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Several multivariate statistical methedologies have been proposed to

ensure objective and quantitative evaluation of the multitrait-multimethed
matrix. The paper examines the performance of confirmatory factor anal-
ysis and covariance component models. It is shown, both empirically and
formally, that confirmatory factor analysis is net a reliable method for si-
multaseous estimation of trait and method tactors. The poor performance
iz due to on inherant retational indeterminacy cemmon fo all factor ana-
lytic models of trait and method effects. Covariance component analysis,
on the other hand, shows a more parsimonious parameterization of gen-
eral, trail, and method variation in the multitrait-multimethod matrix
and is therefore typically unaffected by rotational indeterminacies. The

performance with 23
ces was also found satisfactory.

ipirical multitrait-multimethod correlation matri-

1 Qualitative foundations of the multitrait-mul-

timethod approach

Pivotal to the arguments in the paper is the notion that method effects in behav-
ioral research are (a) sizable, (b) undesirable, (c) products of many “potential
influences at several levels of abstraction” (Fiske, 1982, p. 82), and that (d)
“we have only other invalid measures against which to validate our tesis; we
have no ‘criterion’ to check them against” (Campbell, 1969, p. 15). The size
of methods effects in individual measurements cannot be exactly determined
in a platonic sense, but method dependence can be assessed in a crude sense

" *R.D. Bock, B*W;f‘iijské, K.G. JSféskag, and D. Rindskopf contributed valuable suggestions

and guestions.

2 1



O

ERIC

Aruitoxt provided by Eic:

when the measurements change with the assessment methods. The question is
how trait validity may be assessed without having to know the =xact nature of
method disturbances beforehand.

This paper conceives of traits as constructs relating an unobservable magni-
tude to differences among observable units of measurement. For simplification,
it is assumed that traits and their indicators are linearly related.

In their well-known paper, Campbell & Fiske (1959) proposed the multitrait-
multimethod (MTMM) matrix format as a device to study trait validity across
different assesament methods. The MTMM matrix shows a crossed measure-
ment design based on a simple rationale: Traits (i.e., latent quantitative char-
acteristics of the research units) are universal, equally manifest over a variety of
situations and detectable with a variety of methods. Most importantly, traits
should not change just because different assessment methods are used. Hence,
if there are m multiple sets of measures of ¢ traits, each utilizing a different
method of assessment, and if the methods indeed produce equivalent measure-
ments, then the resulting covariance matrix takes the form

E(mi:s:’mt) = l(m:a:m) @I, (2=t) + aiag(g(l.l): 5(1,2}3 reey e(mig))(mgxmt)
’ 72?  E | Ef :

+diag(0(1,1), 0(1,2)s -+ -3 O(mt)) (e sermey (1)

USRS

where

I is the mt X mt covariance matrix among all measures,

1 iz a m X m matrix of unit entries in all ita elements,

® symbolizes the Kronecker product operator (cf. Bock, 1975),

Z; is the covariance matrix among trait measures within each method, and

diag(f(1,1),f(1,2)s--- +0(m,t)) is the diagonal matrix of uncorrelated uniqueness
components of the mi¢ measures.

The model described by Equation (1) is reasonable only if all measurements
are made on the same scale. This is equivalent to the psychometric concept of
T-equivalent measurement (Lord & Novick, 1968). In the behavioral and social
sciences, where very often diverse methods like test scores, behavioral obser-
vations, and one-itern ratings are compared, such strong scale assumptions are
usually not warranted. Scale information is typically regarded as arbitrary or
of little interest and, since Spearman’s days, the social sciences have had a tra-
dition of analyzing correlation matrices, effectively neglecting information due
to the original scale of measurement. For these reasons, some terminology de-
signed to describe valid measurement in more general terms based on correlatior.

patterns is preferable to the strict formulation of Equation (1).

3
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Campbell & Fiske proposed several qualitative criteria to judge convergent
and diseriminant validity. These criteria are quite pnpulaf and appear to be rig-
orous, but ¢an be shown to be not quite adequate in borderline cases (Wothke,
1984) and, because of their complete lack of any statistical basis, need to be re-
placed by quantitative rules (see, e.g.: Althauser, 1974; Althauser & Heberlein,
1970; Althauser, Heberlein & Scott, 1971).

Cr'anﬁrmatary Jactor analysis (Jareskag, 1966, 1977) and covariance compo-
nent analysis (Bock, 1960; Bock & Bargmann, 1966 Wiley, Schmidt & Bramble,
1973} are two quantitative approaches with pgﬁentlal application to multitr,,;t—
multimethod analysis. Both models are realizations of the multivariate linear
model and are embedded in an abundance of statistical theory. Otherwise, they
are structurally distinct and derive from different statistical traditions: Confir-
matory factor analysis is rooted in the psychometric tradition of validity theory,
as outlined by Lord & Novick (1968); covariance component analysis is a mul-
tivariate generalization of random effects analysis of variance, based on R.A.
Fisher's work.

2 Confirmatory Factor Analysis of the Multi-
trait-Multimethod Matrix

Confirmatory factor analysis (CFA) of the MTMM matrix was first proposed
by Jéreskog (1966, 1977). Employing essentially the same maximum-likelihood
estimation techniques as Lawley’s (1940) exploratory factor analysis, confirma-
tory factor analysis is commonly characterized by additional equality restrictions
imposed on estimated factor loadings, factor variances and covariances, and ~n
unique components of the measured variables. A computer program for CFA
is available in LISREL-6 (Jéreskog & Sérbom, 1986). Assuming rnulﬁwarlate
normality of factor space and measurement errors, maximume-likelihood x? tests
among nested models can be performed. In cases of non-normality, the more
recent work by Browne (1984b) seems promising, using a weighted least-squares
estimation approach.

Factor analysis decampases the n % p data matrix X of p of measures on n
units inte an n % &k matrix 2 of a lesser number k of latent factors:

X =EA'+E, (2)

where A is the p x k matrix of partial regression coefficients of observed measures
regressed onto the latent factors and E iz the matrix of unique, uﬁct:rrelated
components. Expressing the population covariance matrices of X as E.,of B

®, and of E as @, respectively, Equation 2 implies the covariance rgpresentatmn

T, = ADA + O, (3)

Over the years, different types of confirmatory factor models have been pro-
posed for the multitrait-multimethod matrix. They can be characterized by
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how many iatent factors are modeled; whether these factors are thought to de-
scribe trait variance, method valance, or both; and whether the correlation
structure among these methods is free or restncted Occasionally, models with
correlated uniqueness coefficients were also applied (e.g., Stacy et al., , 1985), but
the present paper retains the classic factor analytic notion that unique compo-
nenﬁs are um:t:rrelated Wlt.h thls one restnctmn, all GFA rngdels of the MTMM

2.1 'Trait-only factor analysis

The simplest factor analytic models require that all common variation among
measures is due to the latent trait factors and that no covariation is due to
the assessment methods. Different traits may be correlated. Such a trait-
only model, which specifies that each measure assesses exactly one trait factor
(J6reskog, 1971, 1978; Schmitt, 1978; Werts, Joreskog, & Linn, 1972; Werts &
Linn, 1970) ShﬂWS the properties of congeneric measurement. When measures
are ordered by traits within measures, the factor loading matrix for a 3 x 3
MTMM design takes the form

( A, O 0o\
0 Az O
0 0 Az.rs
A, O 0
A, = 0 As;r; O (4)
0 0 Ag,rs
Az O 0
0 Agr, O
\D 0 As.rs J

and the matrix of factor intercorrelations is obtained by

" 1.0 (symm.) |
2, ‘;éfmf; 1‘3 . (5)
Pram Pram 1.0

The factor structure is non-overlapping and oblique. All zero entries in A,
and all diagonal entries in ®, are fixed (predetermined) parameters, the nine
symbolic parameters ); ,7; and the three symbolic parameters &, 7, are esti-
mated from the data. Also estimated are the nine uniqueness caeﬁclents in the
diagonal of ©.
The Campbcll-Fiske criteria, applied to the trait-only meodel, appear as in-
equahty zcnstramts on factnf lgadmgs and factor intercorrelations. Two of the
bell & Fiske tacitly assumed ho-
imply a somewhat unintelligible

mﬂgenegus reuabzh, ies, the ﬂther two cnterza

4
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trade-off between the boundary conditions for .. . lc s ¥ings and factor corre-
lations (Wothke, 1984). )

The most interesting question for the applied resgarcher is how well the con-
genenf. tralﬁ-cmly madel ¢an be used to desr:rﬂ:\g and analysse emplncal MTMM

Identification—uniqueness of the model parameter estimates. The parameters
are not identified when different sets of values for one or more estimates
result m E.he’ same macigl muuri@mﬁg mzitri:’c 5. A trivial case of non-

in Ehs- model covariance rna.tr]x Furf.he: issues t:nm:ernmg the ldentlﬁﬂa-
tion problem with MTMM factor analysis are discussed in Wothke (1084).

Convergence—numerical evaluation of the parameter estimates. Maximum-
likzlihood parameter estimates for the covariance structure models consid-
ered hefe do nat have a clesed-form saluﬁmn Est:mates must be abtained

convergence are (a) startmg values chosen too far from the f:mal salutmn,
(b) flat maxima or ridges in the likelihood surface, and (¢) singularit;

the information matrix in the vicinity of the salutlan The latter two cases
indicate poor model properties.

Admissibility—the Fisherian estimation methods employed by LISREL and
related programs may produce parameter estimates that are not com-
patible with the measurement model in Equation 2. For instance, nega-
tive uniqueness components #; or factor correlations in excess of 1.0 are
not uncommon. In formal terms, all estimated covariance matrices (here:
®, ©) are conceived as Gramian and must be non-negative definite. Vi-
t:la.ﬁmns wauld i ,ply a mmplex—valued measuremeﬂf. space Substanﬁlve

nce, the

cnmmunal;t.y of a measure exgeeds its km::wn reha hty. For all practical
purposes, the emergence of non-admissible parameter estimates indicates
poor specification of the structural model.

