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EDUCATIONAL COMPUTING AND COGNITIVE SKILLS:
CURRICULAR ISSUES AND PROLOG PROSPECTS

Roger P. Johanson

Coe College, Cedar Rapids, IA

ABSTRACT: Spearheaded by the writings of Seymour Papert,
many educators have looked to computer use in education to
usher in a new era in which the development of
higher-order thinking skills would be promoted in the
schools. Early research aimed at showing the positive
effects of programming instruction on students' thinking
skills was not encouraging. More recent research is only
somewhat more promising. This paper begins with summary
and critique of the research, advancing eight hypotheses
regarding the general failure of the research to confirm
the expectations. Two major claims are made. The first
is that the principle weakness of research on the
cognitive consequences of programming instruction very
likely has been its inadequate consideration of curricular
issues. The second claim is that a relatively new
programming language, Prolog, which is radically different
from procedural languages like BASIC and Logo, merits
serious consideration for educational use. The paper
concludes with a brief introduction to Prolog.

It bears noting because it is frequently overlooked:
Educational computing is in its infancy. The idea of teaching
machines predates adequate computer development. Instructional
ccputing pior 2ers like Suppes were quick to claim the new
computer technology for educaticn. Papert's work now spans two

But the emergence of microcomputers, a mere ten years

ago, represents the event that truly launched widespread computer
use in education. Our conceptions of what tlLe technology is and
our visions of how it may be used will surely continue to evolve.

An air of impatience seems to pervade much of the literature
on educational computing. Reseaxch confirmation of our
expectations for computer use is toc slow in coming. While we may
reasonably become discontent with disk access times that exceed a
few seconds, we need to be careful nct to ~xpect the time

N requirements for educational outcemes to match the speed of the

computer.

perspective.

I beyin with an attempt {c develop some sense of
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Computers clearly represent a tremendously significant
development in our culture. They are radically affecting
business, medicine, science, the arts--virtually all aspects of
our lives. It is reasonable to expect that schools would
incorporate computers into their programs of instruction.

But there are forces resisting the introduction of computers
into education. Among these forces is economics. Computers are
expensive and many schools don't have adequate funds for such
major expenditures. Furthermore, the curriculum is full. Any
additions require us to rethink existing objectives and make some
reductions or eliminations. Computer use, like any other
instructional innovation, must be justified.

Prominent among the justifications is a claim that computer
use may produce unique educational benefits. Simplistically
stated, computers are logical devices, and programming is a
cognitively demanding activity characteristic of the best problem
solving. Papert (1980, 1984, 1987), the primary spokesperson for
programming instruction, has argued convincingly that the
computer represents a fertile ground for the growth of cognitive
skills. 1Indeed, much of the enthusiasm which has accompanied the
introduction of computer usage into the instructional programs of
elementary and secondary schools is due to optimism about
anticipated positive effects of computer use on students'
thinking skills.

COMPUTER PROGRAMMING AND THINKING SKILLS

At this point, it will be helpful to delimit this
discussion. To some extent, computers are like books, film
strips, overhead projectors, or other forms of instructional
media: they are content-neutral. They are carriers of the
instruction. Computer use does not force any a_priori curricular
decisions upon the educator. The simple use of the computer to
assist regular instruction is not the object of attention in this
study. What is of concern is instructional use of the computer
in situations where there is an explicit belief that such use
will be instrumental to accomplishing objectives beyond those
embodied in the content being taught. That is, the primary
object of interest here is computer use when such use in itself
carries with it curricular objectives.

An initial and widespread educational use of the computer
has been for teaching programming. But the justification for
this instruction, especially in many computer literacy programs,
extends beyond the primary content of the specific language being
taught. "The avowed purpose of most programming courses is to
teach problem solving or reasoning as well as to teach
programming (Linn, 1985, p.14)."

The belief that programming can have such consequences
is rooted in a variety of assertions. Linn (1985) and Dalby and
Linn (1986) have highlighted some of these. Programming requires
decomposing complex problems into subproblems. Related
generalizable skills which may be learned through programming and
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which may be appiicable to other problem solving tasks include
use of analogy, working backwards, and top-down design.
Programming becomes the training ground for practice of a variety
of problem solving heuristics.

Certainly though, the belief that computers could alter
intellectual development rests in large part on the work and
writing of Seymour Papert(1980), especially as detailed in
Mindstorms. CcChildren learning to program a computer, Papert
asserts, are thrust into thinking about their own thinking.

They are turned into epistemologists. The pre-computer
environment of children in all cultures is deficient in
"opportunities to bring their thinking about thinking into the
open (p.28)." Through Logo programming, Papert claims, children
learn powerful ideas, such as debugging, which promote procedural
thinking and the attainment of Piaget's formal operational
thought. The destructive notion of "errors" in thought is
replaced with the constructive notion of "bugs" which may be
identified and corrected.

Unfortunately, results of research seeking validation of
Papert's claims have been discouraging. Ehrlich, et al. (1984)
concluded, that there is little empirical support for the belief
that transfer will occur from programming skills to other problem
solving domains. Though the activity of programming does fit
definitions of higher-urder thinking, the literature on whether
programming leads to improvements in higher-order thinking is
"thin and inconclusive" (Patterson and Smith, 1986). The results
of the major ACCCEL studies indicate that while the potential for
developing higher order cognitive skills through programming is
seen, it has not yet been achieved (Dalbey and Linn, 1986) . They
conclude that "educators need to be less idealistic about
teaching general problem-solving skills through programming"
(P-92). While not giving up on the potential, they note that
demonstrating cognitive outcomes will be difficult.

SELECTED HYPOTHESES

Why is there such discontinuity betweer the anticipated and
observed effects of programming instruction? can the dream and
the reality be reconciled? The question has been directly and
indirectly addressed by many. A review of the literature
suggests a number of related hypotheses. While neither
exhaustive nor entirely distinct, eight hypotheses on the failure
of the research on the cognitive consequences of programming
instruction to corroborate the confidence placed in such
instruction follow.

