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The goai of this dissertation is to determine the extent fo which learning debugging In the
context of LOGO programming improves children's debugging in other programming and non-

programming contexts. The approach invoives detailed task analysis of debugging (in the
form of a computer simulation model), development of model-based Instructional guidelines
for teaching chiidren debugging skills they do not learn “by discovery.” and assessment of
the debugging skills children are abie to transfer to other programming and non-programming
tasks. Twenty-two 8- to 11-year-old students took two 25 hour LOGO courses. Half of the

students were taught debugging in the context of a LOGO graphics course first and ther

LOGO list- processlng course. The othier half were taught dabugglng In the same two mini-

courses but In the reverse order. Debugging skilis were tested at three times during each

minl-course. The | orformance of children taklng tasts in the first mlni-course was cOmparod
with the performancs of children taking the same tests In the second” minl-coursu to reveal
the transfer from one I:GGG domain 10 the other. Debuggmg on nof- pmgrammlng tasﬁs

course to assess more remote transfer of debugging skills: Assessments of students’
debugging skill revealed large savings from the first to the second mini-course. Students’
increasing use of selective search strategles increased the accuracy, efficlency, and speed of

their debugging: Corresponding improvements were demonstrated on a variety 61 tasks
requiring débU'g”g’i'rig of non-computer directions. Children shifted from exhaustive to selective

search strategies which increased the accuracy. efficiency. and speed with which they
debUEEéa written directions: Thus: the debugging strategies learned from explicit instruction
in the the first computer programming mini-course had a pos:tuve |mpact on children’s

debugging in both new programming and non-programming situations.
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1. Seeking skill transfer from computer programming

Transfer ﬁi iiiiﬁlﬁﬁ is the educator's dream hut the researcher's nightmare. Clearly,
teachers will be most effective when the learring of one Instructional unit contributes to the

learning of a subsequent unit or when a current lesson is facliitated by emphasizing relevant
previous learning. At the same time, teacherS hope that school lessons can be useful for
solving "real world” problems. Essentlally, educators strive to teach transferable skills

demonstrate. Studies of human probiem soiving consistently find that experience with one
problem rarely yields transtar to other problems even if they are similar. In the face of

these negative resuits, could more distant transfer ever be expected? Or should educators
abanden their dream?

The domain of LOGO computer programming is an interesting case in point because of

In more pracilcal terms, debugging Is a good candidaie for special focus since faiiure to

acquire good debugging skills could represent a “significant bottleneck to the development

of programming competencies and whatever thinking skills may be fostered through high-level
programming proficiencies.” '

environments that 1) complex procedures can be constructed from subcomponents. 2) errors
may derive from just a few buggy components. and 3) sources of error can be detected

and corrected (debugged). In other environments. children generalize that 1) most of what
they do is constructed from smailer components, 2) errors may derive from just a few buggy
components, and 3) sources of error can be detected and corrected (debugged). Papert

(1880) suggests the power of the debugging idea by saying: “Errors benefit us because

'This comment came from an insightiul but anonymous reviewer.

10
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they lead us to study what happened; to understand what went wrong; and; threugh
undersianding, fo fix It. Experlence with computer programming leads chlidren more

effectively than any other activity to 'belleve In' debugging:”

Unfortunately; this notion of transfer and the term "debugging” Itself are ambiguous; this

an ail-encompassing notion of self-improvement, to a more restricted view of eliminating

faulty components In physical or mental procedures?, to a constrained definition that Is
ciosest to its origing In computer programming: It Is what one does to get a malfunctioning
(buggy) computer program to work correctly. The potentlal for transfer of debugging skils is
aiso difficuit to interpret. The goal of this digssertation Is to use a detalied ﬁiﬂéi’i’iiﬁéi

context Improves children's debugging In other programming and non-programming domains.

In this chapter, | will describe the LOGO computer programming language and the high-

transfer studies. Finally, | will develop an approach for facilitating and assesslng transfer in
the LOGO domain based cn a review of several transfer Success storles from the adult

problem-solving literatare.

1.1 The dream

Proponents of LOGO claim that programming experience can expand children’s inteiiectual
power {Papert, 1972, 1980). They claim LOGO becomes a tool for life: once it becomes a

master concepts previously thought too abstract. The key eiement of LOGO Is said tu be
that powerful ideas are embedded in a simple language. The next two sections will

describe the powerful constructs of this simple language and then enumerate the powerful

ideas children may be abie to leam from experience with this domain.

Browr. & Burton (1978) have convincingly demonstrated the need for debugging in children’s acquisition of

arithmetic procedoures.

11
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1.1.1. A simple language with powerful constructs
At first glance; LOGO appears to be a simplistic programming language designed soiely o
enable young children with iittie tralnlng to create Interesting graphic effects. Yet beneath

its facade of simplicty, LOGO Is a powerful programming language which aliows

discussion will demonstrate the simpie yet powerful nature of LOGO by briefly Introducing the

graphics and list-processing domains:

in LOGO graphics, the user directs the movement of the cursor around ihe scréen using
four basic commands: FD (forward), BK (back), LT (left turn); and RT (right turn). Each of
these commands requires a numerical argument to Indicate the distance to move (for FD

and BK) or the number of degrees to turn (for LT and RT). In addition, PU (penup) and

editor to write and revise programs. These programs can be cailed. Interactively or from
within other programs. LOGO aiso has primitives to direct the flow of control; these inciude

REPEAT n [list of commands], which repeats the list of commands n times; IF
<conditional> THEN <commands> ELSE <commands>, which Is a basic conditionai
statement; and STOP, which stops the execution of the current program and returns control

to the callling procedure.

The example programs in Figure 1 demonstrate the basic graphics capabilities of LOGO.
The procedure definitions are listed on the left. For easier reading, some commands are
indented and arranged on separate lines. The interactive calls and outcomes of the
procedures are on the right. The starting position of the turtle is indicated by an arrow. In

curve. The leaf program is written using a repeated curve. These programs are combined
to make a program to draw a flower. Each of the programs includes a variable (:D. :C. :B.
and :A) so that one can draw fiowers of various sizes. The first line of commands draws
the leaves and the stem portions below and between the leaves. The second line draws

diamonds at equally spaced orientations. Figure 1b illustrates how a recursive procedure

can generate a row of flowers of decreasing size.

12
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Insert Figure 1 about here

There is more to LOGO than graphics, however. The list-processing capabliities of LOGO
are similar to LISP; the artificlal Inteliigenice language on which it Is bassd. The user can

keyboard input. OUTPUT makes the result of a procedure available to a calling procedure.
LOGO also has commands to separate and join text; for example, FIRST takes the first
aslement of a word or list and BUTFIRST takes the restt WORD combines Its arguments
into a LOGO word and SENTENCE combines its arguments Into a LOGO list. Here agaln,
the commands are designed to be semanticaily meaningful. However, the syntax for the iist-

punctuation necessary to distingulsh commands from varlables from text.

The same powerful constructs descrlbed above can be used for list-processing. The

example programs in Figure 2 demonstrate the basic list-processing capabliities of LOGO.
Here; the procedure definitions are listed above the Interactive calls and output. In Figure

2a, the PIGGY program transiates an input word into pigiatin by combining (WORD) all but

the first letter (BUTFIRST), then the first letter (FIRST), and finally the "ay” ending:
OUTPUT Is used to pass the resulting word fr another command, in this case, PRINT.

nalve user. It asks for a sentence to translate, does the translation, and offers an option o

continue. The user's answer Is set equai to the global variable Y and is then tested by the

As tha graphics and Iist-processing examples demonsirate, LOGO offers an easy
introduction to programming as well as opportunities to develop advanced programming skills:

programming skills. Pea & Kuriand (1984) comment on the widespread bellet that

"..through learning to program; children are learning much more than

13
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programming, far more than programming facts’. It Is said that children will

acquire powerfully generai higher cognitive skiils such as planning abilities, problem-

sctvlng heuristics, and reﬂecllveness on the revisionary character of the problem

extrame form, It Is based on an assumption about learning - that spontaneous
experience with @& powerful symbolic system wil have beneficlal cognitive
consequances, especially for higher order cognitive skilis. ~ Sivllar arguments have
been offered In centurles past for mathematics, logic, writing systems, and Latin
(e.g., see Bruner, 1966; Cole & Griffin, 1980; Goody, 1977; Olson, 1978; Ong,
1982; Vygotsky, 1978).”

1.1.2. The possiblilty of powerful ideas

The “powerful ideas” children mlght develop as a result of experience with LOGO have

besn specifisd In slightly different ways by several researchers since they were Introduced by
Seymour Papert (1972, 1980).

P.H. Winston {1977), for example views the possible powerful Ideas primarily In terms of
programming concepts more broadly applled He suggests applylng the idea of state

varlables such as the turtie's orientation and position to the temperature In a room, applying
A the idea of control variables like the move and turn commands glven to the turtie to other
'c'o"ritrb'i variibiés such as force, appiying ihe idea ci subgcéiirig ié 6iﬁér 5rasiaa§ wﬁara a

basically correct.

In contrast, Feurzelg et al. (from Pea and Kurland, 1984) suggest that programming

changes thought as a result of the thinking skills employed, not just the specific
programming ideas a programmer musi use. For example. rigorous thinking and precise
éxp'réééi'o'ri will dé\?éibﬁ bécause ih'é ccrﬁpuier requires 'prc'g'ramhﬁéré to use such skills.

Increase since programming provides modeils of them. Debuggmg will Improve because It is

central to the Imsractive nature of programming. Self-consclousness and literacy about
problem-soiving processes will be heightened since programming provides a vocabulary for
discussing these piocesses explicitly. In addition, general concepts of procedures, variables,
and hlerarchy will dévelop simply because they are ideas encouraged in programmlng Also.

recognltlon of multlple correct solutions; each with therr own beneflts' instead of a single

way.
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tinn and Fisher (1983) describe powerful Ideas arising from styles of Interaction with the

computer. The computer’s interactive feedback should yleid greater cogritive activity. The
precision required by the Iinterpreter should yleld complete specifications of Ideas. The
consistericy of feedback Is beneficial to the student; there Is no ambigulty and no prejudics.

learning activities encountered in a LOGO environment. They suggest that divergent thinking

should Improve as. a result of students' inventing, constructing, and modifying their own

projects. Since students refiect on their own thinking processes, they shouid make
metacognlitive advances. Considering errors and fixes should increase reflectivity.  As

accelerated. The experlence of giing Spatial commands to the turtle should improve

students’ perspactive-taking ability when giving directions:

In theory, other environments could be equally gcod contexts for learning debugging and

other high-level thinking siiiiiS; The advantage of LOGO over other environments is that It is
a microworld with a limited set of preclsely ¢ecified units which behave In a precisely

specified manner. The LOGO Ianguage provides an external representation at an
appropriate leveli of access for elementary school children. Such a simpiified context may
make debugging more comprehensible than in the “real” world of ill-specified units and

unpredictable behavior: The dream Is that, once learned, thinking skills may be

generalizable beyond the LOGO ~icroworld.

1.2 The nightmare
The transfer studies of LOGO are about as diverse as the interpretations of what powerful
Ideas are avallabie for learning, and the results of these evaluations seem contradictory.

Some researchers claim to demonstrate transfer. some fail to demonstrate transfer. and
others get mixed results even within the same study. Gorman and Bourne (1983) and
Degelman et al. (1986) demonstrate transfer from LOGO to a rule-learning task. Brown and

esteem, anc Internallzed locus of control. Schwartz et al. (1984) report that LOGO students
increase motlvation and cognition scores mote than a control group. They aiso show that

15
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_control group. But Pea (1983) falled to Show tranisfer of planning skills, and McGilly et al.

(1984) found that LOGO students demonstrated no better Skl In procedurallty and

debugging than students who had no LOGO experlence. At the same time, Clements and

Gullo (1984) and Clements (1985) reported that LOGO experlence Improved divergent
thinking, reflectivity, direction giving, and metacognition, but not cognitive development.
Similarly, Garlick (1984) found Improvements In school test scores, but not In spatlal relations

or comblnatorial thinking after LOGO experlence. Mohamed (1985) showed that LOGO

students Improved In spatial ablllty but not quantitative ability, ability to syntheslze, or ana}ytlc

coenltlve style

This sampling does not exhaust the list of LOGO transfer studies (especially since many

unsuccessful studics are undoubtedly not a part of the published or circulated literature);
however, It Is representative enough for the purposes of this dlchsslon Thls se’ctlon wil

attempt to explain the nightmarish results I terms of the basic requiremants for successful
thﬁEtéif The next sectlon wiil then attempt to focus on the real posslblllty for achleving

By definition, transfer requires learning in the initial context and then exposure to a
second context In which the learned knowledge and skills are relevant. The literature on

tOGO transfer effects reports mixed resuits because of variation In the extent to which

these two requlrements are satisfied. In the LOGO domaln, learning and transfer are usually

studled in Isolation, as If they were Independent.  Researchers Interested In detailed

accounts of learning frequently focus on extremely simple; low-level sklils aequired over a

few hours at most (see Roberts, 1984; Cuneo, 1985; and Campbell et al, 1985). Several
researchers have examined the learning of higher leve! skills: for example, Kurland and Pea

(1983) studied children's mental models of recursion. Mawby (1984) evaluated students’
understanding of variables and control structure, and McBride (1985) has begun to analyze

LtOGO programmers developing strategies and knowledge. However, these studies of high-

level skills are not coordinated with studies of transfer, perhaps because they reveal
students’ lack of significant high:level skill acquisition. On the other hand, researchers

interested In LOGO transfer frequently fail to document that students have improved on the

desired skills within the LOGO domain pnor to evaluatmg transfer. Of the ten transfer
studies listed above, only three included assessments of learning (Pea and Kurland, 1983;

MEGiiiy; 1984; and Géfiiéii* iééij' Therefore: transfer of programmlng skill on the other
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first place. Without an understanding of what LOGO students have actually learned (or not
learned, as Is often the case), transfer resuits are difficuit to interpret. Positive resuits may

be due to motivational factors, and negative results may only Indicate that the required
LOGO skills were never learnad.

in addition to neglecting to document learning, moSt researchers studying transfer from
LOGO fall to carefully consider the skills they expect students to learn or the skills required

training. Though there Is considerable varlety In cholce of transfer tests, posiiive transier

resuits in the studies listed above tend to be on tasks involving skiils with figures similar to
those used In LOGO, not high-levei thinking skills. The school tests used In Garlick's (1984)
transfer test involved questions about angles, distances, and similar figures. Clements and
Gullo (1984) used only the figural subtask of the Torrance test of creative thinking and
measured reflectivity using the Matching Famillar Figurés Test. LOGO students oniv
improved more on the spatial part of the Deveioping Cognitive Abilities Test In Mohemed 5
(1985) study. The skill similarity occasionally depends on the particular version of LOGO

used. Skilis necessary for rule-learning tasks may be learned better in TI-LOGO, used by

Gorman and Bourne (1§83); since it offers experience with animated sprites each of which
has many independent attributes Inciuding color, number, heading, speed; and shape.

On the other hand, negative results occur on tasks whose reiation to LOGO experience
has not been specified, as well as usually not being documented. For example, Clements

and Gullo (1984) sought transfer to classification and seriatlon tests of cognitive development

improvement in ability to synthesize and analyze. Neither research group specified what

relevant LOGO skills students had actuaily learned: Pea and Kurland (1983) expected
transfer of planning skills and Garlick (1984) expected transfer of comblnatorial thinking skills.

Both assessed learning of LOGO content and general programming skills, but neither

specified nor assessed learning of the skills which were expected to transfer. McGilly et ai.
(1984) did document Improvements In procedurality and debugging skills prior to assessing
transfer of those skills; however, they falied to specify how the iearned skils were relevant
to the transfer tasks (l.e., Tower of Hanoi for assessing procedurality and Mastermind for

assessing debugging).

In addltion to the problems of not documenting learning and not specifying the skiils to be
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LOGO studies; so their resuits are questionable.: For exampls, In many of the transfer
studies, performance of different treatment groups was compared on a posi-test without
having any pre-test comparison (e.g., Degeiman,1986; Gorman and Bourne,1983; Clements

and Gullo, 1984; and Clements; 1965). Some which did inciude a pre-test comparison did
ot use random assignment and had treatment groups with higher pre-test scores than the
control groups (e.g., Schwartz et al., 1984 and Garlick, 1984). Others had no control group
at all (Gorman and Bourne,1983 and Brown and Rood, 1984). Finally, many of the reported
transfer effects were actually small differences both In terms of the absolute numbers and in
terms of the percentzge improvement. (Schwartz et al. (1984) is the most striking example.)

The focus of this description has been on the principie that studles faliing to demonstrate

transfei from LOGO cannot be offered as negative evidence of the possible cognitivs
consequences of learning programming uniess they first demonstrate that students actualily
learned the potentially transferable skills and then choose a transfer task on which these
particular skills are useful, though there are problems In determining the ievels of usefuiness.

Likewise; studies that successfuly demonstrate transfer cannot be offered as posiive

specifying relevant skills for transfer. The next Sectlon will summarize thelr results and the
guldelines they offer for facliitating transferable learning and choosing appropriate transfer
tasks. These guldelines will be used to design a transfer study of LOGO debugging skills.

learned for transfer to occur and to suggest ways to faclifate learning: Aiso; the transfer
literature has shown that transfer is better to tasks for which the relevance of the learned

skills can be recognized. Most importantly, these researchers are developing ways to decide
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1.3.1. Successful transfer of problerh-solving skilis

Bassok and Holyoak (1988) suggest that many of the transfer fallures can ba attributed to
insufficlent feaming since few researchers provide more than one trial tralning. In faet,
Smith (1986) demonstrated that the provision of muitipie training triais increased lsarning and

transfer scores In a study of transter between Tower of Hanol isomorphs.

However, Bassok and Holyoak (1986) also suggest that overiearning is not sufficient to

produce transter. They view the difficulty of transter as recognizing abstract structural

schemas for problem types Improves transfer since recognition of a novei instance is more
likely. They suggest that the provision of multiple exampies Is cruclal to Induction of
abstract schemas. Gick and Holyoak (1983) showed that transfer could bs enhanced on
Isomorphlc problems by giing solvers a direct hint io apply ithe previoisly used solution io
the new problem and that even greater snhancement resulted from requesting that solvers

which the subsequent physics probilems were more likely to match. -They described the
general schema as production rules with abstract variables that can be readily matched by
components of problems with the same structure. They concluded that training will produce

transfer to structurally identical problems to the extent that the "abstract training in a
problem schema is combined with practice in Solving diverse examples.” Bassok and
Holyoak (1986) aiso claimed that another facilitating factor in the physics and algebra

domains was that students were taught the skills directly.

Kotovsky, Hayes, and Simon (1985) claim that the amount of learning is also related to the

source problem difficuity. The processing load determines how much Information subjects
learn on a first problem that they can then transfer 1o a second problem. They showed

that Increased difficulty on Tower of Hanol isomorphs decreased the amount of transfer.

They atiributed the decrease to a limitation of working memory capacity on the acquisition of

transferable Informatlon.
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Even if abstract learning does take piace in one domain, transfer to & second domain
depends on the relevance of the learned skilis to the new doamin. The original form of this
idea was Thormndlke's (1913) identicai elements theory. He suggested that iearning of one

stimulus response iink would only affect other such links if some of the factors were
identical elements. Kieras and Bovair (1985) represented the elements of related procedures
as produciion ruies and demonstrated that there was more transfer betwesn procedures
when they had more identical ruies. However, identical elements are difficuit to identify and
count. Other studies (mentioned above) Shuw that It is possibie to transfer without identical

general enough, that the relevance of the previousiy learned skills Is appare.it.

Singiey and Anderson (1985) agree that transfer can be predictad by the degrés o
overiap between tasks: They showed that iearning a second text editing system took less
time, fewer keystrokes, and fewer errors despite a higher typing rate than learning the first.
However, they attributed this savings to transfer of the high-ievel goal structure and the
conceptua! mappings between text-editind commands and their actions.

