AUTHOR	zeigler, Harmon
TITLE	Education, Income, and Equality.
INSTITUTION	Oregon Univ., Eugene. Coll. of Education:
SPONS AGENCY	Office of Educational Research and Improvement (ED),
	Washington, DC.
PUB DATE	Mar 86
NOTE	24p.; Best copy available of appended charts.
PUE TYPE	Statistical Data (110) -- Reports - Generai (140)
EDRS PRICE	MF01/PC01 Plus Postage.
DESCRIPTORS	Comparative Analysis; Developed Nations; Developing Nations; Economically Disadvantaged; *Economic
IDENTIFIERS	Development; *Educational Development; *income

ABSTRACT

Educational development in a country should reliably predict the level of wealth and its discribution. Undeveloped societies tend to have highly inegalicarian distribution functions. The development process accelerates this tendency by rewarding wealthy segrents of the population that are in a position to invest in the growing economy, Finally, in advanced stages of development, bureaucratic and political structures may reach a point where egalitarian changes in the distributive process can be effected. EJucation leads to development and increased wealth in the society, but since education enriches individuals, it increases inequality. Three basic areas are explored to test a model relating economic development, education, and inequality: (1) level of economic development; (2) level of educational development; and (3) diversity of economic structures. Using a variety of educational and income statistics, and a measure of development, a Gini index was generated for each of 144 nations. In general, the data support the expected relationship. Hc rever, when the sample is divided into three groups based on GNP per capita, this relationship is only seen in advanced developad and undeveloped nations. In developing nations, increasing educational levels are related to increasing wealth, but not to increasing inequality. (MCK)

[^0]
Education, Income, and Equality

by
Harmon Zeigler

March 1986
U.S. DEPARTMENT OF EDUCATION

OHte el Educationtil Fëpearch and improvénemi EDUCATIONAL RESOUREES INFORMATION CENTEN (EEAIG)
Thrs documeni has been reproduced as
 óngnting it
Q Miñor chañoè have bean mede to improve - aproduengo quatity

- Points di view Q^{\prime} opinions staledin this decuOERI pogition or policy.
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

to the educational fesources INFORMATION CENTER (ERIC):"

The preparation of this final report was made possible through an Institutional Grant awarded by the National Institute of Education to the Center for Educational Policy and Management. The opinions expressed in this report do not necessarily reflect the positions or policies of the NIE or the U.S. Department of Education.

This paper explores the relationships among wealth, the distribution of wealth, and education. It argues that education should predict both wealth and ics distribution, measured at the macro level, (with macro-ievel data assuming the existence of micro-ievel underlying causes.)

Of course, unless there is a considerable amount of economic product generated in a society, there is very litile point of talking either about wealth or its distribution. Further, societies at earlier stages of development tend to have highly inegalitarian distribution functions. The reasons for this are: underdeveloped economic structures tend to be politically undtifferentiated and consequently demonstrate iftele effective political mobilization through such mechanisms as trade unions or mass political parties that could potentially make demands for a wider dispersion of the economic and social product; underdevelopment tends to be bureaucratic as well as economic or political. Thus, even the governmental structure that could be used as a policy tool to expand the dispersion of the economic and social product is absent or inadequate. The poor utilize virtually all of their income for maintenance, while the wealthy require only a smali portion of their income for day-to-day expenses, such as food, clothing, and shelter. They can save a large portion of their income. Not only can the poor not save, but they receive no money through investments since they require sizeable commitments of capital.

