conducted by Rubinstein (1985). In a statistical

analysis of eighth graders' performance on estimation items in

different formats, she found a number of differences in difficulty.

This suggests that there may be differences in requisite processes

and understandings, too, but no attempt was made by Rubinstein to

explain the reasons for these differences.

The purpose of the present study was to examine the processes

that were used by middle school students as they responded to

different types of estimation test items. The set of estimation

processes examined was an adaptation from those identified by Reys et

al, (1982) and described in general terms above. It is assumed in

this study that mathematical concepts are inextricably linked to

estimation skills. The same should, or at least could, be true in

testing these skills. Thus, no attempt was made to write "pure

estimation" items, but rather in many items conceptual understanding

and estimation skill were deliberately combined.
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METHOD

Subjects

In this study, there were three data collection phases, the open-

ended, the interview, and the multiple-choice. The students in the

open-ended phase were 65 sixth-grade students from two elementary

schools and 57 eighth-grade mathematics students from one junior high

school in a midwestern city. All of the participants were volunteers

who had received no systematic instruction beyond their textbook's

program.

For the interview phase, ten sixth- and ten eighth-grade

students who had participated in the open-ended phase were chosen by

their teachers. At each grade level, each student was identified as

likely to be verbal in a one-to-one illterview, two or three were

Judged by their teacher to be above average in mathematical ability,

two or three below average, and the remainder about average.

The multiple-choice phase involved a total of 1376 students,

342, 336, 323, and 375 in grades 5, 6, 7, and 8, respectively. These

were a randomly chosen 56% of all the students at those grade levels

from 13 representative Iowa school districts, none of which had

students who participated in the interviews. Thus, at each grade

level about 70 students (62 to 79) completed each of the five forms

of the test.

Instruments

Open-ended Test

A 13-item test was written with one item from each of the 12

number (whole number, fraction, decimal) by operation (addition,

subtraction, multiplication, division) cells, except for division of
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tractions and divisior of decimals. The three remaining items mixed

a whole number with either a fraction or a decimal.

Multiple-Choice Tests

Five equivalent forms of a 30-item multiple-choice test were

constructed by first writing 30 item stems of which 25 were purely

computational and five were word problems. The computational stems

were written to fit the number and operation specifications in

Table 1. The numbers and operations in the five word problems were

two additions (one with decimals in the context of money, and one

with whole numbers), one subtraction with decimals (money), one

multiplication with whole numbers and one decimal (money) by whole

number division.

Insert Table 1 about here

For each stem, five items were written, one in each of five

formats designed to test different estimation processes or the same

processes in different ways. The five formats for the 23 stems that

contained no fractions were standard multiple choice (MC), operation

in foils (OF), range in foils (RF), benchmark (BM), and order of

magnitude (OM). Since order of magnitude choices are inappropriate

for fractions, the OM format was replaced by operation in stem (OS),

for the seven stems that contained fractions. The five item formats

for two of the stems are given in Table 2.

Insert Table 2 about here

The estimation items were designed to elicit different processes

depending not only on their stems but also on their choices or
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foils. For example, by including items for which correct choice:.

were the result of different estimation processes the student was

forced to use several processes. By making more than one foil in MC

and OF items a result of a valid estimation process or by making one

endpoint of the range in a foil in an RF item the result of a

rounding and mental computation process, the student was forced to

compensate.

The a priori specifications of processes that were tested by at

least some items in each format are given in Table 3. These

processes are (a) rounding by the usual rules to the closest power of

ten or, in the case of mixed numerals, to the closest whole number

(RC); (b) front-ending or rounding down to the power of ten of the

leading digit or to the whole number part of a mixed numeral (FE);

(c) other rounding including rounding all numbers up or some numbers

up and others down (OR); (d) using compatible numbers or numbers

relatively close to the given numbers for purposes of easily

operating with the numbers in the item (CN); and (e) compensating or

adjusting an estimate to reflect variations that might result from

rounding or the use of some other adjustment process (CO).

Furthermore, the rounding might be done to the leading digit, or a

closer round might be used. This latter process was called refined

rounding (RR). Finally, if a single estimate was required the

student would need to use mental computation with the adjusted

numbers (MC).