Daibey and Linn's (1984) research demonstrates the appiication of this principle In the

domain of children's programming. They found more transfer to “robot tests” from *Spider
World,” a LOGO-like graphics microworid, than from elther BASIC or Type Atiack. Though
the commands are not identical in Spider World and the robot test, the actions :of the
commands and the goals of the task were quite similar. BASIC and Type Attack did not

have this simiiarity with the robot tests so the lack of transfer In these conditions was not
surprising.

Ail of these studies highlight the need for transfer assessments to be based on detalled
understanding of the skilis learned ir the training phase and required in the transfer phase.
Ciaims have been made that students will learn more transferable skills when their learning
Is abstract and when the memory load is low. These principles were incorporated into the
debug - Instruction provided to the students in the dissertation study to maximize their

potentia or learning transferable skills.
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1.3.2. Reaiizing the dream of transfer from computer programming
problem solving that is consistent with the findings reported above: deveiop a dstailed

performance theory, then address issues of iearning, and finally address Issues of transfer.

Simliarly, Anderson (1987) stresses that his design of Intelligent computer iutors Is based on
the premise that "one needs to have a cognitive process model of the student If one Is
going to be able to effectively tutor the student.” Faliure to base both Instruction and
assessment on a performance theory has led to the distressing mixture of resulis In the
LOGO literature: Researchers in the other problem-soiving domains are attempting to follow
thls agenda and are documenting learnlng and/or transfer. A search for iransfer of skilis
from programming experience must foliow a clear statement of what these skills are and an

Detalled production System analysis of debugging skiiis in the LOGO domain,

Direct Instruction of those skills In two domains (to facliitate abstraction) with

external support to reduce the working memory demands, and
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Anderson et al. (1985) have reported positive results from using a similar approach to design
and asscss the Impact of computer tutors for teaching both Lisp programming and geometry
skills. In contrast, my approach will focus on designing principled instruction to be used by
a human teacher In a typlcal classroom.

The rest of this thesis is organized as follows. Chapter 2 describes a detailed task

analysis to model good debugging skill (in the form of a computer simulation) and
Chapter 3 describes the esxperimental design and the model-based Instruction and
assessment techniques. Chapter 4 details the students' skill level in one LOGO minl-course
and the savings observed when they moved into a second LOGO mini-course: Chapter 5
discusses the transfer of debugging skills from LOGO to non-programming domains. Finally,
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The aib’i;iﬁﬁiifg’ instruction and transfer assessments discussed in this dissertation were
based on a detailed task analysis of LOGO debugging skils: The analysis was intended to

capture, in the form of a concrete model, the decision processes, knowledge; and sub-skilis

necessary for efficiant debugging of LOGO graphics and list rocessing programs with one or
more semantic and/or syntactic bugs.

model students learn in a typical LOGO course: The chapter will conciude In Section 2.4
with a discussion of designing Instruction and assessment In accordance with the modei as

well as predicting transfer from debugging training in the context of LOGO programming.

2.1 A general model R
The assumed debugging situation Is one in which the model has access to the program

plan (the desired outcome), the buggy program, the output that the buggy program
produces, and knowledge about LOGO. In the foliowing anaiysis. we distingulsh between
the discrepancy and the bug. The former refers to the difference between the program pian

and the program output. The latter refers to the erroneous component of the program that
caused the discrepancy. The goal of the debugging process is to detect and correct the
discrepancy-causing bug. For example, if the goal drawing corresponding to Figure ia was

would be described In terms of the difference in size. The bug that caused the
discrepancy wouid be the * 15 in the FD :D * 15 command that draws the stem.

According to the model, there are five phases to the debugging process. The first phase
establishes four subgoals that, when completed, reassert the top goal. The five phases are:

1. Program Evaluation. Run ihe program. Compare the program pian and the

program output. If they do not maich perfectly, then identify the bug; represent

the program, locate the bug; and correct the bug:

22



Transfer of Debugging Skiil 18

2. Bug lIdentification. Generate a description of the discrepancy between the

program pian and the program output. Based on the discrepancy dascrlptlon.

Where muitiple possibliities exist, do further discrepancy description and bug

proposal. When only one possibility remains, examine the program output to

identify the specific bug.

e In its purest form, the discrepancy description makes rio reference to the
fact that the fauity output Is program-generatsd. That IS, the discrapancies
are characterized entirely in terms of their static faatur033 Tabie 1 iists

the most common types of discrepancy encountered when debugging LOGO

graphics and list-processing programs. The quotations presented in the

second column are representative comments from children in this study

about the type of discrepancy shown In the ﬂrst column, Nota that one

possible cutcOme cf the bug Identmcatlon step Is knowlng that the pian

However, in the case of syntax errors, the error message always provides a
description of the discrepancy for the user (though the user may ignore It).

Glven the description of the discrepancy, the model makes Inferences about

which specific program components are capable of generating that type of

discrepancy. _ The third column In Table 1 suggests some of the possibie

mappings. For example; If the discrepancy Is spread; then it is likely to

be caused by turning the wrong angle or moving the wrong distance. In

addition to proposing these general types of programming errors, the modei

has a set of rules which propose further _discrepancy dascrlptlon to

discriminate between muitipie possibiiities. When only one possibility

remains; the modei examines the program output to detérmlnc thé ‘specific

bi:g The model maV need to cycle through discrepancy déscrlptlon and

bug proposal several times before a specific program command is identified
as the bug (see the fourth column in Table 1). However, the resuit of this

c0mplex processing Is .a narrower search for the bug (e.g.; "right here - it
shouldn't be left 90 - It should be right 90 | think”).

3. Program Representation. Represent the structure of the program to Investigate
the probable location of the buggy command in the program listing.

o Knowledge of the program's structure may be the result of having written

the program or of assuming that programs for certain types of plans will

be structured in characteristic ways: For example. the model may be

given knowledge that the program has a repeat structure because the user

wrote the program or because the user observes that a plcture is

composed of several Identical figures (typically programmed using a

REPEAT statement). Knowing that the bug is located within a REPEAT

3Il is possible that dlscrepuncy descrnplvons mlght mclude tempora! lnlormallon, because in our procedure, the

child walches as the program's output is dynamically generated. On the computer we used; Figure 1a would

take about § seconds to draw: Also, for list-processing outpul. the temporal order cf different portions of the

output is preserved by the listing on the screen.
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statement narrows the search in the program llstlng In the case of syntax

errors; the error message gives the user information about which procedure

contains the bug:

4. Bug Location. Using the cues gathered In the last two phases, examine ihe

program In order to locate the alleged bug.

s The efficiency of thes bug location process depends on the outcome of the
bug Identification and program representation processes. At best, the

model searches for a perfectly specified bug (both the buggy command

and its argumems are specified) in a highly constrained set of possibie bug

locations. At worst, the model must perform a step-by-step examination of

the program because it has no knowledge of the bug's identity and no
cues about its location.

5. é’u’é édrrebtidﬁ Examine the program plan 7to determine the approprlate

correction. Replace the bug with the correction In tne program Ilstlng and then
reevaluate the program.

e THIS reevalutation is siightly different from the inlitai test in that the model

knows a change has just been mado. It first dstermines whether the

correction fixed the original problem. it the correction worked, the model

wiii determine whether there are any more bugs to fix;. mherwlse it wii

debug the correction before proceed!ig: e

insert Table 1 about here

In order to speclty the model unambiguously and to demonstrate iis sufficiency for
debigging LOGO programs, It was Implementzd in GRAPES, a goal-restricted production

system (Sauers and Farrell, 1§§é; The GF‘!APES model consists of a set of rules, called
productions; which specify the actlon to be tiken if certain conditions exist. The conditions
include the goal the modei is irying to achieve and the information currently avallable in

working memory (the set of known facts). A production is selected and executed oniy when

the apprornriate conditions exist: thus the current state oi the environment determines which

actions will be performed. The actions include updating or adding to both working memory
and goal memory: |

in the LOGO context. The model's goals represem the stéps in the debugglng process; the
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debugging; and the operators it Invokes represent sub-skiiis which are essentlal but not

centrel to the debquing process (eg ediiiﬁﬁ iﬁiiiij The follcwing sectlcma will desciibe

demonstrations of how the goals, heuristics, and operators work together to debug faulty

LOGO programs.

2.2.1. Goals direct the solution
The debugging model's goal structure corresponds to the five phases described in the
aeaaia’w’— A ﬁééi ir'éé ié éﬁéwﬁ In Figure 5 The syste:n has a set of biedUétléﬁi for éaéﬁ

different situations. The “situations” are represented by the current contents of the system’s
working memory.  Productions with test and evaluate goais Start the system and evaluate
the success of each debugglng attempt (l.e., the match between the program plan and the
program output). The describe and Tropose goals correspond to the bug Identification

phase; they satlsfy the productlons that describe the discrepancy between the program pian

and the program's buggy output and that propose possiblie buaa and ways to dlscrlmlnate

among them. Represent and specify correspond to the : bregm “rapresentation phase;
preductlens with these goals look for structurai cues to the bugs Ioclllon 8o that find,

bugs Identlty and locatlon. Finally, the change and repiace goals correspond to the b”ua

correction phase; they flre productions that ldentify ithe appropriate correction and change

the program ilsting accordingly. The full production system Is presented In Appendlx I

Insert Figure 3 about here

2.2.2. Heurlstics narrow the search

set for representlng the location of the bug in the program: Using both sets of heuristics
narrows the search for the bug éubetahtiaiiy Héurigaicg te'r idéntityiﬁg the bug éeii'eébeiid

These heuristics are most useful when there is more than one type of bug which can lead

to a particular type of discrepancy. In this case the heuristic Includes Information for

distingulshing between them. For example; if the discrepancy has been initially Identlfled as

spread, then the model will request information about orieniation because it has the
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. knowledge that discrepancies descrived as both spread and orientation must have been -
caused by an angle bug whereas those descrived only as spread discrepancies must have
been caused by a distance bug:

Heuristics for locating the bug Involve knowledge of program structuré@ types.  For

example; if the program is identified as having subprogram structure, the model would ask
for information about which subprogram was likely to contain the error and it wouid confine
its search to that subprogram unless no bug could be located there. If no subprogram cue

is avaliable, the modei will seek other structural cues, such as location within a REPEAT or
IF statement or location after a particular command. For exampie; If the user can identify

a correct command which was executed before the bug occurred, the model will use that
command as a marker and begin its search afier that command:

2.2.3. Operators process information and produce behavior
According to our model, the debugging process uses 11 operators, or sub-skills; to
process Information avallable to the system. These operators are:;caled allsd by productions

when It Is necessary to process Information from one or more source® or ta take specific

memory element. Operators may also add Information to working memory.

There are two classes of operators: a) those that correspond to inspection of the buggy

environment. The latter set of operators are automatically executed by the modei, but the

former set are not. Instead, their operation is simulated by the user of the system.

Essentlaliy, the user compares the buggy output and the program plan for the system,

inputting judgments of whether a program did what it shouid have. estimating angles and

A brief description of each operator follows. Working memory elements are presented in
parentheses and ltalics are used for variables represeniing the system user's input. For

instantiated as (discrepancy orientation yes).
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The MATCH operator is caiied to process information from the program plan and
the program output and Inpiut it judgment about thie match between ihe two.
The system questions ths user, "Did the outcome match the plan?,” or "DId the
simulation match the plan?," and expects a yes or no response. A yes
response causes the eisment (match yes) to enter working memory; ilkewise, a

no response yleids the element (match no). If a command has just been

changed, the system's query Is, "Did the correction fix the probiem?” and the

resuiting working memory eiement Is (fix yes) or (fix no).

CONTRAST is a discrepancy-description operator that processes Information from
the program plan and the program output. The system first asks about the type
of discrepancy (graphics or lists, ssmantics or Syntax). Then It asks a more

focused question about the panlculer discrepancy and gives a list of possibilities.
For sxampie, the system asks, "What IS the discrepancy between the plan and
outcome?” and requests one of the following answers: orlentation; size; spread;
focation, extent, or ? for graphic semantic discrepancles. A working memory

element of the form (dlscrepancy response yes) Is then added to working

not. If a worklng memory element such as (description must be about size)

exists, then the system's query Is; "Is size discrepant?” A yes or no response

Is. expected and the resuiting working memory element is of the form
(discrepancy size response).

bug using LOGO knowledge to gulde the processing ot hbmmlun from the

program outcome. The system asks the user a question sueh as”What is the

discrepant angle on the outcome?” and labeis the user's reﬂiiﬁ: i‘lhe bug,

(the bug couid be (RT (120))) for exampie.

INTEFIPFIET Is a blli Iocatuen operator which simulates the effect ol‘ me current

command using LOGO knowledge. The system reminds the user of the function
of a command, then asks whether that was the appropriate command to use;
then asks whether each of the arguments is correct. These questions are caiis
to the MATCH operator described above.

GENERATE is a bug correction operator which uses LOGO knowiedge to

determine what command wbbic! be necessary to accomplvsh the desired effect.

“What command should be Inserted" " and creates a new worklng memory

element from the user's response, (the correction is (RT 90)) for example.

The other six operators, basically editing operatcrs. are assoclated with physical

dctlon In the LOGO environment. The model automaticaily carrles out these

operations on Its representation of the LOGO environment. while notifing the user

that It Is doing so. These operators include RUNning the program, ENTERIng

the editor to view the program listing, SKIPping to a particular location in the

program listing; READing a command. DELETing a command. and INSERTing a

command:

N
~J
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2.2:4. Modeling solution strategies

The model's solution to a debugging problem deperids on the amount of Information

gathered about the debugging situation to guide the search for the bug and the accuracy of

the Input resulting from the user-simulated operators. in ihis section. we contrast two
debugging examples with differsnt amounts of knowledge. The more knowledge Input to the
model, the narrower the search for the bug. Appendix Il provides additional examples to

show how the model recovers from belng given Incorréct input and to demonstrate its

flexibliity In dealing with a wide variety of debugging situations.

dissertation study. The desired outcome was for LOGO to draw a corn fisid (Figure 3a).
The program’s outcome was, however, discrepant from the plan (Figure 4b) because there
was a bug in the program. The relevant portion of the test program Is shown In Figure 4c.
The two traces discussed In this section (Tables 2 and 3) difer in the amount of
information about the bug's Identity and location. The goal numbers In the discusslon refer

to these traces.

Insert Figure 4 about here

In the first trace (Table 2), we simulate a situatior in which the debugger Is a very

knowledgeable iiser. The model is provided with a iot of information about both the
discrepancy and the program. The information, provided In response to the operators; Is
marked by --> on the right-hand side of the trace. Here the user ciassifies the problem as

"wrongpart” (goal-6) since the outcome has four ears of corn instead of four stalks. The
model then proposes that the wrong subprogram has been called (goal-7). It asks the user
the name of the wrong subprogram. The user respords ihat it Is calied CORN. This

(goals 8-9) since there are four identical figures. Knowing that the bug Is In a REPEAT
statement plus that it is probably a wrong subprogram call to CORN aliows the model to
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find the bug directly (goal4). The model asks the user whether CORN shouid be changed,
deleted, or have another command Inserted before It (goal-5). The user Indlcates that a

change Is necessary so the model requests the user to input the correction (goal11). 1t

makes the correction and theén Instructs ihe user to rerun ihe program to check the
correction (goals 12-14). The correction IS accuraté $o the iﬁddél asks whether there are

any more problems (EBEHB); Slnca there are not. debugglng is complete. Figure 5 shows

Insert Table 2 about here

Insert Figure 5 about here

The second trace, In Table 3, Illustrates the model's behavior when the user Kknows
nothing about the discrepancy between the plan and ths outcome and nothing about the
structure of the program. The user runs the program and knows that a discrepancy exisis
(top-goal). When asked about the type of discrepancy, the user Rnow& ihat it 1s a graphlcs
probiem without an error message (goal-2). The user reennmarn thv-mclﬂc type of
graphics discrepancy with a ? so the model cannot propose thc hugq ldc!lllly 19&:67)
When asked about the programs structure. the user again answers with &7 so the modet -

command, the model defines the command and asks the user whether it was the
appropriate command to use. Then it asks the user to check each argument. The first
command in the REPEAT statement is then determined by the user 1o be the bug (goal-29).
The model asks whether a change. a deletion. or an insertion would be appropriate and the
user decides to make a change (goal-5). The model requests a correction which, onicé it is
Input by the user, will be sudstituted into the program listing in the place of the bug (goals
30-31): Finally, the model directs the user to rerun the program to be sure the correction
was accurate (goals 32-33). Since it was and no other discrepancies existed (goals 34-35).

the debiigging episode was complete.

insert Table 3 about here
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Figure 8 compares schematlc versions of the gcal trees for the two traces. The contrasts
between the modei's behavior in the high- and low-Information situations are striking: the

former requlred only 17 productloﬁ iiiiﬁﬁi, while the latter required 52. With reebeci 10 the

is compietely specified and its location is known. The system's goais and heuristics wers
used efficiently to narrow the search for the bug. In the low-Information sltuation; littie use
is made of the describe, propose, represent, and specify goals so none of the heuristics for

narrowing the debugger's search are used and debugging proceeds by brute force, one
command at a time. Most of the extra production flrlngs and sub-eoals result from this

serial search.

For the purpose of this simulation, we chose an example where the bug was ciose to the

beglnning of the program and assumed that the interpret operator correctly identifled the
bug. If this had not been the case, the difference between the twa traces would have

been even more striking because longer and/or repeated debugglnq cyctu'uuutd have been

necessary. Interested readers should peruse the traces In Aﬁiniﬁ’ ll to get & ‘mor gl obal

picture of how the modei works:

2.3 Students’ limited debugging skills

A pilot study (Carver and Kiahr, 1986) used the formal task analysis of debugging as a

context for assessing how much of the debugging skill specified by the modei chiidren
actually learn in a guided discovery LOGO graphics environment. A guided discovery

envlronmem i one In which the instructor introduces new LOGO concepts and may give
project ideas for trylng them, but then the students are free to create projects of their own
choice. The course was designed to assess the acquisition of both debugging skills, the
model's goals, ‘ieuristics, and debugging operaiors (MATCH, CONTRAST. and EXAMINE).
and ééﬁveniieﬁe~i LOGO subzskiiig ({he 'rﬁbdei;é géhérai operators). Uebiiébiﬁg skilis were

problem With tne output of severai programs and then asking them to view and debug the
programs. Ws assessed the other operators assumed by the model ai ihree times aiso:
The ability to INTERPRET commands to predict the behavior they would cause was

30



Transter of Debugging Skill 24

assessed using & paper and pencll task; students were ghen programs and asked to draw
their outcomes. We used a turtile target game to assess students’ abllity to GENERATE
commands to cause specific behavior: Students had to give the turll® one turn command
and one move command to make It reach a target. The ability to maneuver within the
LOGO programming environment (RUN; ENTER, SKIP, READ, DELETE; and INSERT) was
tested using a program editing task; students were given a hard-copy of a program with

thanges marked on it and they were asked to do the editing.

Nire chlidren (5 females and 4 males) ranglng in age from 7:1 to 8:9 particlpated in the
stady.: They were recruited from the communities surrounding Carnegle-Melion University by
advertising a freé LOGO course. None of the children knew any computér programming

programmed Instruction. Eight of the subjects came in pairs and one came Individually to
12 two:-hour LOGO classes over a three week perlod during the summer. All lessons were
taught by a 24-year-old experimenter who was an experlenced LOGO Instructor. The
Instruction used an APPLE°lle computer with Terrapin LOGO. Skiis In command

Interpretation, command generation, maneuvering within the LOGO environment, and
debugglng were tested three times during the course.