The development process accelerates this tendency for inegalitarian distributions of social goods by rewarding the already wealthy segments for their investments in a growing economic structure. Also, urbanization and industrialization center much of the new labor and wealth on a few locations, while the rest of society is either neglected or retarded, Finally, as economic growth begins to level off and the desired goal of "development" is reached, the bureaucratic and political development begins to catch up with the econouife growth. Since this ocurrence comes at a time when presumably there is a stable and diversified economic structure, whatever new demands are made by nascent interest groups are much more likely to be met by established bureaucracy since it not only is equipped with expertise, but also possesses an expanding resource base aimed at enhancing its ability to make changes in the distributive process which might lead to a greater level of equality. The argument that there is diminishing equality at early stages of development is based largely upon the notion that preindustrial societies were highly egalitarian in the sense that virtually everybody tilled for themselves that which troy consumed. Such accounts are dismissed by political economists as inaccurate renditions of preindustrial economies. For the most part the treatment of this curvilinear hypothesis in the literature has dealt with the extent to which equality was enhanced by increasing levels of postindustrial development. While there are variants to this argument, in general it characterizes what is of ten known as the curvilinear hypothesis which relates to the development of equality.

Note the central paradox: education leads to development

[^1]$$
d \text { reit i: ton momile structure. }
$$

Drerationa Meaw mement Techniques
Trimg 44 nations, a large number of potential indicators r ould we seasrated, although much of the data-=especially those from sutk if itarian and undeveloped countries-are either unreliable or uncilorted. Indeed, a major portion of energy went into collecting rellable data for such countries to compare them with developed, open societies. Of course, the information is readily available in open, developed nations. Collective or authoritarian governments pose. another problem. They require the adjustment of measures of income inequality for various factors of collective or subsidized income which are not accumulated in terms of money (health care, unemployment benefits, social security type programs).

For each of the nations a Gini index was generated, using either the nationally available income statistics or, when necessary, fragmentary data fron regional governments, research institutes, and the like. Sector inequality was gererated from the most recent available only for the 1960 s , but they are used as the best available data. Educational data were gathered on the same basis. We use percent literate, percent high school graduates, proportion of appiicants admitted to universities, and the proportion graduated. These variables were rotated to produce a single loading. Development was measured by combining GNP per capita with average GNP growth.

The data indicate that the expected relationships are generally supported. Education raises income and increases inequality. The more education, the less equelity. If we look at
nations by level of development (measured by per capita GNP), the realtionships hold. The sample can be divided into three groups, based upon GNP per capita. There are the most developed nations, developing nations, and those mired in poverty. The relationship holds for the first and last groups, but for developing nations there Is a loss of correlation, espectally when we look at the relationship between income and equity.

The supposed link vanishes, suggesting chat in developing countries there is no need to sacrifice grow th for equity. Growth does not lead to inequality, nor does it contribute to equality. Education does not play its perverse role in such countries, and investments in education are wise, compared to such investinents in developed countries, or in the least developed ones.

MATRIX OF CORRELATION COEFFICIENTS

	INCOME	EDOC	COLLEGE
INCOME	1.0000	0.1979	0.6239
EDUC	0.1979	1.0000	0.3698
COLLEGE	0.6239	0.3698	1.0600

Press any key to continue
$\bar{A} \mathbf{N} O V \overline{\mathbf{A}} \quad \mathbf{T} \mathbf{A} \bar{B} \mathbf{L} \mathbf{E}$

Source of Variation
Regression Error
Total

Sum of

Squares	D.F.	Mean Square
$\mathbf{3 . 1 7 4 6 3 8 \mathrm { E } + 0 7}$	2	$\mathbf{1 . 5 8 7 3 1 9 \mathrm { E } + 0 7}$
$4.954756 \mathrm{E}+07$	47	$\mathbf{1 0 5 4 2 0 4}$

F for analysis of variance $=15.06$ (d.f. $=2$ and 47) R-Suuared $=.3905$
Per cent of variation explained $=39.05$
Multiple correlation coefficient $=0.6249$
Standard erroc of estimate $=1026.744$
${ }^{\mathrm{I}} \mathrm{C}$

TABLE OF ESTIMATED COEFFICIENTS

Variable	Estimated Coefficient	Estimated St. Dev.	Computed t-Value
EDUC COLLEGE	$\begin{array}{r} -65.79314 \\ 271.931 \end{array}$	$\begin{array}{r} 212.31609 \\ 52.244 \end{array}$	$\begin{array}{r} -0.310 \\ 5.205 \end{array}$

Intercept $=5100.539$
Complete table of actual and estimated values (y / n) ?