Insert Table 3 about here

The sample items given in Table 2 illustrate the steps that were

taken toward making the five items for a given stem equivalent except

for the format difference. In the following description of these

steps, steps 1 and 2 apply to all item formats while step 3 is

appropriate for all but BM and OM items.

1. The number of choices was always the same, namely four.

2. The correct answer, once placed randomly in an item, was kept

in the same position for all five formats of the item.

3. The foils for MC items were written by using incorrect

answers that appeared on the open-ended test and by analyzing the

stem computation for likely process and execution errors. Once

the foils for MC items were written, the foils in corresponding

positions in other item formats were matched to them. Thus, the

computation in a foil in an OF item yielded the number in the

corresponding MC foil, the range in a foil in a RF item included the

number in the corresponding MC foil, and the number in a foil in an

OS item yielded results in the range given as the corresponding RF

foil.

To compile the five equivalent forms of the multiple-choice

test, the 30 item stems were placed in a reasonable order for a test,

that is, items from stems that were likely to be easier were placed

at the beginning with harder items near the end unless some logical

content grouping suggested otherwise. Inus, the five word problem

stems were placed at the end, the whole number computation stems were

placed at the beginning and the decimal, fraction and mixed
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computation stems were placed in between. The forms of the test were

then constructed using a Latin square procedure so that in each block

of five consecutive item stems, each form contained one of each of

the five item types. This is illustrated for stems 1 - 5 in Table

4. The pattern for the first five stems was then repeated five more

timed to complete the five 30-item test forms. For the seven item

stems that contained fractions, OM items were replaced by OS items.

Thus, each test form included the same 30 item stems in the same

order and was comprised of five subtests each containing six items of

the same format, except that the fifth format for whole number and

decimal items was OM while for items containing fractions it was OS.

Insert Table 4 about here

Trocedures

Open -ended Phase

The open-ended test was administered in early December by the

classroom teachers using an overhead projector with a mask which

allowed one item to be shown at a time. The teacher read the item

(e.g., "2848 + 4123 is about?"), allowed ten seconds for the students

to write their estimates on their answer sheets, and then displayed

and read the next item. Thus, each item was read to the student and

was visible to them for ten seconds. To further discourage exact

computation, the studentS' answer sheets were darkened everywhere

except for the spaces provided for the estimates.

The open-ended tests were scored using a scale that assigned 0,

1, or 2 points per item depending on whether the student's estimate

fell within intervals determined by the highest and lowest numbers
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that would result from applying one of the following processes:

front-end, round to closest, round up, or compatible number

processes. Decisions to determine the acceptable intervals were made

for each item, instead of trying to establish a general rule for all

items. Students' responses to each open-ended item were also

tabulated and used to infer the estimation processes employed by the

students, an approach found by Schoen et al. (1981) to be in close

agreement with process results from interviews. Independent

judgments concerning the estimation process suggested by each answr-

were made by three doctoral students in mathematics education.

Disagreements were discussed by _he three along with the first tw.:

authors until concensus was reached.

Interview Phase

Three months after the open-ended test was administered, the ten

sixth- and ten eighth-grade students were interviewed individually.

Each student was asked to "think aloud" while responding to each of

the ten interview items. These items were chosen to provide a good

mix of the numbers, operations, and item formats on the entire test.

In particular, two items were in each of the formats, MC, OF, RF, BM,

and OM; four items involved multiplication while two involved aach of

the other three operations; and six items contained whole numbers

while two each contained fractions and decimals. Items were placed

in a different random order for each student interviewed.

The interviews were audio-taped and transcribed. A process

sequence was coded for each student on each item using the following

list: round to closest, front-end, round up, other rounding,

compatible numbers, exact computation, refine or compensate, melitally
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compute with estimates, look at foils, compare, and choose from

foils. Four coders independently coded the items for each student.

Pairwise interrater agreements ranged from .86 to .94 based on a

sample of 25 items, five from each student.