Hypothesis 1: "A cognitive chain of consequences exists; students
are not progressing to the end of the chain, but could." Linn
(1985) and colleagues have proposed a model for understanding how
programming instruction may lead to generalized cognitive growth.
The model suggests the existence of a chain of cognitive
censequences from programming courses. The chain begins with
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learning language features, progresses to design skills
(consisting of using templates and procedural skills), and, only
after these have been accomplished, potentially results in
generalized problem solving skills.

The research reveals a "tremendous range of student
performance after an introductory course" (Linn, 1985, p.26).
Details of this research can be found in Dalbey and Linn (1986) .
In twelve-week courses in BASIC, they found that very little
programming was actually learned. While students became
reasonably competent at understanding single BASIC commands, they
performed pouorly on measures of reformulating programs and
designing complete programs. More recent research by Kurland et
al. (1986) calls into question the likelihood of students ever
achieving mastery of programming within our schocls. Even after
two years of study, many students had not learned enough to have
any hope of transfer effects to other disciplines or problem
areas.

While many have noted the shortcomings of BASIC as a
programming language, Dalbey and Linn argus that its
availability propels its use and consequently it must not be
abandoned oy researchers. There are important suggestions
which grow out of this first hypothesis. Instruction in any
single language seems inadequate; such limited exposure is
unlikely to promote students' recognition of the general
applicability of design skills. Augmentations to BASIC may
help. The one suggested by Dalbey and Linn is Spider World, a
graphics-based programming environment with limited language
features. Other suggestions are addressed in the hypotheses
which follow.

The research of Kurland et al. (1986) must be viewed as a
significant challenge to the impli-:ations of the cognitive chain
hypothesis. Even if the chain construct is accepted, it is
unlikely that we can provide programs in schools which do more to
move students along the chain than what was outlined in the
Kurland research. Rigorous instruction in six programming
languages was provided. Even given instruction "unrealistically
more intensive than that found in most schools today," most
students did not show evidence of the transfer which should occur
at the third link in the cognitive chain. As a final note,
Mandinach and Linn (1986) have reviewed the extension of the

cognitive chain construct to "computer learning environments"
beyond programming.

Hypothesis 2: "Applications represent a more likely arena than
programming in which to look for the desired cognitive outcomes."
Lockheed and Mandinach (1986) have identified as trends in
instructional computing a decline in interest and a shift away
from programming. The integration of applications programs (such
as word processors, spreadsheets and database management systems)
into the curriculum, it is arqued, offers greater potential for
promoting students' thinking skills.

Since applications deal with "generic functions such as
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data manipulation and word processing" (p.25), they can be
applied across subject areas. This would permit

concentration on "generalizable skills related to planning,
gathering, and interpreting data"™ (p.23). Part of the rationale
includes an assertion that computer literacy courses dealing with
programming are generally poor in quality and have a restricted
curriculum. It is unrealistic to expect that these courses will
be improved for most students. Applications-based instruction
would be easier for teachers to provide and would allow direct
access to the power of the computer to transform human reasoning
capabilities. (As a note of dissent, it should be observed that
Hawkins and Sheingold (1986) found that teachers using database
programs had difficulty incorporating them into their
curriculum.)

Lockheed and Mandinach further assert that students in
general do not enjoy programming instruction. The result of
this may be seen in the significant decline in recent years in
the number of high school students who plan to pursue college
study in computer science. While no comparative studies were
done, evidence is cited that students have positive attitudes
regarding CAI, turtle graphics and games, but negative attitudes
towaru BASIC programming instruction. However, Johanson (1985)
found evidence of students' enjoymernt of computer literacy
instruction centering on BASIC. Similar empirical and anecdotal
evidence is not hard to find.

Research concerning the use of applications programs in
education is just beginning. Nonetheless, Lockheed and
Mandinach claim that results using a curriculum based on
applications software are likely to include both acquisition
of higher cognitive skills and greater positive student response
to the computer. (While affective outcomes are not the concern
of this study, it should be noted that Ginther and Williamson
(1985) claimed that there 1s much more support for personal-
social benefits from Logo instruction than for logical-analytic
outconmes., )

Hypothesis 3: "The research on cognitive outcomes of programming
has been poorly conceptualized." Pea (1984) noted the disturbing
failure of research to validate the claim that Logo instruction
would yield cognitive dividends. Perhaps, he reasoned, the
research has failed because it was inappropriately focused.
Mz7bke general intellectual benefits are not the outcomes to seek.
Concrete, functional perspectives may be required. The culture
of the Logo classroom has not been sufficiently considered.
"Without some functional significance to the activities for those
who are learning the new practices [associated with Logo], there
is unlikely to be successful, transferable learning"” (p.8).
Intellectual benefits should only be anticipated within the
context of a culture in which Logo serves a meaningful purpose
for the members of that culture.

In a recent response to the problem of research verification
of the significance of Logo, Papert (1987) has criticized the
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work of Pea and others at Bank Strest. Papert notes that to
expect to hold most of the educational experience constant while
testing for the effects of Logo is part of a mistaken research
paradiygm which cannot be adequate to the task. Within the
context of a Logo instructional experience as intended by Papert,
students "don't encounter a thing, they encounter a culture"
(p.27). By analogy to literacy research, Pea (1984) has
acknowledged that locating Logo instruction within a supportive
culture is essential to assessment of the Logo instructional
"treatment". VYet the differences which would then exist between
the instructional treatment and the control would raise our
collective methodological eyebrows. Papert argues that there is
1 "radical incompatibility" between the study of Logo and the
traditional educational research "treatment" method. He suggests
that we can view the research designs which prevent us from
establishing and evaluating significant educational alternatives
as being suspect rather than the alternatives themseives.

A rather different problem is also best located within
the context of this third hypothesis. Agreement upon definitions
and choices of anticipated outcomes of computer instruction has
not been reached. While the term "cognitive consequences" is
appealing, it masks the variety of outcomes that have been
studied. Among these are cognition or cognitive development,
problem solving ability, higher-order thinking, thinking skills,
and metacognition. As Pea's analysis suggests, it may be time to
concentrate on identifying more specific, concrete outcomes.
Patterson and Smith (1986) note that there is no agreement on
vhat constitutes higher-order thinking. By identifying less
grand and glorious targets than those 1listed above, we may be
more likely to find encouragement in the research efforts. Note
however that this tends to return us to the research paradigm
rejected by Papert.