TABLE OF ACTŪĀ AND ESTIMATED INCOME VALUES

Case	Observed	Estimated	Residual
1	7488	8243.96	-755.96
2	12790	10645.71	2144.29
3	8791	9372.91	-581.91
4	7268	7448.78	-180.78
5	10938	10221.59	716.41
6	10025	11032.56	-1007.56
7	11720	10615.46	1104.54
8	10339	9210.62	1128.38
9	8996	8861.07	134.93
10	8073	8991.33	-918.33
11	10101	10350.98	-249.98
12	8056	9182.55	-1126.55
13	10521	8773.78	1747.22
14	8936	8209.31	726.69
15	9358	8625.54	732.46
16	9983	9119.84	863.16
17	7613	7822.03	-209.03
18	8458	8468.08	-10.08

TABLE OF ACTUAL AND ESTIMATED INCOME VALUES

Case	Observed	Estimated	Residual
-	-	-	-
37	9317	9442.20	-125.20
38	9434	8557.11	876.89
39	9444	8965.01	478.99
40	7266	8639.57	-1373.57
41	7806	8659.31	-853.31
42	7720	8066.76	-346.76
43	9545	9175.10	369.90
44	7649	10278.61	-2629.61
45	7827	10054.49	-2227.49
46	9392	10045.28	-653.28
47	10309	9897.03	411.97
48	7800	7633.43	166.57
49	9348	8843.08	504.92
50	10898	9442.20	1455.80

Do you want tests of regression assumptions (y / n) ?
...... TEST 1: NORMALITY OF ERRORS

MATRIX OF CORRELATION COEFFICIENTS

	EDUC	INCOME	COLLEGE
EDUC	1.0000	-0.0353	0.3168
INCOME	-0.0353	1.0000	-0.0282
COLLEGE	0.3168	-0.0282	1.0000
Press any key to continue			

ANOVA
TABLE
11
D.F.

Mean Square

```
Error
```

F.for analysis of variance = 2.64 (d.f. = 2 and 47)

```
F.for analysis of variance = 2.64 (d.f. = 2 and 47)
R-Squared =.1010
R-Squared =.1010
Per cent of variation explained = 10.10
Per cent of variation explained = 10.10
Multiple correlation coefficient = 0.3179
Multiple correlation coefficient = 0.3179
Standard error of egtimate = .719842
```