Multiple-Choice Phase

The multiple-choice test forms were administered at about the

same, time as the interviews. The five estimation test forms were

stacked in order followed by four other experimental test units not

related to this study. This stack of nine test forms was then

repeated in order often enough to attain the number needed for the

school districts to be tested. Each classroom set of tests was then

formed by counting fr.aa the top of the stack. The teachers who

administered the tests. were directed to hand them out in the order in

which they were stacked. In this way, the test forms were randomly

distributed to students within classes, and about 11% of all the

students completed each of the test forms.

While this 20-minute test was not timed by item, pilot work

suggested that nearly all students did try to estimate and did not

use rapid exact computation. Results in the interview phase of the

study also support this contention. In part, this was accomplished

by making the test too long to complete for virtually any fifth

through eighth grader who made much use of exact computation. The

directions also made it clear to the students that they would not

have time to compute exactly.

The items were scored as right or wrong and individual item

analyses were run. The item analysis includ:d, for each item at each

grade level, the difficulty index (percent of students answering

correctly), cliscrimination index (biserial correlation between scores
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on the item and scores on the 30-item test form), and the percent who

chose each foil. The item analyses were used, where appropriate, to

provide support for the interview-based process and error analyses.

A grade x test form x item format ANOVA using item difficulty and

discrimination indices as dependent variables was also run to help

describe item format and grade level effects.

RESULTS

Opetended Phase

For each item, each answer, correct or incorrect, was analyzed

to determine the estimation process the student most likely used to

attain it, with a category for answers for which no process could be

determined. The processes that were identified and recorded are RC,

FE, OR, RR, CO, and exact computation (EC). In general, it was

difficult to distinguish answers that arose from RR and those that

were the result of CO so these categories were combined.

Furthermore, in the twc items in which RC and FE gave the same

result, the answer was classified as RC. It is assumed that some

mental computation was done in every case so this process was not

recorded. A percent correct was also computed for each item based on

a possible two points per item. Since students' processes and errors

are dependent to a large extent on the types of numbers in the

exercises, the results were analyzed separately for whole-number,

decimal, and fraction items.

Results for each item are given in Table 5. On the whole-number

items, students used the RC process 63% of the time. Students rarely

used exact computation, and there was also little evidence of

compensation or refinement. The division item was by far the most

13



difficult, with 36 of 122 students making a place value error,

usually giving a three digit estimate like 500.

Insert Table 5 about here

Students used the RC process on decimal items 50% of the time.

See Table 6. Not surprisingly, exact computation was used by 35

students on the item, 5 + 6.43. On the item, 35 x 4.32, 50 students

rounded 35 up to 40 and 4.32 down to 4 (classified as OR), while

about the same number simply did the latter rounding (RC). More

students used compensation or refinement than on whole number items,

but this still only occurred about 8% of the time.

Insert Table 6 about here

Processes used to make estimates in fraction items were quite

different from those used for whole numbers and decimals as Table 7

shows. Front-ending was used with about the same frequency as RC. A

significant number of students used exact computation on the two

items, 6 - 3 7/10 and 2 1/2 + 7 3/5, although on the latter item many

students simply added numerators and denominators in the fractions

and answered 9 4/7. On this same item, 20 students multiplied

instead of added, a surprising result that was probably due to a

mental set established by the preceding multiplication item, 3 7/8 x

6 1/2.
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Insert Table 7 about here

Process Analysis for Multiple-choice and Interview Phases

The processes and errors on the items in the interview phase

were analyzed for each item format. Each interview item was also

included in the tests in the multiple-choice phase, and the item

analyses for these items were used to cross-validate the interview-

based process analysis.

Standard multiple-choice. The two interview items in the MC

format along with their item analyses from the multiple-choice phase

are given in Table 8. For item MC1, a few students who correctly

chose 1300, first rounded 4329 to 4300 and 2847 to 3000 and mentally

computed, thus using no compensation. More often, however, students

rounded the given numbers to 4000 and 3000 or 2800, respectively.

After checking the foils, they compensated for the rounding or simply

chose 1300 because it was closest to their estimate. By far the most

common error was 1000, because most interviewed students simply

rounded to 4000 - 3000 and failed to check whether that was the

closest of the given estimates. The item analysis indicates that few

students answered this item correctly, and, especially in grades five

and six, it did not discriminate well. Consistent with the interview

results, about as many students chose the incorrect foil 1000 as

chose the correct answer.