After 24 hours of LOGO experience; which is as much or more experlence than wa
provided In 9 of the 10 studies mentioned in Chapter 1 (Clements; 1985), our subjects had

model with which the children had difficulty. In the test phase. chiidren were able to

MATCH the goal drawing and the program output to determine whether or not they were the
same. However, they may have found debugging tedious because. according to our model:
they lacked knowledge of the discrepancy-bug mappings and heuristics for locating the bug

In the program listing. When forced o comment on the nature of the problem, they

EXAMINE operator. In addition to this restriction on debugging, the children had few cues
to represent the program (since they had not writien it). Even when clues had been
mentioned, they were seldom used to narrow the search for the bug, so children had to

find and change the bug using step-by-step examination of the program. Despite good
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skills in maneuvering within the LOGO environment (RUN, ENTER, SKIP, etc); the seriai

commands. However, children were generaily good at GENERATIng the command to correct
the bug once it had been located. Though the chiidren In Carver and Kiah's pilot study
did learn some LOGO skilis, they did not iearn the goal structure, the heuristics, or the key
operators that the model uses for effective debugging. Aiso, In their own debugging, they
tended to skip the phases before looking at the program so ihey were usually ieft to serial

search when they debugged at ali;

The debugging model assumes that the child has already made the decision to debug a
program, rather than to Simply abai:don it and start over: However; Carver ii\’di Kiahr's
(1986) pllot study as well as many educators' Informal observation (Papert, 1980) Is that
children prefer to restart rather than to debug: We beiieve that in most cases chiidren

acquire this skil: a) Debugging Is a complex skil; b) it requlres extra memory capacity;

and c) It Is rarely taught directly. Below, we elaborate each of these stumbiing biocks in

reiation to the model and to the relevant literature.

‘s
e
1)

2.3.1. Debugging is a complex skl s

operators necessary to describe our modei: The bug identification and - bug: lecation
productions represent a minimal set of heuristics for finding bugs; without these search
shortcuts; the model’s debugging is laborious. Well-developed operators are essentlal for
accurately comparing the actual output with the goal output and for Interacting with the
LOGO system; without such operators, the model makes freguent errors and requires many
cycles to correctly debug a program.

Research on aduit programming skills has shown similar difffcultles among novices.
Studies with adults have shown that novice programmers fail to use the goal structure of a

program as an ald to bug isolation. For example: Jeffries’ (1982) study of expert and

representation of programs. (She aiso found that experts had accummulated a set of
famillar patterns that they used to relate flaws in the output to potentiai bugs: Our modsi
represents such knowledge in the propose productions.) Spohrer. Soloway, and Pope (1985)
make the interesting suggestion that faliure 1o maintain the appropriate goal hierarchy {"goal
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lacked useful heuristics for Seeking cues from faulty output which could narrow their search
for the bug.

programs: Rather, the experts who used a brute force strategy ("systematic,” in Littman's
terms) succeeded more often than those using the as-needed strategy. The success of the

programming skiif typically reached by children, which is perhaps why-twy.do poorly. For
example, in Pea’s (1983) study, children were able to debug syntax errors-effectively but

were not able to Iocate semantic bugs such as misordered commands. Part of their

knowledge about the goal Structure of the buggy program (in addition to a last-resort brute
force strategy). If the responses to the represent operators Indicate that the program Has
a specific structure and that the bug appears fo be iocal to a particular component of that
structure, then the model immediatély consirains iis search to that iocation:

2.3.2. Debugging skills require extra capacity
Development and use of debugging skills requires memory capacity sufficient to keep track
of available cues. Even though most of the productions in our model requiré only two or

33



Transfer of Debugging Skiil 27

leaves them little capacity to learn about the debugging process itself. According to
Kotovsky et al. (1985), this minimal available capacity would result in minimal_ iearning and

therefore mlnlmll tranafer Anderson and Jeffries (1985) 3ugg’§§t that mény of the errors

Chiidren may be even more susceptlbla to this dlmcmty.

in fact, Pea and Kurland (1984) suggest a a muiti-stage characterization of the acquisition

of programmlng skills that emphaslzes the capacity issue. The beginner is simply a "code

generator” who focuses on Individuai commands rather than deveioping a structured

program. Niid the student beglns to think In terms of higher ieveli units, becoming a
"program generator” who can create and debug complex programs. Finally, the student
becomes sufficiently familiar with the language that he can distance himseif from the coding

processes to consider the general problem-solving aspects of programming such as
elegance, efficlency, and optimization: he has become a “software deveioper.” Only at this
level can he deal with high-level thinking skills to the extent that transfer would be possibie.
Much evidence §6666§i§ that even éiiéE 20 ié 56 hburs 6i iﬁQi?UCti’dﬁ most ciiiidiaﬁ ars

they are stili struggling to acquire the basic LOGO operators. 'ﬂia" Wﬂéé} showed

that even a small sample of LOGO teachers failed to debug compiex LOGO programs.

Focusing on the complexity of debugging and the need for extra capacity to learn It has
shaped the agenda for research on novice programming. Most researchers study novice
difficuities so that Instruction can be imprcved and students can reach the high-level skiiis
more  quickly: Mayer (1981) viewed the novice's problem as one of concept
meaninglessness, so he studied techniques for making computer concepts more meaningful.
Also; Spohrer and Soloway (1986) have been devsloping a process model of novice bug

generatlon. Pea and Kurland (1983), McBride (1985). and Mawby (1981) have élréédy been

mentioned as examples of research on children's poor understanding of high-ievei
programming concepts. The focus of our model has been on identifying good straiegies so

that the goals for instruction and assessment will be ciear.

MY
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2.3:3. Debugging is not directly taught

Although debugging Is a complex cognitive skli whose acquisition requlres substantial
cognitive capacity, it may not be difficult to féiiﬁ; The important question of whether or not
children can be directly taught to debug programs Is completely ocpen because debugging is
raroly an explicit part of a LOGO curriculum. That is, aithough chlidren In a typical LOGO

course may get exposed to debugging in the process of getting their programs to work,
they do not get expllclt lnstructlon in detectlng dlscrepancles; Inferrlng error sources from

discrepancy descriptions, and so on.

Gugerty and Oison (1986) reported that in a debugging situation expert programmers are
beitsr able to comprehend code and generate high quallty hypotheses about possible bugs
than are novices. They suggest that these skills must develop as a resuit of experience
since debugging requires tremendous knowledge. They imply that being a good programmer
is a prerequlsite for belng a good debugger.

However; Kessier (1986) has shown that It Is possibie for LISP. sthdenu to learn to dabug

simple functions before havlng experlence wrltlng them. It may W’W then; 1o teach
good debugging skills to novice programmers so that the frequent bugrﬂﬁ make wili not
be sicti a stumbllng block to thelr learning process.

2.4 Applications of the model
By doing a detalled task analysis of debugging skills, we have been rtle to specify the
component processes, heurlstics, and sub-skills that programmers must learn In order to

'déb’ii’g’ well. We bave also established that students do not learn the central components of
the model spontaneously. Similar difficulties with debugging have also been demonsiraied in

the adult programming literature.  The usefulness of the model does not end with
characterizing diMiculties, however. Our performance theory can be used as the basis for
designing curriculum to teach components of the debugging model as well as for designing
transfer tests and measures on which acquisition of the model's skills will be demonstrated.

2.4.1. Desligning Instruction
The objective of debugging instruction is to train students to use the model's debugging

procedure. especlally the initial phases where cues to the bug's identity and the program
structure are gathered to narrow the search for the bug The- model's goal structure could
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be introduced as a step-by-step procedure, after a littie rewording for elsmentary students.

Simllarly, students could be taught to ask themseives the same questions the modei asks

the user. The specific heuristics the model uses to map discrepancles onto lkely bugs and

to focus search on particular parts of the program could be taught to students directly.

Such Instruction would decompose the complex debugging task Into simple steps

comprehensible by novice programmers.

In addition to teaching the content of the rnodel, Instruction must take the students’
memofy capacity Into account. Providing memory alds such as posters with commands,
debueglng steps, and discrepancy-bug mappings would help to reduce the memory load to a

be able to use them In other contexts In which they are récognizably approprlete* Students

who learn debugging In the context of a LOGO graphics course would be likely to recognlze

LOGO Ilst-processlne as a domaln where thelr debugging skiils wouut t. useful, and vice
versa. Our model shows that the goal structure Is Identical for debugglﬂg graphlcs and list-
p’i"o'i:ésslng programs; as are several of the discrepancy-bug mappings (wrongpen, eitrepé’rt.
missingpart, howto, whatto, and novalue In our model) and the program structure cues: in
addition; the sub-skills required by the debugging process are simllar = these two LOGO

domalns.

More generally; the aésaaaiﬁa skills students learn in the context of LOGO programming

could be recognlzably useful in non-programming tasks; particularly those requiring extensive
search. In a non-programming domain, the sub-skills and specific dlscrepancy-bug mapping3

are not likely to be similar to those used in programming. However, the flve pnase goal
structure would be simllar to other Jebugging situations as iong as the desired outcome.

buggy directions; and buggy outcome are available to the solver. Also, if the buggy
directions are structured in ways simiiar to LOGO programs. :hen the program structure cues

should also be similar. The transfer tests used for the research discussed in this

dissertation were designed with these criteria for similarity in mind.

The measures used to assess debugging skill were aisc based on the model. When

using the model, greater knowledge input results in narrower search (féWéi goals);

LW
(opl



Transfer of Debugging Skiil a0

Developing accuracy In debugging should therefore resuit in fewer debugging cycies neaded

to locate and correct bugs. These moasures of speed and efficiancy, along WIth Some

The detaiis of the model-based instruction and assessment will be described In Chapter 3.
The primary goal of the Investigation was t0 assess the exient to which students trained to
debug one typs of LOGO programs could transfer their skills to a second type of LOGO

programs and to debugging of non-computer directions.



Transfer of Debugging Skill 3i

The formal task analysis of LOGO debugging skills presented In Chéﬁiafr 2 provides a
basis for detailed instruction and assessment of those skills. This experiment was designed

to address several issues. The firsi goal was to discover whether students can learn the
debugging skills used by the model when those skills are taught dli’iéily The second goai

was to demonstrate that debugging skilis, once learned, are transferabie to tasks requlrlng
similar skills. These Issues were addressed In the coniexi of a 50 hour tOGO graphics and

list-processing course taught to 22 8- to 11.year-old children In a Montessorl school over a 6
month perlod This chapter will discuss the experimentai deslgn; the relevant methodologlcal

issues; the instructional techriiques, and finally the assessment technigues.

3.1 A combination of transfer designs

The design of this study Is a combination of two common transfer designs. A savings

'désig’ri was used to assess ihe learning of programming, debugging, and editing skiils in
one LOGO mini-course (graphics or list-processing) and the tririsﬁ' of those skills to the
other minl-course. A pre-test/post-test design was used to assess tm mmr of debugging
skill learned in a LOGO environment to non-computer debugginq ta&t.

3.1.1. A pre-tesi/post-test design

A typical pre-test/post-test deslgn includes a within- subgects compaﬂiut ol performance

before and afier some treatment and a between-subjects comparison of one or more
treatment groups with a control group. (See Figure 7a) This type of design Is useful

when several versions of the target test are available so that versions can be

counterbalanced with test time. Researchers using this design to Investigate transfer
generally try to show that the treatment group's performance on the target task changed
while the control group's did not: they would then attribute the differentia! change to transfer

from the source db"rh’iéh’ Fvgure 7b shows the prndicted results for a case in which

correct responses; the graph could be turned upside down to show the effect for cases in

which improvement yields a decrease in the measure (e.g.. solution time). All of the LOGO
transfer studies described in Chapter 1 basically have this design, though some (Daibey and
Linn, 1984; Gorman and Bourne. iééé Bégéimaﬁ iééé érawri and ﬁaaa 1984; Clements
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insert Figure 7 about here

.

This study Includes a within-subjects pre-test/post-test comparison of performance on a
non-computer debugging task: (See Figure 7c.) A mid-test was also Inciuded to monltor
transfer between mini-courses. At each of the three test times; each student took thres
types of tests (1, 2, and 3 In Figure 7c), all of which Involved debugging a written set of

instructions about how to achieve a well-specified goal. There were three versions of each
type of test so that the tests could be counterbalanced with test time. In other words, one-
third of the students took each version at each test time (a, b, of ¢ In Figure 7). The

hypothesis was that students’ ability to debug these non-computer tasks will improve as a
result of learning debugging in LOGO.

Several types of control groups could have been used In this study; however, no control
group was Included for the following reasons. One alternative hypothesls Is that students
would Improve on the post-test purely as a result of their natural development over the time
span of the LOGO course. The control for the effect of matwrstion. I8 bullt into the
treaimen: group since the age range of the students is 3 years whiles the-span of the study
Is only 6 months. In other words, If deve'opmental change over the 6-'month-study caused

Insert Figure 8 about here

Another alternative hypothesis is that the improvement on the post-test is due merely to
learning how to do that type of test. This hypothesis can be tested without a con.rol group

next should te constant. However, a pure transfer effect would yleld improvemenis only
between sessions (between tests 3 and 4 and between tests 6 and 7).

Having a control group with students in an identical LOGO course without the debugging
instruction would be appropriate for showing that the instriction is necessary for learning 10

occur and that without learning no iransfer occurs. Such a group was not Included In this
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LOGO graphics course did not learn effective debugelng sklils without Instruction; therefors,
no transfer couid be expected. Unfortunately, tha transfer tests were not used In the piliot

study 80 the tie between ihe lack of learning and the lack of transfer cannot be shown
dlrectly However, some suggestlve avidence from this siudy and several concursent studies

wiil be discussed in Chapter 7.

3.1.2. A savings design

A savlngs design iv Usofm for test!ng transfer to target domains where muiltipie versions of

simplest case; the design Invoives a between-sub]ects comparlson of two groups. One
group does task A and then task B; the other group does the two tasks in the reverse
order. (See Figure 9a.) Transfer Is then measured as the savings the group doing each

task second experienced, compared to the group doing that task first, as a resuit of
experlence with the other task. For measurés such as time or the number of errors;
savings would be reflected by a decrease in the performance riiéaéuré For example, in

Figure 9b, better porformance of group 1 than group 2 on task B muld; be attributed to :

transfer from task A: Better performancs of group 2 thar group - ¥ urw A would be k

lL, -~

attributed to transfer from task B. For other performance measures, such as accuracy . or tﬂi‘

amount accompilshed savings actually ylelds an Increaso In the pen‘orﬁénéé ﬁeasuro Also.

dlfflculty of the tasks and the expected amount of transfer. In some cases, there may be

more asymmetry than is depicted here. This design has not been used In the LOGO
literature so far but has bean used frequently in other transfer stud'es: for Instarice, Smiith

(1986) showed savings of total time for solving Tower of Hanol isomorphs; and Singiey and

Andersoi; (1985) reported savings of total time, number of Reystrokes. residual errors, and

seconds per keystroke for learning a second text-editing system.

Insert Figure 9 about here

In this study, there were two groups of subjects. Boih groups received the same LOGO

Iﬁisii'ijéiiéﬁ Includlng expllcn instruction in aabugging However, one g'i'bijb bégah Wlih

courses In the reverse order. (See anure 9c.) Performance on programming, debugging.
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and editing (a, b, and ¢ In Figure 9¢) was measured at three times during each mini-courss
(1, 2, and 3 for graphics and 4, S, and 6 for list-orocessing In Figure 9¢). so.students took

a total of 6 programming, 6 debugging, and 6 editing tests. Tests wers not

counterbalanced with test time since they corresponded to the concepts being learned at
that parlod in the course. Better performanca on graphlcs tests by students taklng graphics
second than by studonts taking graphics first can be attributed to transfer from thelr list-
processing mini-course. Likewise; better performance on Iist-processing tests by students
taking that second than by students taking It first can be attributed to transfer from their

graphics mini-course;

Fiﬁii?i 56 shows the ESFnBiBé& aééiﬁﬁ' Students took one véréibri oi éach iy’p'é 'o'i ti-é’riéfér

and after the sacond minl-course ended. Performance at the three test tlmas wlll be

compared to show whether the debugging skiiis students learn from the LOGO courses
transfer to debugging non-computer directlons. All of the students received the same LOGO

treatment Inciuding explicit Instruction in debugging; however, studsnts took the two mini-

courses In different orders. Durlng each mini-course; leamlnmi programming, debugging,
and editing skills was monitored at three times. Performance of the::I¥:groups on the

same tests could then be compared to show whether the sm tramfend.hwrm rinl-
course to the other and whether this transfer was equal or asvmmetrk.

Insert Figure 10 about here

The following sections will describe various parts of this design in more detail: subjects:
instructional methods and curriculum, data collection issues. and cssessrnent procedures and

materilals:

3.2 The classroom and the classes

The LOGO minl-courses were taught at the Montessori Center Academy in Glenshaw,

Pennsylvanla durlng the 1985-1986 school year. The experimenter, who was already an
experlenced LOGO teacher, served as the instructor. The school had 3 compuiers prlor to

the experiment (one in each of the elementary classrooms and one used by the

headmistress), but there was no compuier instraciion in the curriculum: In fact; the

computers were used only rarely, and then for programmed instruction and computer games.
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All instruction took place in a dedicated computer room. The classroom had two Appie iic

computers with ﬁb’i:iii LOGO il. Students came to computer ciasses in six groups of four

and worked In pairs. Groups were asslgned by the students’ ragular teacher; she was given
only the specification that the groups should be as mixed as possible (boys and gliris;

younger and older students) so that any differences between the groups would be
attributable to the treatment -rather than the age or sex distribution. Three of the groups

took the graphics minl-course first and then the list:processing mini-course; the other three
groups did the reverse. Each group had two one-hour LOGO cilasses per week for 25
weeks.

Al of the 3rd - 6th grade children at the Montessori Center Academy participated in the

experiment. 4 Twenty-two chiidren (8 femaies and 14 maléé) ranglng i age from 8;2 to 11,8

successfully completed both LOGO minl-courses. Two of the original 24 chiidren did not

complete the course; one student left the school and one moved down to 2nd grade. They

were replaced by two other chiidren who moved up from 2nd grade, hawavor, the data from

these four students are not Inciuded In the analysis. Tabie 4 iists the subjects, their ages,

their grades In school, their standardized achievement scores, wl'neumr lhoy had a computer
at home, and whether they took graphics or list- processlng ﬂrst Grmﬁ ssok graphics first
and then list-processing; Group B took the minl-courses in the maﬂﬁ"’ﬂb m::-‘:
for each group show that Group A Is slightly younger than Group B but nrformed ‘better on-

the standardized tests.

3.3 Instruction techniques
Instruction consisted of 2 LOGO minl-courses, one to teach graphics and one to teach iist-
processing. Students received 50 hours of Instruction. The first minl-course was 27 hours

and the second was 23 hours; the difference was due to the absence of Introductory

computer famillarization and faster progress during second minl-course. In addition to
lessons about the programming language. students also received lessons designed to teach

the model's debugging skills directly. These iessons involved specific instruction about the

modei's goal structure, discrepancy-bug mappings, and location clues.

The Montessori philosophy emphasizes muiti-level classiooms: at this particular school the 3rd Gth grades

were combined intc a class with one teacher.

Y23y
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course. Each subiect took a totai of 6 serles of tests. in addition, each sub}éct was gkan

wages).

3.3.1. LOGO skills

Tables 5 and 6 show the sequence of instruction and LOGO skiil tests for graphics and
llst-processlng. The exact tlmlng of the lessons varled since the second mini-course was

éﬁéﬂif-i ﬁéﬁﬁif; tho order was consistent. Spaces In the second ’rﬁi’rii?c’dtii-si i:’b’ﬁi”m”ri

permitted.

Insert Table 5 about here

The graphics minl-course began with an Introduction to Interacﬁwua of OGO with the

basic 66665685 i6 move and turn the turtie, manlpulata the tuvni's pon atc. Studems

for making regular shapes and curves. In the 14th hour (11th for the second group),

students were Introduced to local varlables. During lesson 21 (16 for group B), students

were taught how to write recursive procedures and use conditional Stop Statements.