Standard error of egtimate = .719842

```

Press any key to continue

TABLE OF ESTIMATED COEFFICIENTS
\begin{tabular}{lccr} 
Variable & \begin{tabular}{c} 
Estimated \\
Coefficient
\end{tabular} & \begin{tabular}{c} 
Estimated \\
St. Dev.
\end{tabular} & \begin{tabular}{c} 
Computed \\
t-Value
\end{tabular} \\
\hline INCOME & -14.84569 & 77.77115 & -0.191 \\
COLLEGE & 0.000292 & 0.000128 & 2.284 \\
Intercept \(=\) & 1.935684 & & \\
Complete table of actual and estimated values \((\mathrm{y} / \mathrm{n}) ?\)
\end{tabular}

TABLE OF ACTUAL AND ESTIMATED EDUC VALUES
\begin{tabular}{|c|c|c|c|c|}
\hline Case & Observed & Estimated & & Residual \\
\hline 1 & 4.3 & 4.342295 & & -0.042295 \\
\hline 2 & 8.3 & 5.028927 & & 3.271073 \\
\hline 3 & 4.5 & 4.686361 & & -0.186361 \\
\hline 4 & 4.4 & 4.117412 & & 0.282588 \\
\hline 5 & 4 & 5.006603 & & -1.006603 \\
\hline 6 & 4.9 & 5.185351 & & -0.285351 \\
\hline 7 & 3.8 & 5.005599 & & -1.205599 \\
\hline 8 & 4.9 & 4.638987 & & 0.261014 \\
\hline 9 & 3.6 & 4.522444 & & -0.922444 \\
\hline 10 & 4.1 & 4.560471 & & -0.460471 \\
\hline 11 & 4.1 & 4.986382 & & -0.886382 \\
\hline 12 & 4.5 & 4.630793 & & -0.130793 \\
\hline 13 & 4.1 , & 4.496964 & & -0.396964 \\
\hline 14 & 4 & 4.332180 & 12 & -0.332180 \\
\hline
\end{tabular}
\begin{tabular}{llll}
17 & 4.1 & 4.226372 & -0.126372 \\
18 & 4.2 & 4.407722 & -0.207722
\end{tabular}

Press any key to continue

TABLE OF ACTUAL AND ESTIMATED EDUC VALUES
\begin{tabular}{lcrr} 
Case & Observed & Estimated & Residual \\
\hline 19 & -4.9 & --4.456405 & ---443595 \\
20 & 4.5 & 4.895515 & 0.443595 \\
21 & 5.1 & 4.928863 & -0.395515 \\
22 & 5.4 & 4.542062 & 0.171137 \\
23 & 5 & 4.668819 & 0.857938 \\
24 & 5 & 4.375101 & 0.331181 \\
25 & 3.7 & 4.464955 & 0.624899 \\
26 & 5.7 & 4.717503 & -0.764955 \\
27 & 4.3 & 4.634634 & 0.982497 \\
28 & 3.8 & 4.550356 & -0.334634 \\
29 & 4 & 4.808479 & -0.750356 \\
30 & 5.1 & 4.832225 & -0.808479 \\
31 & 5.6 & 4.719423 & 0.267775 \\
32 & 5.4 & 4.400039 & 0.880577 \\
33 & 4.6 & 4.565110 & 0.565599 \\
34 & 4.2 & 4.520779 & 0.199961 \\
35 & 4.1 & 4.586462 & -0.365110 \\
36 & 4.4 & -0.420779
\end{tabular}

Press any key to continue

TABLE OF ACTUAL AND ESTIMATED EDUC VALUES
\begin{tabular}{|c|c|c|c|}
\hline Case & Observed & Estimated & Residual \\
\hline 37 & 5.1 & 4.721088 & 0.378912 \\
\hline 38 & 4.5 & 4.448211 & 0.051789 \\
\hline 39 & 4.5 & 4.552788 & -0.052788 \\
\hline 40 & 4.9 & 4.472282 & 0.427718 \\
\hline 41 & 4.6 & 4.463546 & 0.136454 \\
\hline 42 & 4.1 & 4.290568 & -0.190568 \\
\hline 43 & 4.2 & 4.628616 & -0.428617 \\
\hline 44 & 5.2 & \(4.93626 \overline{0}\) & 0.263740 \\
\hline 45 & 5.3 & 4.812843 & 0.487157 \\
\hline 46 & 4.2 & 4.853647 & \(=0.653647\) \\
\hline 47 & 4.8 & 4.839366 & -0.039365 \\
\hline 48 & 4.9 & 4.185813 & 0.714187 \\
\hline 49 & 4.7 & 4.531692 & 0.168308 \\
\hline 50 & 5.1 & 4.721088 & 0.378912 \\
\hline
\end{tabular}

Do you want tests of regression assumptions ( \(y / n\) )?