Insert Table 8 about here

For item MC2, most interviewed students added the whole numbers

7, 3, and 1 to get 11, although two first tried but failed at exact
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computation. Upon checking the foils, eight of the 20 simply chose

11. The others compensated, noting that the fractions they had

dropped in the rounding process totaled about one-half. One student

decided on 11 1/2 or 12 1/2 since both contained fractions, but then

over-compensated and chose 12 1/2. The item analysis indicates that

this, too, was a difficult item with a large grade level effect.

About 36% of all students who took the multiple-choice test chose

12 1/2, while only about 10% chose 11, suggesting that an

overcompensation error was more common than no compensation at all.

Operation in Foils. The two interview items that were in the OF

format along with their item analyses from the multiple-choice phase

are given in Table 9. Item OF1 was answered correctly by all

interview students and by about 87% of all students in the multiple-

choice phase. Students simply rounded 588 and 39 to 600 and 40,

respectively, and chose 600 x 40.

Insert Table 9 about here

The analogous process with similarly successful results was used

for item OF2 No compensation or mental computation was required or

used for either item. Note also that these items discriminated ,Tery

well in the multiple-choice phase.

The multiple-choide data, however, makes it clear that not all

OF items were as straightforward as these two. For example, the

first OF sample item given in Table 2 had an average difficulty of

.52 across the four grades. On this item, many students chose 2000 +

8000 + 3000, which at first glance may appear to be the result of
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applying the RC process, even though 2000 + 1000 + 3000 was a much

closer estimate.

Range in Foils. The two interview items in the RF format along

with their item analyses from the multiple-choice phase are given in

Table 10. For item RF1, students found it difficult to decide

between 18 and 19; the correct answer, and 17 and 18. One interviewee

rounded the given sum to 4 1/2 + 14 which fell into the correct

range, but all other correct responses involved ccmpensation up from

4 + 14 or down from 5 + 14. The most common error was to use 4 + 13

and either not compensate or under-compensate and choose 17 and 18.

One student rounded to 5 + 14 then, confusing the direction,

compensated up because both numbers had been rounded up. The item

analysis from the multiple-choice phase chows that this was a very

difficult item, but it discriminated well. Over twice as many

students chose the incorrect range, 17 and 18, than chose the correct

answer, suggesting that either no compensation or under-compensation

was the norm on this item.

Insert Table 10 about here

For item RF2, only two of the 20 interviewees, both sixth

graders, chose the correct answer, 900 and 1000. They both rounded

the given numbers to 400 x 2.5, mentally computed to get 1000, and

then compensated downward. The most common process was to round to

400 x 2 to get 800, then either under-compensate and choose 800 and

900, or compensate in the wrong direction and choose 600 and 800.

The item analysis from the multiple-choice phase shows that only

about 10% of students in any grade level chose the correct answer.
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Not only was there no grade level effect, the item discrimination was

-.46 in grade eight, indicating that the older and brighter students

consistently chose 800 and 900.

Benchmark. The two interview items that were in the BM format

along with their item analyses from the multiple-choice phase are

given in Table 11. For item BM1, all interviewees rounded the given

numbers to 800 - 600, got 200, and then tried to compensate. Correct

compensation processes included (a) refining to 800 - 220 and noting

that this is less than 800 - 200, (b) noting that 804 - 217 < 804 -

204 or 600, and (c) noting that 4 - 17 is negative so 804 - 217 must

be less than 600. Three types of errors were made: (a) deciding

that 800 - 200 is more than 600 since 804 and 217 were rounded down,

(b) choosing c after noting correctly that 804 - 217 < 850 - 200, and

(c) after incorrectly deciding on "more", choosing foil a rather than

b because "800 - 300 looks more like an estimate than 800 - 250." In

the multiple-choice phase, about 50% of the students chose the

correct answer, and the item discriminated well. The most common

error was foil c, chosen by about 23% of the students.

