AUTHOR Suydam, Marilyn N.r Ed.; Rasten, Margaret \bar{L}, , Ēd.

TITLE
INSTITUTION
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE
JOURNĀ CiT

EDRS PRICE
DESCRI PTORS

IDENTIFIERS

Investigations in Mathematics Education: Volume 19; Number 4 . Ohio State Uniq., Columbus. Center for Science and Mathematics Education-
86
73p.
SMEAC Information Reference Center, The Ohio State Univ., 1200 Chambers Road; 3rd Floor; Columbus; OH 43212 (U.S. sübseription $\$ 8.00 ;$ \$2.75 single copy):
information Anajyses (070) -- Collected Works Sēriās (022) -- Reports - Résearch/Technical (iद3) Investigations in Mathematics Education; vi9 n4 Fal: 1986

MF01/PC03 Plus Postage.
Career Awareness; *Elementary School Mathematics; Elementary Secondary Education; Foreign Countries; Geometryi Learning Disabilities; *Mathematics Achievement; Mathematics Education; *Mathematics Instruction; Number Concepts; Parent Attitudes; *Problem Solving; *Secondary School Mathematics; *Student Motivation; Word Problems (Màthematics) *Máthematics Education Research

ABSTRACT

This issue of the journal contains abstracts and critiques of ten resegrch reports. They address such topics as: (i) Characterizing the van Biele levels of development in geometry; (2) children's ideas about comutativity in the early elementary arithmetic program; (3) two children's anticipations; beliés and motivations aboút mathematics; (4) a beginning teacher's view of problem sclving; (5) the understanding of number concepts by 7-9 year olds (6) the effects of adjusting readability on the difíiculty of mathematics story probiems (7) parent attitudes and student career interests iñ junior high schooli (8) effective teaching student engagement in classroom activities; and sex-related differences in learning mathematics; (9) strategy training and attributional feedback with learning disabled students; and (10) mathematics achievement of Chinese japanese, and American children. Research reports and artieles iisted in "Resources in education" (rie) and "Current Index to Journàs in Education" (CiJe) for April-June; 1986; āre àso listed. (TW)

[^0]

Ot I U.8. DEPARTMENT OF EDUCATION EDUCATIONAL RESOURCES INFORMED CENTER (ERIC)
this document has been reproduced ed orgeovating if the person or organization
C Minor changes have been made to improve reproduction quality.

- Pōnts̄ oof view oo o opinions stated in unis docur Dent do not necessarily represent official OERI position or policy. MĀTEAIASGĀS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES information center (ERIC)."

INVESTIGATIONS IN MATHEMATICS EDUCATION
Volume 19, Number $4=$ Fail 1986

INVESTIGATIONS IN MATHEMATICS EDUCATION
Editor Advisory Board
Maríyn N. Suydam
The Ohio State University

Associate Editor
Márgarèt L, Kāstēn
The Ohio State University
Joe Dan Austin
Rice University
Thomās J. Cooney
The University of Georgia
Róbert E. Reys
University of
Missouri-Columbia
Jāmess W. Wilison
The University of Georgia

Published quarterly by
The Center for Science and Mathematics Education The Ohio State University
1945 North High Street Columbus, Ohio 43210

With the cooperation of the ERIC Clearinghouse for Science, Mathematics and Environmental Education

Volume 19; Number 4 - Fall 1986

[^1]Burger; William F. and Shaughnessy;
J. Michael. CHARACTERIZING THE
VAN HIELE LEVELS OF DEVELOPMENT IN
GEOMETR: Journal for Rēseārch in
Máthematics Education 17: 31-48;
January 1986.

Callahañ, Leroy G and Charles, Desiree-
CHILDREN'S IDEAS ABOUT COMMUTATIVITY
IN THE EARLY ELEMENTARY ARITHMETIC
PROGRAM. Focus on Leaarning Problems
in Mathematics 7: 1-10; Spring 1985.
Abstracted by EDWARD C. RATHMEL亡 6
Cobb, Paul. TWO CHELDREN'S ANTICIPATIONS,
BELIEFS AND MOTIVATIONS: Educational
Studies in Mathematics 16: 111-126;
May 1985.
Abstracted by LINDA JENSEN SHEFFIELD : . . : : . . : 14
Cooney, Thomas J- A BEGINNING TEACHER'S
VIEW OF PROBLEM SOLVING: Journal
for Research in Mathematics Education
16: 324=336: Novembér 1985.
Abstracted by JOANNE ROSSI BECKER 20

OF NUMBER CONCEPTS IN LOW ATTAINING
7-9 YEAR OLDS: PART I. DEVELOPMENT
OF DESCRIPTIVE FRAMEWORK AND DIAGNOSTIC
INSTRUMENT AND PART II. THE TEACHING
STUDIES : Educational Studies in
Mathematics 17: 15-36; February 1986
and 17: 143-164; May 1986.
Abstracted by JAMES M. MOSER i . . i . . 26
Paul, Douglas J. Nibbelink; William H:
and Hoover, Hiram D. THE EFFECTS OF
ADJUSTING READABILITY ON THE-DIFFICULTY
OF MATHEMATICS STORY PROBLEMS:
Journal fōr Research in Mathenatics
Education 17: 163-171: May 1986.
Abstracted by SANDRA PRYOR CLARKSON 31
Pedersen; Katherine; Elmore; Patricia;
and Bleyer, Dazothy- PARENT
ATTITUDES AND STUDENT CAREER INTERESTS
IN JUNIOR HIGH SCHOOL. Journal for
Research in Mathematics Educātion
17: 49-59; January 1986.
Ābstracté34
Peterson; Penelope L and Fennema;
Elizābeth. EFFECTIVE TEACHING;
STUDENT ENGAGEMENT IN CLASSROOM
ACTIVITIES; AND SEX-RELATED
DIFFERENCES IN LEARN ING NATHEMATICS.
American Educational Research Journal
22: 309-335; Fall 1985.
Abstracted by RUTH ANN MEYER 40
Schunk; Dāle H, and Cox; Paūlä D:
STRATEGY TRAINING AND ATTRIBUTIONAL
FEEDBACK WTTH LEAPNING DISABLED
STUDENTS: Journal of Eduational
Psychology 78: 201-209; June 1986.
Abstracted by DOUGLAS EDGE 46
Stevenson, Hārold W.; Leē, Shin=Ying;
and Stigler, James W. MATHEMATICS
ACHIEVEMENT OF CUINESE; JAPANESE; AND
AMERICAN CHILDREN. S̄Cience 23:
693-699; February 14; 1986.
Abstracted by HAROLD L. SCHOEN 54
Mathematics Education Research Studies
Reported in Journals as Indexed byCurrent Index to Journals in Education
Aprif - June 1986 April - June 1986 61
Mathematics Education Research StudiesReported in Resources in EducationApril = June 198666