Insert Table 6 about here

The list-processing mini-course also begar with an introduction to the Interactive use of the

basic command, the PRINT statement. Students learned the distinction between words and

lists and the punctuation necessary for each. This introductory materlal was followed by

instruction in writing and édm’ng prograins. Durmg lesson 3 (1 for the second group)
students were Introduced to the MAKIZ command for setting global varlables and to
conditional equality statements. In the 14th hour (12th in the second mini-course), students

were Introduced to recursion, the FIRST and BUTFIRST commands. conditional stop
statements; and counters. [During lesson 21 (16 for group A). students were taught about

generating random numbers and choosing random items from a word or iist.
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All |essons were taught in a guided discovery manner and Included time for selt-lnltlated
pro]ects. The Intsrvention of the teacher in the students’ work was kept to a minimum, but
new commands and Ideas were Introduced In a strictured way and beginning activities for
using them were Initiated by the teacher. Since the memory load of early programming Is

h’iﬁri rirriiﬁaars o’t iii édirirﬁérids and concepts were posted on a large bulletin board which

caiculating relative angles and a coordinate chart was provided to ald In position and
distance estimation. To further decrease the difficulty of graphice programming, students
were taught computation heuristics such as angle addition and the use of symmetry.

in addition to the LOGO content in the mlnl-courses. students were strongly encouraged to
use subprogram structure in thelr programs. Subprograms were Introduced In iesson & (4

for the second group). betore the first skm test sequence An entlre lesson on the benefits

3.3.2. bebugging skills
The "cognitive objective” (Greeno, 1973) of the debugging curriculum was to get students
to 5aauifa the §aaa ﬁoéi éiructure as the rﬁodei We rio'p'ed to train §tud§rit§ to i66R rai

trustratlon of serlal search. With only sllght rewording of the goal structure shown in Figure
3, particularly the interactive prompts the model gives the user. we were able to produce a

step by step debugglng procedure to teach the students Flgure 11 shows the debugglng

highilght the similarity between the model and the instruction. Debugging skills were
Introduced explicitly after the first debugging test (6-8 hours into the course). This timing,

directly after students had experlenced the dntﬂcuity of debugging. Insured their
understanding of the great usefuiness of the sKiiis being taught. After the step-by step

debugging procedure was Introduced. the students used the dehugging steps-to correct- thwe
same program they had trled to debug the day before.

insert Figure 11 about here

Beglnnlng durlng this lesson and continuing throughout the course, the class accumulated
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a list of discrepancy-bug mappings and useful iocation clues. These ’diibi'éb’i’riéyiﬁijﬁ
mapplngo are oqdvalont to the Rnowledgo ln the propose productions and the -location ciues

are squivalent to the knowledge in the represent and spoclfy productlons

During thie initial lesson, and any other time the students needed heip debugging, the
teacher used the following d-step sequence of approaches to prompt students developing

knowledge and skills: query, coaching, reflection, and recording.

The initiai query approach was designed to help students to consider avallabile cues for

Idéﬁiifyiiiﬁ Eﬁa iBEEiiﬁi the Eijg For teachlng dlscrepancy-bug mapplngs. qusstlans focused

cause that type of difference, and in cases when there was more than one po§§lblllty, how

to distinguish between them. Linn and Fisher (1983) suggested a similar approach to

emphasizing debugging that consisted of requiring students o propose at least two

hypotheses about the Iidentl:y of the bug before looking into the program. For teaching
structural cue use, the guestions focused on knowledge about how the program was set up

and where the bugQy command might be in the program (nea: ‘what othér command?,
before/after what other command?, In a REPEAT statement?,” -or- v & subprowam?)

Coaching was used essentially as a memory aid followlng the:. . QUSTY.. pmcess. it - rrerely

consisted of reminding the students of the clues they had identified: A,

Reflection following debugging emphasized useful clues from each debugging eplsode

Students were prompted to recall what difference they were trying to fix, what type of bug
had caused that problem. and whether similar dufferences were always caused by similar

bugs. For structurai cues, students were asked how the program was structured, where the
b’u’g had been found in that struqture; and what clues did (or could have) helped them to
locate the bug more easily. This prompting was designed to hélp students develop abstract
rules about the discrepancy-bug mappings and ways to distinguish them as well as about

useful structural cues. The recording approach was inciuded to keep a written record of
the discrepancy-bug rules for use in later debugging situations. The records were kept on

large charts with the headings: “if this goes wrong,” and “Then check for this bug. "

Graphiics and list-processing classes kept separate charts on two sides of a mobile bulletin

board. The graphics side was not visible during list- -processing classes nor the list-
processing side during graphics classes so that the students could not iearn the ’m’ép’p’i'rigé

- - - - '
for a mini-course they were not currently taking.
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clues were avallable. Also; students were continually prodded to use the debugging SKills

and challenged 1o find new mappings.

3.4 Data collection issues

mechanisms and Internal structures of cognitive prccesses Involved. Severai methods were
used to ensure collection of data that would faclitate this undersianding. The students’

behavior on all of the tests was videotaped to get a detalled record of the Intermediate

steps In the solution processes. In addition; students were encouraged to think aloud So

that the goals, strategles, and knowledge Influencing thelr solutlons could alse be recorded.
To encourage thinking aloud; ‘students worked in pairs for some of the tests. Also, to

to provide heip when impasses were reached. Each of these methodpiogicat issues wht be
discussed In more detall In the following sections. '

3.4.1. Protocols

In order to study cognitive processes, the data collected must Inciude more than
information about the end-product of the process. The intermediate steps In subjects’
solutions reveal the path(s) by which they reached them. Each s'mp in the process may

46



Transter of Dibugelng SKill 40

accurately assess the complex processes Involved in computer programming and debugging,

in Eiﬁi&iiii. lntormltlon about tho knobviadgo subjects had (especiaily that which would be

3.4.2. Partners

From our past experlence, we expected that the children would have diificulty giving think-
aloud protocols, especially In such a cognitively demanding situation as computer
programming and debugging. For this reason, chiidren worked In pairs during ciass and for
some of the testing. We feit that the joint effort would require communication of strategies
for and knowledge about the task. This collaboration was used primarily for the benefit of
the experimenter. It would have been interusting to study ihe effects of joint work; howaever,
the current study was not designed for that purpose. Thus, one untested assumption in this

stidy I8 that the use of pariners has not distorted our resuits:

There are several justifications for this assumption. First, Montessorl Instruction stresses
collaboration so the Students in this study were used to working in pairs and smail groups.

Aiso, palrs were chosen such that children aiways worked wm'rt pm of equal abmty

(usually also of e.‘iiial age). Research on collaboration in programmlnq: mu -SCAIcH.
Webb (1984_) showed that students’ mastery of BASIC concepts was e&?ﬁk when they worked
In pairs -and when they worked alone but admitted that the learning processes may have

beén quité diﬁéré’rit On the other hand dacobson and dackson (1986) taught business

an equlvalent amount of additionai Instruction: They found that the students who

particlpated in the peer review process had hlgher scores on a content test and, more
importantly, used only 60% of the computer resources that the control group used. Hawkins
(1983) makes simliar clalms for the positive impact of collaborative work on cognitive and

metacognitive skills but has not demonstraied the effect.

3.4.3. 5’r'o”cidi’ri§

provlde help when students reached an Iimpasse or had gone far afle'd of effective
procedures. F'ar éxarﬁbia. ii §tUd§ht§ héd been allowed to faéﬁé on 6ﬁi’y’ one Biia for the

process for that one bug. Intervention was desirabie so that students would have an

W
~J



Transfer of Debugging Skill a1

opportunity to attempt as many bugs as possible during the aliotted time, thereby maximizing

When using such Intervention, It Is Important to consider Its effects. Therefore, the
frequency and type of Intervention was noted for all tests and will be discussed In the

analysis sectlon.

3.5 Procedures for assessing skill acquisition
Transfer Is not possible If learning has not taken place. In order to specify precisely

which skills were avaliable for transfer to the non-programming tasks, skill development was

monltored three times during each minl-course and the savings from one mini-Course to the

Finally, they edited the experimenter’'s program. These three types of tests are represented
by the a; b; and c In Figure 9c:

Each student took three series of these tests during each mini-course (1; 2, and 3 In
Figure 9c). The first programming test was taken after students had Some experience with

subprograms but befors the teac'er had stressed the usefuiness of subprogramming for
simpiifying the debugging process. The first debugging test was taken after speclal attention
to subprograms but before debugging Instruction. These first tests therefore serve as a
baseline, that Is, the level of skill prior to expliclt instrucilon. The foliowing sections

characterize each type of test and describe the agministration procedures.

3.5.1. Programming tests
For programming tests, the students were asked to write the program(s) to accomplish

some particular goal. This type of test was Inciuded to monitor developing programming
skills and to see what debugging skills were used spontanecusly durlng programming. In

the program(s) that would be encountered in the debugging test. This procedure decreased
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the comprehension demands of tha debugging process, l.e., the children were aiready very

famillar with what the program shouid do and the general way It which It should be done.

Also, familiarizing the children with the program added to the content valldlty of the

Students worked In pairs for the programming tasts. They were given a prograri plan (a
piciorial description In graphics or a written and oral description in list-processing) and asked
to write the program(s) The students’ programming was videotaped untll the program was

complete or one class period had slapsed, whichever came first. The experimenter

intervened only when students were at an impass or were gJoing far afieild of the desired

goal.

concepts learned up to that point. Graphics tests all Included portions which could most

efficlently be done using a repeat statement. Later tests inciuded portions which shouid
have used variables and recursion. Graphics students wrote progrm iw:iu a farm (with
farmhouse, sllo, and four Identlcal cornstalks), a sea scene (wnh boat, sum, - and: seaguils of

varlous sizes), and a garden (with two rows of flowers decraldncln size: and two- different
sizes of butterfiles): List-processing students wrote programs to pﬁy nadtibs with a user; to
‘play an U’riscrirﬁb’llhg game with a user (uslng recarsivb steppirlg-“ﬂwdwh a i), and to

general the programs provlded opportunities for the students to demonstrate their most

advanced skills: The program plans and the expenmemers correct programs fdi'

accomplishing those plans are presenied in Appendix IV:

3.5.2. Debugging tests

For déb”ug’g’l’na tests, ihé 'siUd'e"rii's Wéi’é asked to debug a buggy version of the

situation where debuggmg was required. These tests used programs that the students had
not written themselves so that the bugs would be the same for all students.

For each test, the students knew what the program shouid do since they had written their
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own version of it already. Working In pairs, students were given the buggy programs oniine
and asked ic fix all the bugs. The students’ debugging was videotaped untif the program
worked or cne class period had elapsed, whichever came flrst.

The programs used for the debugglng test were well-structured; In other words, thay made
appropriate use of subprograms and other LOGO subsiructures such as repeat and
recursion. Six bugs were added o each program. For the graphics tests, five of ihe bugs
were semantic bugs while only one was a syntax bug: Syntactic errors inciude mlsspelllngs.
Inapproprlate punctuation or spacing, and other errors which lnterrupt the running of the

program. Semantlc errors do not stop the program from runnlng but do cause faulty

output.  Since syntax tends to be more of a problem for Iist-processing, those tests

contained three syntax and three Semantic bugs.

The bugs were chosen so that the discreparicies they caused would be fairly independent
éitﬁéf iri spac”e’ iU§U§ii’y t’o’i' éiébhléé) or iimé (6565@ for iiétsj The only other criterion tor

printed variable, etc. tor iis’tsi. No attempt was made to control for the dlfﬂculty of the

3.5.3. Editlng tests

For the editing tests, the student was asked to make the changes marked on a printout
of the program from the debugging test. These tests were designed to monitor separately
the developing skills for Interacting with the computer and thereby to determine how much
of programming and debugging time is merely due to typing and editing: They ailow us to
document whether Improvement of debugging times couid be dus merely to improved typing

and maneuvering skillls. That is, Improvements in gross performance may simply be due to
the Improved "clerical” skilis of manuevering in the édltlng environment;

clearly in red ink. Each correction was pointed out to the student who was then asked to
make all the changes and run the program to demonstrate that it worked properly. If the
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program did not work, eithér because one or miore of the changes had not been made or
because the student had introduced new bugs, the student was asked to correct the errors
and re-run the program untll It worked properly. The entire editing test was videotaped.

The programs used for the editing tests were the same programs used In the debugging
tests. Students were aiready famiilar with the program and may have even remembersd
some of the Bugs they h. ' found on the debugging test. The marked hard-coples are
presented in Appendix VI
3.6 Procedures-for assessing debugging transfer

skills must Indeed be applicable:

Choosing an appropriate "far” transfer task rarely has a principied-basis. Typically,

researchers have a plausible but vague notion of the simllarity betwesr the source and
target tasks (e.9., McGllly et al., 1984). The debugging model, described in Chapter 2,
provides a way to advance the specificity of predicted transfer effects and the cholce of
tasks for debugging skiiis.

avallable. The tests were designed only to test the transfer of debugging skills (not
programming or editing skilis) since debugging skills were the subject of our task analysis

and explicit Instruction.
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3.6.1. Similarity between debugging programs and debugging directions
Three types of transfer tests were designed, all of which involved detection and correction
of errors In a Er?iiﬁ iii 6? iriéiruciib’ns abbui hdw to achleve a well-specified goal. This

First, before the transfer tests began, the teacher gave instructions which were designed
to highiight the debugging nature of the tasks. Program debugging Is viewed as a situation

where a programmer has given the computér commands, the computer follows the

commands perfectly, but something goes wrong because one of.the commands is wrong.

The debuggers 1ob Is to find the bug In the commands and fix it so that next time it will
run correctly. The instructions for debugging directions mimlc the program debugging
situation:

goes wrong because 666 of the directions Is wrong. Your ]ob Is to flnd the

problem with the directions and fix it so that next time it will be done correctly.”

The cover story for each item reiterated these instructions:

Second, Information about the desired and actual output is avallable in debugging

situations even before the programs are viewed:  For debugging directions, similar
information was provided before the directions could be viewed. in iwo of the ihree test
types; this information was in the form of pictures; however, in the third, It was In the form

of tables. From the pictures and tables, subjects could have gathered ciues about the
identity of the bug and the probable location of the bug just as they could in the program
debugging situation.

Third, the lists of directions were structured in ways similar to LOGO, primarily iike
subprograms but also flke repeat statements. This was accomplished by the addition of
headings between sections of directions to label their purpose. Headings were printed fiush
with the left margin, whereas the directions relating to them were indented. Subjecis couid
use the headings to determine which sections of the directions were likely to contain the

bug Just as they could use the subprogram names to guide their search for program bugs.

o
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3.8.2. Possible Solution strategies

transfer items. Figure 12 shows the pian and outcome for the furniture arranging problem.

Table 7 lists the accompanying directions. Before viewing the figure, students read the
following cover story.

Mrs. Fisher was moving Into a new house with the help of two movers. She
asked them fto arrange the furniture in her house and gave them a list of
directions to follow, The movers followed the Instructions perfectly, but there was

one probiem with the directions so the furniture was not arranged correctiy.

The next page shows the way Mrs. Fisher wantad the furniture to look and the

way It looked after the movers arranged it. _ Use these piciures to help you find

the probiem with Mrs. Fisher's directions. Then fix the directions so the movers
could arrange the furniture correctly.

Comparison of the two floor plans reveais thai there is a table out of:piace. Cioser
Inspection may reveal that the table is in the living room. One might also notice that the.

table has been placed between two chairs in both drawings and hypothesize that the-
confusion resulted from a misunderstanding of which two chairs: All of the directions begin
with "Here are the directions so-and-so gave to so-and-o.” and end with "Change or add
one thing to fix so-and-so’'s directions.” in most cases. the directions ars divided Ifito thige
parts; here, one part describes how to arrange the dining room; one part the living room,

and one part the kitchen.

insert Table 7 about here

Soiving this problem would be quite tedious for someone using a brute force strategy. as
many children did. The solver would read each line and check the picture to make sure it

was corract untll the Incorrect direction was located: A soiver who knows to look for a
misplaced table might scan the directions until reaching one describing the piacement of a
table. This would lead to faise alarms on the lines describing the three other tabies in the
home (especially the two which are described prior to the corect table). A solver wWho
knows to look in the directions for the living room will ignore the dining room directions and
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might check each of the living room commands or only the ones referring to tabies. A
soiver who noticed that the table was betwesn twc chairs could scan for a phrase about a
table between chairs. Since the kitchen directions foilow the incorrect direction and are

independent of It, they would be Ignored by all solvers who locate the bug on their first

pass through the directions.

Solvers with ail of these Strategles could locate the bug and add the Information to define
which two chalrs the coffes tabie should be between. The Search process, not the success
rate; Is what should distinguish the different strategies: However, solvers who search mors
of the directions might bse more Ilkely to false alarm and thersfore be less successful. The

remaining eight tests are presented in Appendix Vil.

3.6.3. Transfer tests

The three types of tests were chosen; on the basis of informal pretests; io get a range of
difficulty. Three items of each type were constricted, one each for the pre-, mid- and
post-tests. An equal number of subjects were given each item at each test tme. The
easlest problems involved directions for arranging somathing (sstting.a table, buliding with
blocks; or arranging furniture). The next easlest problems invoNed:directions for distributing
something (paying wages, dalivering trees, or ordering food). THe'-most—difficult probiems
involved directions for traveling somewhere (playing golf. visiting airports, or running errands).
The tasks were always presented In order of increasing difficuity so that studsnts would not
do poorly on an easler test purely as a result of being frustrated by a harder one:

The transfer tests were given in the computer ciassroom at the teacher's tabie. Students

worked on the tests individually and were asked to “read and think .aloud” while they
worked. All work was done in a test packet which contained the three stories. pictures or

The entire transfer test was videotaped. In this case. the camera was focused on the test

packet as It lay on the teacher's table; the teacher made sure the student kept the packet
flat while working.

The videotaped records of the students’ performance were used to determine their search
strategles In addition to the accuracy and timing of their answers. The significance of pre-.
mid-, and post-test differences in qualitative strategy classifications will be tested using a X2
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analysis, and the significance of differences In quanitative analysis will be tesied using a
two-way ANOVA (test time by test type). —

To summarize; the experiment Is a combination pre-test/post-test and savings design In
order to assess the transfer of debugging skils (and support skilis) from one LOGO context
to another and to assess the transfer of debugging skills from the LOGO coniexts io non-
programming contexts. The debugging model, described In Chapter 2, was used extensively
for designing the Instruction and the transfer tests so that learning and transfer would be
maximized: Chapter 4 describes the savings from the flrst minl-course to the second and

Chapter 5 discusses the transfer of debugging skills to non-programming damains.
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The savings seen on the second mini-course as a result of having taken the first reflects

the amount of transferable skill the students learned: Two clear, but relatively uninteresting,
savings have aiready been mentloned: the students did noi need i0 relearn how 1o use the

computer and they progressed more rapidly through the lesson sequence so the second
mini-course took only 23 instead of 27 hours to complete (85% of the first mini-course time).

Students were expected to recognize the second LOGO minl-course as a new Instance
where previously lsarned programming, debugglng: and editing sklils could be applled. To

the extent that the application Is appropriate, the transfer should be positive. Transfer
would be neeative In a case where appilcation of previously iearned skills was detrimentai in

second: Most obviously, the second mini-course took less time because the Introductory

computer famillarization was not necessary (learning to insert the disk, turn on the computer,

ran the printer, etc.) Also, graphlcs and Ilst-processlng use the same editor so the editing

commands are Identical. Procedures are run in the same manner, except that students

must typé cs (cléarscrean) before each graphics run to reset the screen from the last one:

Several programming concepts might also be expected to transfer, Stuch as the use of

subprograms; varlables; and conditional statements: Some rudimentary syntactic skills would
be éif)ééié& ib iré’nsi'er: ihé Importance ’o’i correct spelling; spaces: and perhaps me use of

Most importantly, much of the debugging skill students were taught should be transferable
to the second minl-course. Certainly; the goal structure would be identical, as would most
of the Iocation clues. The discrepancy-bug mappings would differ, except for some of the

syntax errors, but the procedure for using them would be the same.