Model fit—fit is evaluated in terms of deviations between the sample and the

estimated model covariance matrices. Several measures are conceivable
and have been proposed in various papers. A popular fit statistic with
powerful large-sample characteristics is the maximum-likelihood G2, com-

puted as

G2 = N[ln[El In |S] + trace(S5~ 1)—;;] (6)

6s
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G? i is asymptatn;ally X -dgbnbuted w:l('.h

ple+1)
2

df = -t ! {7

where p is the order of the covariance matrix and ¢ is the nnmber of
independently estimated model parameters. When a more restricted or
modified model is applied, G2 will follow a non-central xZ-distribution.
Model fit can only be properly assessed when the estimation has converged
to an admissible solution. Generally, inadmissible parameter estimates are
associaied with over-fit of the model so that the 72-statistic will be neg-
atively biased. It is also well-known that non-normality and non-random
sampling will bias the G2-statistic in the positive direction.

Using these four criteria (identification, convergence, admissibility, and fit),
perfnrman:e nf ccngenen: trait- anl}r iactur analyas was evaluaﬁed w1th 23 em-

catmns in psychﬂ’nglcal SECLGIQEICE.]. educaﬁmnal and rnafkeﬁmg reseaﬂ:h jour-
nals comprising a probably typical collection of MTMM matrices from these
flelds. The sample of the datasets was biased: raany MTMM matrices with very
small sample size, incomplete measurement design, and/or correlations based on
pairwise deletion or other non-Gramian procedures were rejected. Conversely,
datasets that hzd been reanalyzed ir the literature had a higher chance to be
included in the sample. Origin ard nature of the matrices are described in the
Appendix,

Results t:f the ana]ysis are summanzed in Table 1. Ne glaba.lly under—
mfnrmatmn matrn;es were af fuﬂ rank Cunvergence prublems u:c:curred with
the three datasets “Attitudes to Authority (Burwen & Campbell)”, “Personal-
ity Traits (Kelley & Krey)”, and “Job Eehavior (Dickinson & Tice)”. Inspection
of intermediate solutions for these datasets suggested local under-identification
as the likely reason for non-converger.:e. In addition to three non-converged so-
lutions, the model produced inadmissible parameter estimates for seven further
datasets. This left 13 of the 23 datasets with admissible congeneric solutions.

The G2-statistic shows acceptable fit for just two of the rem aining 13 datasets
[“Smoking and Capital Punishment (J arcard)” and “Three Attitudes (Flamer,
Sample 1)” ] Jaceard’s dataset should not be given much weight, however, con-
sidering the small iV of 35.

Table 2 shows the parameter estimates for the Flamer (Sample 1) dataset.
The traits are “Attitude towards Discipline in Children” (ADC), “Attitude to-
wards Mathematics” (AM), and “Attitude towards the Law” (AL). All assess-
ment methods are paper-and-pencil, but comprise different item types and re-
sponse formats: dichotomous Likert scales, Thurstone scales, and the semantic
differential (D) technique. Since the maximum-likelihood G2-statistic indicates

°7
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Table 1: Congeneric trait-only analysis

Dataset

Admissible

_Identified Converged Solution  G° df N

Intelligence
and Effort
_(Mayo)

no 24 1 166

Intelligence
& Alertness
(Thorndike)

Popularity &
Expansiveness
(Borgatta)

Smoking
and CP
(Jaccard)

Leadership

Study (Summers,

et 2l.)

185.1 19 290

Authority
(Burwen &
_Campbell)

no no 22.5 6 57

Drives in
Rats
_(Anderson)

no 4089 6 50

Involvement
Components

(Arora)

Job
Behavior

(Dickinson & Tice)

Three Attitudes

(Flamer,
_Sample 1)

Three Attitudes

(Flamer,
Sample 2)

Stress
Measures

(Karst & Most)




Table 1—Continued

) — Admissible | .
Dataget  Identified Converged  Solution G df N

Job
Performance
(Lawler)

100.9

24 113

Moral - - - o
Dilemma 336.3 24 487
(Shepherd) ) -
~ Contracep- o - ) - ,,, )
tives [Kot- no 369.8 - 51 100
handapani) B B

Attitudes to ) - - -

the Church 135.5 51 189
(Ostrom) B B

Drug Use ) — - -

Reports 368.8 51 190
(Stacy et al.)

Clinical - -
Clerkships 287.2 87 136
(Boodoo) _ _ _ _

Personality o - ) -
Traits ne no 1234 14 311
(Kelley & Krey) ) )
Desirability T ) ) -
{Jackson & 11940 164 480
Singer) o -
Interaction - -

Process Vars. no 279.1 80 125
(Borgatta) - B B i
Guilford- o - - B -
Martin Fact ne 288.2 80 110
(Carrell) B

Assessment - T -
(Kelly & 140.5 80 124
Fiske) , ) o




Table 2: Congeneric trait-only estimates of the Flamer (sample 1) data

Factor loading matrix A,

Trait factors Uniqueness
Method Trait | ADC _AM AL || Estimates ¢

~ ADC | .85 .00 .00 .28

Likert AM | .00 g7 .00 Al
AL | .00 .00 .61 .63

- ADC | .84 .00 .00 | .29

Thurstone AM | .00 .80 .00 .36

AL | .00 00 .82 .62

ADC [ .50 .00 .00 .75
SD AM | .00 94 .00 12
AL | .00 00 .71 .50

_ Factor correlations &,

— "ADC__AM AL

&7 =338 ' P=10508
df = 24 N =105

frad
-]
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an acceptable model fit; convergeivlidits is confirmed for all nim= e trait-method
corubinations. One can also se¢ st the relative precision of mzieasurement is
consistently higher for measures o “Attitude towards Mathem==tics” than for
“Attitude towards the Law™, Somcaution is indicated for the £=rait “Attitude
towards Discipline in Children® with shows a larger variation irsm the size of jts
factor loadings. The heterogenelyof the factor loadings is mar—ginally signifi-
cant: tested against a model withwual factor loading for each t=—xait, there is a
fit increase of Diff-G? = 15.1(df =4,]* = 0.020) for the congener—ic model.

Discriminant validity betwetnthe trzit concepts can be jue—ged from the
estimated factor correlation maltix®,. Evidently “Attitude tcwswards Mathe-
matics” is virtually unrelated tolhe nﬁher two traits, while the disattenuated
correlation coefficient of @.,,,, =Hshows a mild association beE==ween the atti-
tudes towards the law and towarlidiscipTine,

In summary: Estimation of thcongemeric trait-only factor —anodel will of-
ten converge to an admissible wition, but the fit to empirie=al multitrait-
multimethod matrices tends to hepoor. These problems of mo—del misfit can
be blamed on the data—most empiical datasets did not suppors  the notions of
convergent and discriminant validly, In t3he two cases where the -amodel showed
a good fit, the assessment methodsappeared to differ only in redatively minor
aspects of question wording.

2.2 Trait-method facteranalysis

As a less restrictive alternative tilthe trzit-only model, several authors have
suggested to include additional mdlod factors (Althauser, 1974== Althauser &
Heberlein, 1970; Althaaser, Hebetld, & Scott, 1971; Jéreskog, 15371; Kalleberg
& Kluegel, 1975; Schmitt, 1978; Wute, J&reskﬂg, & Lmn 1972; \SHerts & Linm,
1970; Werts, Linn & Ju;-eskag, ,1_971) The rationale for added rﬁef:;}md factors is
that, apart from expressing trait vuisbion, measures may also be =xorrelated be-
cause they share the same assessmay methiod. Method factors wiEll purportedly
account for systematic variation dulo these shared method com_jponents.

For a 3-trait-by-3-method mesrement design, the factor lcesading matrix
Ay of the trait-method factor modil is skanply constructed by ammagmenting A,
from Equation 4 with three additiml me€hod factors u;, o, and  ua:

[ Mz 0 0 [ M, 0 0 \
0 Az g 0 Az, O 0 H
0 0 Jar | Aoy, O 0 ‘
Agry, 0 0 0 Adu; O

Ary=1] 0 As,y 0 0 Aoy O (8)

a 0 Y| O Guz 0
Arey 00 0 Aus
0 Ag g, 0 0 0 Ag us

\ 0 0 Jor | O 0 Ao.us

ERIC
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This expanded model seems to be at least partially motivatel by hopes of
finding a statistical procrustes method able to eliminate methoddfects from
- the measurements. The argument goes as follows:

If trait factors are uncorrelated with method factors, the respctive
factor scores should also be uncorrelated in the population The
trait scores would be retained for further analysis of “methoiiree”
trait measures, while method scores would be rejected as “trailss”
measurement artifacts. In this sense the trait-method Factormedel
can possibly be used to separate trait and method componei.

WEEven though this proposition sounds somewhat fantastic, the confimiory trait-
==method factor model can easily bare ted {o independence betwaniraits and

—_— A as

ernethods specifying the factor intercorrelation matrix as

1.0 953‘1;3‘3 Pri,rs 7
érﬁifi 1’D ¢f3|f§ i =
Pryry Prsra 1.0 0 0 .

e ELLE S At 1L - e — —, 9
0 0 0 , 5 , (©)
0 0 0 Ppsp 1.0 Prapa
0 0 0 Pusn Puapa 10

¥ he remainder of this section will examine model performance il a block-
G iagonal type of correlation structure described in Equation 9. Wi clarity is
r~equired, explicit reference is made to the trait-method independe ne modela.