Burger William F and Shaughnessy, J. Michael. CHARACTERIZING THE VAN HIELE LEVELS OF DEVELOPNENT IN GEOMETRY. Journsi for Research in Mathematics Education 17: 31-48; January 1986.

Abstract and comments prepared for I.M.E. by EDWIN McCLiNTOCK; Fiorida
International University:

1. Purpose

To answer the following questions:
A. Are the van Hiele levels usefuil in describing students' thinking processes on geometry tasks ?
B. Can the levels be characterized operatonaliy by student behaviors?

Co Can an interview procedure be developed to reveal predominant levels of reasoning on spectfic geometry tasks?

2. Rationale

Other studies have:
A. Looked at the hierarchical nature of van Hiele levels.
B. Measured geometric abilities as a function of van Hiele levels.

C- Investigated the effects of instruction on a student's predominant van Hiele level.

This study seeks to broaden the scope by using students from kindergarten through coilege mathematics and to operationaíze the aspects of van Hiée levels in terms of both behavioral
characteristics and interview procedures. It also studied characteristics of van Heie leveis in geometric reasoning taskso The specific tasks; like many other U.S. studies involving van Hiele

3. Research Design and Procedures

The study used a clinical interview technque with students from $\overline{\mathrm{g}} \mathrm{rades} \mathrm{K}$ through 12 ; together with one snilege mathematics majorEight tasks were used in the interview; each invoiving concepts from topics of triangle and quadrilateral geometry. Data for analysis inclūded audio-taped interviews, student writing and drawings, and interviewers' notes. The interviews ranged from 40 to 90 minutes in
 sorting; and determining mystery shapes; to using axioms; theorems; and doing proof \bar{s}. On these tāsks, 14 of 45 taped interview were selacted for analysis.

4. Finding

By coding and analyzing the taped protocols; the reviewers were able to make a variety of observations from the datá The finding of Mayberry and Fuys et al. of the hieráchial nature of van Hiele levels was confirmed. Similarly; the finding of Usisinin of the difficulty of assigning students in transition between levels; and of many stucents never reaching the level of formal deduction; were
 reason at different levels used different language and different problem-solving processes; thus confirming the difficulty in comunication between persons operating on different van Hiele levels.

The study produced a set of behavioral indicators for each of van Hiēle's levels. For example; the use of imprecise properties in
drawing comparisons and the inability to conceive of an infinite variety of types of shapes as a characteristic of Level 0 ; the explicit lack of understanding of mathematicel proof and sorting on single attributes as characteristic of Level i; explicit references to definitions and confusion between the roles of axiom and theorem as characteristic of Level 2; and frequent conjecturing with attempts to verify conjectures deductively and the implicit acceptance of the postulate of Euclidean geometry as characteristic of Level 3.

5. Interpretations

The researchers found that each of their research questions could be answered positively. Of significance, as viewed by the authors, is the behavioral characterization of van Hiele levels. This characterization is viewed by the authors as perhaps a minimal, initial set of behaviors. Furthér, these behaviors; the interview script and accompanying analysis packet are suggested as tools to use with the van Hiele wodel of development in geometry and as basis for constructiviat teaching experiments in geometry.

The authors did express some réservations about the theorized discrete structure of the van Hiele levels. In fact, they question the discrete nature of the levels and provide some evidence to support thēir concarn. They suggest that the levele appear to be dynamic rather thar static and of a more continuous than discrete nature. hie the van Hiele levels; then; discrete or continuous? How usefui are the charasteristics of levels if they are on a continuum rather than of \bar{a} disciètē nāture?

Anot ex significant interpretation of the research involves the observation of secondary school students about their incompiete notions of basic geometric shapes and properties of these shapes. The authors wondered how students with such incomplete notions could
reāson in formā ways; they suggest the lack of well-formed concepts as reasons students memorize geometry as their only recourse. They refer to these incomplete concepts as contributing to the frustration of students and teachers in secondary school geometry courses.

Abstractor's Comments

Burger and Shaughnessy have looked at a longitudinal view of van Hiélè léveles in a cilnical interview process with a small number of students. They have confirmed the findings of several other researchers who have looked more at a çross-sectional view of thēe levels. Thēir products are more clēārly dèlineāted intērviē and analysis packets, wore behaviorally oriented characteristics of levels; and additional notions of the inherent difficuities with the use of a single secondary school deductive geometry course as the sole

This abstractor would enjoy a better understanding of the process that led to the conclusion that the three research questions were answered affirmatively- Of particular interest were evidences and understandings that suggested the more continuous nature, rather than discrete nature; of the levels; along with derived behavioral characteristics associated with the specified four discrete levels.

Inherent in other studies are the notions that as students progress from one level to anocher, they develop a sense of a need for definition and a need for deduction. Thougt not a part of the characterization of the levels as described by the authors, there is some indirect reference to this phenomena through behavioral indicators. The examples noted are the rephrasing of ambiguous questions into precise language and the use of proof as the finai authority. It would be informative to know how these authors view this "need to define" and "need to prove" as weil as whether they found evidence of the development of such values among their subjects.