Hypothesis 4: "Research has been unsophisticated and done at the
wrong age level." Specific and measurable aspects of cognitive
functioning must be identified and studied. Furthermore, since
the age of about six or seven is the time generally acknowledged
as the transition period from Piaget's pre-operational to
concrete operational stages, this is an age which may be ripe for
identifying developmental differences. Papert (1930) asserted
that Logo would be influential in children's cognitive
development for two primary reasons. First it provides the raw
material (which is deficient in pre-computer cultures) for the
development of operational thought. Second, children would be
transformed by Logo activities into epistemologists, thinking
about their own thinking. The first requires a depth and
duration of exposure which probably has nut been achieved in
empirical studies to date. By working with younger children the
importance of the treatment relative to tne child's other
experiences is increased. (A six month treatment constitutes

8% of a six-year-old's life but only 4% of a twelve-year-old's.)
The second reason requires researchers to focus on measures of
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metacognitive activity. If an increase in children's
metacognitive abilities can be shown, then the hypothesis that
the eventual result will be an improvement in cognitive
functioning is more plausible.

Among the most promising research in the field is that
of Clements and colleagues. In a recent study, Clements (1986)
examined the effects of Logo and CAI on sieveral components of
students' cognitive and creative capabilities. Perhaps critiical
to his findings was his decision to use first and third grade
subjects. Also important is a recognition that it is not simply
Logo, but a Logo "environment" which is responsible for the

f£fects observed. When compared to the CAI and control groups,
Clements found that Logo had positive effects on classification
and seriation (for first graders but not third graders), five of
six metacomponents (four related to deciding on the problem arnd
solution processes, and comprehension monitoring), the
originality and elaboration subscales of the Torrance creativity
measures used, and a measure of children's abilities to give
directions.

It may be argued within the confines of this hypothesis that
the research on programming is just now becoming sufficiently
sophisticated to discover the cognitive effects. Extended
treatments with younger subjects, and identification and
measurement of specific anticipated outcomes such as aspects of
metacognition and components of creativity could pave the way for
more encouraging results. Bransford, et al. (1986) assert that
inattention to metacognition is the critical error of previous
research in this field.

Hypothesis 5: "The anticipation of cognitive benefits constitutes
a resurrection of the discredited concept of mental discipline".
Despite failures to document the claim that instruction in Latin,
georietry and other disciplines has discernable effects on the
development of thinking skills, many educators apparently
believed that computers, with their seemingly limitless
potential, would be different. There is an undeniable similarity
here to the once popular concept of mental discipline. The
seductive notion that certain instructional activities could
serve as a type of mental exercise which would strengthen the
intellect was widely held but also widely discredited in the
early part of this century. The works of Thorndike and Woodworth
(1901) and Judd (1908) are representative. The conclusion
reached was that general intelligence is not affected by training
in specific domains. There is within the more enthusiastic
rationalizations for Logo a rather haunting echo of those claims
which early psychologists rejected.

What survived from the early research was the less sweeping
notion of transfer. The generally accepted principle is that
transfer occurs between the learning of two intellectual skills
in proportion to the degree of similarity between the two skills.
Thus we might anticipate that learning one programming language
will transfer to learning another. Planning skills learned in
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programming might transfer to other planning tasks. But general
cognitive gains should not be anticipated. Hoffman (1985)
argues, "Cognitive development is extremely complex and
psychologists as well as commercial software developers are not
able to facilitate its growth" (p.360). Even transfer is by no
means assured. Ginther and Williamson (1985, p.76) conclude,
"Decades of research on problem solving, with both znimal and
human subjects, has shown that transfer of general problem-
solving skills is difficult to achieve." The logical conclusion
of this hypothesis would have to be that expectations of
significant cognitive benefits from programming instruction are
naive.

Hypothesis 6: "Problem solving, higher-order thinking, divergent
thinking and other goals of programming instiuction are
discontinuous with the reqular curriculum and are unlikely to be
achieved." Papert sets the tone in the introduction to
Mindstorms when he states that what he proposes goes in the
opposite direction of what schools are doing. Walker (1986)
observes that current educational practice has a strong molding
influence on how computers are used. One must ask whether this
is rot a case of irresistible force and immovable object.
Indeed, it appears that schools are more immovable than the Logo
philosophy is irresistible. Hawkins and Sheingcld (1986)
observed that teachers and students were uncomfortable with the
ambiguousness of Logo. They furthermore claim that there is an
incompatibility between the traditional curriculum and problem
solving or critical inquiry emphases. Patterson and Smith (1986)
reach the conclusion that schools tend not to encourage
higher-order thinking.

I >bates on curricular issues are certainly not new. Computer
programming instruction simply represents a new field of battle
for old views concerning what knowledge is of most value and how
best to teach it. wWalker (1986) notes some parallels. "The
debates about BASIC vs. Logo . . . could, with only light
editing, be applied to content coverage vs. problem solving
skills" /p.27). He does, however, suggest that change may be
inevitable--that we will not continue to be satisfied with
stereotyped talking and passive reading in schools. The current
tension which exists between standard school practice and what
Logo advocates are trying to accomplish (including cognitive
development, problem solving skills and reflective ingquiry) may
account for much of the difficulty to demonstrate significant
effects of programming instruction. It is virtually impossible
to eliminate or even account for the effects of the traditional
curriculum on students' perception of the task at hand in
learning to program. Within the context of traditional
school practices, most students may simply be unable to make the
mental shift necessary to allow the cognitive skill goals of
programming instruction to be fostered.




ot
AN o
s 2 et e e

WV d s T, uad

Hypothesis 7: "Problem-solving and higher-order thinking may be
domain-specific." This claim has been noted in Patterson and
Smith's (1986) review. Linn (1985, p.15) notes that "cognitive
scientists have shown that learning is much more discipline-
specific than had been thought." Students who learn to solve
problems in the context of programming, she observes, are not
necessarily learning to solve problems in other contexts. She
cites the research of Chi, et al. (1981) which concludes that the
structure and organization of knowledge are critical to its
subsequent use by learners. But it has not been claimed that the
acquisition of programming competence has any relation to such
issues as knowledge structure. Nor does it seem reasonable to
claim that programming in BASIC or Pascal or even Logo will have
any impact on the programmer's cognitive structure except for
that portion of it directly related to programming concepts.