41 bébuggihg skills
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debugging); however, the resuits from this analysis can be compared to the resuits from the
plloi sii.idy {Carver and Kiahr, 1986) described in Chapter 2. This section wili show that
when given debugging instruction based on the performance model, Students were able io

iéaiiii-o eﬂectfvo debugging skilis.  Without such instruction, students in the pliot study

Debugging episodes were transcribed directly in terms of the model's goal structure.
Transcrlptlon sheets were coplas of the model's goal structure with spaces where the goai

names used to be. Episodes were divided into cycles based on the test goal. A niew
cycle began each tlime ihe subjects ran a program or ran a series of programs without
" doing anything eise In between; these program runs were recorded In the TEST space.
Comments about whether or not the outcome of a test matched the plan wers noted in the
EVALUATE space. Similarly, comments about the discrepancy and the proposed bug were

written in the DESCRIBE and PROPOSE spaces; comments about the knowledge of the
program structure and clues for where 4% bug might be in that structure were recorded in
the REPRESENT and SPECIFY spaces. The programs students adited in their search for

thé bua were ﬁbié& in the FIND space. ~Commands mey read wer® entsred in the

CHECK space. Finally, any comments about the change that néedéd to be made were
entered In the CHANGE space, while the actual replacement was entered in the REPLACE
space. The order of comments and actions was preserved by numberlng each entry. The

time at the start of each cycle was aiso entered on the transcript.  In addition. all
experimenter Iinteraction with the pair of studenis was recorded on the side of ithe sheet:

labeled with an E. and numbered in sequence with the other events.

Figure 13 shows an idealized transcription for the last part of the POETAY test The

example is "idealized” because subjects had difficulty continuing to give protocols so they
'réi'éiy made comments about ali of the goals in any one cycie: comments from a varlety of

subjects have been combined to give a complste example. = example transcript begins
with a test of the program POETRY. A negative evaiuation is indicated by the comment.

"Oh no!” The discrepancy was described as. “it used the wrong name” and the bug
proposed as, "It has the variables mixed up.” One siudent asks. “which subprogram shoulid
we try?” Both know that the program representation includes subprograms. The other

specifies the buggy subprogram as “goodbye.” They edit the subprogram GOODBYE and

scan for the variable. NAME‘I is isolated and understood to be the wrong variable name.
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"1t shouid be helio,” says one student. The students then replace :NAME! with :HELLO
and exit the editor to retest the program: A trace of the model using the same knowledge
to debug the same program IS one of the example traces provided in Appendix ii.

insert Figure 13 about here

From the debugging transcripts, several related aspects of debugging skili were coded to

probe the students’ acquisition of different parts of the modei's skilis: achievement, speed,

efficiency, ciue gathering, and search strategles.

3.1.1. Achlevement |
One Indication of debugging skili Is the number of bugs students were abie to fix during

the allotted hour. Most of the results of the skill analyses are presenied in a fashion
similar to Figure 14 so It wili be described In detall. Figure 14a shows the performance of
groups A and B on the three graphics tests. Group A took the graphics mini-course first
and group B took it second, after having had list-processing experlence. Figure 14b Shows

the performance of groups A and B on the three list-processing tests. Here, group B took
the mini-course first and group A second. The irregular pattern from tesi-.4.ta 2 to 3 on
these graphs reflects the differences In problem difficuity. The tests - weve niot

counterbalanced since the programming concepis used on the .tests reflected the order of
instruction In the course.

There are several more important patterns to extract from these figures. The first pattern
to consider is the relationship between the graphics and list-processing graphs. The second
pattern to extract from these graphs is the relationship between the lines representing the
two minl-courses. A consistent pattern between the firsi and second mini-course iines on

Figure 14c summarizes the resuits: it highlights the two important patterns (graphics versus
list-processing and first versus Second mini-course) and deemphasizes the irrégular patiern of
the three tests within a mini-course. For the purpose of this graph. the within mini-course
tests are considered essentially as three trials so the scores have been averaged to y3t a

score for each minl-course as a whole. For the remaining figures of this type the
discussion will focus only on these patterns of results.

Figures 14a and b show that during the second mini-courses. ail of the students fixed aii
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of the six bugs within the hour, whereas, In the first minl-courses, they did nof, F (1,76) =

' 23.15, p < .01. Figure 14c shows the aggregate resuits; the improvement from the first
minl-course to the seeand mini-course was the same for the graphics and list-processing

tests, F (2,76) =

insert Figure 14 about here

4.1.2. Speed
The debugglhg épead was aiso méasuréd. iri cases Wﬁéﬁ thé §t’udéh’i§ ’c’o’i'i'é’ctéd iii éii

program worked correctly). When the students did ot correct all six buqs; the time was

- measured up to but not inciuding the program run that confirmed their iast correct fix. This
adjustment exciudes time at the end of the session spent on bugs that were never
corrected; thus the speed measure inciudes only time spent on bugs that were fixed. For
all palrs, the total time was divided by the number of bugs fixed: The model makes no

predictions about the absolute debugging time, but the time would be expectad to decreaso
as debugglng sklll ImprOves slnce strategies would shift from hwtev'furca to more focused

Figures 15a and b compare the perfm:rnén;:e of - students - on5 the:graphics and  iist-
processing tests in the first and second mini-courses. The ’g’i’é’p’m’cs groups took almost two
minutes longer per bug than the list-processing groups. F (1,76) = 7.45, p < .01. Figure
15¢ shows the same results in terms of the time savings on the second mini-course tests as
a resuit of having taken the first mini-ccurse. S’av:’ng’s for the ||§t2brb”<:é§§|’ri’g’ iests was édei
half and for the graphics tests was about one-third: F (1:76) = 42.69, p < .01.

Insert Figure 15 about here

4.1.3. Efficlency
As debugging s«ill improves, students should aiso take fewer cycles (each isolated test
goal initiates a cycle) to fix each bug. Perfect debugging (when clues are availabie and

accurate) requires only one cycle to locate and correct each bug. To assess this
improvement, the number of cycles per Bﬁﬁ was measured. As with time. the total number
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cycies up to the last correct fix was used In cases where ail the bugs were not corrected.

Once agaln, the number of cycies wea divided by the number of bugs fixed.

second for each test, F (1;76) = 12:64, p < .01 The graphics groups took more cycles

than the list-processing groups to fix each bug, F (1,76) = 62.46, p < .01. In the second
mini-course, the list-processing group was averaging close to the perfect one cycle per bug

Several groups of students actua"y iook fewer than one cycle per bug because they fixed

several bugs in one progrﬁrﬁ without exlting to retest the program In between Figure 16c
demonstrates the savings for each course as a whole: For both groups, the savings was

approximately 1 cycle per bug.

Insert Flgure 16 about here

In order to account for the differences between ihe two groups and for the savings from

the first minl-course to the second; the debugging process was considered In more detal.
The following descriptions will concentrate more on the savings* ‘-bmunr-ﬂm two mini-courses

:-v—i . ,\'-). .

rather than on differences between tests within a min-course, W&%-i ™ a7y

-t

=AY

N

E

4.1.4. Pre-search clue gathering

Comments about the discrepancy; the bug, and the bug's location were scored as correct

or Incorrect and as made prior to or after the first command identified as the bug. As

students’ knowledge of discrepancy-bug mappings and of location cues Increased. the

proportlon of correct comments should Increase. The total number would actually decrease
as they they improve since debugging will iake fewer cycles. Also, the proportion of
comments made before suggesting a command as the bug Shouid increase if ihe siudents
learn the goal structure of the model which stresses the value of seeking cues to narrow

Location des'crlptlons were more frequ=r! than bug proposals but were still offered for less

than haif of the bugs. Students in the second mini-course made fewer comments about the

discrepancy; the bug; and its location because they took fewer cycies io isolaie each bug.
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Figure 17 shows the percentage of these comments that were accurate for a) discrepancy;
b) bug, and c) location comments: Accuracy was slightly higher for list-processing
debugging. Comments about the Identity of the bug were least Ilkely to be accurate. The
savings between minl-Courses was minimai:

Insert Figure 17 about here

However, Figure 18 shows that the savings between the flrst and second minl-courses Is In
the percentage of- comments made prior to beginning to search for the bug. Particularly for
bug proposals, the students are learning the value of proposing the bug before searching so

that the search can be selective.

Insert Figure 18 about here

4.1.5. Fauity search

At the same lime, evidence of poor debugging behavior would: be expected to decroase.
Such behavior can be measured as the number of .comeer subprograms the students
erroneously edlt, the number of false alarms they make (correct: commandsiidentified as the
bug), the number of times they abandon thelr search for a partlcuimtnig.ifd the amount

of help they need from the experimenter.

The number of times the students looked into a subprogram that did not contaln the bug
(or information relevant to the bug such as variable values) should decrease as the students
learn to use clues for locating the bug. The subprogram structure of the buggy programs
was easy for the students to recognize because the subprograms that had been loaded

were displayed on the computer screen at the beginning of the test. Students rarely
misjudged which subprogram did- which part of the program because the subprogram names
were related to thelr function. The mean number of times subjects looked into a program
that did not contain the bug ranged from 2 to 3 per test (i.e., per 6 bugs). Most of these
errors resulted from forgetting the names of the programs or forgetting whal subprograms
existed. The amount of brute force search (reading and checking each command in a
program) did decrease from the first mini-course to the second. The number of instances

of brute force decreased from 28 io 14 for the graphics tests and from 13 to 1 for the iist-

processing tests.
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SEASHORE program to see whether a posltlonlng attempt had been made. Also, whéﬁ
testing Subprograms Independently on graphics tests, students were bothered when a figure
ran off the screen even if it had not done so when the main program ran; they often added

positioning commands to the subprogram even when there was no posltioning bug.

The number of correct commands which were mis-identified as the bug (fiﬁé alarms) were
tallied. The faise alarms were also categorized according to whether the studints actually
changed the command or only proposeéd the change and whether the command was in the
same subprogram as the actual bug. Improved search Strategies should decrease the

number of faise alarms; particularly those In subprograms other than the one actuaily
containlng the bug. In fact, the number of false alarms dropped from 208 to 150 from ihe

first graphlcs mini-course to the second and even more dramatlc:mli: from 87 to 27 for the

of commands ln the programs and the greater slmllarlty betweery- m ut each

mini-courses but decreased from 31% to 7% from the first to the second list-processing

mlnl -course.

The high number of false alarms accounts for many of the extra cycles the students took
to correct the bugs Because punctuatlon is so complicated in list-processing, poorer
students adopted a triai and error replacemsiit strategy for fixing punctuation (brackets to
quotes; quotes to brackets etc:) when they couicd not identify the bug:

The number of times students abandon their search (which the model would never do)

should also decrease: In fact. subjects rarely abandoned their search (though this is partly
a result of the avanlabnllty of help from the experimenter). There were 13 Instances of
abandoned search during the first graphics mini-course and 10 during the first list-processing
minl-course. In the second mini-course. the number of abandoned searches decreased to 9
and 4. In addition, students were more likely to restart an abandoned search in the second

mini-course.
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4.1.8. Incorrect changes
For each bug that was correctly Identified; ihe number of changes It took to get the
correct command was tallied. Incorrect fixes were scored ag either syntactic or semantlc

srrors.  Incorrect fixes shouid decrease as the students become better programmers; though
not necessarily as they become better debuggers.

Attempts 10 determine the appropriate argument for a command once the bug had been
identified accounted for an average of 1 extra cycle per bug. There was no Improvement In

the subjects’ abiilty to make changes once the bug had been identified on graphics tests.
The debugging instruction did not provide any help for generating the correct command
once the bug had been Identifled. For list-processing, however, the Identification of the bug

printed Inside a list Implies that the appropriate fix Is to remove It from the Iist, whereas
knowing that a particular left turn was not enough does not Imply what the turn should have
been, only that It should be more. Extra cycles to determine the correct fix decreased from
an average of .4 per bug to .1 per bug as students became more famililar with the

appropriate changes for each bug.

4.1.7. Experimenter help
Each Instance of experimenter help was scored for the type of information It provided the
students: description of the discrepancy, Interpretation of a command, recognition of a false

alarm; Identification of the bug, Iocation of the bug:. specification of the change:
recommendation of Strategies, or reminder of Something they had previously done or said.

be making fewer), less help choosing strategies, etc. For the list-processing tests. the
amount of help subjects needed decreased markedly from 177 instances in the first mini-
course to only 80 in the second. The biggest difference for the list-processing group was

counters. Apparently, the group that had graphics background had less difficuity dealing
with these concepts than the group with no prior experience. perhaps because they had
encountered tall recursion and conditional statements before. However, the amount of help

¢!
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mini-course and 184 in the second. Much of this heip Is related to other poor debugging
strategies such as the high number of false alarms and Incorrect fixes.

4.1.8. Additional testing strategles

durlne test runs rather than taklng the time to use correct Input maklng multlple changes

between test runs when bugs are relatively independent, seeking additionai information from
the program tities or from within subprograms not contalnlng the bug (such as Iooklng for a

variable setting), or seeking Information from the mappings chart. In fact, students used

these strategles only In a few select Instances when they were recommended by the

experimenter. Many of the students did, however, begin testing subprograms separatsly

after being shown how useful a technique It was. Since these strategies were not part of
the explicit Instruction (because they are not a part of the model), It is not surprising that
students did not use them welil

a1, § hét’iéiiﬁﬁ o débugging Instruction '_'

students In both the graphics and iiéi-BFéééééiﬁé groups. Many of the students never found
all six bugs within the haur test period. The entire debugging lesson, inciuding debugging
the first test program using :he new strategies. took only half an hour. Mos. of the
students made comments like; “Why didn't you tell us this before?” They had experzncec
the frustration of brute forcs debugging and were receptive to more successtul meihods.

After the ane (and only) lesson focusing on debugging. students used the new straieqies
frequently, especially asklng themselves which subprogram was likely to contain a p&. e 3
bug. They did not, however, make use of the list of discrepancy-bug mappiigs as
fiédﬁéﬁily. Some of the more common mappings were memorized early, but many stugoris
used the reference chart only as a last resort. Noneiheless. their debugging skilis vere
impressive by the end of the course. (They did at least as well if not better than the
LOGO teachers tested by Jenkins (1986) on the same programs.)
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4.2 Programming skills
The goal of the programming skill analysis was to descilbe the level of programming ability

students acquire, particuiarly skilis related to debugging skill. The analysis will emphasize
the amount of Structure students build into their programs since proper structuring makes
debugging easier (Korson and Vaishnavi, 1986).  Debugging strategies will aiso be

programming behavior were transcribed: code writing, code changing (without having tested
the program), code testing, and code debugging. In addition, the students’ comments about
how they were structuring their program(s) and any comments made by the InStructor were
transcribed. Time was not measured because students rarely compieted the programs within
the one hour limit, especially in the graphics mini-course. and because So much

experimenter intervention was required that the time measure would be difficuit to interpret.

4.2.1. Achlevement AR

and positioning of units (such as piacing the sun in the upper right hand corner of the
screen) counted as units themselves. For list-processing programs. each query (asking a
question and taking the user’'s input), conditional statement. response. and giobal varlable
Béiiiﬁﬂ counted as a unit: In addition; several types of user friendly units were scored;
staiements; printing blank lines, and addressing the user by name. Driver programs counted
%3 units for both graphics and list-processing.

The achievement measure for each pair was the perceniage of units they completed. As
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programming skill improves, subjects shouid be able to compiets a higher percentage of

units: This section wiii provide the qualiltative resuits aiong with a generai characterization of
thelr meaning. Appendix Viil contalns the detalied description; Including the total number of

units for each of the experimenter's programs along with the number of student programs

Graphizs zudents bagifn with straight-line figures and/or avoided figures with curves. This
trend 15 evidiit Since students tended to attempt and avoid the same units: ©On the FARM
test, most students attempted the barn and silo and avoided the corn stalks. O.. e
SEASHORE test; most students tred the boat and sall, and few tried the seaguils. Most
students started with the flower on the GARDEN test and never haafﬁi'iii..iaf the butterfly.

For the list-processing tests, the students usually began with the fundamental units of the
program and added the user friendly units later (if time permitted). For theé MADLIB test,
students began with asking the user for the necessary words and printing the -story; for the
SCRAMBLES test, students began with Setting the global variables for the probiems and
then wrote the recursive function to ask the questions: and for the POETRY test, students

rhymes, and printing the poem. Many pairs Wrote the base part of the program durlng the

hour, but few students got far enough to add the user friendly units.

4.2.2. Structured programming

subprograms, repeat statements, variables, and recursive calls. Using line breaks effectively
is the most rudimentary structure a tOGO program can have. LOGO can handle lines of

Up to 256 characters so most programs could be typed without evor hitting <returns:
Alternatively, commands need not be kept togeiher so programs could be entered with a
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<return> aher each Independent command (.8, those that are not arguments to other

cbfﬁmaﬁ&ii; Neither of these strategies groups commands accordlng to what part of the

ﬁiédlfylng For exampla, many graphlcs _programmers keep on the same llne all commands
executed after a PenUp command but before the associated PenDown command; this ailows
easy distinction between lines of commands that draw something and lines of commands

that only move the turile. Uslng subprograms. repeat s:atements. and recursion also Serve

to organize programs by grouping commands. In addition, using variables groups Iike
arguments as well as allowing for similar functions to be ébi:'o’mplls_hed by one program Wlm

different Inputs.

Once again, the experimenter's program was used as a Standard. One point was given

for the use of appropriate !ine breaks, one point for every subprogram call, one point for
every unique repeat statement (multiple uses of the Same repeat Statement were not scored

because they shouid have been embedded In a repeat statemem themseives or written as a
separate subprogram), one point for each varlable used; and one point for each recursive

call. Each of the subjects' solutions was scored for structure In the same way. For

comparison, the mean scores are reported in Figure 20 as percentages of the total for the

experlmemer S program. The standard scores are presented in Appendlx Vill, "

Insert Figure 20 about here

Students used more 5?6@?55 structure in the list-processing course than In the graphics
course (F [1,68] = 92.04, p <.01), perhaps because some of the programs required
§ifﬁéiijf§ in order to function properly (e'§" Fééﬁféiﬁ@ iﬁfﬁﬁ@ﬁ a list féﬁiiifé§ §§iiiﬁ§ the ii§i
drawn In line-by-line fashion (however tedious this may be). For example, one student in the
first graphics mini-course created one corn stalk by combining FDs and turns. She did use
a repeat to make a curve, but She retyped the repeat statement Six limes (twice for each of
three leaves) just to make one corn stalk. Then she systematically retyped ali of the code
for the one corn stalk to make a second one. She would have continued in this tfashion if
the ii‘i§ti’UC!6i’ héd not suggested iﬁéi she move on to ihé §i|6 éi‘id béi’i‘i. li‘i cases where
students did use subprograms. they rarely wrote driver programs to combine them. When

such programs were written, they used chain calis (A calls B. B calls C. and € calis D
rather than A calling B, C;, and D). Students did not improve from the first mini-course io
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4;2:3. Common errors and misconceptions

The students misconceptions and common bugs were also catalogued In order to

characterize deveioping programming skill. Errors and misconceptions were consisterit across
mini-courses; in some cases, students In the second mini-<course actually made more errors

or demonstrated more misconceptions because they accomplished slightly more and used

slightly more advanced structuring.

left instead of right or vice versa. 6ccas:onally. they forgot to type part of a command,
typed part of a command twice; put spaces where they did not belong; or omitted spaces
where they did belong.

drawing figures with curves. Students frequently forgot to make: & mw.ween figures,
especlally when using repeat to get several Identical figures (suct'r 8% four ‘com stalks) so
the figures were arawn on top of each other. When they did remm the: move, they

often forgot either to pick up the pen, to put down the pen, or both* PU and PD

commands were also frequently mnsplaced {after the move. for instance). Students also had

difficulty remembering how to use a repeat statement to draw a curve. They frequently

confused the two rules for curves: the FD distance times the repeat number equals the size
of the curve while the turn times the repeat number equais the angle of the curve. Also.

students had difficulty combining curves: they usually failed to make the appropriate turn

between curve segments.

tWo or more elements were to be pnnted Students had diffnculty understandlng conditional

statements, combining and separatlng functions (such as FIRST and BUTFIRST), and the
use of MAKE for setting variables to values other than the keyboard input. They aiso had
misconcaptions about the use of variables: they frequenily used the same varlable name
more than onca (thereby erasing all but the last value), printed a variable inside a list (such
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that it does not get evaluated), and confused different varlable names. Students in both

graphics and list-processing mis-ordered commands and made Inappropriate subprogram calis

(including unintended recursive cails).