```

%%rrrarer
19 17.1 < | | |********************
6.
0 1.1
10.1
Chi-Square = 2.388 with d.f. = 1
Note: First and last 3 classes collapsed to enlarge f(e). Press any key to continue
...... TEST 2: AUTOCORRELATION OF ERRORS
Correlation of e(i) with e(i-1) $=0.012$
Computed t for autocorrelation $=0.083$ with d.f. $=46$ Durbin-Watson $=1.970$
...... TEST 3: HETEROSKEDASTICITY OF ERRORS

	\# Obs. in Group in Group	Variance of Residuals for Group
1	12	1.274857
2	13	.2478039
3	12	.3324718
4	13	.1419008

Bartlett's Chi-Square $=7.504$ with d.f. $=3$ (using 4 groups)
Press any key to continue

```

TABLE OF MEANS AND STANDARD DEVIATIONS
\begin{tabular}{lll} 
Variable & \multicolumn{1}{c}{ mean } & \multicolumn{1}{c}{ St.Dev. } \\
\hline COLLEGE & 9177.663 & -804.9141 \\
EDUC & 4.624 & -7435601 \\
INCOME & \(-6.152344 \mathrm{E}-04\) & \(1.322799 \mathrm{E}-03\)
\end{tabular}

Wait ... inverting the matrix ...
Press any key to continue

MATRIX OF CORRELATION COEFFICIENTS
\begin{tabular}{lrrr} 
COLLEGE & 1.0000 & 0.3168 & -0.0282 \\
EDUC & 0.3168 & 1.0000 & -0.0353 \\
INCOME & -0.0282 & -0.0353 & 1.0000
\end{tabular}

Press any key to continye

ANOVATABLE

Source of
Variation

Regression
Error
Total

Sum of
Squares D.F. Mean Square
\(\begin{array}{ll}3194548 & 2 \\ 2.85519 \mathrm{E}+07 & 47\end{array}\)
\(\begin{array}{ll}3194548 & 2 \\ 2.85519 \mathrm{E}+07 & 47\end{array}\)
1597274
\(3.174644 \mathrm{E}+0749\)
\(F\) for analysis of variance \(=2.63\) (d.f. \(=2\) and
47)

R-Squared \(=.1006\)
Per cent of variation explained \(=10.05\)
Multiple correlation coefficient \(=0.3172\)
Standard error of estimate \(=779.4146\)
Press any key to continue
A N O V A
TABLE

Source of Variation

\section*{Regression} Error

Sum of
Squares D.F.
3194548
2.8551.9E+07

2
Mean Square

47
\(3.174644 \mathrm{E}+07\)

R-Squared \(\equiv .1006\)
Per cent of variation explained \(=10.06\)
Multiple correlation coefficient \(=0.3172\)
Standard error of estimate \(=779.4146\)
Press any key to continue

TABLE OF ESTIMATED COEFFICIENTS
\begin{tabular}{|c|c|c|c|}
\hline Variable & Estimated Coefficient & \begin{tabular}{l}
Estimated \\
St. Dev.
\end{tabular} & Computed t-Value \\
\hline EDUC & 342.242 & 149.839 & 2.284 \\
\hline INCOME & -10391.51 & 84226.34 & -0.123 \\
\hline Intercept & 7588.744 & & \\
\hline
\end{tabular}

TABLE OF ACTUAL AND ESTIMATED COLLEGE VALUES
\begin{tabular}{|c|c|c|c|}
\hline Case & Observed & Estimated & Residual \\
\hline 1 & 8243.956 & 9060.38 & -816.43 \\
\hline 2 & 10645.71 & 10419.20 & 226.51 \\
\hline 3 & 9372.907 & 9138.98 & 233.93 \\
\hline 4 & 7448.777 & 9099.68 & -1650.90 \\
\hline 5 & 10221.6 & 9018.60 & 1203.00 \\
\hline 6 & 11032.56 & 9286.02 & 1746.54 \\
\hline 7 & 10615.46 & 8868.97 & 1746.49 \\
\hline 8 & 9210.625 & 9275.88 & -65.25 \\
\hline 9 & 8861.065 & 8820.81 & 40.25 \\
\hline 10 & 8991.328 & 8991.94 & -0.61 \\
\hline 11 & 10350.98 & 9012.23 & 1338.75 \\