The conclusion must be that programming instruction can have only
very limited impact on problem solving and higher-order thinking.
The work of Novak (1977) based on Ausubelian theories of

learning gives theoretical foundation to the claim that the
organization of appropriate (domain-specific) cognitive structure
is the primary factor which accounts for problem solving ability.
There has been a significart trend in recent years for
instructional programs designed to teach thinking and problem
solving to emphasize the importance of domain-specific knowledge
(Bransford, et al., 1986). The degree to which a commitment to
planning, problem decomposition and sustained inquiry, which may
be gained from computer programming, can alter problem solving
skills is thus relatively minor, and it marks the extent of the
potential of programming instruction to improve problem solving
in non-programming domains. True improvement in higher-order
thinking ability depends on enhancing cognitive structure in the
domain in which that ability is to be demonstratec. Programming
instruction must then be of little consequence.

Hypothesis 8: "Failure to find the desired effects of
programming, such as higher-order thinking, problem solving,
and enhanced metacognition, have been due to a lack of curricular
sophistication. Objectives related to such outcomes have not
heen adequately inherent in the experimental treatments."

The partial answer for the failure to obtain evidence of
transfer from computer use to thinking skills advanced here
is based on a simple curricular notion: students learn what they
are taught. Walker and Schaffarzick's (1974) important review of
decades of educational research, "Comparing Curricula", notes
that when differences in the outcomes of two instructional
programs compared were found, they were typically due to
differing curricular intentions.

When we fail to find intended outcomes, we must examine
the possibility that our instruction does not embody our
objectives. Instruction in procedural programming languages
like BASIC, Pascal and Logo is demanding. Mastery of the syntax
and programming principles dominates instructional time and thus
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effectively dominates the curriculum. As previously noted,
Linn's (1985) hypothesized chain of cognitive accomplishments
begins with learning language features and ends with learning
problem solving skills. Since instructional time is limited, it
is quite possible that progression to the end of the chain--where
the curricular intentions resile--will not occur. Dalkey and
Linn's (1986) research suggests that language features tend to
dominate junior high school programming courses. They found
little evidence that students learning BASIC engaged in planning
activities.

Indeed this curricula: hypothesis appears the strongest one.
Several of the previously :ited authors have directly or
indirectly appealed to this hypothesis and we return to their
comments now. Pea and Kurland (1984) and Kurland, et al. (1984)
noted that planning is not a necessary outcome of Logo
instruction; it must be explicitly taught. (Somewhat more
pessimistically, they note that achievement of expert programmer
status takes enormous amounts of time--perhaps 1000 hours. The
best experimental treatments reported in rarly research involve
no more than about 100 hours.) Similarly. Linn (1985) observed
that students' self-generated design templates may be an
impediment to developing problem solving skills. It appears that
in order for design skills to be generalizable, they must have
been taught. She concludes that considerable curricular
improvement will be necessary for problem solving outcomes to
occur. Dalbey and Linn (1986) found that teachers' expectations
seem to be limited to design features and students' assignments
tended to be drills on language features.

The criticism cannot be limited to instruction in BASIC. In
his analogy to research on the effects of literacy, Pea (1984)
asserted that it ls a mistake to think of powerful ideas as being
inherent in Logo itself. While Logo enables recursion,
structured procedural programming, debugging, modularization and
documentation, it is unreasonable to expect that many students
will spontaneously "discover" such tools. In fact the evidence
is strong that most students do not. Furthermore, when the best
of instruction within a Logo culture occurs, it clearly involves
a teacher who promotes use of the tools just listed as well as
children's epistemological activity. "To call these [supportive,
stimulative, instructional] activities 'leariing without
curriculum' is misleading, and an overly narrow view of what
constitutes curriculum." (p.7)

Let us return now to the work of Clements (1986). The
evidence he provides of the desired and anticipated positive
effects of Logo instruction on cognition is encouragding.

However it must be argued that it is the curricular intentions
embodied in the Logo instructional proceduce used in that study
which account for the effects found. Careful attention to the
treatment discussion reveals key ccmponents which are not
dictated by the Logo language. Children were instructed to begin
by drawing the picture they wanted the turtle to produce. Then
they decomposed their drawings into discrete components which
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were individually traced and which became the models for
procedures to be programmed. (It is not explained how much
guidance was given at this point.) Two support programs which
enhanced feedback during programming were employed. This allowed
students to edit pregrams at the same time as viewing the effects
of individual commands invoked. "If a procedure was not doing
what the children had anticipated, they were encouraged to think
it through," by being asked appropriate debugging questions
(emphasis added). A carefully designed sequence of 44
instructional sessions was used. While Clements indicates that
didactic presentations were not employed, procedural thinking and
debugging were explicitly taught. He concludes by noting that
adult guidance was given frequently. The research design
provided that one or two instructors were present during each of
the sessions which were taught to six students working on three
computers.

It is in no way argued here that such instructional
procedures are inappropriate. Indeed they are commendable.
T simply claim that it is the explicit curricular intentions
concerning metacognition and refinement of students' thinking
which are the likely causes of the demonstrated effectiveness of
the Logo instruction. It remains a reasonable claim that Logo is
a uniquely powerful vehicle for permitting and even encouraging
teacher behavior related to cognitive curricular objectives.
Indeed one control group in the Clements study received similar
(though much less extensive) guidance as they worked on CAI
lessons, yet the Logo group's post- treatment performance on
several key assessment variables was superior. As has been
noted, the regular school curriculum gives very little attention
to promoting higher-order thinking. ILogo may well be one of the
most appropriate environments in which to introduce instruction
aimed at enhancing student cognition.?2 But no research
on the effectiveness of Logo to produce cognitive growth is
likely to be successful unless it includes an instructional
treatment which ensures that cognitive growth is represented in
the curricular objectives.