4.2.4. Debugging during programming
The frequency of test runs was calculated to monitor how much the SiUdéi‘i@ actually
make use of debugging In thelr own programming. Students tested graphlcs programs

frequently, about 6 times for every program unit they accomplished. Because of the
frequent testing; bugs were almost always In the most recently written commands so the
debugging search was minimal. Frequently, the did not try to choose the correct command
{especially the correct argument) on their first pass; Instvud; they used debugging as a
means of determining the approprlate command. In contrast, list-processing groups tested

thelr programs less than once per unit accomplishcd because they spent more time

composing the phrasing of thelr PRINT Statements. Because of thls Infrequent testing, they

often made the same error many times and had to correct multiple bugs aftar each test.

4.2.5. Independence

Students In both mini-courses needed considerable help decomposing the program goais
Into manageable units, partlcmarly on the list-processing tests where thay had to decide

what needed to happen in what order. The experimenter intervened to help with

decomposition 2 to 3 times for most palrs of students. Decomposition was less of a

problem f’q’r students on graphics tests. especially because they made few auempts to

structure their programs. However, graphics students had particular difficulty deciding how
to use a repeat statement to draw the sun and deciding when to use variables. List-
processing students had the most difficulty with recursive stepping through a list (used on
the SCRAMBLES test) and with e*fscldlng on the aiternate paths in a conditional statement.
Much of the structure used in the list- processlng programs was created with the

experimenter's help.

The students also needed considerable help with two aspects of debugging. They needed
the most help correcting errors that had resulted from their misconceptions, in other words.

in cases where their knowledge as well as their program needed debugging. Students also
needed help Iocating bugs in cases where they had used little program structure and did

not test the program frequently enough to know which part of the code was buggy. In
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. thess cases, they may have known what was wrong, but could not find any ciues for the
bug'’s location. The next section will describe the debugging skilis students demonstrated In
situations where the programs were weli-structured but had been written by someone else.

The quantitative and qualitative description of the students’ programmlng abliities
emphaslzes that these students are still only novice programmers, even at the end of 50

hours of experlence. Even though they were able to use program Structure to gulde their
debugging of the experimenter's programs, they did not incorporate such structure Into their

own programs. Th's, théy had more dlfﬂculty debugging their own programs than someone

Katz (1386) studied debugging on one's own versus another person's programs in LISP
and found nearly opposite resuits. He found that subjects needed twice as many hints
when debugging someone else's program as when debugging thelr own é'rid ihét they wers

order of execution) when debugglng someone else’s program lhan thelr own. The
advantage for debugglng one’'s own program may be less pronounf?é'ﬂﬁ the child novices

In this study because they were not writing well-structured pru‘arm whereas the

experimenter's programs were well-structured. Korson and Vaishnavi (1988} also presented
evidence for the greater ease of debugging structured programs in BASIC. If the subjects
had been taught techniques for good program Structuring, their debugging skills might have

been as geod when debugging their own programs as when debugging the experimenter's.

Not surprisingly, the bugs which subjects failed to find in the first mini-course were usually
related to misconceptions that appeared in the programming tests: On the graphics tests.
2/3 of the subjects falled to find a wrong subprogram call (in FARM), half failed to find the
orlentation bug between the two curves in the seagull. and 1/3 failed to find the extent bug
In the curved top of the siio. Several oher bugs were missed by only one pair of subjects:
usually because they ran out of time.

On the iist-processing tests; the bugs subjects failed to find were again related to
misconceptions they had demonstrated on the programming tests. There were three
instances where a wrong variable name had been used or a variable name had been used

twlce in all three cases; about half of the pairs failed to correct the bug. A little less than
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BUTLAST, printing variables Inside lists, and forgetting the parentheses around print

statements. Once again, several other bugs were missed by oniy one pair:

4.3 Editing skills
skills so that they can be compared to the Improvements in debugging time.  This
comparison will provide a better estimate of the actual Improvement In debugging time

excluding the tims it takes to maneuver within the LOGO environment.
The videotapes for the editing tests were transcribed keystroke by keystroke and the total
tims was recorded from the lap counter on the videotape. Experimenter Intervention was

also transcribed.

Editing time was caiculated as the total time up to the beginning of the correct test run
. divided by the number of keystrokes. The time/keystroke should decrease as ii’ii §lﬂm

become more famillar with the keyboard.

Figures 21a and b show that studenis were Slower at editing Hst-processing programs than
graphics programs (F [1,128] = 8.26, p < .01), though students improved in both courses.
F (1,128) = 7.38, p < :01. The improvement represents about a 15% decrease in editing
time. Despite the improvements, even the best students are only typing at a speed of 60 -

80 keystrokes (not words) per minute:

Insert Figure 21 about here

These Increases In speed cannot account for the whole increase in debugging speed.

The debugging time per bug was 2 or 3 minutes lower on each of the graphics tests and
about - minutes on each of ihe lisi-processing tests in the second mini-course. This
improvement is roughly a 30% savings for graphics students who had previously had list-
éidﬁia 22 shows the debugging time per bug minus the editing time per bug fbi’ éébﬁ test.
There Is still a marked Improvement in debugging speed between the first and second mini-

courses.
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4.3.2. Eﬁicieﬁéy

relaiive to the minimum number requlred. The minimum nurber was calculated uslng the
following guideiines. Degraded forms of commands which wire nct taught yet are accepted
by the LOGO '~isrpreter were not considered. These con.mands actually take fewer
keystrokes and may be discovered by the students. For example, LOGO wiil Interpret ED
fti§i as |t iﬁiafﬁfaﬁ EDTT; ﬁéWéVéi’; §iﬁé§ LOGG is hot always so forglving (espe<iaily about

were only considered when It was obvious that using them would be qulcker; l.e, wiks the
bug was at the extreme end of the line:

Students In the Ilst-processlng course were less efficlent er“im é§ well as belng slower

typis!s, (1 128) = B8.04, p < .01: 'rhey averaged a littie m m twice 55 Eiiy’

to the i)éi’féb! score of 1. Thus, the students who began with list- processlng Improved more

than the students who began with craphics, F (1.128) = 4.79, p < .05:

insert Figure 23 about here

Each divergence from the minimum path was categorized as one of eight types of

inefficiencies: overshooting (and backing up), mistyping (and correcting), deleting too much
(é’n’d r@typ’i’rig}; placlng the cursor Incorrectly (and correctmg) including extra spaces (and

order to discover whether certain errors dropped out while others persisted or whether

|mprovement of all errors was uniform.

¥
ro
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The students actually make more editing errors on the second and third tests than on the
first test, perhaps because they are particularly careful on the Initiai test when they were
just iearing how 1o edit. Total keystroke efficiency does not rise with the number of
inefficiencies because students may realize their error sooner and so avoid large errors. For
example, as students become boider at using the repeating key to move across the screen,
they may actually overshoot the target more frequently, but may not overshoot it by as much

as before since they are more aware of repeating nature of the keys. Students just

learning to edit often do not reaiize they are making the key repeat so they overshoot by a
lot before they even realize it. The students’ most common errors were overshooting,
mistyping, deleting too much, and taking extra steps. List-processing students aiso confused
many commands on the first two tests. Students rarely added extra spaces, misplaced the
cursor. or forgot to make part or all of a change. As Students editing efficlency Improved,

the error rates for all types of errors dropped.

4.3.3. Incorract changes

The number of Incorrect edits was tallled as a measure of how carefui the students are to
check the corrections they make. (See Figure 24.) Neither gioup made many Incorrect
edits they forget to make. In the first mini:course students only made about 1 Incorrect edit
per 6 changes; in the second minl-course this ‘aopped aimost to zero, F (1,128) = 7.14, p
< .01. Even in the first minicourse, studenis are careful editaig though they are not

particularly efficlent or quick.

Insert Figure 24 about here

4.3.4. Experimenter help

On the first editing test, subjects in both groups needed the experimenter to help them
(reminding them of commands. for example), but the amount of help needed decitased for

both groups in the second mini-course, F (1.128) = 35.46. p < .01. (See Figure 25.) The

list-processing students needed more heip than the graphics students in the first mini-course
{(F [1,128] = 555, p < .05). but students in both groups needed liiile help from the
experimenter by the second mini-course. Thus, the savings was iarger for the list-processing
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Insert Figure 25 about here

4:3.5. Graphics versus ii§i-ﬁf666§§iﬁ_§
The consistency of the differsnce between the students learning editing In a graphics

especially since they were using Identical commands. Also, the groups' performance on the

debugging and programming tests does not lead to the conciusion that ths groups of

students differ. It may be the case that editing Is more difficult In a list-processing domain

misreading or mistyping even though the minlmum number of keystrokes Is equivalent.

Another possibliity is trat list-processing biurs the distinction between the output [iines of
text] and the program [lines of text]. The consistent finding that both groups of students
reached the same level of editing skill lends support to the suggestion that learning editing
In the context of list-processing Is difficult. It Is not more difficult to edit lis* grocessing
programs than graphics programs once the editing skills have been learned (as demonstrated

by the good performance of the graphics group In the list-processing course). but learning

the skills Is easler In a graphlcs environment.

4.4 Acquisition Summary
In summary, the savings measures used In each of the skill acquisition analyses provide a
context In which the level of skill acquired can be assessed. The large savings on the

debugging measures Indicates that students did begin to acquire the model's goal structure:

The Importance of the relative difficulty of the tasks is clear from the consistent pattern of
perfo. .iance across varlous measures of the same skil. and across measures of different
skills. The most prominent instance of this effect is the large ~screment In performance on
the second list-processing test: This test required the use of FIRST-BUTFIRST recursion. a
conditional stop statement, and a counter. all of which were relatively new concepts.

experience and debugging experience. It is clear from the improvement between the first
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_ mini-course and second mini-course in both graphics and iists that learning did take piace.

However, It I8 not possible to trace the within minl-course improvement. But, It Is ciear that
the debugging 3kills students have acquired are abstract enough to transfer to very similar
5?66?&7\ debugging tasks. Students in the second irini-course debugged more guickly and
took fewer Cycles than students taking the same tests in their first mini-course. These
savings were attributed to Increasingly focused search. The next chapter will discuss how

well these search skilis transfered to non-computer debugging:
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5. Debugging skill transfer

The goal of the transfer analysis was to show that the focused search strategies learned
from iﬁi iiﬁilélt debugging instruction in the LOGO er:ironment would transfer to similar
debugging situations not involving programmilng.

read and think aloud: For each problem; the subject's discrepancy description, bug
proposal, and bug location comments were recorded as well as the type of scanning
strategy they used to locate the discrepancy iﬁiiiéiiy;_ Each lin® the subject read and each

strategles were counted. Students who learn the importance of gééki:iig- cues to narrow their
search before looking at the commands in the LOGO context may iransfer this practice to
the new task. AS With the computer debugging, students made few Pre-search comments:
'However, the number of comments students made about the possible location of the bug in
tests (out of a possible 66). Also, the students needed less heip describing the discrepancy
between the desired and actuai outcomes; instances of help decreased from 19 to 9 to 4

to the outcome Iinformation prior to beginning their search.

5.2 Qualitative search analysis
Each subject's reading and simulating strategies were also categorizeéd Separately as one
of four qualitatively different approaches. Simulation refers to actually interpreting the

direction to determine what effect it would have: usuaily this process invoives referring 1o the
diagrams or tables. Students were reading and thinking aloud so their search process was
easily traceable. The worst strategy is to read or simulate haphazardly (a few lines here. a
iine or two there) or to simulate nothing (subjects must at least read something in order to
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make a correction). THiS strategy Is unllkely to successfully find the bug because it may or
?ﬁi? not even read the buggy line let alone bother to check it agalnst the desired outcome.

A slightly better strategy, brute force, is to read every line and simulate 6%;6?;5 direction
(some ineés are hHeaders not dlrectlonS) This strategy is llkely to find the bug but
processes many unnecessary lines. Better yet is a self-terminating brute force strategy

which reads and simulates everything until the bug is located and then disregards the rest:
The best strategy Is selective focus on the approprlate subsection of the program only;
maybe even only on the part near the bug. Each subject's reading and éirhuiaiing

Items on the pre-, mid-, and post- tests. Sub]ects may have Several strategles or

combinations of strategies at their disposal; however, their cholce of strategies was expected
to shift towards more efflcient strategles if they are able to learn the program debugging

strategles and transfer them to the new domain.

The students’ behavior on the pretests was very much like the brute force strategy of the

debugging model. The predominant strategy was to read all the commands and Simuiate
none, then to go through the directions agaln. slmulating most of them untli the Iincorrect
direction was located. A change In focus on the later tests Is apmiram from the strategy
classifications. Figure 26 shows the reading strategies for the studemts .on each type of
test. There were no differences between groups A and B so the data have been collapsed
across group. On the pre-test, half the students read all the lines on thelr first reading of
the dii-éi:ii’d'ri’s. On the mid-test and the post-test. only a quarter of the subjects read alii

the lines: on their first pass. A little more than g third of the students read all the

directions or most of the directions until the bug was found and then disregarded the rest.
A quarter ‘of the students focused only on the directions in the same subpart as the buggy
direction. Even by the mid-test, most students had shifted to a more focused strategy for

reading directions;, X2 (6) = 23.33, p < .001.

Insert Figure 26 about here

The simulation strategy did not shift as qulckly. Figure 27 shows the strategy shift for

each type of testt Two thirds of the students simulated none of the lines on their first
reading of the directions on the pre-test: Thus, their reading may familiarize them with the
directions, but they have not checked the directions. It could be argued that the students

can remember the discrepancies between the plan and the outcome descriptions; this may
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true for the tables and is definitely not true for the maps which are too complicated to
remember. Some students had shifted to a more focused strategy by the mid-test; but half
of the students were still not simulating any commands. By the post-test, more than two
thirds of the students were using focused strategies, X2 (6) = 33.14, p < .001. The

likely to simulate commands on the construction tests where they may be able to remember
the drawings. This pattern indicates that the students deveioped a range of strategies and

know the conditions under which each is appropriate.

5.3 Accuracy

in addition, the changes subjects made were scored as either correct, Incorrect, or re-
writes. Re-writes were. cases in which the subject did not isoiate a bug but rather added
directions to undo the problem and achieve the desired outcome. In the example described
above, a re-write wouid be adding a direction at the bottom of the page saying Something
iike; "Move the coffee tabie to between the other two chairs.” The iocation of the change
was scored as elther correct, nearby, reasonable (on a line with an understardable faise

Transfer of debugging skills from computer programming would be reflected more in the

improved location of the correction than in the accuracy of the correction itseif since there

regardiess of the order in which they took the mini-courses. Figure 28 shows the increasing

insert Figure 28 about .here
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5.4 Solution time

Also, the total time from when the subject finished reading a story to the time s/he started

making a change was measured. Improved efficiency of search should decrease the
solution time. Figure 29 shows that the time requlred to suggest a bug decreases by
almost haif from the pre-test to the pust-test as a result of the shift to the selective search
strategy, F (2,192) = 16.05; p < :01: Both the accuracy and the time figures show that
the traveling directions were the most difficult to debug, F (2.189) = 19.66, p < .01. They

wers the tasks on which the figure provided the least Information about the nature of the
bug and on which the directions weie the most diiflcult to simulate. The Improvements on

these tasks are primarlly a result of increasing use of location clues.

Inser: Figure 29 about here

5.5 Checking

students more frequently checked the directions after making a change. This task provided
no opportunlty to r@-sun the directions after making a changé as is possible In computer
programming; however, the students attempted to re-simulate ih§ effect. of the change .on
ielr own 1o iest its correctness. o

The surriber of students who read and simulated lines after the initial bug was identified
increas?.’' steadlly across tests for ail test types. x2 (4) = 13.77, p < .05, (See Figure
30.) This ctacking strategy is largely responsible for the increase in cofrect responses

since checking the fix after it has been made can lead to discovering an Incorrect fix.

been made. Even though retesting is not easy for debugging non-computer directlons,

students demonstrated that they knew a very important goal: 1o check the fixes:

Insert Figure 30 about here




1

5 acquired In the LOGO. context wars
easingly fbéﬂééd sedrch and Increased
ch tma and greater accuracy of fis.
 alternalive hypotheses suggested n
maitration bacauge the older hail of
gmionsirale. batir search or chicking

ecls were significanty faster than the
< 18], bl therd was Ao migiest or
not be directy tested because of the
g absence of counterbalancny wiin
@ leSs accurats on thg ravelg tegts,
r two test types were naarly equal in
Meraices bevgen fes sessons were
re not. The best evidence, howaver,
I 1 that the Sech salegies vers
et o gt the computer and non

Transter of Debugging: Skil 7
8. Conclusions

The croam of fding ranser f el tinking Skl fom compuer pragramming has
rapidly become & nightmare of mixed reults because of fallurss to match the SKilS student
loarned with the SKills target tasks required as well as because of poor methodoiogy: The
ol of thi research Was o demonirate te possilly of achigving highieve wransler of

debugging skils when the relevant sl have been approprialely speciied, actually leamed
I the e domals, and dvecty USef I 1@ targel domain. This, the apgioach Used
fo this rasearch had e phases. Fist, a model of debugglg sKils was nstenlated 2 3
prodyction system o speclly the debugging skils studenis would need lo leam In order 1o
debug wel. Sice Studenls did rot Jéam these sklls spontaneausly I & plot stidy, a

curficulum wes designed 1o teach students the model's knowiedge and goel structure
oiplelly.  SIUdents' Gabugging I Ware assessed duiing aach of 90 minkGourses ang

thelr performanca in the second minicourse was compared 1o the performance of Students

iho fo0k that minkcourse 1S, Debugglng Skl were aso assessed on nor-programming
tests designed speciicaly o requre simiar Klls 1o program debugging.  This, the
tansferably of debuggng Sk from one LOGO programming domin 1o a secend LOGO

" programmiig doman and 16 nonrogramming domains could b asseee.

6.1 Support for the thesis
The thess that this dissertaton atamats 1o test can be stated Smply as folow:

o Chlicren can leam highievel Winking skils from computer programming 1f the

component skils are precisaly Specifled and taught direety,

+ Oica the SIS haia bGen leatied, they e avalatle for fansler grovided they

afe ecagnizable 28 relvant fo the farget fask.

The most direct support for the thesis is that the sludents who were taught debugging
ol In 1 corigR of 4 LOGO couise (elher giaphics o Isirocessing) dig earm
debugging Skils and dld wransler them 1o & second LOGO mincaiise and to fon
programming tagks requiring dsbugging of directions.  Their acquired focused Search
swalegles for dabuiging LOGO pogiams Which fransered fom ofe LOGO con e
oher and from the LOGO contert 1o a nonsrogramming confest, The deb
learned In he first minkcourse were easiy recognizable as relevant 1o the : W

COurse; I fact, e comparson shois 4 large savings.  Also; the sludents requested the
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debugging charts even before debugging was Introduced in the second mini-Course so they
apparently recognized the potential usefulness of the skilis they had used before.