The difference between trait-method and trait-only factor moesisnot just
&~ matter of quantity of factors. The trait-only model, conceivedi the psy-
¢ hemetric tradition of paralle] measurement of a single latent tral, describes
n_-on-overlapping factor concepts. The trait-method factor model, mthe other
h__and, expresses the systematic variance of each measure as the linercombina-
t@=on of two latent factors and is overlapping. In consequence, the ini-method
m=odel does not reflect the parallelity concepts of classical test thery and is
le=argely irrelevant to the assessment of factorial validities in a set of measures.
T—he trait-method model rather describes a metric linear decompaiion of an
odebserved measurement structure distantly related to decompositionmodels ap-
p=xoaches in the tradition of Beals et al. (1968). Furthermore, the moilappears
te= deviate substantially from the Campbell & Fiske (1959) trzit concylion—the
vesalidity criteria of the original paper fail to establish reasonable bondaries of
tE=xe parameter space (Althauser, 1974; Althauser & Heberlein, 1970 Althauser,
H =eberlein, & Scott, 1971).

o, =

Performance of the trait-method factor model is summarized i Table 3.
T—"he model was globally unidentified with four datasets [“Intelligen: and Ef-
foert (Mayo)”, “Intelligence and Alertness (Thorndike)”, “Authosiy (Burwen
d= = Campbell)”, and “Drives in Rats (Anderson)”]. The correlaticnmirices of
tlmm ese datasets were too small, containing fewer empirical correlationueficients

1mn ji2
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Table 3: Trait-method independence factor analysis

_Dataset

Admissible

Intelligence
and Effort
_(Mayo)

Identified Converged  Solution G° df N

Intelligence - 777 - B T
& Alertness no
_{Therndike) - - - _ _

Expansiveness
~ (Borgatta)

Popularity &

no no 3.7 5 125

Smoking
and CP
 {Jaccard)

no: the 23rd (of 31) parameter may not be identified (¢, ,,)

Leadership
Study (Sumg
_mers, et al.)

no: the 21st (of 31) parameter may not be identified (¢, ,,)

Authority — — — = — —
(Burwen & no

_ Campbell)
Drives in T 77 o - T
Rats no
(Anderson) -
Involvement ) N —
Components diverged no 403.9 12 96
(Arora)

Job Behav-
ior (Dickinson

& Tice)

diverged
no: the 31st parameter (of 33) may not be identified (67)

Three Atti-
tudes (Flamer,
Sample 1)

117+
no: the 6th parameter (of 33) may not be identified (A3,,,)

Three Atti-
tudes, Flamer,
Sample 2)

) 145+
no: the 6th parameter (of 33) may not be identified (A3,,)

Streas = = — — _
Measures diverged no 3802.2 12 %0
(Karst & Most) . o o o

i3, !

12
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Table 3—Conitnued

Dataset

“Job Perform-
ance
_(Lawler)

diverged no 5580.6 12 113

Moral
Dilemma
(Shepherd)

diverged no 21688.9 12 487

7G§h§fa§ng
tives (Kot-
handapani)

~ Attitudes to
ﬁlé Church

(Ostrom

B.e:pérts
(Stacy et al.)

Clinical
Clerkships
(Boodeo)

no:

Il dive’rge& —
the 2nd (of 58) parameter may not be identified (A1,,,)

Personality
Traits
_(Kelley & Krey)

Desirability S B
(Jackson & no no 410.2 134 480
Singer)

“Interaction - T . o
Process Vars. no no 100.5 62 125
(Bergatta)

"Guilford- T - T T
Martin Fact. no 112.5 62 110
(Carroll)

“Assessment
(Kelly &
Fiske)
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than there wers parameters io be estimated. Seven further cases also resulted
in unidentified solutions even though the number of correlation coefficients ex-
ceeded the number of independent model parameters [“Smoking and Capital
Punishment (Jaccard)”, “Leadership Study (Summers et al.)”, “Job Behavior
(Dickinson ¢: Tice)”, “Three Attitudes (Flamer, Sample 1)”, “Three Attitudes
(Flamer, Sample 2)”, “Clinical Clerkships (Boodoo)”, and “Personality Traits
(Keliey & Krey)”]. The parameters involved vary even among similar struc-
tured datasets so that one might expect empirical underidentification. Yet, the
frequency of unidentified solutions appears suspiciously high.

Among the remaining twelve datasets, solutions converged in five cases. Con-
vergence failed in seven cases. Yet, in no case, converged or not, was the solution
admissible. Table 4 shows the inadmissible solution for the Assessment (Kelley
& Fiske) data as a typical example. Traditional interpretation of this well-known
dataset has occasionally concluded that the Staff and Self Rating method fac-
tors should be combined because their correlation is so excessive (Jéreskog, 1971;
Brawne 19843) ’“’in:h a detggir:m suppases thaﬁ Ehe e’s’timates are inaﬂrnissible

of = strucﬁural deﬁz;gncy of the mcdel. Thls daes nat seem tg be the case. Fu‘st,
if inadmissibility was due to sample problems, one should also be able to find
datassts that have an admissible solution. The search for such a dataset was
negative, a in Table 3. Second, a strong point can be made that
the tralt méﬁhDd madél is ca’néeptiially ﬂawed Suppﬁse that a]l measures in a

stances Ganunan variance can be shared fo a number Df reasons, fr:r mstance
(1) choice of similar measu
strong general factor of in 1v1dual d;ﬁ’erences The three mterpretatmns relate
the common variance to method, trait, or neutral concepts, respectively, but
they cannoti possibly be distinguished on empirical grounds in a single MTMM
study.

This conceptual identification problem has a direct numerical equivalent.
The common variance may be accounted for by either the covariance structure
due to trait fat':taré or by the rﬂe:thmi f:ac.taf 5tr11c:ture Existente \::f the indeter—

factor ana.lys;s.

Two-factor model: Suppose the factor correlation matrix is restricted so (a)
that all traits are perfectly correlated with each other and (b) all methods
are likewise correlated with unity among themselves. Such a meodel is
equivalent to an exploratory factor analytic solution with two erthogonal
factors and the loading matrix

Ai.? V Al,g
Az, Ag, ,
Arp = ff g (10)



Table 4: Trait-methed independence factor analysist of the Kelly & Fiske as-

sessment data

~ Factor loading matrix A,,

Method facters Uniqueness

Trait factors

Method Trait | A C s P I| Staff Mate Self || Estimates 0
A .86 .00 .00 .00 00| -.07 .00 .00 .28
Staff C .00 .83 .00 .00 .00 -.05 .00 .00 .31
Ratings 3 .00 .00 .60 .00 .00 .09 .00 .00 .62
P .00 .00 .00 .89 .00 .14 .00 .00 .20
I | 00 00 .00 .00 .72 15 .00 .00 45
- A .84 .00 .00 .00 .00 .00 .13 .00 .29 -
Teammate C .00 .83 .00 .00 .00 .00 .28 .00 .47
Ratings 5 .00 .00 .68 .00 .00 .00 R .00 41
P .00 .00 .00 .18 .00 .00 .53 .00 .65
- I 00 .00 .00 .00 57| .00 50 .00 .43
o A | 58 .00 00 .00 00| .00 .00 .16 .88
Self Cc .00 .45 .00 .00 .00 .00 .00 .24 .76
Ratings 3 .00 .00 44 .00 .00 .00 .00 .28 74
P .00 .00 .00 .43 .00 .00 .00 41 .66
- I 00 .00 .00 .00 .67 00 .00 .57 28
Factor correlations ®, L ] .
- T — ] A C s P 1 Staff Mate Self
A ieo -
C .56 1.00
5 =39 -.43 1.00
P 33 62 -.07 100
I 54 .30 -.03 .46 1.00 -
o Staff | .00 .00 (0]1] 00 .00 S
Mate 00 .00 00 oo 00 1.00
Self [ .00 .00 .00 .00 .00 =01 1.0
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It is well known that only 2p — 1 of the 2p parameters in matrix 10 can
be estimated, one parameter has to be set to zero in order to fix the
orientation of the factors (Aaderson & Rubin, 1956; Dunn, 1973; Joreskog
& S5rbom, 1979, pp. 40-43). The trait-method factor model does not
incorporate such a constraint and is therefore unidentified.

Equally weighted indicators: Suppoae the factor model is simplified so that

all estimated loadings of a given factor have the same value. Such a
solution, presented in equation 11, specifies that variance of a given factor
is equally reflected in all its indicators. This would be generally attractive
and simplify greatly the interpretation of the factors.

At 0 0 [X 0 0 N
0 Az 0 Ay O 0
0 0 XX 0 0
A C o00o A 0O
A= 0 X2 0 [0 x5 O (11)
0 0 2|0 A5 0
A0 0|0 0 g
0 Az 0|0 0 g
\0 0 X0 0 i)

A, can be expressed as the product of a design matrix A, and a diagenal
matrix D, of factor loadings

[1 0 0|1 0 0)
S o8] ae 000
100/0 10 0 & 0 0 0 0
. . . 0 0 Az O 0 0
A= | 0 1 0|0 1 0 T
0 0 110 1 0 - 2 -
- N ) 0 0 0 0 As O
1901001 0 0 0 0 0 A
0 1 0f{0 0 1 : ) 6
\o o 10 0 1)
= Al D,
. (12)
The model equation then becomes
T = A, Dy®,,DyAL, + (13)

Since A hasrank t+m — 1, only at most ¢ +m — 1 functions of the £+ m
factors are estimable (Graybill, 1961, pp. 228-229). Wothke (1984) has
shown that any single parameter in Equation 13 can be fixed in a way
that solves the identification problem. Such a solution would, however, be
arbitrary and render the remaining parameter estimates meaningless.

1'7 16
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Discussion of identification conditions for the general form of the trait-
method model is still difficult and far from conclusive. It can, for instance, be
shown that the trait-method independence model does not fulfill the sufficiency
conditions for factor identification outlined by Anderson & Rubin (1956), Jen-
nrich (1978), and Jéreskog & Sérbom (1979). According two these sufficiency
conditions, we may have a case of rotaticnal underiilentification on our hands,
but there is ne eonclusive proof. For the moment we shall be satisfied that thg
case of equally weighted indicators, a textbook example of a simple structure
decomposition, cannot be identified. The relative orientation of the trait and
method subspaces remains undefined.