Insert Table 11 about here

The most common process for item BM2 was to round 521 x 29 to

500 x 30, then mentally compute to get 15,000 which is less than

18,000, and finally choose foil c because 600 x 30 .,- 18,000 or

because "500 x 30 is closer to 603 x 30 than to 500 x 40" (in f,..1

d). Errors included choosing foil b because 500 x 30 appears in it

and choosing foil d because 500 x 30 < 500 x 40 (ignoring the fact

that 500 x 40 is not 18,000) or because 500 x 40 is closer to 500 x

18
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30 than is 600 x 30 since "it is only off in the smaller number."

Interestingly enough, there was no grade level effect for this item

in the multiple-choice phase with a little over 40% of the students

at each grade level choosing the correct answer. The item

discriminated moderately well except in the fifth grade, and the most

common error was choosing foil b, the foil that contained 500 x 30.

Order of Maznitude. The two interview items that were in the OM

format along with their item analyses from the multiple-choice phase

are given in Table 12. Three different processes were used in item

OK. First, several students rounded 2479 = 42 to 2000 = 40,

mentally computed to get 50, then upon seeing the foils chose 60 as

the closest one. One student rounded the given numbers to compatible

numbers, 2500 = 50, and then chose 60 as above. Second, one student

started as if to do exact long division and saw that the quotient

would be "fifty some" and chose the closest foil, 60. Third, several

students looked at the foils first and decided that 60 would be a

good estimate since 2475 42 was close to 2400 = 40. All students

used a variation of one of the above processes, but eight of the 20

made a place value error and chose 600. In the multiple-choice phase

this item was essentially a two-choice item, with almost as many

students choosing 600 as 60. The item was considerably easier for

eighth graders than for fifth graders, but it discriminated better at

grade five.

Insert Table 12 about here

!For item 0M2, most students simply rounded the given numbers to

8x1, looked at the foils, and chose TO. Two students made errors
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because they failed to understand that 1.27 was about 1 and

eventually guessed at an answer. In the item analysis from the

multiple-choice phase, fifth and sixth graders found this item to be

much more difficult than seventh and eighth graders did, although the

item discriminated very well at all grade levels.

Grade and Item Format Effects from Multiple-choice Phase

A grade x test form x item format ANOVA was run using item

difficulty as the dependent variable. However, the significant

higher order interactions that appeared made it clear that a

confounding variable was causing noise in the data. Upon

examination, it was found that items such as RF2 in Table 10 for

which the rounding strategy led to an incorrect answer had much lower

difficulty and discrimination indices than items with the same stem

but a format for which rounding did not have such an effect. Two

grade x test form x rule ANOVAs were run with item difficulty and

discrimination indices as dependent variables. The rule variable had

two levels, R1 and R2, depending upon whether or not the RC process

led to an incorrect answer in at least one item format for that

stem. Figure 1 shows the highly significant ordinal rule x grade

interaction (F[3,12] - 34.23, D. < .0001) when difficulty index is the

dependent variable. Compared to other items, there was little

improvement by grade level on items in which the usual rounding

process led to a wrong answer. Table 13 gives the mean difficulties

and discriminations by grade and rule. For difficulties, both the

rule (F[1,4] - 74.56, p < .0001) and grade (F[3,12] - 158.36, p <

.0001) main effects were significant. For discrfiminations, the grade

main effect (F[3,12] - 6.33, n < .0004) was somewhat smaller, but

20

22



both main effects were still significant (rule effect: F[1,4]

130.43, p < .0001). Follow-up Tukey's Studentized Range Tests of

pairwise differences between grade levels showed the expected result

for mean difficulty indices, 8 > 7 > 6 > 5, each at the .05 level,

and for discriminations, 8 is greater than any of the other grade

levels but grade 5, 6, and 7 means did not differ significantly.

Most students at all grade levels and all levels of overall

performance on the test were using the RC process and were not

compensating or refining when that was required.