Debugging Is composed of many sub-skilis which may be learned and transfered to different
degrees depending on the particular experlence and tasks. Only the goal structure of
debugging was directly relevant to the non-programming task used In this study (and none of
the programming and editing skills were predicted to be reievant). Structural ciues were

relevant to the extent ihat the diractions contained headings recognizably similar to
subprograms. The strategy shifts observed on the transfer tests indicated increasing focus

tendency to simulate Irrelevant directions, and Increasing attempts to retest the directions
after the fix was made.

Tiie learning of transferable debugging skills in this study was achieved by adding only a
smaill amount (1/2 to 1 hour) of =xplicit instruction. Once the desired skiiis had been

implernented easily. Only gentle reminders to practice the debugging skiiis, the presence of
the debugging posters, and the experimenter demonstrating the SKills were necessary on a

continual basis after the initial explicit instruction. It is not necessary.to- teach a whoie

however, for the skills and the knowledge they require to be made expiicit and to be used.

Perkins and Martin (1986) ﬁéas a similar suggestion for remedying students eariy difficuities
with computer programming. They are currently testing the hypothesls that students’ fragile
knowledge can be boistered by teaching them to use metacognitive strategies to guide their

Tne learning and transfer of debugging skills did not depend on the children first
becoming good programmers, Slﬁéa the good debugging strategies bypass the need to
interpret every command (which the pilot study showed children did poorly). debugging can

proceed without great programming skills (though some of the most diffica!t bugs to correct
were also areas of difficulty In programming). Being able to debug before being able to
program well IS especially important since more bugs are generated by novices. Kessler

taught LISP students to debug simple functions before having experience programming them.

Bassok and Holyoak (1986) also suggest that "interdomain transfer need not necessarily
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problem-soiving procedures can transfer to a target domain even when they are not alwayse

executed flawiessly In the source domaln. This possibility applies directly to the transfer of
the debugging goal Structurs even though students did not know all of the discrepancy-bug

mappings for programming yet.

In addition to these positive results, other results suggest that the conveiss of the claim is

also true:
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Without direct Instruction; high-level skills are not likely to be I|earned a-

therefor®, cannot transfer:

both areas. These skllils were useful in the second mini-course and resuited in a large
savings. However, the transfer tasks were not designed so that these skilis would be useful.

Detalled analysis of programming and editing skills could reveal.tasks:to which these skliis
might transfer; however, that Issue was not the focus of this,stixy. .- Ofwr research has

(Garlick, 1984) and figure comparison (Clements and Gullo, 1984). Similarly, while the goal
stricture and structural clues for debugging transfered to the non-programming task. the

discrepancy-bug mappings for programming were not applicable and, therefore, did not

transfer. In fact; only a subset of the discrepancy-bug mappings were relevant for transfer

programming problem in order to plan an appropriate program structure. Thiiu. they had
difficulty deciding which program schemas to use and how to diréct the flow of control. In

fact, the level of program Structure was low unless the program goal required it and the

board reference) to ease their problem solving.

83



Transter of Debugging Skill 77

These same students participated in wo Other studies. The resuits support the notion that
skills that have not been iearned in the source domain cannot be expected to tranc.er.
vant (1986) compared these students’ planning abiiities to those of a control group with no

Thase resuits areé not surprising since the LOGO group was already described as having
difficuity planning and since giving directions iz clearly a skill with which LOGO students

have vast experience:

Dunbar and Kiahr (1986) found that these same LOGO students were no better or worse

fhan students who had not had LOGO at discovering how to use the REPEAT key on a
programmable toy (Blg Trak). The fact that LOGQ students had no advantage Is not
surprising since students do not have to discover how Individual commands operate in a
LOGO environment; they are told what arguments are requlred and what effer they have.
However, the LOGO students were expected toc be at a disadvantage sincs 3 use of
REPEAT In a LOGO environment Is a misleading analogy for the Blg Trak.

6.2 Possibilities for strengthening the evidence

' Belng able to dociment the acqulsition and transfer of specific debugging skilis Is strong
evidence in support of the thesis. However, the evidence could be stronger in the following
ways.

computer first semester and study hall second and one with the reverse schedule is already
planned for the coming fall. A second planned study includes LOGO classes from the same

grades at the same school with and without explicit instroction in debugging:

The tle between the learning and transfer of debugging skills could alsoc be made more

direct. First, assuming that students could be taught to give better protocols, individualized
testing couild be used so that the learning path for individual students couid be compared to
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each student'’s level of transfer. A sirong corrélation of Individual learning and t-ansfer
scores would be strong support for the thesls. In addition, the learning path could be
traced better by counterbalancing the tests within each mini-course.

Another Important extension would be to strengthen the transfer effect. Some of the

L:>GO students In this study did not shift strategles as a result of the debugging Instruction

Psrhaps more Iustructlon; examples; and/or practlce would facllltate the shift for those

2ruderts by Insuring complete and abstract learning (Smith, 1986; Bassok and Holyoak,
1986): Several researchers have suggested that giving a hint that a previous strategy Is
relevant would Improve transfer (Gentner 2rid Gentner, 1983; Glck and Holycak, 1983; and
Holyoak and Koh, 1986). Transfer might be improved by giving studenis a hint o use thelr
debugging strategles. When discussing wnether exposure to the LogoWrar microworld
would Ilsad to bette: writing skills In general, Papert (1986) commented,

you {the teacher], it may or may not Bui | am convlnced that your Imagination as

a teacker will show you how to use the LogoWriter programming as a transition to

pure wrliing:

Yot another possibility Is i show that thz approach works for other.-high-level skillS 1oo.

Problem decomposition and structured programming have been showm to be vory difficult for
childrer yet are cruclai for good programming (and are helpful for good debugging). Fisher

(1986) Is developing a mode! of how expert programmers decompose a problem Into a

programming plan. Such a inodel would be useful for designing explicit Instruction In much
the sarie way as the Cariér 2id Klahr (1986) debugging model was. Agaln; skill acqulsiiion

could be assessed and transfer to tasks with recognizable similarity measured.

Finally, there Is strength In predictability. The model must be developed to the extent that
it can predict the amount of transfer to various tasks depending on the relevance of the
tearned sKIlls. For example, we found differences between transfer tasks where the
directions had subprogram-like heading and where they did not. However, these dilferences
were not tested directly with controlled contexts. The goal must be to design transfer items

with predlctable differences and then to test those predictions.
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6.3 Applying the findings and the approach

teaching programming and those teaching other subjects. Curriculum materlals based an
the cucrent findings couid be deveioped for use In programming courses, and the possible
transfer effects could be specified In terms of the educational objectives actually used in the
schcols. This digsertation showed that students could learn focused seareh strategles In a
LOGO context and transfer them to a non-programming context. Such Skilis might aiso be
transferable to other complex search tasks typlcally encountered In School, such as locatlng

and assussment can jead tc reallzing the dream of ::.dents leaining transferable debugging
skills. Yet, reality can Only conform to the dream as researchers continue to explore the
nature of transfer and eaucators begin to utilize the findings in the classrcom.
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Aruitoxt provided by Eic:

Table 1:

Transter of Debugging Skill

Discrepancy-Bug Mappings in \he GRAPES Model

o
Distance FOnorB8Kn
Location “this is supposed to be Distance FOnor8Kn
in the middie"
Extent “lots too many squares” iteration REPEAT n
or o
Recursion stop Fxsn
or THEM °T0

Recursion interval

Extra part

“it drew a line thare”

Pen position

or _
Extra cal

Uirong part

“it drew eorn instead of

a stalk"

Program call

Switched caif

Missing part

“ wanted a box there"

Pen position

Program cail

PD omtted
o
Cal omitted

;rmt \?ii‘ﬁlﬂi it prmba ‘score’ instead ;ﬁﬁéfﬁiéﬁi Quoted variable
~f the number”

Not matching “I put the right answer Nesting READLIST or
and it marked it wrong" READLJORD

Wrong vatue “it ~~inted the number variable name Wrong variable
instead of the place" name

How to ERROR MESSAGE Punctuation Missing punctuation
what to ERROR MESSAGE Command Fllssing command

or -
Hllllhg pi“ii‘i(hiiii

No vakie

ERROR MESSAGE

Initialization

MAKE “namg v3lia
[+ Ng
Ho paramotsr

Don*t know

"this mess"

?
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Table 2:  Exampie Trace of the GRAPES Modei with High information

[*] start

top-goal: test FARM

RON o
Run the program FARM. ~=>ok
MaTCR , )
Did the outcome match the plan? [yes or no]? ' ~=>no
| 1) tese-1:
| goal-1l: evaluate FARM

| | 2) evaluate-2:

| | gecal-2: describe FARM

CONTRAST )

Vhat type of d*screpancy is there? ' S
[graphics or lists] -->graphics
CONTRAST ,

Did you get an error message? -->no

| | | 3) describe-1.

| | | goal-6: describe FARM

CONTRAST o } ) i _

What is a discrepancy between the plan and outcome?

[orientation, size, spread, location, extent, .
extrapart, wrongpart, missingpart, or ?} -=->wrongpart
| | | | 4) describe-2.

| | | | goal-7. propose FARM

The program is probably calling the wrong subprogram.
EXAMINE

Vhat is he subp'sirar that actually ran? .
Il | | | | 5) r-opose-13;

| | Goal successful.

I
i | | Goal successfui.
P

|__| _goal-3: represent FARM
RECALL and EXAMINE ,
‘Does the FARM program have subprograms? -->?
| | | ©) represent-2.
1| goal-8: specify FARM
EXAMINE ) o
Is the bug in a REPEAT or IF statement? -->yes
| | | | 7) specify-3._
I 1 | | goal-9: specify FARM
EXAMINE
Wk'eh?2 . - -->REPEAT
I | | 8) specify-s.
| Goal siuccessful.
Goal successful.
oal successful.
oal-4: find FARM
9) find-8. =
1. { goal-1Q: find FaRM
The bug is (CORN) in FARM. =
((PU) (SETPOS (130) (50) (B)) ¢PD) (LT ¢90)) (FD ¢260)) (BK (10)) (RT (90))
(REPEAT (4) xxx (CORN) (RT (90)) (FD (25)) (LT ¢90)) (B)) (PU) (FD (10)) (PD)

(SILO) (PU) (BK (50)) (PD) (RT (90)) (BARN))

—n Q———
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| | | 1 10) find-6.

| | | Goal successful.

| | Goal successful.

| | goal=5: change FARM

GENERATE o

How should the fix be magez @~
[change, delete, or insert] -->change

| | | 11) change-1. o

| 1 | goal=11: change FARM

GENERATE =~ S e e
What should the (CORN) have been? —-->(STALK)

| | | | 12) change-2. —

| | | | goal-12: replace FARM

ENTER, SKIP, DELETE, INSERT -
((PU) (SETPOS (130) (50) (B)) (PD) (LT (92;: (FD (260)) (BK (10)) ¢RT {90))
(REPEAT (4) (STALK) (RT (90)) (FD (25)) (LT (90)) (B)) (PU) (FD (10)) (PD)
(SILO) (PU) (BK (50)) (PD) (RT (90)) (BARN))

| ¢+ | | | 13) replace-i.

11 | | | goal-13: test FARK

RUN o o

Run_the program FARM. ==>o0k

MATLH S )

Did the correction fix the problem? ==>yes

| I | | | 14) test-2. _

| | goal-14: evaluate FARM

| | 15) evaluate-3.

| | goal-15: test FARM

i
Al ——

the outcome match the pl:-i? [yes or no)? -->yes
1] I%) test=3. o

| | goal-i6: evaluate FARM

I

| | Goal suzxcessful.

i

! | 17) evaluate-1.
| I 1

| | Goal successful.

|

|

|__Goal successful.
Goal successful.

.
I
.
||
||
||
|
l

_ Goal successtul.
Goal successful.

Goal successful.

No Productions Applicable.
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Tsble 3: Example Trace of the GRAPES Model with Low Infornation

[*]start

top-goal: test FARM

RUN |
Run the program FARM. _>ok
MATCH.

Did the outcome match the plan? [yes or no)? ——>ho
| 1) test-1. o .

| goal-1: evaluate FARM
| | 2) evaluate-2.
I | woal-2: de*cribe FARM

CONTR: .T

What type of discrepancy is there? ) o
[graphics or lists] -=->graphics
CONTRAST B ]

Did you get an error message? ==>no

| | | 3) describe-1i:

| | goal-6: describe FARM
CONTRAST -
What is a discrepancy betwveen the plan and outcume?

[orientatior.; size; spread; location, extent, o
exXtrapart; wrongpart, missingpart; or ?] -=>17
i | | | 4> describe-2.
| | | goal=7: propose FARH
| | | 5) propose-1.
| | Goal successful.
| Goal sueccessful.
Goal successful.
1 goal-3: represent FARM
RECALL and EXAHINE _
Does the FARM program have subprograms’ -=>?
| 6) represent=2.
| goal-8: specify FARM

EXAMINE ,
Is the bug in a REPEAT or IF statement? -->no
| | 7) specify-3.

| | goal-9: specify FARM

EXAMINE )
Is there any command that could be used as a marker? -=>no

| | 8) specify-5.
| | goal-10: specify FARM
| | 9) specify-7.

Goal successful:

I |
| | Goal successful:
|

|

|

|

|

; | Goal successful.

| goal-4: find FARM

| | 10) find-1.

| | goal-11: find FARM

| | 11) find-2. -
| | goal-12: interpret FARM
D

I
I
I
I
I
I
|
I
I
I I

[

READ and INTERPRET

90




Transter of Debugging Skill

(PU lifts the turtle ’s pen so that no trace will be left vhen it moves.)

MATCH

Is PU the right command? [yes or no] =>>yes
| | . | | 12) interpret-4. ' '
| | * | | goal-13: check FARM

| | | | | | -13) check-2.

| | | | Goal fails.

| | 1 | goal-12: interpret TARM

READ and INTERPRET

(SETPOS places the turtle at i:e specified Xy coordinates.)
MATCH )
Is SETPOS the right command? [yes or noj —=>yes
| | | | | 14) interpret-4.
| | goal-14: check FARM
| | | _15) check-2.
| Goal fails.
| goual-12: interpret FARM
30 the right number? [yes or no] -=>yes
| | | 16) interpret-7.
| | goal=15: check FARM
| | | _17) check-2.
| Goal fails:
I

goal-12: interpret FARM

‘ ! 18)._ 1nterpret 7.
| ° goal-16: check FARN
i 1 | 19) check-2.

| | Goal fails.

| | goal-12: interpret FARM

MATCH .

Is (Bracket). the r1ght punctuat1on7 [yé§ or noj ==>ves
| | | | 1 207 interpret-5.

I} | 1| | goal-17: check FARM

| | | | | 1 _21) check-2.

| | | | Goal fails.

{1 |. ] _goal-12: interpret FARM

READ and INTERPRET S
(PD puts the turtle 's pen down so that a trace will be left when it moves:.)

MATCH

Is PD the right command? [yes or no] -->yes
| | | | | 22) interpret=4.

| | | | | goai=18: check FARM

| | | | | | 23) check-2.

| | | | Goal fails.

| | | | goal=12: interpret FARM

READ and INTERPRET

(LT turns the turtle to the left a ercain nuwber of dezgzrees:)
MATCH

IS LT the right command? [yes or nc) ~=dyas
| | | | | 2%) interpret-4.

| | | | | goal=19: check FARM

| © .1 | ' | 25) check-2.
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[ T Goal fails.

| 1| | goal-12: interpret FARM

MATCH o o ) o
Is 90 the right number? [yes or no] -->yes
[ I I 26) interpret-7.

| | | | | goal=20: check FARM

| | | | 1 | 27) check-2:

| | | | Goal ‘ails.

| T goal—lZ' interpret FARM

READ and INTERPRET
(FD mnioves the turtla forward a certain number of turtle steps:)

MATCH -
Is FD the right command? [yes or noj -->yes

| 28) interpret-4.

I
| | goal-21: check FARM
| | | 29) check-2

| Goal fails.

| goal-12: interpret FARM
0 the right number? [?és or no] -->yes
| | 30)_interpret-7. ___

| | goal-22: check FARM

| | | _31) check=2.

| Goai fails.

11 | goal=12: interpret FARM

READ and INTERPRET S
(BK moves the turtle backward a certain number of turtle steps.)
MATCH

Is BK the right command? [yes or no; ~-->yes
| 32) interpret-4.

| goal-23: check FARM

|
| | | 33) check-2.
I
I

Goal fails:
goal-12: interpret FARM
the right number? [yes or no] -->yes

| | 34) interpret-7.

| | goal-24: tcheck FARM
I

I

' | 35) check-2.
Goal fails.

| | | | goal-12: interpret FARM
READ and INTEXPRET .

(RT turas the turtle to the right a certain number of degrees.)
MATCH

Is RT the rizht command? lyes cr n:| -->yes
| | | ¢ ! 36) interprert-4.
| ! go2l-25: check FARM

! | | 37) check-2.
| oal fails.

|

I
I
%
: yeal-12: interrre FARM

3). interﬁrét 7.

#2 4o 2aghs number? [yes or noj -->yes
A
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Il I I 1 1 | _39) check.";
} i | | Goal fails.

1 | | | goal=12: interp::- FARM
READ and INTERPRET

(REPEAT executes a 1list of commands a specified number of times.)

the appropriate subprogram call here? -->no
| 44)_interpret-1:

| | | | goal-29: check FARM

The bug is the _(CORN)_in FARM.

MATCH ,

Is REPEAT the right command? [yes or no] : -=->yes
| | | | | %0) interpret-4.

| | | | | goal-27: check FARM

| | | | | | 41) check-2.

| | | | Goal fails. o

| | | | goal-i2: interpret FARM

MATCH ) o
Is 4 the right number? [yes or no] -->yes
| | | | | 42) interpret=7.

| | | | | goal-28: check FARM

| I | | | | 43) check-2.

| | | | Goal fatls.

1 I, | | goal-12: interpret FARM

w CORN) ropr

I |

1

((PU) (SETPOS (130) (50) (Bj)) (PD) (LT (90)) (FD (260)) (BK (10}1 (RT (90))
(REPEAT (4) xxx (CORN) (RT (90)) (FD (25)) (LT (90)) (B)) (PU) (FD (10)) (PD)
(SILO) (PU) (BX (50)) (PD) *RT ¢90)) (BARN))
[ 1 | | | i 45) chec ..
I | | %=1l success:. 3.
| | Guwl successful.
| Goal suzcessful.
Goal successful.

[
|
I
. -
| | goal-5: change FARM
GENERATE

How should the fix be made’

[change; delete; or insert] -->change

| | | 46) change-1:

| 1. | goal-30: change FARM

GENERATE -

What should the (CORN) have heea? -=>(STALK)

| | | | 47) change-2.

1| | | goal-31: replace FARM

ENTLR; SKIP, DELETE, INSERT

((PU) fSETPGS (130) (50) (B)) (PD) (LT (90)) (FD (260)) (BK (10)) (RT (90))
(REPEAT (4) (STALK) (RT (90)) (FD (25)) (LT (90)) ¢B)) (PU) (FD (1N)) (PD)
(SILO) (PU) (BK (50)) (PD) (RT (90)) {BARN))

Il | | | | 48) replace-1;

I | | | | goal-32: test FARM

RUN

Run tis prusram FARM: -->ok
MATCH

Did the correction fix the problem? -->yes

S T I I I 49) test-2. o
| I I | | | goal-33: evaluate FARM
I I 1 1 | | | 50) evaluate=3.
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] L1 | | | | goal-34: test FARM
MATCHR . S o _
Did the outcome match the plan? [yes or no]?
| | | | | | 51) test-3. _ o
| || | | goal=35: evaluate FARM
| | 1 52) evaluate-1.
| | Goal successful.
| Goal successful.
| Goal successful.
| Goal successful.
| Goal successful.
| Goal successful.
| Goal successiul.
| Goal successful.

Goal successful.
-~ Top Goal Successful.