2.3 Discussion

Twentyﬁhree empifical MTMM matficés were analyz ed with trait-m;ly and traits

w1,t-l1 all daﬁasets The irmt-:;nl;y mcdel c;@nverged to adm;sslble and 1dentlﬁed
solutions in more than half the cases, but model fit was acceptable only in two
cases. Trait-only factor analysis is the most desirable model, but most empirical
correlation matrices do not conform.

On the other hand, analyses with the trait-method independence model failed
completely. The practical consequence of these results is that the trait-method
model is not applicable to any of the 23 datasets. Apparently, the factor analytic
treatment of the multitrait-multimethod matrix has reached its limits with the
trait-method model already. The seemingly sensible approach of reducing the
systematic variance into sets of trait and method factors cannot be applied. The
solutions are either not identified or are not admissible. Either case precludes
substantive interpretation of the parameter estimatss. The reason is that the
structural conceplion of the measurement design is deficient. The trait-method
model appears to be overparameterized with the consequence that the solutions
are rotationally undetermined.

3 Covariance Component Analysis

Covariance component analysis (CCA) was first introduced by Bock (1960) and
Bock & Bargmann (1966) as a multivariate random model for factorial measure-
ment designs. The method was originally designated as “covariance structure
analysis”, the term is avoided here because it has since become synonymous with
the more general class of structural equation models. A successful application by
Bock, Dicken, & Van Pelt (1969) investigates the effects of content-acquiescence
interaction in MMPI scales.

Covariance component analysis explicitly accounts for the general level of
covariation common to all measures in the design, trait variation, and plus
method variation, but contains orly those parameters that, at least in princi-
ple, can be estimated. CCA thus avoids the mdeternunax:j encountered with
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trait-method factor analysis. Apparent problems with CCA were rooted in tra-
ditionally strict assumptions about scale and error variance of each measure,
untenable for MTMM correlation matrices. This section introduces a termi-
nology of generalized covariance component models appropriate for scale free
analysis. Discussion is restricted to structural characteristics of CCA; parame-
ter estimates are always obtained with the LISREL (Jéreskog & Sérbom, 1986)
program.

3.1 Covariance component structures

In the original formulation by Bock & Bargmann (1966), covariance component
analysis describes the facet-structured observed variables as linear functions
of underlying latent variates. The set of measures shows the latent structure
decompesition

K(nxmt) = Eﬁﬁ(l+t+m)A’(1+t+m)xms + E(nxmt) (14)

methods, takes the form

>
]

0
0
0
0
0 (15)
0
1
1
1

DD DO DD
O = OD DO O
DD e DD D D
Lo (e I am e Y o Y e R SR
Do DR DD D

1
1
1
1
1
1
1
1
1
E

traits methods

The correspondence to Eqa’éﬁan 8 is apparent. The expectation of the sample
covariance matrix 8, = 25 X'(I- 211")X is

D, = £(S.) = AGA’ + O, (16)

with @ being the covariance matrix of the latent variates and © the (typically
diagonal) covariance matrix of unique and error components. Error variances
(the diagonal entries in ®) may or may not be restricted to homoscedasticity.
Bock & Bargmann originally assumed that & is diagonal. This assumption is
unnecessarily strict for applied purposes, however, and Wiley et al. (1973) and
Jéreskog (1978) have extended the model to include correlated latent structures.

Graybill (1961, pp. 228-229) has shown that, since A in Equation 16 is not of
full rank, not all parameters in & and © can be estimated. However, estimation

19 @



O

ERIC

Aruitoxt provided by Eic:

of the essential variance components can be attained via reparameterization.
To this effect, two matrices K and I with

A=K L, (17)

are chosen, so that K is a matrix of m + ¢ — 1 orthonormal column contrasts in

L=(K'K)"'K'A=K'A. (18)

X may then be a expressed in terms of a reduced n X (t+m— 1) latent structure

matrix E* =E . I/ as

Kinxme) = E'K'+E (19)
== L'K'+E. (ZD)

(11]

[1

Instead of @, the covariance matrix of the latent components, now &* =
L&L', the covariance matrix of orthogonal transforms of the original latent
components, is estimated. The matrix $* has two fewer rows and columns
than &, but, since the omitted parameters could not be estimated in the first
place, no information is effectively lost. Interpretation must be based on the
transformed parameters in ©* which correspend to the three groups of variates:

one variate for the general level of covariation,
t — 1 variates describing differences in covariation due to traits, and
m — 1 variates expressing differences due to methods.
The reparameterization transforms Equation 16 into
L:=E(8;) =K&'K' 4+ 09, (21)

Interpretation of the covariance components in $* must reflect the particular
choice of contrasts in K in addition to the empirical covariance structure. In
the case of a 3 traits by 3 methods measurement design, for instance, K may
be chosen as

(V3| V&3 o vays 0 )

1/3 | =1/v18  1/v/6| +/2/3 0
1/3 | -1/4/18 -=1//6 V2/3 0
i/3 V2/3 0|-1/v/18 1/+/6
K = 1/3 | =1/v/18  1/4/6 | -1/+/18 1//6 |. (22)
1/3 | ~1/VI8 ~1/vB | -1/VIE 1)+
/3| v2/3 0|-1/Vi8 -1/v/6
1/8 | =1/v/18  1//6 | —-1//18 —1//6
\ 1/3|-1/vI8 -1/v6|-1/Vi8 —-1//6

g traits methods

19
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Then the first trait contrast will reflect individual differences between trait 1
and the other two, the second one expresses difference variation between traits
2 and 3. When the variance due to these contrasts is zero, the original traits are
indistinguishable (i.e., perfectly correlated). Traits can only be distinguished
when the contrast variates show non-zero variance. Method variates would be
interpreted correspondingly as differential responses to assessment methods.

When substantive considerations permit, the contrast matrix K should be
simplified at one of the following levels: One, column contrasts for general,
trait, and method components may be chosen as blockwise orthogonal. This
allows testing independence between the trait and method differences and the
general variate. Two, if all columns in K are orthogonal, correlations derived
from $* may be directly interpreted, but the variance estimates will still be
functionally dependent on the scale of the contrasts. Finally, when all contrasts
are orthonormal (i.e., orthogonal and normalized to unit le~gth), all parameters
in ®* are estimated on the same scale and latent varian-es can be compared
relative to each other. Orthonormal contrasts are advantageous when the rela-
tive contribution of trait or method facets is assessed. All data analyses in this
paper are based on orthonermal contrast matrices.

Several types of covariance component models, defined by restrictions of the
matrix ©*, should be distinguished.

Fully correlated $*: The observed covariance matrix can be. expressed as a
compound of trait and method variance components:

03| (symm.)

"= | o5, [ P7, : (23)

- = =X
s | Phr | P

i

There is some justification for trait concepts, but general, trait, and
method variates are correlated.

Independent-cimmon-variation: The first row and column show zero en-
tries in the off-diagonal elements:

o2? | (symm.)

0o %] (24)

0 | O | Duu

" =

Trait and method variation is independent of the general variate, but trait
and method contrasts may be intercorrelated.

Trait-method independence: Trait contrasts are independent of method c »n-
trasts {®, = 0), but the general factor may covary with either.

(symm.)

e (e
ou | O Phu .
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Block-diagonal ®*: Trait contrasts are uncorrelated with method contrasts
and, in audition, the general variate is independent of both trait and
method contrasts, )

a; (symm.)
$* =] 0 [ (26)

o]0 [T

wing three EDBCIUSIGBS are legltlmate (a.)

pattems Df deIduaI dlfferen\:es in trazts dr; not predn:t mduﬂdual d]f-

trast selectmn must be gulded by substaﬂtlve theary Dmganahty HTLP]_IES
that the researcher has, in substantive terms, found a most parsimonious
account of the observed covariance structure. This transcends the question
whether trait and method differences are independent.

3.2 Covariance component analysis with unknown scale
factors

Fixed-scale CCA in the form of Equation 21 calls for known or hypothesized
scales of the latent variates over the entire set of measures or, alternatively, ne-
cessitates specific assumptions about the uniqueness components in the diagonal
of @. Knowledge of the scale of measurement, however, is often not available
and, just as frequently, is of secondary interest in analytic behavioral research.
For instance, scale information in correlation analysis is lost entirely due to
standardization. Furthermore, multitrait-multimethod analyses are frequently
conducted when fixed-scale assumptions across different traits and methods are
m::t me’anh‘xgﬁil on eaﬁceptual gTéﬂﬁ&S Standar&izaﬁinn of c»bsenreﬂ vaﬂables

ables and, in n order to obtain any kind of mtgrpret.able estimates for & in the
linear model framework, the relative true score scales have to be estimated.
Wiley, Séhmidt & Brafﬂble (1973) Ppropose a class af scale-free generahsati@ns

Z: =GK&'K'G + 0. (27)
G will absorb scale differences among the obs:rved measures and should be

interpreted accordingly. Wiley et al. (p. 317) state that

21
~



O

ERIC

Aruitoxt provided by Eic:

The major utility of ... [G] is for dealing with those situations in
which the observed variables are measured in different metrics. For

such cases the introduction of ... [G] whose elements do not have
to be related to the variances r;:f the variables allows for optimal
rescaling.

3.2.1 Model identification

One element in G and ®$* must be set to a positive value to fix the scale of
the estimates. This is because the Gramian product in Equation 27 is generally
not identified due to a scale trade-off between ©* and G: multiplication of &*
with a positive constant a is fully compensated for when G is simultaneously
divided by /a. This trivial underidentification has ne consequence for the
substantive interpretation of the parameter estimates. Only the relative size of
the component variance and covariance estimates in &* is required to reconstruct
the latent f.q:\n'ela,tmn structure af the measures. F‘ufther ,m‘e, estn’natea r:f the

o,
The underidentification is removed by a single non-zero constraint; all ex-
emplary analyses will use the identity

g:r’,'g =1, (28)

restricting the variance of the general variate to unity. Variance estimates for
the trait and method contrasts have to be evaluated relative to the variance of
the general variate.