Insert Table 13 about here

Insert Figure 1 about here

In order to eliminate the confounding rule variable and get a

fair measure of the effects of the various item formats and their

interaction with grade level on difficulty indices, the nine R1 item

stems were eliminated. A grade x test form x item format ANOVA was

then run with item difficulties of the remaining 21 item stems as the

dependent variable. Only the four item formats that were common to

all item stems were included, that is, MC, OF, RF, and BM. Thus, 336

individual item difficulty indices, 21 in each format at each grade

level, were included in the ANOVA. Mean difficulties by grade and

item format are given in Table 14. There were no significant

interactions but both the grade (F[3,12] 52.96, p < .0001) and

format ((F[3,12] 26.88, p < .0001) main effects were significant.

Tukey's Studentized Range Test of pairwise differences at the .05

level showed the expected grade differences in mean difficulty
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indices, 8 > 7 > 6 > 5. The significant pairwise format differences

were OF easier than each of the other three and BM and MC both easier

than RF.

Insert Table 14 about here

The OS format was used for the six fraction items, and the OM

format for the other 24 items. The mean difficulties for the items

in these formats for which rounding did not lead to an incorrect

answer are given in Table 15. While OS items were quite difficult,

it is important to note that items containing fractions were more

difficult in general than those not containing fractions. In fact,

the mean difficulty on these four fraction items across all grades

and the four formats other than OS was .37. Similarly, the 17 items

in the OM format only contained whole numbers and decimals. The

overall mean difficulty for theme 17 items in the four formats other

than OM was .53, considerably less than the OM mean of .69.

Insert Table 15 about here

DISCUSSION

Consistent results from all three phases of this study provide a

clear message that middle school students, regardless of grade and

ablity levels, think of estimation with whole numbers and decimals as

equivalent to the rote "round to the closest" approach. They round

the numbers to the leading powers of ten and mentally compute, but

they rarely compensate, refine, use compatible numbers, or illustrate

any of the other estimation processes associated with conceptual
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understanding, even when the test item specifically requires them to

do so.

If testing is to have a facilitative role in promoting

meaningful estimation instruction, then it seems that one important

criterion for judging an estimation test must be the extent to which

it measures the process and concept goals of such instruction. Of

the test item formats in this study, the open-ended would probably be

judged to have the most face validity in that it appears to test only

estimation. Yet the data show that students succeeded reasonably

well on the open-ended test by using the "round to the closest"

approach, making use of other estimation processes only rarely and

then usually on fraction items. Therefore, such a test may motivate

students to learn or teachers to teach only that process and not a

broader understanding of estimation processes.

On the other hand, the multiple-choice items in all formats

except the benchmark appeared to test in combination with related

number concepts, various aspects of estimation, not just the "round

to closest" process. The fact that most students failed to apply

other fruitful processes when responding to these items points out

(a) the strength of their belief that estimation is simply rounding

to the closest leading power of ten and, hence, (b) the great extent

to which estimation instruction presently falls short of its

potential. Further efforts in the teaching and testing of

computational estimation must focus on overcoming this narrow view of

estimation held so strongly by most students.
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Table 1

Number of Computational Items by Number Type and Operation on Multiple

Choice Tests

Whole Whole &

Operation Number Fraction Decimal Decimal

Addition 2 2 2 1

Subtraction 2 2 2 2

Multiplication 2 3 2 1

Division 2 0 0 0

29



Table 2

Five Item Formats for Two Sample Stems

Item Item for Item for

3 1
-5Format 1926 + 851 + 3273 6 T. x 5

MC The closest estimate of The closest estimate of

3 1

1926 + 851 + 3273 is 6 T. x 5 -5 is

1) 5000 3) 7000 *1) 35 3) 30

*2) 6000 4) 13,000 2) 42 4) 24

OF The closest estimate

1926 + 851 + 3273

of

is

The

3
6 2-ix5

closest estimate of

1
i-5 is

1) 1000 + 1000 + 3000 *1) 7 x 5 3) 6 x 5

*2) 2000 + 1000 + 3000 2) 7 x 6 4) 6 x 4

3) 2000 + 1000 + 4000

4) 2000 + 8000 + 3000

RF 1926 + 851 + 3273 is between

1) 4500 and 5500

*2) 5500 and 6500

3) 6500 and 7500

4) 12,500 and 13,500
30

3 x5 1
-3- i6 Tis between

*1) 32 and 37 3) 27 and 32

2) 37 and 42 4) 22 and 27



Table 2 Continued

OM, OS

Is 1926 + 851 + 3273 more or

less than 7000?