Another point of interest is the conclusion by the authors that the drawing tāsks and the sorting tāsks could not or did not élicit reasoning beyond Level 2- What sort of evidence might have been expected? Would such constructions (drawings) as triangles with 1 síde of irrational length, exactiy two sides of irrational length; or all thrēe $\bar{s} i d \bar{s} \bar{s}$ of irrātional length hāve bēen à posesibility? Were the stractured interviews designed to allow or elicit such results? Or are they and their corresponding justifications even relevant?

In general, the study thāt Burger and Shāghesssy described involved careful, time-consuming examinations of van Hiele's levels and their implications for development of reasoning with concepts in geometry: Their interview techniques; the behavioral characterizations of levels (suggested by the authors as minimal, initial characterizations); and their surfacing of important questions about the adequacy of our current geometry program and about the adequacy of van Hiele levels (as discrete structures) to characterizé dēvelopment of geometric reasoning are important contributions to the literature. Their challenge to those of us who care about geometry is to examine the implications of the stuay and to extend the study in the direction of othē important geometric concépts.

Callahan, Leeroy G. and Charles, Desiree CHILDREN'S IDEAS ABOUT COMMUTATIVITY IN THE EARLY ELEMENTARY ARITHMETIC PROGRAM- FOCUS on Learning Problems in Mathematics 7: 1-10; Spring 1985.

Abstract and comments prepared for I.M.E- by EDWARD C. RATHMELL; University of Northern Iowā:

1. Purpōè

The purpose of this study was to collect data on the "degree and character" of young children's misappifcation of the commutative idea to subtraction situations.

2. Rationale

It has been well documented that many young children make reversal érrors when subtracting, that is, subtracting the top number from the bottom number when the top number is smaller: Since this error is of ten systematic; it might be due to \bar{a} misunderstanding that subtraction is comutative. The study was dēsigned to detérmine the extent to which children entering first grade with high; middle and low number skills apply and explain addition and subtraction exercises by using comutative ideas; both one year and two years after the second semester of first grade.

3. Research Design and Procedures

The subujectes for this study were 14 trios of children selected from an original pool of 1200 students in a large urban school distríct. Each trío consisted of children of the same gender and all three were in the same classroom wht the same teacher during first grade:

The 14 trios were each individually administeret a number skíl performance assessment when they entered first grade. The student of each trio with the highest score was assigned to the high number performance group (HNP). The student of each trio with the lowest score was assigned to the low number performance group (LNP). The other student in each trio was assigned to the intermediate number performance group (INP).

Each of the subjects was interviewed both one year and two years after the second hatf of the first-grade experience. Most of the children were in the second semester of second and third grades at thēse times; however, \bar{a} few of them had been retained.

Ā éach interview the chlldren were presented several addition and subtraction combinations written on cārdes in vertical format and placed on six different task boards. The first four task boards each had two cards. They inciuded simple addition; 6 ∓ 3 and 3 ∓ 6; difficult addition; $49+84$ and 84 ∓ 49; simple subtraction; $9-3$ and $\overline{3}=\overline{9}$; and difficult subtraction, $64-37$ and $37-64$. There were also some addition and subtraction problems that involved zero. The fifth task board included six cards with the problems $8+0 ; 29+0$; 284 ∓ 0 and $\overline{0} \mp \overline{8}, \overline{0} \mp \overline{29}, \overline{0} \mp \overline{2} 84$ for addition and the sixth tāsk board included six cards with the problems $8-0,29-0,284-0$ and 0-8, 0-29, 0-284 for subtraction.

For each of the task boards without zero combinations, the student and the interviewer discussed how the pair of problems were alike and how they were different- Then the interviewer asked the student to answer the firs: problem of each of the pairs listed above. The card with this problem was then put through a Eunction machse that showed the answer on the opposite side of the card. This efther confirmed or corrected the student response. The studeuts were then asked what they thought the answer would be if the card with the other problem
were put through the function machine. They were also asked to explain their response.

Fō the task boards with zexo coubinations, the interviewer and the student discūs̄ē how the problems were alike; how they were different; and how the first three problems were different from the last $\overline{\text { three. Then the student was asked to answer the problew on one }}$ of the first three cards. That card was put through the function machine to check or correct the student response. The student was then $\bar{a} s k e d$ to answer the other two problems on the first three cards. If a response was incorrect, that card was also put through the function machine. Finally, the students were asked what they thought the answers would be if the last three cards were put through the function machine. They were also asked to explain their answers. Students were given credit for a correct response to a problew of the form $0=n$ if they indicated in some way that there is no answer. Z̄éo wās $\bar{a} \bar{l} \bar{s} o$ considered \bar{a} correct response because in all cases the explanations seemed to indicate that students were aware that a larger number was being subtracted frcia a smaller number and "apparently the zéro wàs uséd for lack of a better sy̆ubolo"

4. Findings

For the simple addition task board, all students in all three levels of nüber skill performance were able to correctly answer both $6+3$ and $3+6$ during both interviews. For the difficuit addition task bōard, none of the students in any of the three levels of number skill performance were able to correctly answer $49+84$ during the first interview. However, all but one student in the unp group Jrrectiy answered the second problem on the task board; $84+49$. During the second interview a few of the students were able to correctly $\overline{\text { answer }} 49+84$ and all of them correctly answered $84+49$ Once the correct answer to the first problem was either figured out or
provided by the function machine, the students were able to use that information to answer the second problem: The explanations that were given were similar across all three levels of number skill performance and during both interviews. Typical responses were; "Because they are both the sane numbers;" or "Because they are the same ncmbers but in different ways-"

For the simple subtraction task board; nearly all students during both interviews responded correctly to the problem 9-3 and neariy all studentes incorrectiy answered 3 - 9. For the difficult subtraction task board; only a few students were able to correctly answè either problem, $64-37$ or $37-64$; during either interview. Exceptions for incorrect responses to the first problems were
 second problems were generally frow the HNP group. Students who gave incorrect responses to the second problems (3-9 and 37-64) generally thought the answers were 6 and 27; the correct answers to the corresponding first problems. Their rationale was; "Because they are the same numbers." The explanations given by students who correctiy responded included; "Because nine is bigger than three;" "It doesn't make sense;" "Because if you had 37 things; you couldn't take 64 away."