An additional and more complicated identification problem arises with Jully

correlated and traii-method independence CCA. It turns out that correlations
with the general variate; i.e., the elements of oy, and oy, are unidentified in
the scale-free model when the measurement deag’n iz small. Fi 1gu:e 1 illustrates
this identificatior. problem with a simple two-dimensional case. In both pa.rts
of the Figure, the length of the general variate g has been ﬁxed t.n unity (a:?
5-‘2 = 1.0). Case a describes the latent measurement structure as diagonal or
bl@fﬁ-dlagnnal and with unequal scale factors (Al = 1.0 and A3 = 0.3). Case b
describes the identical measurement structure using a fully correlated version of
®* with o, corresponding te & correlation of €08(36.9°) = 0.80 and equal sized
scale factors (A1 = Az = 0.72). Many other equivalent solutions exist and the
estimation equations are undetermined.

The identification problem is practically independent of the size of the mea-
surement design. It certainly remains when all but one contrast variates are of
length zero. When the design is larger than 2 traits by 2 methods, trait-method
independence CCA may be numerically identified, but some asymptotic corre-
lations among the estimates usually exceed 0.95. Then, the precision of the
parameter estimation will not be acceptable.

23



Figure 1: Two equivalent covariance component repre-entations
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ation CCA models are generally identified, while the scale-free versions of the
fully correlated and trait-method independence models are not. These results
mon variate can be evaluated if the scale factors are known. Alternatively,
ascale factors can be determined when strict assumptions about the correlation
structure of the common variate are imposed. :
3.3 IEmpirical application of scale-free CCA
This section applies scale-free block-diagonal and independent-common-variation
CCA to the 23 empirical MTMM matrices. Both models are direct generaliza-
tions of congeneric trait-only factor analysis. Model performance is evaluated
in terms of identification, convergence, admissibility, and fit. Definitions for the
first three criteria are identical to those for factor analysis in Section 2.1.
Admissibility of CCA solutions implies that ® and &* are both non-negative
definite. Admissibility shall also denote that no latent variate will account for
more than the tetal variance of the measured variables:

0= gilki.fj Ia!fj = o . (29)

For correlation matrices, the upper bound becomes unity.

Models using the other three covariance component structures; i.e., strictly
diagonal, trait-method independence, and fully correlated CCA are not evalu-
ated here for different reasons. The diagonal submodel requires theory-guided,
not simply design-guided, selection of contrasts and transcends the scope of this
paper. The other two submodels allow for correlation between contrasts and

Table 5 suramarizes the scale-free block-diagonal covariance component anal-
yses of the 23 datasets. All solutions are identified and converged, but not all
are admissible. Solutions for 13 of the 23 datasets violate the admissibility con-
ditions. Five of the 10 admissible solutions have good fit [“Popularity
pansiveness (Borgatta)”, “Smoking and Capital Punishment (Jaccard)”, “Job
Behavior (Dickinson & Tice)”, “Job Performance (Lawler)”, and “Attitudes
to the Church (Ostrom)”]. With an additional dataset [“Assessinent (Kelly &
Fiske)”] the fit is marginal. Four of these solutions show a significant fit increase
compared to the ~ongeneric trait-only factor solution, while one [“Smoking and
Capital Punishment (Jaccard)”] was alread 1fit by the congeneric two-trait
factor model. In one case [“Job Behavior (Dickinson & Tice)”] the trait-only
factor model had not converged to an admissible solution, while admissibil-
ity was achieved for the “Three Attitudes (Flamer, Sample 1)” data using the
trait-only model, but not in the case of block-diagonal CCA.

The independent-common variation model is a generalization of block-diag-

onal structures. Allewing for non-zero covariances between trait and method
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Table 5: Scale-free
block-diagonal model.

covariance

component

analysis of the datasets,

_Dataset

Py
__Identified Converged _ Solution G _df N

Int:ligence
and Effort
(Mayo)

no 0.0 0 166

Intelligence - - -
& Alertness 172 5 750
_(Thorndike) i L B
Popularity & S - ) - o
Expansiveness 146 13 125
(Borgatta) - ) B
Smoking - - - o T
and CP 9.9 13 35
_(Jaccard) , _ _
Leadership B B N - o
Study (Sum- no 814 13 196
mers et al.) i - -
Authority - - N - i
(Burwen & no 16.8 5 57
_Campbell) - B -
Drives in i T
Rats no 3.5 5 50
(Anderson) 3 B B - -
Involvement - o - ) o
Components 504 21 96
_(Arora) i - B
Job Behavior i - i o i
(Dickinson 16.3 21 149
& Tice) ~ _ i L
Three Atti- i ) B - -
tudes (Flamer, no 19.3 21 105
_Sample 1) o B - B
Three Atti- i - -
tudes (Flamer, no 35.9 21 105
Sample 2) ) -
Stress i ) ) -
Measures no 46.4 21 80
(Karst & Most) ~ o B
Job o - - B -
Performance 29.2 21 113
(Lawler) B B , - B - -
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Table 5—Continued

Dataset _ Identified C

Solution

~ Moral
Dilemma
(Shepherd)

Contracep-
tives (Kot-
handapani)

Attitudes to
the Church
(Oatrom)

"Drug Use
Reports
(Stacy et al.)

no

Clinical
Clerkships

(Boodoo)

Personality -
Traits
(Kelley & Krey)

no

Desirability
(Jackson &
Singer)

Interaction -

Process Vars. no 125
(Borgatta) -

Guiford-

Martin Fact. no 110
(Carroll) - -

Assessment
(Kelly &
Fiske)

D
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Table 6: Scale-free covariance component analysis of the datasets, indepen-

dent-commeon-variation model

Dataset

~ Admissible
Identified Converged  Solution  G? df

| =

Intelligence
and Effort
_(Mayo)

not identified (the design is too small)

Intelligence
& Alertness
_(Thorndike)

no 44 3 750

Popularity & Bl - } S 7
Expansiveness ne 107 10 125
(Borgatta)

“Smoking - ) -
and CP 86 10 35
(Jaccard)

“Leadership T ) ) }
Study (Summers, ) no 67.0 10 196
etal) i

~Authority
(Burwen &
Campbell)

Drives in
Rats
(Anderson)

~ Invelvement

_(Arora)

Job
Behavior

(Dickinson & Tice)

Three Attitudes
(Flamer,
Sample 1)

Three Attitudes
(Flamer,
_Sample 2)

Stress

Measures

(Karst & Most)
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Table 6—Continued

Dataset

~ Admissible

Identified Converged  Solution

Job
Performance
_(Lawler)

Moral =
Dilemma

E@ntffar:EP; -
tives (Kot-
handapani)

Attitudes to
the Church
(Ostrom)

Drug Use
Reports
(Stacy et al.)

no
no
no

Clinieal
Clerkships

(Boodoo)

Perzonality
Traits
_(Kelley & Krey)

Desirability
(Jackson &
Singer)

Interaction
Process Vars.
(Borgatta)

Guilford-
Martin Fact.
(Carroll)

Assessment
(Kelly &
Fiske)
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contrasts, (¢ — 1) x (m — 1) additional parameters are estimated from the data.
Results are summarized in Table 6. Solutions for two datasets are not identi-
fied: with the “Intelligence and Effort (Mayo)” data, the 2 X 2 measurement
design is simply too small, while the “Authority (Burwen & Campbell)” correla-
tion matrix apparently presents an empirical identification problem. Estimation
procedures converged to an admissible solution in only 7 cases. Fit improve-
ment is small in the four cases where the block-diagonal model already ap-
proximates the empirical correlation matrix [“Smoking and Capital Punishment
(Jaccard)”, “Job Behavior (Dickinson & Tice)”, “Job Performance (Lawler)”],
and “Assessment (Kelly & Fiske)”. With three other datasets, for which the
block-diagonal structure did not provide an acceptable account, fit improve-
ment by the independent-commeon-variation model is substantial but not large
enough. For the “Involvement Components (Arora)” (Diff-G? = 9.1, df = 4),
the “Moral Dilemma (Shepherd)” (Diff-G? = 36.5, df = 4), and the “Desirabil-
ity (Jackson & Singer)” data (Difl-G2 = 50.8, df = 12), neither block-diagonal
nor independent-common-variation covariance component structures yield close
descriptions of the empirical correlation matrices.

The independent-common-variation model provides acceptable descriptions
for four of the 23 empirical correlation matrices. These matrices are, how-
ever, already well accounted for by the more restricted block-diagonal covari-
ance component model. The incremental utility of the independent-common-
variation model over the block-diagonal model therefore cannot be clearly af-
firmed. This lack of significant improvement is quite likely a function of the
particular datasets used in this study and does not indicate any model defi-
ciency. For the time being, the model may or may not be endorsed, pending
some less ambiguous evidence becoming available.

3.4 Interpretation of CCA solutions

In addition to finding the correct component structure, substantive interpreta-
tion of the parameter estimates is a necessary part of the data analysis. Unfor-
tunately, in my experience, it is quite a difficult enterprise to explain covariance
component estimates (in $*) to social scientists and even to some trained statis-
ticians. Training in contrast techniques appears to be lacking. Prior knowledge
on these matters does, however, aid in the understanding of this section; Bock
(1975) and Finn (1974) provide useful terminology on these matters.