\hline 12 & 9182.556 & 9138.98 & 43.58 \\
\hline 13 & 8773.783 & 8991.94 & -218.15 \\
\hline 14 & 8209.308 & 8957.71 & -748.40 \\
\hline 15 & 8625.536 & 9207.43 & -581.89 \\
\hline 16 & 9119.838 & 8889.26 & 230.58 \\
\hline 17 & 7822.025 & 8997.01 & -1174.98 \\
\hline 18 & 8468.08 & 9026.16 & -558.08 \\
\hline
\end{tabular}

TABLE OF ACTUAL AND Estimated COLlege values
\begin{tabular}{|c|c|c|c|}
\hline Case & Observed & Estimated & Residual \\
\hline 19 & 8585.184 & 9275.88 & -690.69 \\
\hline 20 & 10188.7 & 9118.58 & 1070.02 \\
\hline 21 & 10203.61 & 9344.33 & 1079.02
859.29 \\
\hline 22 & 8878.606 & 9447.00 & -568.39 \\
\hline 23 & 9312.818 & 9310.10 & 2.72 \\
\hline 24 & 8306.674 & 9310.10 & -1003.43 \\
\hline 25 & 8664.135 & 8855.04 & -190.90 \\
\hline 26 & 9429.922 & 9559.82 & -129.90 \\
\hline 27 & 9195.715 & 9070.53 & 125.18 \\
\hline 28 & 8956.68 & 8889.26 & 67.42 \\
\hline 29 & 9840.893 & 8957.71 & 883.18 \\
\hline 30 & 9822.908 & 9354.47 & 468.44 \\
\hline 31 & 9436.501 & 9525.59 & -89.09 \\
\hline 32 & 9830.363 & 9457.15 & 373.22 \\
\hline 33 & 8441.763 & 9153.06 & -721.29 \\
\hline 34 & 8957.556 & 9036.31 & -78.75 \\
\hline 35 & 8855.362 & 8991.94 & -136.57 \\
\hline 36 & 9080.362 & 9094.61 & -14.25 \\
\hline
\end{tabular}

Press any key to continue

TABLE OF ACTUAL AND ESTIMATED COILEGE VALUES
\begin{tabular}{ccrr} 
Case & Observed & Estimated & Residual \\
\hline-97 & 9442.205 & 9354.47 & --87.73 \\
38 & 8557.115 & 9138.98 & -581.86 \\
39 & 8965.011 & 9128.83 & -163.82 \\
40 & 8639.57 & 9275.38 & -636.31 \\
41 & 8659.308 & 8163.06 & -503.75 \\
42 & 8066.763 & 8991.94 & -925.17 \\
43 & 9175.101 & 9036.31 & 138.79 \\
44 & 10278.61 & 9368.40 & 910.21 \\
45 & 10054.49 & 906.03 & 692.46 \\
46 & 98945.28 & 9246.01 & 1029.27 \\
47 & 7633.426 & 928.65 & 655.38 \\
48 & 8843.08 & 9207.95 & -1647.52 \\
49 & 9442.205 & 9354.47 & -364.35 \\
50 & & & 87.73
\end{tabular}

Do you want tests of regression assumptions ( \(\mathrm{y} / \mathrm{n}\) ) ?



TABLE 1: SUMS .
\begin{tabular}{ll} 
File for \(X\) & \multicolumn{1}{l}{ COLLEGE } \\
File Eor \(Y\) & \multicolumn{1}{l}{ INCOME } \\
Sum \(X\) & \\
Sum \(Y\) & 458883.2 \\
Sum \(X * X\) & \(-3.076172 \mathrm{E}=02\) \\
Sum \(Y * Y\) & \(4.243221 E+09\) \\
Sum \(X * Y\) & \(1.046658 \mathrm{E}=04\) \\
&
\end{tabular}

Mean of \(X=9177.663\)
Mean of \(Y=-6.152344 \mathrm{E}-04\)

Press any key to continue

TABLE 2: STANDARD DEVIATIONS
\begin{tabular}{lll} 
Standard & Universe & Sample \\
Deviation of : & Formula & Formula \\
\hdashline \(\mathbf{X}\) & 796.8242 & -004.9141 \\
\(\mathbf{Y}\) & .00131 & .001323 \\
Residuals & .001309 & .001336 \\
Slope & \(2.323197 \mathrm{E}-07\) & \(2.371103 \mathrm{E}-07\) \\
Intercept & .00214 & .002184
\end{tabular}

Press any key to continue
...... TEST 2: AUTOCORRELATION OF RESIDUALS ......

> Correlation of e(i) with e(i-1) \(=0.147\)
> Computed t for autocorrelation is Durbin-Watson test statistic \(=1.69\)