For the addition task board with zero combinations, all but two responses wera correct for ail the problems during both interviews. About 30% of the students used a commutative argument to explain during both intèruiēs, that is, $0+39$ is the same as $39+0$ "Because it's the same as the other card except the numbers are turned around;" About 35\% of the students used zero as an identity argument for their explanations düring both interviēws, thāt iss, $0+8$ ise the same as $8+0$ "Because zero doesn't add anything." The remaining students usé thése same arguments; but intērchanged them fō the two interviews. There were no differences among groups in the use of a particular rationale.

Fō the subtraction task board with zero combinations; the students correctly answered the first problems (8-0, $29-\overline{0}$ and 284 - j) during both interviews with few exceptions: Also with only a few exceptions; the students incorrectily answered the second group of problems ($0-8$; $0-29$ and $0-284$) during both interviews. When asked to explain, 75% of those giving incorrect inswers used zero as an identity árgument. Only a few used a commutative explanation.

5. Interpretations

Students in all thrē lēvels of number skill performance were able to use commutative ideas to explain and answer both simple and difficuit addition probiems. $\overline{\text { Cowever, the quainty of their responses }}$ indicated they were "basing their rationales or surface features of the situation." They mentioned that the numbers were the same, but did not refer to the operation.

Students in all three groups misapplied the commutative idea to subtraction with little improvement from one interview to the next; one year later- Again their responses appeared to be based on surface characteristics of the sitiation. The students referred to the numbers but not the operātion. The fēw studentē in the rin group who did correctly respond to the comuted subtraction examples seemed to have a different quality in their responses. for example; for the problem 37 - 64; they discussed the numbers as wholes referring to 37 and 64 . The other students often discussed parts of the problew like 7-4 and 3-6.

The tāsks thāt included zéro élicited différent rationales. Thé students were far more likely use the identity characteristics of zero rather than comatative fueas to explatn thér answers.

The misappifcation of commutative ideas to subtraction situations appears to be quite common. However, the students appear to have only \bar{a} superficial undèrstānding of commutativity. Since little development was evident from one interview to the next; it appears that "once a surface or syntactic procedure is in place it tends to be quite resistant to change." In order to avoid this minimal or surface understanding, "the idea of commutativity may weli be a concept that should receive attention in early developmental instruction with whole-number addition and subtraction."

Children also need to consider the numbers in multi-digit addition and subtraction problems holisticaliy. "Only after there is assurance that students sēe these as wholes; añ have developē meañng fōr them as wholes; should there be a movement te the processing of the parts of the two nūbérs in the tens and ones place."

Ābstractor's Comments

The selection procedures for the subjects in this study were not d̄́sćciosē. Sínce there was an analysis based on three levels of number skill performance; how were these students sēiectéd? Random selection from each classroom would permit a student assigned to the LNP yroup frow one classroow to hāve higher scores than a student from a different classroom who was assigned to the HNP group Also; no Indication of what high or iow numbē skìi performance meant was giveñ. Whāt were the items on the number skill performance assessment and how did they relate to the tasks in this study? The three levels of number skili performance ad̄ ítitile íf anything tō this study. Even if there had been differences among the groups; the procedure for assigning students to these groups would not pērit much generajızation.

Thise study does indicate the extent to which young children are able to apply comutative ideas to sóve ad̃ítion prōlems. For example; although they generally were unable to correctly ansier the problem 49 ∓ 84; they nearly all wére able to correctly answer the problem $84+49$ after the answer to the first problem was given: The students obviously were able to use some commutative ideas to correctly answer the second problem. The researchers indicated that the children were rēsponding on the bassis of surface chēracteristics rather than on the basis of deep understanding of the operation and the properties of $\overline{\mathrm{i}} \overline{\mathrm{t}}$. That appears $\overline{\mathrm{t}} \overline{\mathrm{o}}$ be $\overline{\mathrm{a}}$ subjective judgment based on inmied evidence. While the students did seem to refer to the numbers and not to the operation, further tasks seem to be needed to sort out the extent to which students understand comutativity of addition.

The sutudy āloso indicatē the extent to which young children incorrectly assume that the answer to $n-m$ is the same as the answer to \mathbf{m} - \bar{n}. In the cases where nefther number is zero; their explanations focused on the fact that the same numbers were involved. Is that because the children assume that subtraction is commutative or do they just not realize that the order of the symbins is important when writing subtraction problems? It wight be the case that children would correctly indicate thāt tāking nine things away from three things is not the same as taking three things away from nine things; however, they still might not reainze that the oreder of the written symbois is important. If so; do they have a lack of semantic understanding of the commutative property as it applies to subtraction or do they simply not understand symbolic syntax? This study does not clearly provide evidence that the student responses are due to lack of unders̄tanding comutativity. Furthèr information about the situdents̄' knowledge of symbolic syntax and how it relates to understanding of the conmutative property is needed.

For the subtraction probiems that invoived a zero there appears to be a d ffferent factor of interest. Since about 75% of the students șino gave incorrect responsēs to problens of the form 0 - in explained their responses by using a zero as an identity argument; does that provide evidence of the lack of understanding of commutativity as it relates to subtraction? Pérhaps it indicates a lack of understanding of zéro ās ān identity or à lack of knowledge about symbolic syntax.

The suggestions that are made about using a holistic approach to teaching addition and subtraction and the early consideration of the commutative property and how it relates to addition and ubtraction are excellent suggestions for further research. These ideas seem reasonābie, but much more evidence is needed before a rational decision can be made.

It should be noted that chidren who have been introduced to addition and subtraction using a part-part-whole concept tend to know that, in subtraction, you start with the whole and remove à part to get the other part. There is some evidence that these children have a better knowledge of symbolic syntax. Perhaps that would affect their answers and explanations for problems like those in this study.

Cobb; Paul. TWO CHILDREN'S ANTICIPATIONS, BELIEFS AND MOTIVATIONS. Éducationá Studies in Màthemátics 16: 111-126; May 1985.