As a typical example for MTMM analysis, Table 7 displays a contrast matrix
K for the Kelly and Fiske assessment data previously discussed in Table 4 in the
factor analytic context. K contains seven contrasts, one for the general variate,
four for trait variation, and two for methed variation. The matrix is columnwise
orthonormal; i.e., the contrasts are uncorrelated and have unit length. The
component values for the general variate (in the first column) are standard
and should not be modified. Yet, since the data analysis was only concerned
with determining the overall covariance component structure, and no further

e1i]
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Table 7: Orthonormal contrast matrix K for the Kelly & Fiske assessment data.

; Igfiéﬂ{aé 7

Trait 8 o, b b b G

o ]

“Staff  Assertive || .25820 | .51640 0.0 0.0 0.0 .36515

Ratings Cheerful || .25820 | -.12010 .5 0.0 0.0 36515
Serious || .25820 | -.12910 -.16667 .47141 0.0 .36515

Poise 25820 | -.12010 -.16667 -.23570 .40825 | .36515
__Interests || .25820 | -.12010 -.16667 -.23570 -.40825 | .36515

0.0
0.0
0.0
0.0
0.0

Team- Assertive || 25820 | .51640 0.0 0.0 0.0 -.18257
m ite Cheerful 25820 | -.12910 .5 0.0 0.0 -. 18257
Ratings Serious .25820 | -,12910 -.16667 .47141 0.0 -.18257
Poise .25820 | -.12910 -.16687 -.23570  .40825 | -.18257
Interests .25820 | -.12910 -.16667 -.23570 -.40825 -. 18257

.31623
.31623
.31623
.31623
.31623

Self ~  Assertive || .25820 [ .51640 0.0 0.0 0.0 -.18257
Ratings Cheerful .25820 | -.12910 .5 0.0 0.0 =.18257
Serious .25820 | -.12910 -.16667 .47141 0.0 -.18257
Poise 25820 | -.12910 -.16667 -.23570  .40825 | -.18257

_Interests || .25820 | -.12910 -,16667 -.23570 -.40825 | -.18257

-.31623
-.31623
-.31623
-.31623
-.31623

confirmatory substantive hypotheses were employed, the Helmert contrasts in
the trait and method blocks were chosen arbitrarily. The first trait contrast
determines the latent variate §,, as the difference between Assertiveness and
the remaining four traits, §;, describes the difference between Cheerfulness and
the average of Seriousness, Unshakable Poise, and Broad Interests, 6r,, finally,
contrasts Unshakable Poise with Broad Interests. Correspondingly, the method
contrast §,, is defined to absorb the difference between Staff Ratings and the
average of Teammate and Self Ratings, while §,, compares Teammate Ratings
against Self Ratings. '

Fit of the block-diagonal CCA model is marginally significant (with G2 =
104.7 and df = 77) and can be considered satisfactory, given that the corre-
lations were computed from rating scales. Estimates for model Equation 27
are displayed in Tables 8 and 9. The uniqueness coefficients (©);; in Table 8
have the same interpretation as their factor analytic equivalent. Self ratings of
Assertiveness, Cheerfulness, and Seriousness have uniqueness components al-
most twice as large as the corresponding ratings obtained from teammates and
staff members, indicating that the self ratings are less reliable, reflect different
insights and standards, and/or are mediated by additional constructs like the
person’s degree of confidence. Teammate and Staff ratings differ most notica-
bly for Unshakable Foise, the unique component being twice as large for the
teammate data.

The scale factor estimates (é‘r);i in Table 8 reflect differences in “true score”
variance of the observed measures. Measures associated with larger scale fac-
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Table 8: Estimated scale factors G and uniqueness coefficients ©.

- Scale Umqueness
Method Trait || Factors (G)y | Coeffs. (8)
Staff Assertive 1628 |  .250 -
Ratings Cheerful 1.650 .330
Serious 774 .639
Poise 2.253 425
) Interests || 1.836 533
"~ Team-  Assertive 1.616 - 255
mate Cheerful 1.468 478
Ratings Serious .956 .404
Poise 1.126 B37
Interests ||  1.907 |  .418
" Self Assertive 925 ary
Ratings Cheerful 987 .709
Serious 557 811
Poise 1.725 .569
Interests 1.975 367

tors discriminate on a relatively larger scale, above and beyond the systematic
variance due to the covariance component structure X3*K’. Such an inter-
pretation is correct for MTMM covariance matrices. When generalized CCA is
based on MTMM correlation matrices, instead, scale factor estimates will also
be dependent on the error variance of the original (unstandardized) measures.
Then, the substantive interpretation of (G)“ will be less direct. In either case,
the dlagt:nal of (G) contains the estimated scale factors needed to optimally

rescale the original variables as ¥ = XG~ i , transforming Equation 8 to

2, = G7z.g°! (30)
= GGKP'K'G+0e)a? (31)
= K&K'+G leg™! (32)

All three ratings of Broad Interests are found to show scale factors of com-
parable magnitude. Assertiveness, Cheerfulness, and Seriousness have similar
scale factors for staff and teammate rating methods, while self rating factors
are substantially smaller. Self ratings of these variables are not comparable to
~atings made by others. For the Kelly & Fiske assessment data, scale factors
a8 Uhiqueness coefficients reflect different aspects of the same phenomenon.

Eniﬂés in !i“ are harder to interpreﬁ t‘.ha.n sr:ale fat;tars aﬂd uniquenéss c:c:ef—
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Table 9: Estimated Covariance Component Matrix $*.

I Eﬁ? __ I,E,ii’i’ EE e ‘?ﬁ,, 71'%7;: l 551 _ 77‘75!—!:17

0.0 | .870 (symmaetric)

5 |l 0.0% | -.630 -.821 1.284
6, |l 0.0* | -087 .107 .020 .169
5 0.0 0.0 .126
00 00| .100 .360

as relative varianece components of the respective latent variates. The first com-
ponent (¢3;) is fixed at unity and defines the scale of all other estimates in &*
and G. The remaining diagonal elements of $* contain the relative variance due
to the trait and method contrasts. Substantive interpretation of the variance
components is only meaningful when the corresponding contrast has itself any
substantive significance. For instance, #1i1.u, €an be understood as the variance
of the difference between staff ratings + :rsus teammate and self ratings. On the
other hand, trait contrasts had been chosen arb ily, so that the estimates
in €7, have no direct substantive interpretation. While it is not inconceivable
to attempt a direct interpretation of the estimates in ®7_, the result of such an
attempt would appear contrived and nearly incomprehensible.

Similar interpretative problems appear for the off-diagonal elements in &*;
i.e., for the covariance components that reflect the association among the con-
trasts variates. The moderately positive correlation between the two method
variates can, for instance, be interpreted to relate all ratings by others: People
with higher average values in staff ratings than in combined mate and self ratings
also tend to be rated higher by the teammates than they rate themselves. Here
again, considering the present dataset, direct interpretation of trait covariance
components is not easily communicated.

When contrasts are arbitrarily selected, as in the present case, some purely
exploratory transformation of the solution may be required for substantive in-
terpretation. In the case of block-diagonal CCA, and only then, can several
transformations from the tool box of the multivariate literature be reasonably
employed, such as dispersion component comparisons, canonical decomposition
of the covariance component blocks, and blockwise varimaz rotation.

3.4.1 Dispersion components

The determinant of a covariance matrix is frequently regarded as a scalar mea-
sure of the generalized multivariate variance (Green & Carroll, 1976; Kendall &
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Stuart, 1968; Wilks, 1932). It is well known (cf., Searle, 1982, p. 258) that the
determinant of a block-diagonal matrix equals the product of the determinants
of the blocks. When the covariance component solution is block-diagonal with

a,
=T [, , (33)
0

the computation of the deterininant |$*| is facilitated in the form

I‘Ijjl lgr;§| ) |§:fl . I§;#l’ (34)

In the case of generalized CCA, with the scale constraint of ¢%? = 1, the deter-
minant simplifies further to

2% = |7, | - [ Ll (35)

The dispersion of the whole covariance component matrix $* thersfore equals
the product of trait and method dispersions. With the Kelly & Fiske assessment
data, both dispersion components are small, with 0.0122 and 0.0354, respec-
tively, indicating that most of the systematic variance of the optimally-scaled
ratings is due to the general variate §;. Method differences account for slightly
more variation in the Asszessment data than trait differences.

3.4.2 Canonical decomposition of covariance component blocks

Interpretation of covariance component estimates is greatly facilitated when
the diagonal blocks &;, and @}, can be transformed into a diagonal structure.
Choleski factorization and Eigenvalue decomposition are well-known traditional
methods for this purpose.

Under Choleski factorization, a nonnegative definite symmetric matrix A is
decomposed into the product of a lower triangular matrix S and its transpose:
A = S8/, with S'S diagonal. Computational procedures are described in many
texts, for instance, Anderson (1984), Bock (1975), Finn (1974), and Maindonald
(1984). :

The results of Choleski factorization depend on the order of calculation. If
A is of order g x g, iliere will be ¢! numerically different Choleski factors S
with the equivalent product SS’ = A. Order dependence of S may be put to
an advantage when the contrast variates can be entered by importance or, in
reverse order, by dubiosity. Then, s%,, the squared first diagonal entry in S,
contains the relative variance due to the most important contrast, s2, is the
partial variance of the second most important contrast, adjusted for effects of
the first one, sZ; the partial contribution of the third contrast, adjusted for the
first two, and so on. These values may be evaluated in step-down fashion as
successive partial contributions.
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Unfortunately, there are many instances when an importance ranking of the
latent variates is not meaningful on substantive grounds; the present analysis of
the Kelly & Fiske assessment data being one of them. When the variates cannet
be ranked beforehand, values in the diagonal of S are arbitrary and cannot be
interpreted by themselves. Yet, even in this case, Choleski factorization will
furnish a canonical matrix decomposition in the form A = S18/, effectively
reducing the covariance matrices ®2, and ®u to orthonormal variates. The
derived solition can then be further rotated to aid interpretation (see below).