```

SUMMARY OF THE 'FIT' OF THE BIVARIATE REGRESSION
Estimated standard error of slope = 2.371103E-07
Estimated standard error of intercept = .002184
Computed t value for slope =-0.196
Computed t value for intercept = -0.087
Correlation coefficient = 0.0282
R-Squared = 0.0008
Per cent of variation explained = 0.08

```
TABLE OF MEANS AND STANDARD DEVIATIONS
\begin{tabular}{|c|c|c|}
\hline Variable & Mean & St. Dev. \\
\hline INCOME & \(-6.152344 \mathrm{E}=04\) & 1.322799E-03 \\
\hline SPEND & 1688.94 & 704.7817 \\
\hline PUPIL & 18.914 & 2.339459 \\
\hline
\end{tabular}
Wait ... inverting the matrix ...
Press any key to continue
MATRIX OF CORRELATION COEFFICIENTS
INCOME SPEND PUPIL
\begin{tabular}{lrrr} 
INCOME & 1.0000 & 0.0362 & -0.1891 \\
SPEND & 0.0362 & 1.0000 & -0.1521 \\
PUPIL & -0.1891 & -0.1521 & 1.0000
\end{tabular}
Press any key to continue
```

Regression
Error
Total

Press any key to continue

TABI,E OF ESTIMATED COEFFICIENTS

Variable	Estimated Coefficient	Estimated St. Dev.	Computed t-Value
SPEND	1.437691 $\mathrm{E}-08$	2.719929E-07	
PUPIL	-0.000106	0.000082	$\begin{array}{r} 0.053 \\ -1.297 \end{array}$
Intercept	$1.370099 \mathrm{E}=0$		

TABLE OF ACTUAL AND ESTIMATED INCOME VALUES

Case	Observed	Estimated	Residual
1	0	-0.001118	0.001118
2	$9.765625 \mathrm{E}=04$	-0.000378	0.001355
3	-9.765625E-04	-0.000669	-0.000308
4	-4.882813E-04	-0.000631	0.000143
5	-5.859375E-03	-0.000814	-0.005046
6	-1.953125E-03	-0.000583	-0.001370
7	1.953125E-03	-0.000318	0.002271
8	-9.765625E-04	-0.000442	-0.000535
9	0	-0.000842	0.000842
10	0 -	-0.000799	0.000799
11	-1.953125E-03	-0.001088	-0.000865

14		-0.000769	0.000769
15	$-9.765625 \mathrm{E}-04$	-0.000380	-0.000597
16	0	-0.000328	0.000328
17	$-4.882813 \mathrm{E}-04$	-0.000787	0.000299
18	0	-0.000509	0.000509

Press any key to continue

TABLE OF ACTUAL AND ESTIMATED INCOME VALUES

Case	Observed	Estimated	Residual
19	－9．765625E－04	－0．000862	－0．000114
20	$9.765625 \mathrm{E}-04$	－0．000580	0.001557
$3{ }^{3}$	二9， －$_{3} 856535=14$	二目：818883	二8： 1818888
23	－9：365625E－84	－8：888593	－ $0: 808399$
38	－9．953125E＝03	＝0：8885 ${ }^{\text {a }} 8$	－8：8895 8
27	$-9.765625 \mathrm{E}-04$	－0．000276	－0．000701
28	0	－0．000845	0.000845
29	0	－0．000534	0.000534
30	－1．953125E－03	－0．000369	－0．001584
31	－1．953125E－03	－0．000678	－0．001275
32	－1．953125E－03	－0．000585	－0．001368
33	0	－0．000779	0.000779
34	－9．765625E－04	－0．000261	－0．000716
35	0	－0．000734	0.000734
36	0	－0．000480	0.000480