RESEARCH: SUMMARY COMMENTS

In a broad sense, what is at issue here is the ever-present
question of the approrriate aims of schooling.How much do we
agree that teaching students "to think" is a primary goal of our
educational programs? In questioning the very nature of the
research reviewed here, Papert (1987) returns this question to
the forefront of the debate. "We may have to reexamine
assumptions about education that were made long before the advent
of computers. One could even argue that the principal
contribution to education made thus far by the computer has been
to force us to think through issues that themseives have nothing
to do with computers (p.23)." Papert urges us to consider the
people and the cultures through which Logo becomes known by
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students if we hope to truly study the effects of this new
technology.

The "research" most needed now is curricular and
instructional deveicpment. We need not be dependent on
technocentric thinking or narrow research paradigms. Let us
instead seek to develop complex school cultures in which
computers play significant roles in helping students and teachers
to engage in higher-order thinking. Let us examine these to see
what aspects may deserve controlled research attention. The
design of curriculum and instruction must not await research
verification of effectiveness. (Indeed it frequently dnes not.)
Unfortunately we seem to be at a point where negative research
results may discourage development efforts in instructional
computing. We need to trust our professional judgments and
intuition at least as much as our research methods.

As a preface to the section which follows, let us compare
the concerns about Logo to the comments of Smith (1986, p.110)
with respect to instructional efforts using Prolog. "We are in a
truly unusual situation where classroom developments in
Information Technology applications are far ahead of the attempts

of either bureaucrats to regulate them or of academics to
understand them. We are in the middle of a practitioner-led
revol (tion!" Ennals and Nichol "have inspired a small but
important community of 'barefoot curriculum develcpers'."
This is not a call to cease the kind of research efforts
reviewed earlier. However, it is an attempt to examine
weaknesses of that research. Two responses are appropriate.

First, we can try to improve the research. The hypotheses
advanced here suggest some directions for that. Second, we must
continue to try to use computers in ways that ' have reason to
believe may have "cognitive consequences". There is good reason
to be undeterred in those efforts. A combination of research
and anecdotal evidence supports continued use of Logo. The
second part of the present paper suggests another potentially
fruitful direction for instructional computing using Prolog.
Perhaps it will not or cannot be shown by controlled

research that acquisition of programming competence has
important cognitive effects. That does not preclude rational
argument that we should teach programming and other computer-
based activities with an expectation that a long term consequence
of such instruction will be the development of higher-order
thinking and/or problem solving. Nor does it in any way argue
against these as legitimate curricular concerns. Assuming that
we indeed wish to promote them, failure to demonstrate cognitive
consequences does not argue againstc such use of the computer
unless an alternative instructional apprrach has been verified as
effective, or can more logically be argued to be effective. It
simply says that we will have to continue to hold curricular

| analysis as the best decision tool for selecting among

| instructional strategies.
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AN ALTERNATIVE LANGUAGE - PROLOG

A good deal of Papert's (1980) effort has gone into arguing
that traditional programming languages are inadequate to the task
of stimulating cognitive development. Under Papert's leadership,
Logo has achieved the status of a mainstream educational
programming language. Similarly, arguments that some language
(other than BASIC) should be adopted for educational use have
been advanced for a wide variety of languages including Pascal,
PILOT, Smalltalk, and COMAL. While languages are certainly not a
dime-a-dozen, their proliferation is staggering. The journal,
Computer Langquage, includes as a regular feature their "Exotic
language of the month club". It is not without considerable risk
that one makes the claim that another new language deserves
consideration. However, that is precisely what I shall proceed
to do.

Wittgenstein (1961, p.115, proposition 5.6) asserted that
"the limits of my language mean the limits of my world," and his
claim rings true for computer languages as well as for "natural"
ones. As the needs and purposes of programmers and other computer
users evolve, it becomes clear that there are language
deficiencies in many programming languages which inhibit or even
prohibit certain functions. New languages are develorad in laryge
part to extend the limits imposed by old languages. The language
advanced here is Prolog, for programming in logic. There is a
radical difference between Prolog and the other languages
mentioned here. Logo, BASIC, Pascal and most commonly used
languages are procedural. That is to say, programming in such a
language consists of creating procedures which the computer will
execute in order to solve the particilar problem at hand.3

Unlike any of these other languages, Prolog is declarative.
As such, programming in it involves describing facts and
relationships about a problem rather than outlining a procedure
for the computer to follow in solving it. The user must focus
attention on declaring or clarifying the problem but can leave
the computational details to the computer and the "inference
engine" which is built into the language. Prolog is an excellent
representative of important trends in computer science such as
parallel processing (while not necessary for Prolog, it is easily
facilitated), non- determinism, and pattern-directed procedures,
as well as declarative rather than procedural approaches.
Originally developed as a language in which mathematical proofs
might be achieved mechanically, Prolog has gained prominence
in artificial intelligence and now competes favorably with LISP.
Its recent selection for use as the language of the Japanese
Fifth Generation computer project has significantly boosted
interest in its study. While it is unfamil’ar to most people in
the educational computing community of the U.S., it may offer
significant opportunities for accomplishing elusive curricular
goals.

Considerable use of PROLOG in school settings has begun in
England. Much of this work involves a special use of PROLOG not
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easily matched by other languages. In it, a "database" of
information is established, which can then be "queried." The
emphasis then becomes disciplined inquiry into any body of
curricular content (Nichol, et al. 1985). One of the leaders in
the field, Richard Ennals (1984) suggests, "the computer should
not be the focus of attention. We should return to thinking about
education and training, and the thinking that we wish to
encourage, with the computer among our tools."

It is not the intention to provide a Prolog tutorial here.
The standard reference on Prolog is Clocksin and Mellish (1981).
More readable introducticuns for those not wishing as rigorous and
thorough a treatment include Rogers (1986), Bharath (1986),
Cuadrado and Cuadrado (1985) and Bratko (1986)- As with many
languages, there are a variety of dialects of Prolog. Prominent
among these is micro- Prolog. A good introduction to
micro-Prolog and educational uses of Prolog in general can be
found in Ennals (1984). While these references should be
consulted for more complete discussion of the language, a brief
overview of Prolog will aid the present discussion.