I) Less, because 1926 + 851 + 3273

is less than 2000 + 8000 + 3000

*2) Less, because 1926 + 851 + 3273

is less than 2000 + 1000 + 4000

3) More, because 1926 + 851 + 3273

is more than 1000 + 8000 + 3000

4) More, because 1926 + 851 + 3273

is more than 1800 + 800 + 3000

The closest estimate of

1926 + 851 + 3273,is

1) 600 3Y 60,000

*2) 6000 4) 600,000

3 1

3
Is 6 T x 5 -1". more or less than

7 x 6?

3 1
*1) Less, because 6 4 x 5 3. is less

than 7 x 6

3 1
-5

.

2) Less, because 6 7; x 5 is less

than 7 x 7

3 1
33) More, because 6 4 x 5 is more

than 6 x 4

3 1
i4) More, because 6 T x 5 is more

than 6 x 5

3
6 7; x is between 31 and 37.

*1) 5

2) 6

1

3

1

3

3) 7

4) 4

1

3

1

3
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Table 3

Estimation Processes Tested by Items in Different Formats

Format

Process

RC FE OR RR CN CO MC

MC X X X X X X X

OF X X X X X X

RF X X X X X X X

BM X X X X X X X

OM X X

OS X X X X X X X
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Table 4

Item Formats for the First Five Items in Each Multiple-choice Test Form

Test Form

Stem A B C D E

1 MC OF RF BM OM

2 OF RF BM OM MC

3 RF BM OM MC OF

4 BM OM MC OF RF

5 OM MC OF RF BM
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Table 3

Number of Occurrences of Processes and Errors on Whole Number Open-ended

Items

Processes Errors

Item % Corr. RC FE OR EC CO,RR PV WO Other

2848 + 4163 75 76 20 4 5 5 0 5 18

6273 - 4926 67 75 25 5 6 7 6 8 20

32 x 68 59 70 19 2 10 1 12 2 27

4153 i- 79 32 87 0 5 0 9 36 1 40
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Table 6

Number of Occurrences of Processes ane Errors on Decimal Open-ended Items

Processes Errors

Item % Corr. RC FE OR EC CO,RR PV WO Other

5 + 6.43 75 58 -- 17 35 5 0 7 17

1.8 + 4.37 68 63 16 17 8 13 1 7 23

19.13 - 7.84 62 61 22 10 4 5 1 7 34

35 x 4.32 62 49 -- 50 0 16 8 3 26

8.8 x 3.3 68 72 19 2 10 8 5 1 18



Table 7

Number of Occurrences of Processes and Errors on Fraction Open-ended Items

Processes Errors

Item % Corr. RC FE OR EC CO,RR PV WO Other

1 332 -2- 7 61 26 31 6 16 1 0 20 10

76- 3
''' 10

68 65 17 0 26 1 0 1 27

1 4
13 -3- - 8 3 74 50 36 6 8 1 0 3 22

7 1

2
3

8
x 6 56 25 38 37 8 30 1 3 16
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Table 8

Items and Partial Item Analyses (% choosing each foil) for MC Interview

Items

(MC1) The closest estimate (MC2) The closest estimate

of 4329 - 2847 is 1 1
iof 7 -ri--3 + 3 s + 1 3 is

a)

b)

2000

2300

c) 1000

d) 1300

a)

b)

11

1
11 -1-

1

c) 12 -i

d) 14

Grade a b c d* Disc a b* c d Disc

5 19 43 21 16 .12 10 26 35 19 .50

6 6 24 35 33 -.01 9 34 37 14 .37

7 16 9 36 38 .30 10 38 35 10 .29

8 16 17 33 33 .39 11 49 36 4 .51

Total 14 23 31 30 10 37 36 12
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Table 9