Abstract $\overline{\text { and }}$ comment prepared for $\overline{\mathrm{I}} \mathrm{M}$ E by LINDS JENSEN SHEFFIELD, Northern Rentucky University, Highland Héights, Rentucky.

1. Purpose

 belief and motivation in young children's mathematical problem solving
 using examples from two case studies of children invoived iñ a teaching experiment.

2. Rationale

Several theories and studies support "the need to consider chíldren's Eeliefs about the nature of mathematics when attempting to make sense of their mathematical behavior" (p. ili). From a Pıagetian cognitive viewpoint, from the analysis of scientific investigation; and from a metacognitive standpoint, belief seem to be rē $\overline{\mathrm{a}} \mathrm{a}$ ed to problemsolving behaviors. Béifefs about wathematics appear to create certain expectations about the problems which wili be encountered and the heurisitics which should be used to solve those problems. These in turn could affect children's motivation, confidence, persistence, ińitiative and satisfaction in problem solving. This study uses examples of children's problemmsiving behzviors añ other theories co develop and support a proposed general hierarchy of anticipations.
3. Research ign and Procedures

Six childre re studied as part of a two year teaching
 the children are descrıbed as illustrations to support Cobb's
conjectures about the rēationships among anticipations; beliefs and motivations. The children were judgé to have simíar arithmetical concepts; but diffērent beifefs about the activity of doing mathematicé Because of the topic of the paper, an analysis of the children's addition and subtraction concepts was not presented. One child believed "that doing mathematics invoived constructing relationehips between numbers;" while the other child believed that mathematics is "an activity in which one finds unrelated rules for solving unrelated problems." The first child was described as focusing on means and the second child as focusing on ends. Both chíldren were beginning fírst graders at the start of the studye

4. Finding

Focus on Means: Tyrone. Several protocols were described which iflustrated that Tyrone actively searched for meaning when solving problems. This was then related to other probiem-solving behaviors. For example; Tyrone frequently used a kiown sum or difference when àtēmpting to fīnd an unknown sum or difference. He wā not content to stop at getting a correct answer. He wanted to kwow why answers were rē̄ated. If he were unable to see a relationship; he often spontaneously used counting to solve a problem His work was generaliy descríbed as persistent and confident. He was described as task-involved; that is; interested in learning for its own sake and not for the sake of appearing smart. He judged his performance relative to éariier work añ not relative to other childran. He seemed to genuineiy enjoy working with probiems. He would initiate problems and ask the teacher to give him harder work. He viewed failure as a challenge, an opportunity for fresh instghts.

Focus on Ends: Scenetra: Examples of protocols were given which showed that Scenetra was concerned óniy with getting the correct answer and not with understanding why an answer was correct. This was
then reiated to several other probiem-solving behaviors which were in dírect contrast to the behaviors of Tyrone. Scenetra rarely used a previously found sum or difference. She was capable of using them, but $\bar{s} h \bar{e}$ beliēved she was cheating or using an imature method if she relied on earlier work. She was insulted if the teacher asked her to refer toc éariler problems; she believed each problem should be independent of any othér. Scenetrà was content to stop working on à problem when the teacher approved of her answer. She did not look for meaning behind the answers. She was often infiexible in her methods. If the first method did not work, she had difficulty understanding an altérnative method suggested by the tēacher. Hēr method often focused on superficial aspects of number names and counting sequences She was not confident when working problems and rareiy took the initiative In problem solving. She gave up easily when her usual methods did not work: Scenetra was described as ego-involved; that iss; she was preoccupied with herself and a desire to appear smart or to avoid iooking stupid. Shé viewed problems às a threat tō hē seif=esteem. Failure led to self-doubt about her competence.

5. Interpretations

Cobb stated that "Scenetra's and Tyrone's case studies suggest that children's mathematical problem-solving behavior can be viewed as an expression of an increasingiy general hierarchy of anticipations." He proposed that their belfefs about mathematics affect both their expectations about what could count as a problem and what are acceptable methods of solution: This in turn affected the children's flexibility and motivation. "Scenetra's ego-involvement was compatible with her focus on end rather than means and her belief that mathematical knownedge was primarily instrumental in quality Tyrone, a task-involved child; strove to achieve relational rather than instrumentai understanding" ($\bar{p}, 124$). This was also related to the children's construction of knowledge. During the last few months
of the teaching experiment; Tyrone, the tāk-involved child, took only one month to construct certain concepts of tens, multiplication, and division which took Scenetra, the ego-involved chidd; three months to construct. It was proposed that this is because the construction of knowledgè rē̄ults from àn àttempt to make sensē of experience, and à tāk-involved child would make Saster progress at this than an egoinvoived chíid.

Abstractor's Comments

The effects of children's bellef systems on their mathematical problem-solving behaviors have been acknowledged and studied by the mathematics educātion commity over the lāst tēn to fifteen years. This study adds interesting new insights to that work.

Because the articlē reported only limited protocols frow two of the six children involved in a teaching experiment, it is difficult to critique. The examples cited from the children's work do support the author's hierarchy of anticipations. The author also noted several éxanples from othér educátion theoriēs and rēsēarch ās wēll ā frou the fields of artificial intelligence and the philosophy of science which support his contention that the two children's behavior's may be \bar{g} eneranilzed to wider populations. It is hoped that this will be the beginning of much more research along those lines. Other children should be identiffed who believe either that mathematics is a set of unelated rules or that mathematics has an underiying structure. These children should then be interviewed to determine if the proposed hièrārchy of beliefs holds true for thém.

Because these children were part of a two-year teaching éxpèiment, it ise intērēsting to note thāt the chil?dren'se beliéfs do not seem to have changed over the course of the experiment. It appears as though Scenetra continued to bélieve that mathematics was à
series of unrelated facts even after being led to solve several related problems. Cobb stated that the more giobal anticipations are the most stable, but any research on how to lead children to beliéve that mathematics hās an underlying structure would be most useful to teachers. If these beliefs indeed have the implications for other problemsolving behaviors noted by cobb; it wouid appear to be crucial for teachers to influence the bellefs.