Programming in Prolog includes three primary activities:
asserting facts, establishing rules, and querying the database of
facts and rules. Examples of each follow. Note the similarity
to natural language; the meaning of many of the statements should
be obvious. Comments are enclosed, as they are in Prolog,
between the symbols /* and */.

/* facts: */

four_ sided(rectangle). /* a rectangle is four-sided #*/
animal (mouse). /* a mouse is an animal */
eats(owl,mouse). /* an owl eats a mouse */

ended (world_war_II,1945).
book (mindstorms, papert,1980,basic books).

/* rules:
The general form is: CONCLUSION IF CONDITIONS;
the symbol - means "if" or "when";
variables begin with uppercase letters. */

quadrilateral (Figure) :- four_ sided(Figure).
/* A Figure is a quadrilateral if that Figure is four-sided. #,

carnivore(Animall) :- eats(Animall,X), animal(X}.

/* This second rule says essentially "Animall is a carnivore
if there is something that it eats and that something is an
animal." X has been used as a variable here because it is
probably more easily comprehended by novices. The comma
between clauses has the meaning "and". */
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/* queries: */

ended (world war I1I,When). /* The computer will
respond:
When = 1945 */
four_sided(rectangle). /* response:
Yes */
carnivore(What). /* response:
What = owl */
book (mindstorms,Author, , ). /* This simply asks who the
author of mindstorms is.
response:
Author = papert */
four_sided(square). /* response:
No */

Note that for the last query, the answer "no" must be interpreted
as meaning that it cannot be verified from the database that a
square is four-sided.

The combination of the facts and rules given above
constitute a "complete" Prolog program which will answer the
questions listed in the query section. The critical observation
is that the procedure which the computer should use to answer the
questions listed is not spelled out in the program. It is
resident in the language and largely transparent to the user.
(The procedure consists largely of pattern-matching, depth-first
search, and backtvacking.) The "programming" consists of
declaring the facts and rules and then asking appropriate
questions.

This crude introduction will have to suffice. Following a
brief overview of present and potential educational uses of
Prolog, the remainder of the discussion addresses some of the
less obvious consequences of using Prolog and forms a beginning
of the rationale for its consideration for educational purposes.

INSTRUCTIONAL USES OF PROLOG

Only a brief introduction is included here. For further
details, good scurces include Yazdani (1984), Ennals {(1984),
and PEGBOARD, the newsletter of the Prolog Education Group at the
School of Education, University of Exeter, England.

The most obvious use of any programming language involves
programming instruction. When children (or adults) learn to
program in Prolog, they must become involved in logical analysis
and specification of knowledge. Relationships between objects,
events and concepts must be specified. As previously noted, much
less a*tention is given to procedural issues. However typical
input-output and numerical manipulation problems must generally
be avoided at first. A prototypical problem in Proiog would be
to lay out a family tree by identifying parent-child
relationships and the sex of individuals listed, and then to
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specify rules to allow answering questions like who is the cousin
of whom, who are the descendants of Martha, and does Sam have a
known great-grandmother. Logic is the basis of Prolog
programming, but very little understanding of logic is necessary
for getting started in Prolog. Indeed since much of the
procedural detail is hidden within the language itself, the
demands on the novice programmer are re.atively small.

Those working with educational applications of Prolog in
England have concentrated on two other uses of the language--~
1) working with already developed Prolog database programs, and
2) utilizing various front-end programs, authoring *oolkits or
expert system shells written in Prolcy. The database approach is
well represented by an "classic" program in this category, BOGBOD
(Nichol and Dean, 1984). Students are provided a problem to
solve concerning a body which has been found in a peat bog. A
variety of information concerning this problem is represented in
the database. Students work collectively querying the database
trying to form their own hypotheses on who the dead person was,
who killed him and what the circumstances were. This problem is
a representation of an actual historical event. The program
allows students to engage in historical inquiry rather than to
simply commit facts to memory. This is in line with what some
see as a highly significant trend in school practice--a movement
toward promoting active student involvement in learning. (For
example, NEA's 1987 spring conference featured this topic,
bearing the title, "Revolution in Learnin,: The Student as Active
Learner".)

An example of the toolkit use of Prolog, Linx, bears some
similarity to an expert system shell apprc:zh. It is intended as
an aid to writing simulations. The Linx manual (Briggs, et al.,
in development, p.2) states that with the toolkit, "we have
written simulations about sea voyages and battles, classification
trees and taxonomies for the study of rocks, early man and
insects and languade tools for the teaching of English." Similar
to authoring languages, such uses of Prolog allow teachers (and
students) to write their own instructional programs, building
databases which will then be available for query. A significant
feature of Prolog which supports this type of use is that there
is virtually no distinction between data and program. Programs
can be self- modifying. The importance of this category of
Prolog use is noted by Brough (1986, p.28). "The concept of
developing open or extensible Prolcg-based shells to support
teachers across the curriculum is a very exciting one and is
particularly relevart to the 'new curriculum' being developed to
free subjects from the older facts-based approaches." Unlike
older authoring languages, Prolog-based tools are not oriented
toward fancy screen displays and programmed instruction
approaches. What is most directly supported is development of
programs which encourage disciplined inquiry into a body of
content.

While requiring some programming emphasis, the last category
of uses of Prolog to be discussed here includes a variety of
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activities intended to focus on conceptual development. Recall
our previous Prolog examples:

four-sided(rectangle). /* a fact */
quadrilateral (Figure) :- four-sided(Figure).
/* a rule */

When we inquired whether a square was four-sided, the response
was "no". Clearly the database needs to be amended to correct
this omission of information. There are numercus ways to do this
though, and in the process, students can struggle with issues of
necessary and sufficient information. For example, we can ask,
"given the database, how can we get correct answers to the
questions 'is a square a quadrilateral?' and 'is a square
four-sided?' by adding the least information to the database?"

Of course one way would be to simply add as facts:

quadrilateral (square).
four-sided (square).

Students can try various approaches, while utilizing and
clarifying their concepts, eventually arriving at a smaller
representation of the information such as:

four-sided (square).

The fact that a sjuare is a quadrilateral is now inferred by
Prolog from the rule which says any four-sided figure is a
quadrilateral. This very simple example should demonstrate the
idea while suggesting similar efforts in any discipline.