Eigenvalue decomposition is another well-known method to describe a matrix
in terms of a canonical structure. Eigenvalues \; and the corresponding (non-
zero) Eigenvectors g, of a symmetric matrix A are defined as the roots of

Aqe = qelg. (36)
Solutions can be obtained by various numerical methods, many of which are im-
plemented in such maintained software libraries as IMSL (IMSL, 1977), MAT-
CAL (Bock & Repp, 1974), and the NAG library (NAG, Ltd., Oxford, U.K.).

Eigenvectors associated with different Eigenvalues of the same symmetric
matrix are orthogonal. All Eigenvectors of A may be scaled to unit-length and
assembled in the columns of the matrix Q, so that Q'Q = 1. By collecting the
associated Eigenvalues in the same order in the diagonal matrix Dy, Equation 36
can be written more compactly as

AQ=QD,. (37)
This further implies the canonical decomposition

It has become customary to base the interpretation of Eigenanalysis on the
weighted principal components P = QD; ? rather than on the normalized com-
ponents Q. h

The size of the Eigenvalues in D, reflects the variance of the raspective
Eigencomponents of A: qyAde = A, It is well kniown that the largest Eigenvaluc
is the size of the largest variance component in A, the second largest Eigenvalue
the variance of the largest component that is orthogonal to the first, etc. (e.g.,
Anderson, 1984). The size of the Figenvalue becomes a useful indicator for
empirical importance of the principal components of a covariance matrix. Small
variance components are likely redundant.

Since arbitrary choice of trait or method contrasts affects the estimate of
®*, computation of principal components must be based on the entire Gramian
product K$*K’. In the block-diagonal CCA model, this covariance structure
can be additively partitioned into general, trait, and method components as:

o2 | (symm.) K

(KqK-[K,) | 0 [@, ] || K (39)
0o o/ K,

K,0;°K; + K, ), K. + K, 0, K, (40)

¢ 39
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Table 10: Unratated campanent lnadmgs P of the Kelly & Fiske data

Methad 'Ih-alt ) 5g Dty Pts pf,, pg,‘ } ,Prm Py

“Staft 777Assei‘t1ve 258 | -.331 -.233 -.121 .020 | -.079 -.103
Ratings Cheerful || .258 | -.312 .229 -.053 -075 [ -.079 -.103
Serious .258 | .733 -.006 -.06% -.018 | -.079 -.103
Poise 258 | -.045 .130 .051 124 | -.079 -.103
Interests || .258 | -.042 -.120 .190 -.047 | -.079 -.103
Team-  Assertive || .258 | -.331 -.233 -.121 .020 | -.147 084
mate Cheerful 258 | -.312 229 -.053 -.075 | -.147 .084
Ratings Serious 258 .733 -.006 -.063 -.018 | -.147 084

Poise 258 | -.045 .130 051 124 | =147 084
N Interests || .258 | -.042 -.120 .190 -N47 | -.147 .084 |
Self ~ Assertive || .258 [ -.331 -.233 -.121 .020 | .227 .018

Ratings Cheerful 258 | -.312 229 -.053 -075 | .227 .018
Serious .258 | .733 -.006 -.083 -.018 | .227 .018

Poise 258 | -.045 130 .051 .124 | .227 .018
__ Interests || .258 | -.042 -120 190 -.047 | .227 .018 |
Variance 7’"710 |’i{,,7245 415 182 .072 | .239 .054 ||

Separate Eigenstructures should be computed for the trait component K, &] K!
and the method component K, ¥}, ,K/,.

Table 10 shows the unrotated principal components of the Kelly & Fiske
assessment data, computed from the block diagonal CCA solution. All seven
variates are now uncorrelated and have unit variance, the columns of compo-
nent loadings are weighted contrasts, sorted within blocks with respect to the
explained variance. The first trait component, p;; has more than twice the
variance of the general variate. It is clearly defined as a contrast between Seri-
ousness on one hand and the two variables Assertiveness and Cheerfulness on
the other. Seriousness has the largest trait component—this variable is most
dist.im:t fi‘c:r’n the 84, the general \rarlate and ;ﬂnsequentl , from most of the

rm:wed frarn Sgrzausnga.g t.ha.n P@zss and Er@ad Intgfests, ‘I‘he re:nammg t:,alt.
components are relatively minor: p;; through p:, reflect some differences he-
tween the four trait domains other than Seriousness. Finaily, the two method
components indicate that most method variance is due to the difference between
self ratings and ratings by others.

3.4.3 Blockwise VARIMAX rotation

matmn as theu- unmtated caunterl:!a.rts and as the covariance :amgnnent matrix
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Table 11: Rataﬁed component lﬂadmgs P of the Kelly & Fiske data

Methad 77T1:a.1f. : u 5, [ Do Pt Des Pty pm, Peme I

“Staff  Assertive || .258 | -.407 -.078 -.080 076 | -014 5129[
Ratings Cheerful || .258 | -.084 -.374 .064 -.086 | -.014 -.129
Serious .258 | .500 .481 .176 .171 | -.014 -.129
Poise 258 | .018 -.043 .019 -.185 | -.0i4 -.129

Interests | 256 | -.025 016 -.231 .022 | -.014 -.129

Team-  Assertive || .258 | -.407 -.078 -.030 .076 | -.170 -.004

mate Cheerful 258 | -.084 -.374 .064 =086 | -.170 -.004
Ratings Serious 258 | .500 .481 .176 .171 | -.170 -.004
Poize .258 018 -.043 .019 -.188 | =.170 -.004
_Interests || 258 | -.025 .016 -.231 022 |-.170 -.004

Self Assertive || .258 | -.407 -.078 -.030 .076 184 134
Ratings Cheerful 258 | -.084 -.374 064 =086 184 .134
Serious .258 | 500 481 .176 .171 | .i84 .134

Poise .258 | ,018 -.043 .019 -.185 | .184 .134

134

_Interests || .258 | -.025 .016 -.231 .022 | .184

are fa.mlhar w1th SiT ple stfucﬁure salutmns in fat;tc:r analysg fft;m where it is
a minor step to the interpretation of a simple structure derived from covariance
components.

To demonstrate such a simple structure, the trait and me:hod blocks in Ta-
ble 10 were subge;ted to separate varimax rotations. The result is shown in
Table 11. Evidence in the trait block now elearly shows that the four simple
contrasts between Seriousness and each of the other traits are uncorrelated. The
eff’écts sizes t:f thg mtateﬂ gnmpnnents ;armbafate eaﬂier ﬁnd,, 1gs: Asagrtws-
Poise and Emad Iﬂt:rgst.s are Iacat.ed sumewhaﬁ t:lnser The rntate& meﬁhnd
components also appear as independent simple contrasts: The first component
shows a difference between self ratings and teammate ratings, the second in-
dicates that self ratings and staff ratings vary in different directions. Both
rotated method component show about equal size.

3.5 Discussion
This paper studies the performance of two classes of multivariate linear model
structures for the multitrait-multimethod matrix: confirmatory factor analysis

and generalized covariance component analysis. Notable submodels with appli-
cations t‘.g mulﬁltraxt-multmlethgd a:nalysm are ldéﬂtlﬁEd in ea::h cla.ss Trait-
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tor analysis, block-diagonal and independent-common-variation represent the
covariance component approach. The four models are partially nested and two
strands of hierarchical model testing may be pursued. The two factor analytie
models can be directly compared to each other and the statistical significance
due to added method factors can be tested comparing the two model likelihoods.
The other line of nested hierarchical model testing allows comparisons between
the trait-only factor model and the two generalized CCA models.

Performance of all four model types is evaluated with 23 empirical MTMM
matrices using the criteria of identification, convergence, admissibility, and
medel fit.

With these data, the trait-only factor model was generally found to be iden-
tified and converged, yet the solutions were often inadmissible, and model fit
was typically very poor. However, this is a positive result compared to the
trait-inethed factor model, which never even converged to an admissible so-
lution. Formal evidence is provided showing that the trait-method factor is
rotationally (and conceptually) underdetermined. This is bad news, because
the trait-method detnmpgsﬁmn model has been extensively promoted in the
literature and its deficie are not yet widely known.

Two types of identification problems are found with generalized covariance
component models. The first is trivial and easily removed: because the scale
factors are estimated, the scale of the variance components is lost, making it
necessary to fix a single variance component or one scaling constant at a non-zero
value. Only the relative size of covariance component estimates is meaningful.
The second identification problem is more severe: scale-free generalization of
covariance component analysis finds its limitations when the common sariate is
allowed to correlate with the contrast components. In the presence of any kind
of empirical sampling error; i.e., in all empirical applications, estimation of these
parameter groups gives very unreliable results. Estimation of these correlations
is only possible when the latent scale of the measured variables is assumed to be
known (and vice versa). This new finding qualifies some of the very optimistic
statements by Wiley et al. (1973).

Block-diagonal and independent-common-variation CCA converged to ad-
missible solutions in about half the cases, with acceptable model fit for 5 or 6
of the 23 datasets. The fact that just a moderate number of MTMM matrices
could be successfully modeled is a favorable result, considering that for several of
these datasets multitrait-multimethod validation would have been questionable
on substantive grounds already. A good statistical model must be falsifiable on
empirical grounds to be of any practical use.

Despite its impressive estimation properties, covariance component analysis
has not gained near as much popularity among researchers as the competing
factor analytic model. One of the major reasons for this development may
be that the interpretation of covariance components is difficult and unpopular.
To facilitate interpretation, primary estimates of covariance components can
be transformed into canonical variates and retated into simple structure or
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into other orientations that may be heuristically helpful. Worked examples are
provided.