Other protocols from the teaching experiment with Scenetra are described in an articie by Steffe which looked at children's ālgōithms as schemes (1983). In this articie, Scenetrà is deseribed ās using an operative counting scheme which was planned in advance and personaily constructed. Understanding of a umit of ten was used to extend hē existing numerical schemé. Thís does not seem to fit with Cobb's contention that Scenetra relied on number word sequences rather thān à reā numerical significance (p: 114): Perhaps this would be clarified in a description of the children's addition and subtraction concepts.

Cobb stated that "problem solving involves making one's antictpations work" (p, 113). He quoted K̄̃orr (1980) in saying that scientific investigations are prompted by unrealized solutions rather than hypotheseses. Unrēālized solutions arè not tried against dātā but are wade to work by the scientists who construct the results to fit the anticipated solutions. Perhaps Cobb's theory falls into the category of an unealized solution rather than a hypothesis. The protocols hè séelected fit hise theory very neãtly. Thise is not to say that this is bad. However, more research is needed to confirm his híerarchy. This is à promising area of research; and educators can hope for more research to follow. Research which would help teachers identify children's beliefs and the cosresponding problem-solving behaviors and research which would indicate teaching behaviors to fit or shape these bellefs and behaviors would be most helpful.

References

 CRITIQUE OF THE METAPHOR THEORY OF INNOVATTON. In K. D. Knorr, Rrohn, and R. Whitley (eds.), The Social Process of Scientific Investigation, D. Reidel; Dordrecht.

Steffe; Leslie P. (May, 1983). CBILDREN'S ALGORITHMS AS SCHEMES. Educational Studies in Mathematics 14: 109-125.

Cooney, Thomas J. A BEGINNING TEACHER'S VIEW OF PROBLEM SOLVING. Journal for Research in Mathematics Education 16: 324-336; November 1985.

Abstract and comments prepared for I.M.E. by JOANNE ROSSI BECKER, San Jose State University.

1. Purpose

The main purpose of this study was to investigate a beginning mathematics teacher's beliefs about problem solving and to determine how they were affected by the first months of teaching and the reality of experiences in the classroom-

2. Rationale

As Cooney points out, numerous recent studies have focused on how \bar{s} tudents solve problems, but little reseárch has focused on how teachers teach problem solving in the classroom or how they view its role $\mathfrak{i n}$ the curriculum.

The $\bar{a} \bar{s} \bar{s} u \bar{n} p t i o n i \bar{s}$ made that there $\overline{\bar{s}}$ à potential conflict between the requirements of a problem-solving orientation in one's teaching and the abiiqities of a beginning teachér to structure such a classroom environment. A problem-solving orientation would impiy an inquíry approach to instruction and a change in the typical teacher-centered classroom environment: However, teachers, particularly new ones, may not have the requisite skíis to envision or cope with such a setting; even though their belief structure might encourage them to try. This research was designed to investigate this potential confilct through a study of one beginning teacher.

3. Research Design and Procedures

Ore teacher was selected for this study. He had exhibited strengths during his preservice education which led the aüthor to classify him as intelifgent and insightful.

Fred was interviewed seven times while he was enrolled in à māstēr's degree program in mathematics educātion. Be had enrolled right after receiving an undergraduate degree in cross-cultural commuńcation. Hypothetical epísodes were presented to fred during these 45-minute interviews to elicit his beliefs about mathematics and its tēaching.

Fred was asked to review transcripts of the first four interviews
 the next interview he was asked to take his own statements, group them
 statements for each cluster. A final interview focused on factors contributing to Fred's beliefs as identified in the earlier interviews.

A report based on the seven interviews was shared with fred after he began his first teaching job. Then Fred was observed by two observers on nine consecutive dāys, using field research techniqués. Additional interviews were conducted with Fred after the observations. Also; several students from Fred's classes were interveewed-

4. Findings

During his preservice experience, Fred described problem solving as the main purpose for teaching mathematics. His love of mathematics seemed tied to recreational problems and puzzles; he was less interested in real-worid applications or the usefulness of mathemacics in other fields. He expressed the desire to motivate his students
through use of recreational problems and to avoid the typical mathematics class format-

However, observations the following school year revealed iftile problew solving taking place. His manner of conducting class was cāsūal, but followed \bar{a} typical routine of discussion of homework; explanation of new material; then seatwork. fred said he had little time to deal with genuine problems; it was much easiér to teach the book and leave out heuristics. He also found the students unmotivated ēven when he posed recreational problems for them. Only the more advanced students seemed to appreciate his puzzles- Fred seemed unable to accomodate his teaching style to less motivated students. And his use of problem solving was restricted to extracurriculum problems thāt were not integrated into the existing curriculum.

5. Interpretations

The author used the metaphor of missionāy to describe Fred's concept of teaching. Fred is a person who enjoys mathematics and expects his students to do so as well. He sees his role as one of providing intéresting beginnings of lessoris to captivate the students, especially using recreational problems and puzzles. The fact that these did not interest most students was attributed by Fred to their lack of internal.motivation. He was bringing the "word" to students; but thē did not enthusiasticāly embrace it. This left Fred frustrated and unsure how to motivate the students.

Fred's notions of problem solving seem to represent à féature one adds on to the existing curriculum to make it more intéresting; rāther than an integral part of the curriculum; despite his rhetoric that problem solving forms the essence of mathematics. He found it timeconsuming and difficult to create this add-on feature; and much easier to teach by the book when students did not respond positively.

At this sutage in his̄ firsst yēar of tēaching, Frè showed a dualistic view of teaching: One either used an authoritarian approach, teaching by the book, ō used recreational puzziē to motívate students.

Abstractor's Comimentā

The study is of spectal interest for two reasons: its methodology; and its $\bar{s} t t \overline{e m p t}$ to focus on the conflict bētween à beginning teacher's idealism and the reality in the classroom.