A slight variation is to present a database which contains
redundant information. Students are now given a set of queries
which must continue to be answered correctly, but are asked what
information may be removed from the database. Other similar uses
involve groups of students creating their own databases of
information for sharing with other groubs. They then engage in
researching and storing information on an assigned or
self-selected topic. When finished, they identify sample queries
for another group of students to use in accessing the information
embodied in their database. The prime benefit of course is in
the creation of the database, but the sharing provides an
audience to give purpose to their efforts.

This list is suggestive rather than exhaustive. Whether

instructional activities are done directly in Prolog, or with

the aid of Prolog-based tools, it is easy to see that support for
problem solving and conceptual development is central. Nichol, et
al. (1986, p.89) note, "A pupil who writes a program using an
IKBS [intelligent knowledge based system] or expert systems shell
learns from the researching and structuring of the knowledge
which the program represents." As a final comment on Prolog uses,
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the power of Prolog as a software development tool should be
explicitly noted. "There are major benefits in the declarative
as opposed to the procedural approach to software specification
and development" (Brough, 1986, p.20). Both the professional
developer and the classroom teacher may benefit from use of
Prolog to try out instructional ideas.

CONSEQUENCES OF AND RATIONALE FOR USING PROLOG

Prolog requires--or allows--a radical reorientation to
programming. Procedural considerations become secondary. The
problem being solved becomes primary. Knowledge organization,
consideration of necessary and sufficient information, conceptual
relationships and logical analysis become appropriate
considerations when programming--and these all arise rather
naturally. At least for beginning applications, the programming
language comes close to disappearing. No longer is it necessary
to resort to mathemntical problems involving counting loops or
iterations or distinguishing reals from integers or turtle
geometry. It is not my intention to belittle such activities;
they represent important concepts from math and computer science.
Computers are powerful tools for mathematical concept
development, but other disciplines have been slighted by
instructional prograrming. With Prolog, the content of any
discipline can be naturally transformed into a computer program.

Let us return to our original concern, whether computer
programming facilitates cogrnitive development, problem solving
and acquisition of general thiiking skills. Much of the claim
that it does (or might) is based on arguments involving the use
of procedural thinking. If programming in Prolog doesn't depend
primarily on procedures, how could it have important cognitive
consequences? If our primary curricular objectives are related
to thinking skills, why should Prolog be considered? The
remaining discussion will be limited to these questions.

As noted earlier, Linn's work suggests that there is a chain
of cognitive consequences to be expected from learning
programming. Before generalizable problem solving skills are
acquired, the learner must progress through the stages of
learning language features and design skills. Her research
indicates that few students in computer literacy classes
actually do progress through these first two stages. As a
result, it is unlikely that students learning to program will
achieve the desired terminal problem solving objectives. However,
Prolog's language features are minimal. It should therefore be a
sirpler matter with Prolog to progress through the chain.

The issue of the dichotomy between content knowledge and
cognition implied when we talk about thinking as a skill has
been neglected so far in this discussion. Nickerson, Perkins and
Smith (1985) challenge the popular notion that thinking skills
and knowledge are distinct, suggesting rather that the two are at
least interdependent. Education must address both thinking skill
and knowledge objectives, they argue. Part of the failure for
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programming to demonstrate improvements in thinking skills may be
due to its having largely failed to make significant attachments
to bodies of content. This is a potentially crippling weakness.
Recall the observations, based on reviews of the literature in
the field, that problem solving may be domain dependent
(Patterson and Smith, 1986; Linn, 1985; Bransford, et al., 1986).
The specification of relationships between concepts is an
integral component of Prolog programming. Indeed it is
impossible to program in Prolog without addressing some body
of content. And it is the content, not the programming language,
which captures the largest share of the programmer's attention.
This has considerable significance for the issue of developing
problem solving and thinking skills. Understanding relationships
among concepts and procedures is characteristic of expert problenm
solvers (Patterson and Smith, 1986). Knowledge organization and
structure play a major role in how that information is later used
(Chi, et al., 1981). Prolog forces the user to clearly declare
the relationships which exist among concepts under study. It is
reasonable to assume that the level of specificity required by
the computer will promote the user's own understanding of the
knowledge represented. Prolog provides a "catalyst for thinking
about the subject of interest. The program that may result at
the end of a lesson is not necessarily the primary objective, but
a by-product of a thinking activity" (Ennals and Briggs, 1985).
Another argument in favor of Prolog follows from the
suggestions of those calling for applications-based computer
instruction. An applications emphasis would center on
"generalizable skills related to rlanning, gathering, and
interpreting data" (Lockheed and Mandinach, 1986, p.23). But
this is precisely the focus of Prolog. The language has
already gained prominence as an excellent tool for use with
relational de :abases (Moss, 1987). Hawkins and Sheingold
(1986) noted that teachers using database programs had difficulty
incorporating them into their curriculum. Some of this was due
to the business orientation of programs not written for
educational use. Complete control over how the information in a
database is organized is provided by Prolog, thus potentially
alleviating much of this problem.

New technologies appearing and soon to appear increase the
importance of information retrieval. The skills required by
these technologies will require the ability to find and organize
information for inclusion in a database and to extract that
information once it has been stored. Prolog programming models
this knowledge representation procedure and provides an
opportunity to practice these storage and retrieval skills.

CONCLUSION

In the end it is curricular analysis which is likely to
prove our best guide to assessing whether any instruction,
| including programming or other computer-based activities, can be
| expected to foster development of thinking skills. Since
|
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students tend to learn what we teach them, we need to consider
what we are really teaching and what our intentions are for this
learning. We must acknowledge that much of schooling at present
relies on low level thinking. Programming instruction may be
characterized as higher-order thinking, but a great deal of the
energy of learning to program goes into learning the syntax and
structure of most programming languages and hence may interfere
with the intended goal of problem solving skill development.
Added to this is the large problem of transfer. Real-world
problems exist within some domain of knowledge. Many of the
problems posed in traditional programming languages for beginners
are artificial and contrived and make no reference to the domains
in which we will want students to solve problenms.