TABLE OF ACTUAL AND ESTIMATED INCOME VALUES

Case	Observed	Estimated	Residual
37	$-1.953125 \mathrm{E}-03$	-0.000611	-0.001342
38	$-9.765625 \mathrm{E}-04$	-0.000479	-0.000498
39	0	-0.000379	0.000379
40	$-9.765625 \mathrm{E}-04$	-0.300832	-0.000144
41	0	-0.000360	0.000360
42	$-9.765625 \mathrm{E}-04$	-0.000853	0.000853
43	0	-0.000597	-0.000379
44	$3.90625 \mathrm{E}-03$	-0.001433	0.001433
45	$9.765625 \mathrm{E}-04$	-0.000179	0.004086
46	$-9.765625 \mathrm{E}-04$	-0.000532	0.001509
47	$-1.464844 \mathrm{E}-03$	-0.000889	-0.000088
48	$-9.765625 \mathrm{E}-04$	-0.000648	-0.000817
49	$-1.953125 \mathrm{E}-03$	-0.000495	-0.000481
50	-0.000541	-0.001412	

Do you want tests of regression assumptions（ y / n ）？


```
    Chi-Square = 0.851 with d.f. = 1
Note: First and last 3 classes collapsed to enlarge f(e).
*.... TEST 2: AUTOCORRELATION OF ERRORS ......
    Correlation of e(i) with e(i-1) = 0.178
    Computed t for autocorrelation = 1.225 with d.f. == 46
    Durbin-Watson = 1.620
...... TEST 3: HETEROSREDASTICITY OF ERRORS ......
\begin{tabular}{clc} 
Group & \begin{tabular}{l} 
\# Obs. in \\
in Group
\end{tabular} & \begin{tabular}{c} 
Variance of \\
Residuals for
\end{tabular} \\
\hdashline 1 & 12 & \(3.174773 \mathrm{E}-06\) \\
2 & 13 & \(4.259442 \mathrm{E}-07\) \\
3 & 12 & \(1.141455 \mathrm{E}-06\) \\
4 & 13 & \(1.949075 \mathrm{E}-06\)
\end{tabular}
Bartlett's Chi-Square \(=5.090\) with d.f. \(=3\) (using 4 groups)
Press any key to continue
```

COLLEGE

 INCOMEWhere now: E=EXPLORE menu R=Run PLOT again $X=\operatorname{exit} ?$

24
$\mathrm{OH}+\mathrm{B}$
Conar.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made

[^1]: which leads to inequality. That which enriches
 individuals--education--operates to stretch the political system to the limits by inducing inequality. Education, seen from this light, is revolutionary in that it contributes to political instability. This argument is perhaps naive since the relationship between development and equality is influenced by many other factors. Most notable are internal politicas constraints, such as the bureaucratic and governmental structures as well as the social philosophy of the decision-making elite, and international impingements upon the scope and effectiveness of internal policy making such as alifance structures and trade patterns.

 Even with these recognized shortcomings, the basic curvilinear relationship relating development, education, and inequality is a valuable starting point for the investigation of the causes of inequality within nations. The choice of this particular starting point is important for several reasons. First, it has been the cornerstone of much of the extent empirical and theoretical work on inequality. Thus there is a foundation upon which to build future expectations. Second, it is the development process itself, as embodied in the economic successes of Western industrial powers, that has provided a goal=-perhaps undesizable--which elites of underdeveloped nations have, though for the most part not singularly, attempted to emulate in order to achieve growth and, when coupled with the appropriate ideology, equity.

 Three basic areas will be explored in order to test a model relating economic developiant, education, and inequality: 1) level of economic development, 2) level of educational development, 3)