The qualdtative methodology used was designed to keep a check on the initial interpretation of the data by sharing findings with the subject. An innovative feature was to have the subject identify the key elements of his beliefs about mathematics and the teaching of mathematics from the transcripts and cluster them into general
 the subject has, presumably, not had any experience analyzing quàitative data. In the one specific example bélow; the descriptive statement for the category does not seem to me to describe the clūstēred statements vèry well. A cātegorizãtion is not, of coursé, unique; but I doubt if I would have grouped the five statements listed together.
"Verbatim stātements clūseered togethēr:

* Math is essentially problem solving.

* Some parts of math may not have real-ilfe appications, like art may not.
* That it's fun is enough justification for me to study and teach it.

```
* My adjectives to describe math are useful, logical,
    axiomatic, fun, hard.
```


Heading: DESCRIPTICN OF MATHEMATICS

Descriptive statement: The principal activity of mathematics is sislving problēs" (Coonēy, p: 327):

It seems in this; the oniy example given in the paper ; that the subject in retrospect may have wanted stress put on that statement which is most imprēsisive and more closely in concert with current thinking in mathematics education- How the accuracy of the informant's categorizations was checked, other than with Fred himself, is not discussed in the paper. Did anyone attend a parent open house and hear him describe his view of mathematics? Were any syllabi given to students which might have shed líght on his beliefs? How did students desçàbe hís view of mathematics? It seems important to ask these questions because the conclusion of conflict between Fred's ideals and classroom reality depends on acceptance of his words; with ifttle substantiation by other data.

In fāct; it is not cleā whāt Fred meañt by problem solving in his initial interviews. Given the lack of evidence in his teaching of problem-solving behaviōr; and his c̄lám later tō have forgot ten about teaching heuristics; it seems possible that Fred never really intended to pursue a problem-solving orientātion in his tēaching. That is, rather than his behavior being inconsistent with his voiced beliefs; as the author states; perhaps the subject did not really understand problem solving to mean what the researcher did. The author himself feels that Fred saw problem solving as an added feature, not an integral part of the curriculum.

Thus I interpret the main finding of the research to be the muddled thinking about problem solving on the part of a beginning teacher. I am not sure this study has shown an instance of conflict
between ideaifstic beliefs and ciassroom reality; or a shift in priorities of a beginning teacher once she/he enters the ciassioom. Sūch a conflict may well exist. Būt I think this study more cleárly points out the difficulty in communicating oür objéctives for teaching problem solving tō preservice téachers. That crucial first step in understanding \bar{s} คिems not to have been taken by this begiñing tēachero

A further comment about the subject's levē of involvement in the research: it is unclear how far this was carried once pred was teāching and was observed by the researchers. Would pré have described the inconsistency between his rhetoric and his behavior as the author díd? Díd Pređ remain in a quasi-researcher role, or did he become more of a tradífonal subject? How díd he view his level of involvement in the recearch? More importantly; how did the author view Fred's role? Ās we breāk new ground in rēēarch methodology, particulariy quaiftative; I would like to read rēearch reports which discuss the methodological difficuities which may have arisen.

Finally, although I think subjects māy form part of the research team and $\bar{s} \bar{h} \bar{f} \bar{f} \bar{t}$ role, much as a participant-observer does, during the course of the research, - do think any such subjects must have some training in qualitative research methodologies.

Denvir, B. and Brown, M. UNDERSTANDING OF NUMBER CONCEPTS IN LOW ATTAINING $7=9$ YEAR OLDS: PART I. DEVELOPMENT OF DESCRIPTIVE FRAMEWORK AND DIAGNOSTIC INSTRUMENT AND PART II. THE TEACHING STUDIES. Educational Studiés in Mathémātics 17: 15=36; February 1986 and 17: 143-164; May 1986.

Abstract and comments prepared for I.M.E. by JAMES M. MOSER; Wisconsin Department of Public Instruction:

1. Purpose

The major arms of the investigation were:
a. to find a framework for descriving low attainers acquisition of number concepts;
b. to develop a diagnostic instrument for āssēssing children's undērstanding of number; and
c. to design, carry out, and evaluare a remedial teaching program.

2. Rationale

The rationale developed as a result of both authors' involvement in the (British) School Council's project; "Low Attainers in Mathematics 5-16." Visits to a large number of schools demonstrated a need for diagnostic assessment linked to prescriptive teaching. This need was supported by à recent study showing that teachers are frequently unsuccessful in matching number tasks to the conceptual stages of six- and seven-year-olds.

3. Research Destgn and Procedures

Datā in the assessment part of the study were gathered from individual interviews with children aged 7 to 9 . Work was carried out in three stages:
a. The pilot study (five subjects) helped identify which skills it was appropriate to assess. This involved six interviews over a three-month period.
b. The main assessment study (seven subjects) extended and defined more precisely the skills to be assessed. Items to measure these skills were developed and refined. This involved sīx interviews over a three-month period:
\bar{c}. The Díagnostíc Assessment interview (DAI) was tried out with 41 subjects.

Children's performance on the 47 skills tested by the DAI led to two basic outcomes:
à. The skills were grouped into levels defined by a particular range of facility so thāt every pupil who hād succeèded in 2/3 of the skilis at any level had also succeeded in $2 / 3$ of the skills à ēvery preceding level.
b. A descriptive framework suggesting a hierarchical ordering of the $4 \overline{7}$ skilìs wàs formulatè.

The DĀ was uséd to examine changes in pérformance of seven pupils (the same seven involved in the main assessment study) interviewed approximately every $\overline{s i x}$ months over a two-year period.

Two teaching studies were carried out:
a. A pilot study with the same seven pupils mentioned above. This lasted three months; occurring after the initial main assessment intervfews; but mostly before the periodic administrations of the DAI. Each child was taught individually.
b. The main study involved twelve pupils. This also lasted three months and took place about one year after the píot tēaching study: Five pupils from one school and seven from another were taught in group settings.
The mannē in which students were selected for these teaching studies is not described in the articies.
4. Findings

In the assessment part of the study; the authors found problem solving behaviors simíar to those reported by American researchers Carpenter, Moser, Fuson, Steffee, and Rēsnick. Fāirly primitivè counting and modeling behaviors were exhibited with problems involving two-digit numbers; because it appeared place value concepts were not weil developed in the subjects of the study. When the DAI was used longitudinally over a two-year period with the seven original subjects of the pilot study, it was found:
a. All children made progress; but it was very slow.
\bar{b}. The match between each pupil's skill performance at each interview and thē hiērārchical framework wās extremely good. Only three skills were at any $\mathfrak{t} i m e$ acquired "out of order."