No Productions Applicabie:

—->yes .-
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Table &:  Description of the Subjects

Group Neme Grade Age' NatiopalPercentile Ranks® Computer
Code Readiog Maih Laogusge

8 95 79
3 87 99 68

») 98 99 84 ) ]
9 74 9 73 Cotiimodore
6 8¢ 91 80 IBMPC

7 76 87 67 Apple 11c
99 98 99 98 Commodore
9:10 79 87 53 T
10,7 78 73 79 Commodore
16;10 96 98 98 IBM PC
i10 95 81 36

96 86 91 80  7/11

Lo d
[t ]

AR ESRAREE

Lol R AV LY, NIV [V ARV -NT XY Fry ey 3%y

>
g‘

;4 77 94 68
8,7 46 22 41 Apple ilc

8.7 65 71 53 IBM PC

[+ 3

&:10 97 96 99 IBM PC
93 82 99 86 IBM PC
910 64 72 53

10;2 93 94 86 S
10,6 81 38 o1 Apple 11k
107 66 71 28 Apple I'c
111 76 89 82

11,8 93 94 73

’ —
»

ABREZIRILHG

9,9 77 79 66 6711

>
s
o
wh

| Atthe beginningof the course. 7 - -
2 Since the subjects span several grades, the scorss 478 ot comparable across tests. The 3rd
greders took the Stanford Achievement Test, Primary 3, Form E, Complete Bettery. The 4th and
Sth greders took the Stenford Acitievement Test, Inter mediate 1, Form E, Complete Battery. The

6th graders took the Metropolitan Achievement Test, Inter mediate Form KS, Complets Battery.
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Table §:

Each ﬁi‘i;&ﬁlbi lesson was approximately orie hour fong.

uww—ﬁ@awmwuww—

N R) ot ot ot et oma |
- O O @~

NN N NN
NOOAIA WN

Sequence of Graphics Lessons

Grephics (first Mint) Graphics (seconid Min1)

dchstrotion
besic commands

interective project

name projects

REPEAT

rYves

mm TEST i
subprograms/farm projects
DEBUG TEST 1

originel projects

ERIT TEST 1

originel projecte

debugging
variabls shape programs
more veriables

PROGRANM TEST 2

DEBUG '[EST 2
originel projects
EDIT TEST 2
recursion

more recursion
PROGRANM TEST 3
garden projects
DEDUG TEST 3
original projerts

EDIT TEST 3

96

OO~ BN

~o

ul&?imii} AR

—
@

IND N N | e
N - QD

N
(%]

basic commands

name projects/SET-.

REPEAT
PROGRARN TEST 1
subprogrems/ ferm projects

DEBUS TEST 1
originel projects
EDIT TEST 1

debugging
variable shape programs
more veriablas
PROGRANM TEST 2

DEBUB TEST 2
recursion

EDIT TEST 2

more recursion

PROGRAM TEST 3

garden projects
DEBUB TEST 3

EBIT YEST 3
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Table §:

Sequence of Listarocessing Lossons

Each list-processing iesson was approximately one hour iong.

Lists (first Mint)

e n:-am:mwmwm N =

@

~ O

N) et ama
O O D

1N

N NININ NN
NOAILWN

demonstration
words end lists
PRINT, MAKE, end IF
interview projects
finigh interviev/s
PROGRANM TEST 1
subprograms

DEBUE TEST 1
madlib projects

EDIT TEST 1

quiz projects

debugging

varisbles/recursion
variables/recursion

PROGRAM TEST 2

unscrambler projects
DEBUG TEST 2

original projects

EDIT TEST 2

RANDOM (number guessing)
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Table 7@  Buggy Directions for Arranging Fumniture

Here oo the dirscticas Mrs. Fisher gave to the movers.

To arrange the dining room,
Center the china cabinet on the west wall.
Place the silver cabinet in the south-east corner-.
Put the table in the center of the room.

Arrange the 6 chairs around the table evenly.
To m the hvmg mvm

Place one chair in front of each end of the cabinets.

Place the square table in the north-east corner.

Put the sofa on the nerth wall next to the squa'e tww

Put the coffee table between the twe chairs.

Put the rocker on the east wall, next to the square table.
To arrange the kitchen, B B 7

Put the refrigerator in the north-west corner.

Put the dishwasher to the right of the refrigerator.

Put the sink to the right of the dishwasher-.

Put the stove to the right of the sink.

Place the counter next to the stove and along the east wall.

Put the oven along the east wall, next to the counter.
Place the table in the south-west corner of the room.
Arrange the 4 chairs around the table evenly.

Change or add one thing to fix Mrs. Fisher's directions.
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ﬁyuﬁ 1: §§mbii Graphics Programs

graphic effects of the commands All drawlngs start with the turtle positioned at

the g(aghlc effects of the commands listed. All dra
a) LOGO programs to draw a flower

the bottom ieft of the drawing, orlented to the north. a) LOGO prog
and ten dlamonds. b) Recursive LOGO

of variable size comprised of a line, twqflggveﬁs a
program to draw a Serles of flowers dacreasing in size:

— — S
FOSLEAF DIFOSLTSOLEAF DRT O £ 13

REPEAT 10 » * S AT 36)

o

317 X

REPEAT 2 [F® :C RT 48 FP T RT 133}

o

TOLEAF B8 7O CURVE :A

REPEAT 2 [CURVE B RT 98] REPEAT 9 [FD :4 RY 10]

o» o

ariwes 4

FoviRE

FEQUALP £2(sTOP)

PURT SO FD £ © 14 LR 90 PP

FLOVENS £ - 1

L ) BcCS FLOWERS 4
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ﬁiuri ii §iﬁ'ii§ii Liéi;ﬁréééﬁing ﬁragrlrﬁi

tllustrates the tméracttve effects of the commands Ilsted The program user typed the lnpi:ts

beside the rectangular cursor. The intermediate lines show the program's response. a)

LOGO program to translate one word into plglatln. b) Recursive LOGO program to translate

a sentence into piglatin; c) LOGO program to integrate the other two into a user friendly

J

TBPIEB‘) w

END

(TonuLPiGey:L

IF EMPTYP :L [OUTPUT []] S
OUTPUT SENTENCE PIGGY FIRST :L ALLPIGGY BUTFIRST :L
| END

BPRINT ALLPIGGY [POAKY PIG]

ORKYPAY 16PAY |
e _ >

( 10 Pi6LATIN o

PRINT [PLEASE TYPE A SENTENCE THAT YOU WANT TRANSLATED INTO PIGLATIN]
PRINT ALLPIGEY READLIST )
PRINT [IDOULD YOU LIKE TO CONTINUE?]

MAKE "¢ AEADIWORD

IF EQUALP :¥ “NO [PRINT [THANKS FOR PLAYING. HAVE A NICE DAY!]] [PISLATIN]
END

APIGLATIN

PLERSE TYPE A SENTENCE THAT YOU LUANT TRANSLATED INTO PIGLATIN

ATHIS LITTLE PIG6Y WENT TO MARKET

HISTAY ITILELAY IG6YPAY ENTWAY OTAY ARKETMAY

WOULD YOU LIKE TO CONTINUE?

PLEASE TYPE A SENTENCE THAT YOU WANT TRANSLATED INTO PIGLATIN

BTHIS LITTLE PIGGY WENT HOME

WOULD YUU LIKE TO CONTINUE?
aNO o
THANKS FOR PLAYING. HAVE R NICE DAY!

— : —
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Figure 3:  The Goai Structure of the GRAPES Model

Goal tree for the GRAPES debugging model. .[Highlighted goais explained in text.]

~—+TEST

#

CHANGE ®

¢

REPLACE —
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Figure 4: A Sample Debugging Problem

Example of a desired output (a), the actual output (b), and the buggy program ihat

produced the flawed output (c). The bug is the cail to the subprogram CORN in FARM. It

should be a call to STALK (which In turn caiis CORN):

c TO FARM -
PU SETPOS [-20 -S0] PD
LT 90 FD 110 BK 10 RT 90
___REPEAT 4 [CORN RT 30 FD 25 LT 90]
END
TO STALK o
FD 15 LT 90 CORN RT SO FD 30 CORN

FD S0 LT 90 CORN RT 90 FD 20 BK 95
END
~ REPEAT 2 [REPEAT 9 [FD 3 RT 90] RT 90]
END
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Figure S: High information Goal Tree
Goai tree generated during high-information debugging of the FARM program-  Numbers
correspond to the order in which the sub-.goais were generated: Parentheticai elements

indicats accumulation of information In working memory.

-

‘-m-@
38

(match no)

q—

1. EVALUATE

2. DESCRIBE 3.REPRESENT 4.FIND 5.CHANGE
farm farm farm farm
(Disc. fcs) (SUDDIOaram=7) o
%(s y’ﬁiig':g‘ %(subproorams?) * %wm.,
6 DESCRIBE 8. SPECIFY 10.FIND 11. CHANGE
farm farm i,,,,fﬁg,ﬁj form
S ¢h th bug is CO S
#(Dlsc. wrongpart) Lst::c‘:u::; *("x s STALK)
7. PROPOSE 9. §ijl?Y 12. REPLACE
farm = , farm farm
(bug could be corn) caee £ .....
13. TEST
farm
(fix yes)
14. EYALUATE
farm
15. TEST
farm

L(match yes)

fars

(=Y
(on}
(o)
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Figure 8:  Comparison of High and Low information Goal Trees

Comparison of schemalic goal trees for high-information (a) and iow-information (b) traces.

Note that (a) is the same goal iree shown in Figure 5. with much of the detaii suppressed.

- @

Ne— o= n

ot | e @

S S g~ N
‘g“_‘g‘. ‘ﬂ\‘

o = @ & o @
-

He= e e g
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Figure 7: A Pre-testPost-test Transfer Design.

a) The typlcal pre-test/posi-tesi transfer design invoives testing a group of subjéc@ggg@@

and after hait of them receive some treatment. b) Greater improvement of the treatment

group than the no treatment group from the pre-test to the post-test is eviderce of transfer

(assuming that there are no confounds in the experiment). c¢) In the dissertation study:

tested at three times: before, during, and after LOGO experience inciuding

subjects were

debugging Instruction. 1, 2, and 3 stand for three types of tests given at each time: a. b.

—— Trestment _

+===- No Trestment

Performance Measure!

PreTest PostTest

LOGO Debugging

/ Debugging

;/\ , Directions

N\

1(q, b, or c) P f t a, b, or ©)

2(e.d; 0rc) / 2(s, b, 0rc)
and o snd
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Figure 8:  Patierns of Hesults Suggesied by Altemative Hypotheses.

a) One alternative hypothesis Is that transter effects are purely the resuit of maturation
during the tima between the tests. It this is the case; then the younger subjects should

score lower on the pre-tests than the older students and lower on tiie post-tests than the

interval). b) A second aiternative hypothesis is that transfer effects are the result of practlce

on the tasts In thls case, improvements shouid be constant across all nine tests (three at

each test time) rather than showing increases primarlly between test times.
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Figure 9: A Savings Transfer Design.

a) A typical savings design involves two groups of subjects doing two tasks .in different

orders. b) Transfer is indicated by better performance on task A by the group doing task B

first and by better performance on task B by the group doing task A first. c) in the

dissertation study, the two groups of subjects took two LOGO mini-courses (graphics and list-

processing) in different orders. in each course: they took three saries of tests. each of

which had three items (programming. debugging, and editing).

a.
Group 1 A — B
Group 2 B —_— A 7

b:

— e |
B Growp 2
[ d
Z
[ 3
£
£
P
g
1st Task 2nd Task

c. i _ _

Group 1 _ Grephics B List Processing
,C W, b,c. 8,b,ca,b,ce,b, c
List Prééiiilii ) éi'iiii;:i _

Group 2 AAN|— | ANAA

’’’’ e,b,cu,b,Ca.b,C
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Figure 10: A Combined Pre-test/Post-test and Savings Design.

This figure Is a combination of Figures 7c and 9c¢: it shows the complete design.

Grophics List Processing

NN TN

! (a. h 9[ 9) 1 (i; b, or c) e v ©J
2 (s, b, or ) 2 (s, b, or ¢) 2(a,b,0rc)
-and end ond -
3 (a, b, or ) 3 (a; b, or ¢) 3(a, b, orc)
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Figure 11: The Model-Based Debugging instruction

Debugging Instruction was derived directly from the model (with changes In wording for the
benefit of young students). The step-by-step debugging process faught expiicitly in both

LOGO mini-courses is represented here in terms of the goal structure of the GRAPES

model.

Test a program.

I 1t's not
7"9!!1;:: o

Ask yourself,  Them esk yourseif,  Then use the  Once gow've found the bug,
“what is the problem?" “does the program information to ask yourself, “whet should
hove subprograms?® find the bug. the fix be?”

S N

And “what type of and “whers might Otherwise, hen meke the ﬁi, and

bug could cause __the bug be?" read svery %

the problem?” - In & subprogram commend
- in e REPEAT or if *
- after a certain o
command I A Re-test the program:
And decide

whether it's
correct.
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Figure 12: Planned and Buggy Outcomes for Arranging Fumnfture
Example of the discrepancy information provided on a transfer test. The bug is the coffee
table in the living room. Using this clue would help narrow the search for the buggy
direction (se® Table 6).

| o oo

00
o

el )

=0
"

THIS i3 how

the movers
srranged 1.
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Figure 13: A Sample Debugging Transcript

statement.

it said the  whnich subprogram  EDIT It should
wrong name. should we tru [6?00!?8] Qilif Q
{dessribe) (represemt) replacs
The veriebles Goodbye _ :NAME _ :NAME -5
are mixed up: (spectry) Cinterpret) :HELLO
(prepese) # (change)
Thnt's .
wrong! FOETRY
{check) )
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Figure 14: Debugging Success

Group A took graphics then list-processing; Group B took the mini-courses in. the reverse
order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the list-processing tests, c) Overall resuit: second mini-course groups found more
bugs than first mini-course groups in graphics and list-processing. The maximum number of
bugs was six.
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Figure 15: Debugging Speed

Group A took graphics then Iist-processing; Group B ook the mini-courses in the reverse

order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two
groups on the list-processing tests, c) Overall resuit: second mini-course groups found bugs

more quickiy than first mini-course groups in graphics and list-processing:

a. b. c.
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Figure 18: Desbugging Efficiency

Group A took graphics then list-processing; Group B took the mini-courses i the reverse

order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two

groups on the iist-processing tests, c) Overall result: second mini-course groups took fewer

cycles (In terms of the model) to fix bugs than first mini-course groups in graphics and list-

processing. All students took fewer cycles on list-processing tests than on graphics tests:

. b e
----- 15t Mini-Course 7
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Figure 17: Accuracy of Search Comments

Group A took graphics then list-processing; Group B took the mini-courses in.the reverse
order. a) Comments describing the discrepancy, b) Comments proposing the bug. ¢)
Comments specifying the location. Accuracy of search comments was high: however. very
few search comment: were made. There was no Improvement in the accuracy of any type

of search comments.

Percent Accurate |
Percent Accurale |

Percent Accunale |
7]
o

—— List-processing

20 — List-precessing
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Figure 18: Amount of Pre-Search Comments

Group A took graphics then list-processing; Group B took the mini-courses im.'the reverse
order. a) Comments describing the discrepancy, b) Comments proposing the bug. cj
Comments specifying the location. The percentage of comments made prior to initiating
search increased, especially for comments proposing the bug.

- Graphics _—
i ~— List-processing

Percent Bafore Search

Percent Before Search)
3
S 83883

~— List-processing

Percent Béfore Search

20 —— List-processing 20
10

Mini-courses Mini-courses Mini-courses




-
-
Q!

Transfer of Debugging Skif

Figure 19: Amount of Program Goai Achieved

groups on the list-processing tests, c) Overall result: there was small improvement In the
percentage of program units completed in the second mini-course. Students completed

more of the program units on the list-processing tests.
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Figure 20: Amount of Program Structure

Group A took grarhics then list-processing; Group B took the mini-courses in-the reverse
order. a) Comparison of the two groups on the graphics tests; b) Comparison of the two

groups on the list-processing tests; ¢) Overall resuit: second mini-course groups added no

more structure to their programs than first mini-course groups in graphics and iist- processlng

Students in list-processing did add more structure than students in graphics, however.
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Figure 21: Editing Speed
Group A took graphics then list-processing; Group B took the mini-courses In-‘the reverse

order. a) Comparison of the two groups on the graphics tests. b) Comparison of the two
groups_on the llst proc€§§ing tests, c) Overall resuit: second mlnl-course groups were faster

at editing graphlcs programs than list-processing programs
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Figure 22: Debugging Speed Minus Editing Speed

Group A took graphlcs then Ilst-processlng. Group B took the mini-courses im.-the reverse

order. The connected points show the debugging speed after subtracting the editing speed.

For reference, the unconnected points show the debugging speed without adjdstment (as in

Figure 15). a) Comparison of the two groups on the graphics tests. b) Comparison of the

two groups on the Ilst-processing tests, c¢) Overall result: Subtracting the editing time from
the debugging time per bug does not diminish the transfer effect.

ii b; Ce.
L e 13t Mini-Course 12,0 “r* 13t Mini-Course i2.0] - GraphIcS
i2.0 — 2nd Mini-Course 110 ——2nd Mini-Course T — List-processing
i _ - s
= 11.0 H é 10.0 ;5 10.0
€ 100 i [} - Y
2ol g ] oo § oo
- o, - S __ : . ) ]
5 9.0 ) S 00 : : 2 80
£ 8o 2 i : 2
3 E 70 ® . - = € 70
f 5 s . @ ® =
- * ‘; 6.0 ; 6.0
3 60 5.0 50
é 7 -7 5.0 . 5.0
5.0 4.0 ? [ 2.0
40 30 : 3.0
1 2 3 1 2
Cist-processing Teats Mini-courses

120



Transfer of Debugging Skill 114

Figure 23: Editing Efficlency

Group A took graphics then list-processing; Group B took the mini-courses in-the reverse

order. a) Comparison of the two groups on the graphics tests. b) Comparison of the two

groups on the list-processing tests, c) Overall result: second mini-course groups were more

efficient at editing than first mini-course groups In graphics and list-processing.
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Figure 28: Incorrect Edis

Group A took graphics then Ilst-processlng. Group B took the mini-courses In the reverse

order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two

groups on the list-processing tests; c) everall result: second mlnl-course groups made ‘ewer

incorrect edits than first mlnl-course groups in graphics andg llst-procnsslng
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Figure 28: Amount of Help Needed for Editing

Group A took graphics then list-processing; Group B took the mini-courses in..the reverse

order. a) Comparison of the two groups on the graphics tests, b) Comparison of the two

groups on the Iigt-procaaalng tests, c) Ovarall resuit: second mlnl-coursa groups required less
help than first mini-course groups In graphics and Ilst-procasslng
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Figure 26: Reading Strategies on Transfer Tests

The number of subjects who used each of the four search strategles for reading the buggy

directions. a) On arranging direction tests, b) On distributing direction tests, ¢) On travsiing

direction tests. Better strategies are toward the right.  Subjects shifted toward better

strategies on the mid- and post-tests.
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Figure 27:  Simuiation Sirategies on Transler ~ests

The number of subjects who used each of the four search strategies for simulating the

buggy directions (checking them against the output). a) On arranging direction tests. b) On

distributing direction tests, c) On traveiing direction tests. Better strategies are toward the

right. Subjects shifted toward better strategies on the mid- and post-tests.
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Figure 28: Success for Debugging Directions

On all three types of transfer test, more subjects Succeeded In debugging the.directions on
the mid- and post-tests than on the pre-test.
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Figure 29: Time to Debug Directions

On all three types of transfer test, subjects took less time to locate the bug.on the mld-
and post-tests than on the pre-test.
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Figure 30: Use of the Checking Strategy
For all three types of transfer test, mors subjects checked their fixes (rather than qu

immediately after making a changs) on the mid- and post-tests than on the pre-rest.
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