We would do well to explore the potential Prolog may have
for addressing these concerns. Teams led by Ennals and Nichol in
England have been working with educational applications of Prolog
for most of this decade. The work they have pioneered needs to
be pursued in this country as well. Because of its limited
language features, simple syntax, declarative style and clear
content integration, Prolog may allow us to move closer to the
goal of promoting students' cognitive growth.

I conclude with a few perhaps heretical observations. There
remains little dispute to the claim that computers constitute the
basis of a "revolution" analogous to those which resulted from
the printing press and industrialization. Computers have changed
and will continue to change our world. Furthermore, while
generally well accepted, computers still engender some fear.

This fear and a more general resistance to change have in large
part moved us into a somewhat defensive posture with respect to
instructional uses of computers. In order to justify buying
computers for schools and taking time away from other
instruction, we have attempted to make a claim that there is
something uniquely different about computers. In fact, there
probably is, but it is not what we seem to think it is. Computer
based instruction is unique in its flexibility, in it's potential
to accommodate an enormous range of instructional strategies. We
are only beginning to explore the potential.

Prominent among the rationalizations for computer use has
been the claim that computers could aid in children's cogritive
development. We are now finding evidence which calls into
question the hopes that there might be significant transfer from
pProgramming (or use of applications or computer games) to
generalized problem solving or other higher-order thinking. WwWill
the response be to give up using computers in schools?

Let us consider mathematics for a moment. As noted earlier,
similar claims have been made for mathematics, particularly
around the beginning of this century. As with programming, the
claims were largely refuted. VYet instruction in mathematics
continues, because it is clear that the content itself merits
inclusion in the school curriculum. I think computer use and
even computer programming can be justified without recourse to
the cognitive consequences hypothesis. We might do well to
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devote more effort there.

Finally, I end with some speculation regarding cognitive
benefits of computer instruction, because I don't think we should
reject this claim. Following the curricular maxim referred to
above (students learn what we teach them) and insights from
psychology, a fair generalization is to say that children learn
to think by engaging in thinking. Indeed that is precisely the
core of the dream which Papert outlines for us. Logo is to help
create an environment in which children can explore their own
thinking. Instructional guidance is necessary, but so is
intellectual tinkering, self-directed exploration, messing
around. There is very little evidence of that in the treatments
which have been used in the studies which have failed to
demonstrate that programming has cognitive effects. This is not
surprising though, since such absence of instructional control
would be methodologically unacceptable and, by conventional
educational wisdom, inefficient. Herein is the ultimate dilemma.
The instructiomnal control deemed necessary may be incompatible
with fostering independent, higher-order thinking.

Perhaps the cognitive benefits of learining to program are
not short term. Maybe they will surface unexpectedly at times
far removed from the instruction when a ielationship is vagquely
sensed. Perhaps the benefits are idiosyncratic. How pompous it
is to think that we can pose for every student the situations in
which transfer will occur so that we can demonstrate that it
does. If we value higher-order thinking, we can justify computer
activities which simply engage students in this kind of thinking
that we too seldom incorporate intn our schools' curricula.

At the heart of research design is control. We need to be
abe to control enough to be confident about the effects of the
uncontrolled variables. There is a fitting irony to this. For
control is a central concept in schools also. We clearly believe
that we should control what students learn and when. Ever more
sophisticated instruction in computer programming, directed at
teacher-defined objectives, is likely to be seen as merely
another academic hoop through which students must jump. Why
should this yield any different outcomes than any other school
instruction?

At issue here is not simply the computer revolution and how
(not whether) it finds a place in education, but also a
revolution in education itself. The revolution is toward active,
meaningful participation in learning by the learner. Higher-
order thinking is necessarily somewhat original to the thinker--
if it is simply replicative it isn't higher-order. A fair test
of the cognitive consequence hypothesis would involve
establishing a teaching-learning environment where students would
engage in guided exploration of powerful ideas using a computer,
with significant self-direction. The consequences would have to
be looked for over a period as long as a lifetime. Even if such
research could be done, it would not be the kind which would
likely be published, or be chosen to guide practice. Yet there
is evidence of movement in the direction of reconceptualizing
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students as active learners. The computer can be a valuable tool
for this. Let us continue with both revolutions--computers and
active learners in our schools.

REFERENCE NOTES:

1. Such a conclusion is speculative. A much stronger claim can
be made that the huge increase of earlier years was due to a
societal mystique concerning computers. It is unrealistic to
expect that 10% of students (the high point reached to which
current percentages are compared) would become computer science
majors. Students' increasing sophistication regarding computer
programming resulted in more realistic (i.e. smaller) numbers of
students electing to study computer science. Rather than blame
computer literacy courses for turning students off to careers in
computer science we should credit them with helping students to
make more informed choices of college majors.

2. Actually, impassioned arguments for various curricular
movements within school subject areas bear striking similarity to
rationales for Logo. Papert emphasizes encouraging students'
acceptance and use of bugs in their thinking. In the same
spirit, arguing for a "whole language" approach to language arts,
Goodman (1986) contends that children's errors are critically
important indicators of their growing literacy. He urges helping
learners to value "errors" such as reading miscues and invented
spellings and punctuation. Much of the literature of mathematics
and science education stresses problem decomposition and use of
problem solving heuristics. (As noted earlier, mathematics
largely lost its claim that it could develop thinking skills
early in this century.) Social studies is valued for its
promotion of critical thinking. Supporters of each discipline
have claimed that their instruction ultimately affects cognitive
development.

3. There are well known differences in the types of problems best
handled by different languages. For ¢ ample, FORTRAN is a good
"formula" handling/number crunching language, COBOL is "business
oriented", and BASIC purports to be "all purpose". Yet
programming in any of these languages involves writing procedures
(or algorithms) which do the work of the program. The issue here
is not the category of problems for which the language is
intended, but rather the way in which programming problems are
solved.

4. It should be noted that some versions of Prolog give greater
attention to design features. Many, like A.D.A.'s public domain
and specialized versions of Prolog, include screen graphics
features. Turtle graphics has been implemented in Prolog (Ball,
1984). Borland's "Turbo-Prolog" includes features for easy use
of windows.
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