Items and Partial Item Analyses (% choosing each foil) for OF Interview Items

(0F1) Tha closest

of 588 x 39 is

estimate (0F2) The closest

of 5927 + 32

estimate

is

a) 500 x 4Q c) 600 x 30 a) 6000 4 25 c) 5000 4. 40

b) 500 x 30 d) 600 x 40 b) 6000 + 30 d) 5000 .:- 50

Grade a b c d* Disc a b* c d Disc

5 6 6 6 83 .48 3 76 13 7 .64

6 4 1 6 88 .88 6 83 0 6 .39

7 5 2 8 85 .51 1 93 5 16 .75

8 3 1 4 91 .67 0 92 7 0 .75

Total 5 3 6 87 3 86 6 7

38
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Table 10

Items and Partial Item Analyses (% choosing each foil) for RF Interview Items

1 4
(1F1) 4 + 13

5
i.S (RF2) 397.8 x 2.49 is

between between .

a) 18 and 19 c) 16 and 17 a) 900 and 1000 c) 800 and 900

b) 17 and 18 d)19 and 20 b) 1000 and 1200 d) 600 and 800

Grade a* b c d Disc a* b c d Disc

5 9 41 14 8 .38 11 33 17 36 .31

6 25 53 13 4 .68 7 28 33 31 -.13

7 29 47 6 15 .50 10 15 37 39 .13

8 35 51 9 4 .55 10 15 49 25 -.46

Total 25 48 11 8 10 23 34 33
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Table 11

Item and Partial Item Analyses (% choosing each foil) for BM Interview Items

(BM1) Is 804 - 217 more or

less than 600?

a) More, because 804 - 217

is more than 800 - 300

b) More, because 804 - 217

is more than 800 - 250

c) Less, because 804 - 217

is less than 850 - 200

d) Less, because 804 - 217

is less than 800 - 200

(BM2) Is 521 x 29 more or

less than 18,000?

a) More, because 521 x 29

is more than 500 x 20

b) More, because 521 x 29

is more than 500 x 30

c) Less, because 521 x 29

is less than 600 x 30

d) Less, because 521 x 29

is less than 500 x 40

Grade a b c d* Disc a b c* d Disc

5

6

7

8

Total

9 19 23 45 .44 15 28 44 13 .10

14 13 21 50 .29 15 26 44 15 .30

11 13 27 47 .44 9 41 42 8 .31

11 8 20 61 .44 4 32 42 21 .26

11 13 23 51 11 32 43 14
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Table 12

Items and Partial Item Analyses (% choosing each foil) for OM Interview Items

(OM) The closest

of 2475 i 42 is

a) 6000

b) 600

estimate

.

(0M2) The closest

of 7.85 x 1.27

a) .10

b) 1.0

estimate

is .

c) 60

d) 6

c)

d)

10

100

Grade a b c* d Disc a b c* d Disc

5 9 48 31 8 .55 10 17 30 38 .60

6 15 32 46 4 .32 12 18 45 23 .61

7 11 21 65 3 .50 9 11 70 9 .67

8 3 41 54 3 .20 8 13 69 7 .59

Total. 10 36 49 5 10 15 54 19
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Table 13

Mean Difficulties (and Discriminations) for Items by Rounding Rule and

Grade Level

Rule N

Grade Level

5 6 7 8 Total

R1 9 .26(.26) .28(.23) .32(.26) .34(.34) .30(.28)

R2 21 .40(.52) .54(.52) .61(.57) .68(.58) .56(.55)

Total 30 .35(.43) .45(.42) .50(.46) .56(.50) .47(.45)

42



4 69

Table 14

Mean Difficulties by Grade and Item Format for 21 R2 Items

Grade Level

Format 5 6 7 8 Total

OF .48 .60 .68 .74 .62

MC .31 .46 .54 .63 .49

BM .38 .49 .51 .57 .49

RF .29 .41 .50 .56 .44

Total .36 .49 .56 .63 .51
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Table 15

Mean Difficulties of R2 Computational Items in the OM and OS Format

by Grade Level

Format N

Grade Level

Total5 6 7 8

OM

OS

17

4

.51

.26

.63

.30

.78

.41

.84

.49

.69
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Figure 1. Mean Difficulties of R1 and R2 Items by Grade Level
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