Covariance component analysis provides a fundamental vehicle for the assess-
ment of trait validity. Evaluation of validity should be based on a comprehensive
model of the parameters that underlie an observed correlation structure, rather
than the individual sample correlation components themselves. In reference to
the treatment by Campbell & Fiske (1959) it is observed that convergent va-
Hdity is reflected by disappearing method covariance structures; i.e., &5, =0,
while discriminant validity is establizched when the determinant of the trait co-
variance component matrix ®;, is large. The covariance structure approach has
the interesting implication that traits can be validated in observational studies
only insofar as they differ from other traits in the same study.

38



O

ERIC

Aruitoxt provided by Eic:

Aproendix
Descriptio—mn of Datasets

Model performnce is evaluated wESth 23 empirical correlation matrices pub-
li=shed in the psychological and sociole—gical literature. Nine matrices are taken
fre=om the original atide by Campbell &2z Fiske (1959), the other 14 datasets were
coacontributed in varios papers written s=since. A synoptic characterization of each
MFLTMM matrix is povided in Table L _2.

The size of mesirement design ——=f the datasets varies from 2 traits by 2

=ethods to 4 traitsby § methods and =35 traits by 3 methods. Sample sizes range
hEt“‘EEn 35 and 750 Information on —means and variances was notably absent
fromom all reports, refecting the traditie=onal neglect of the scale of measurement
in _ much of psychological research.

The trait domans are variously co—mnceivad as abilities, social dispositions or
#o.= cial behavior, attitudes or attitude ce=csmponents, drives, and gocial desirability
jle_dgments. Attraciveness of differen®= methods as study objects has changed
rex tnarkably over theyears: while Cam—pbell & Fiske compared mostly effects of
g*_1f ratings, ratingsby others, and obje==ctive measures, later studies concern the
¢f=ects of different question fc»rrnats or— of different panels engaging in political
pre—eference judgments.

Two studies shov unorthodox methe = od concepts. All six measures in f.he “In-
telldligence and Alerins (Thorndike)” wmclata ace paper-and-pencil assessments of
ab:eility with “Intelligence” and “Menta1 Alertness” labeled as traits and “Mem-
ohry”, “Comprehension”, and “Vocabul@ ary” labeled as methods. The “Clinical
Gls_erkshlps (Baadgn)" data assess gener:al dlspns;t.mns in “Pech{ Iﬁternal

éﬂt*iﬁail’is as “Skﬂls” “Pr@blem s&lvmg’? ete.. In these two t:ases, bcﬂ;h facets
of  the measurement design are of sub~estantive interest and the “trait” versus
“mraethod” distinctio becomes arbitrac—y. Boodoo (1985) did, in fact, label her
fac —ets the exact opposite way. One shoe—1ld keep in mind that multwariate meth-
ol==s just as easily acoommodate cross-cle=assifications among several trait facets as
the==y can handle meuirement designs ——f traits by methods. Hierarchical model
tésr=ting is aided fromasubstantive poi=—mt of view when the facets clearly differ
11‘1 x Televaru:e buﬁ estxmaﬁmn meﬁhads a—mnd fit statistics remains unaffected even

Dne of the ::cxrrelahﬂn matnr;es, t%e “Mr;\ral Dilenﬁna (Shepherd)” data,
ploc=sved not to be pauitive definite and,. 1 This may
hawasre been due to a typesetting error or t:a soIne pan‘wzse deletmn of missing data
rélrenaining unreported, For the present ==analyses, the originally published matrix
wis=s smoothed subtrting the negative - roots from the correlation structure and
ad®&ing a ridge of small variance compe ~-ments to the diagonal.
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Table 12: Description of datasets

“Name, Trait-
Conception

Size Domains

Methods N “Tvaits

Methods  Data Source

“Traits

Intelligence
and Effort
(Mayo)

_ Abilities

2

2 166 1

Intelli-

Campbell and
Fiske (1959)

Peer
Ratings
Objective
Measures

Intelligence
and
Alertness
(Thorndike)
Abilities

750

1

2

Intelli-
gence
Mental
Alertness

“Campbell and
Fiske (1959)

Memory
Compre-
hension
Vocabu-
lary

“ Popularity
and
Expansive-
ness
(Borgatta)
Soeial
Disposi-
tions

[ ]

1

2

Popularity

Expansive-
ness

Sociometr. Campbell and
Self Fiske (1959)
Rating

Rating by

Others

Observed

Group In-

teraction

Observed

‘Smoking
and

Capital
Punishment
{Jaccard,

et al.)
Attitudes

Semantic
Differen-
tial
Likert
Scaling

Jaccard,
Weber, and
Lundmark (1975)

Scaling
Guilford
Scaling

Leadevship
(Summers,
et al.)
Social
Disposi-
tions

290

-

2

~Community

Leaderskip
Educa-
tional
Leadership

_holds

Summers,
Seiler, and
Wiley (1970)

Panels of
17 School
Leaders
20 Organi-
zation
Heads

19 Popu-
lar Judges
196 Heads
of House-
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Table 12—Confinued

Name, Trait-  Size o
Conception Traits Methods N Traits Methods  Data Source
‘Attitudes = 3 2 - 57 Attitudes ) - Campbell and
to Authority 1 To father Interview Fiskes (1959)
(Burwen and 2 To boss Check
Campbell) 3 To peer List
_Attitudes ) - - - )
Drives in 3 50 1 Hunger a Obstruc-  Campbell and
Rats 2 Thirst tion Box Fiske (1959)
(Anderson) 3 Sex b Activity
Drives ) B ) - B
“Involvement 3 3 96 Involvement ~ Rating Scale Arora (1982)
Components 1 Situa- Stapel
(Arora) tional Likert
Attitudes 2 Enduring Semantic
3 Response Differen-
TJob 3 3 149 1 Getting a Peer  Dickinson &
Behavior along with Nominations Tice (1973)
(Dickinson others b Peer Check-
& Tiee) 2 Dedieation list
Social 3 Ability to Ratings
Disposi= apply ¢ Self Check-
tions _ learning list
) ) - o Ratings ) )
" Three 3 3 105 Attitude a Likert =~ Flamer (1983)
Attitudes Towards Scales
(Flamer, 1 Disci- b Thurstone
Sample 1) pline of Scales
Attitudes children ¢ Semantic
2 Mathematics Differ-
- ) ) 3  The law ential B
“Three T3 3 105 Attitude a Likert  Flamer (1983)
Attitudes Towards Scales
(Flamer, 1 Disei- b  Thurstone
Sample 2) pline of Scales
Attitudes children ¢ Semantic
2 Mathematics Differ-
3 The law ential

[« ]

|
L]

L ]
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Table 12—Continued

Name, Trait- Size - Domains

“Traits

Methods _ Data Source

Stress 3
Measures

(Karst and

Most)

Aroussl

States

_Conception Traits

3 80 Stress a
1 Antici-
patory
2 During b
Perform-
ance
3 Post Per- c
formance

General  Karst and
Self Rat- Mest (1973)
ings

Anchored

Self

Ratings

Finger

Sweat

Print

Job Per- 3
formance

(Lawler)

Social

Disposi=

tions

- Cuality
of job
perform-
ance c

2 Ability to

perform
job

3 Effort put

forth en

the job

o

Ratings by Lawler (1967)
Superiors
Peers

Self

M;a’ral . 3 3 487 Morality =~ Three Shepherd (1977)
Dilemma 1 Negative different

(Shepherd)
Beliefa and

Positive
3 Achievement
of

L]

test forms

Attitudes to 3
Contracep-

tives

(Kothanda-

pani)

Attitude
Components

~ Attitude
Componentzs a

1 Affective

2 Behavioral b

3 Cognitive

—4 100

Kothandapani
Thurstone  (1971)
Scaling
Likert
Secaling
Guttman
Scaling
Guilferd
Scaling
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Table 12—Continued

“Name, Trait- ________ Size - "~ Domains
Conception  Traits Methods N " Traits ~ Methods ~ Data Source

Attitudes to 3 4 189 Attitude Ostrom (1969)
the Church Components a Thurstone
(Ostrom) Affective Scaling
Attitude Behavioral b  Likert
Components Cognitive Scaling
¢ Guttman
Sealing
d Gailford
Scaling _

L

Drug Use 3 4 190 1 Alcohel a Self Stacy et al.
Reports Marijuana Rating (1985)
(Stacy 3 Nicotine b Self

et al.) Intake

Social Report

Behavior ¢ Peer

]

Report

Clinical S 3 5 138 Teacher Ratings Boodoo
Clerkships 1 Pediatrics a Skills (1985)
(Boodoo) 2 Internal b Problem
Social Medicine . Selving
Disposi- 3 Surgery ¢ Relation~
tions ships
Knowledge
Attitude

L= ¥

Personality 4 2 811
Traits
(Kelly and

Social Traits ~ Campbell and
Courtesy a Peer Fiske (1979)
Honesty Rating

Krey) Poise b Associa-

Social School tion

Disposi- Drives Test

tions o ) B

RO B e
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Table 12— Continued

Size

Traits Methods N _

~ Methods _ Data Source

" Desirability 4 5
and Frequen-
cy Ratings
of Personal-
ity Traits
(Jackson and
Singer)
Judgments
on Person-
ality Traita

480

Socially
Deviant
Attitudes

Desirable
in Self
Desirable
in Others
What
Others
Find Desir-

Frequency
of Oceur-
rence
Harmful-
ness

Jackson (1975)

able

Interaction 5 3 125
Process

Variables

(Borgatta)

Social

Behavior

Social Behavior

Shows Sol-
idarity
Gives Sug-
gestion

a

Free
Behavior
Rols
Playing
Projective
Test

~ Campbell and

Fiske (1959)

Guilford- 5 3
Factors
(Carroll)
Perzonality
Disposi-
tions

110

< N |

Inventory
Self
Rating

- Peer

Rating

Campbell and
Fiske (1959)

124

m‘
L

Clinical
Assessment
(Kelly and
Fiske)
Social
Traits

[

o]

Interests

a

Staff
Rating
Teammate
Rating
Self
Rating

~ Campbell and

Fiske (1959)
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