Results for the teaching studies are given in two parts:
a. In the pilot study, ā1] oudents "improved in performance." (No statistical evidence of significant improvement is presented.) Most of the taught skills were learned but some were not. The individual tēaching of each student wās not as successful as anticipated. Some subjects were shy and hesitant about responding.
b. In the main study; even though subjects were encouraged to focus on process and relationships, most conversations were between aduit and child, ōnly very rarely between two chíldren. Yet, in the group instruction, the children were more relaxed than in the pilot study, werē able to learn by watching other children; and were more eager to use physical materials; often responding to questions with actions rather than words. Children in the main study made, on the average, larger gains in the number of skills acquired than the children in the pilot study.
5. Interpretations

If one assumes that there is a developmental aspect to children's learning of numbers, useful prescriptive teaching arising from diagnostic assessment needs to take into account three different áspects of learning:
a. the orders in which children learn; i.e., a framework describing acquisition;
b. where each individual child is within the framework;
c. how the individual proğresses from one skili to another, i, e., how individuals learn.

Bāsed upon resulté from the two teaching studies, the authors conclude:
a. In order to learn, the child needs to engage with ideas in a manner and at a level which is meaningful.
b. Whilē older children may pērcēive relationships which àrē not made explicit; the low attainer may need to engage in both practical activities and discussion which explicitly draw attention to such rélationships.
c. The hierāchical framework can describe children's present knowledge and suggest which further skilis they ave most likely to acquire and thereby inform the design of teaching activities. However, it cannot predict which skills or how many skills each child will acquire; so the teaching should not be too prescriptive or rigid in its assumptions about what may be learned.
d. Thērē appēared to be no rēationship between a child's pre-tēst level on tue hisrarchy and the number of gains made. The best predictor of the number of gains made seemed to be the child's engagement with the given tasks and the degree to which the tasks were regarded as acceptable mathematical tasks.

Abstractor's Comments

Bespite the overall length of the two combined articles, there is a déarth of rēālly useful information: other than age; there is no characterization of the subjects--in partitcular, what qualifies them as "1ow attainers?" No information is provided on the number of kinds of tasks used in the assessment instrument. This reviēwē has some sérious résérvātions about both the validity and reliability of the instrument. Thís is ō partícular concern sícice the instrument appearéd to be the determining factor in the dormulation of the hierarchical model. Finaliy, not a great deal is known about the actuāl tēaching that took place during the traching studies.

At the risk of sounding tou negative, it should be pointed out that the rēsults and conclusions are not too starting. They tend to
 knowlè̄ge coming from folklore and from classroom practice as wêll às empirical research.

On the positive side, the authors are to be commended for their interest in weaker students. All the world knows we have many such students àround us. The more information we have to help us better serve these students, the better off we are.

Paul, Douglas J.; Nī̄̄elink, Wilíam H. añ Hoover, Hiram ${ }^{\text {D }}$. THE EFFECTS OF ADUUSTING READABILITY ON THE DIFFICULTY OF MATHEMATICS STORY PROBLEMS. Journal for Research in Mathematics Ejucation 17: 163-171; May 1986.

Abstract and comments prepared for I.M.E. by SANDRA PRYOR CLARKSON, Hunter College of CUNY.

1. Purpose

Paul, Nibbelink, and Hoover explored the use of common formulas to detèmine rēadability levè \bar{s} of story problems. They asked whether altering the readability levels, as defined by these formulas, affected performance on probjem solving.

2. Rationale

There has been some pressure by teachers for lowering the reādābility lēvels of text materials "o help raise student performance on solving story prollems. A critical review of the literature seemed to indicate that items used in studies in which it was found that lower readability in prōblems resuitē in improved probiem-solving performance may not have been controlled for other important variables that may have affected difficulty levels. This study attempted to better isolate readability level as a factor in problem-solving pērformance.

3. Research Design and Procedure

Fifteen computational problems were developed that were deemed representative of problems used in standardized tēsts and textbooks for grades 4 and 5. Each computational problem was gir sin a verbal context and adjusted for three levels of readability using two different methods, vocabulary control (using Harris Jacobson formula 1 or 2) and sentence control (using the Dale-Chall or Spache Formulas).: Tēsts included an 1
equal number of high; medium; and low readability items: There were essentialy six different forms of each problem. The items were distributed randomly according to computaticnal method and then distributed in a balanced fashion according to readability levels so each tést was diemé équally dífyicult.

The tests were given to 1238 students in grades $3,4,5$, and 6 in seven Iowa schools.

4. Findings

A mixed fixed-éf fects four-way analysis of variance was used to analyze the data, with the factors being readability levēl, problem type, grade, and readability method. The following results were obsērued:

1. Students in the higher grades performed better.
2. Addition and subtraction problems were easier than multiplication; division; or multiple-step problems.
3. The interaction between grade and problem type was significant at the . 01 level.

5. Interpretation

The authors found that "whether a story problem has a readability level a few grades below, at, or above grade level; there is no substantive éf $\bar{f} e \bar{t} \bar{t}$ of the student's ability to solve it." They found no results that indicate that formulas used to dētērmine rēāābility cān separate problems into grade-appropriate leve..s.

Abstractor's Comments

I would like to comment on the readability level of the research article. Often I read research that is vague and abstract. This is nēithēr. Thē problem is clearly stated; the literature search is clear, relevant, and justifies the research presented. The entire àrticié was weil written and interesting. Research like this can be read and understood by teachers of all levels. I think that research will become effective when we stop talking to ourselves and speak to the classroom teacher and the layman. This article does prēcisēy thāt. I enjoyed doing this review.

Pedersen, Katherine; Elmore, Patricia; and Bleyer, Dorothyo PARENT ATTITUDES AND STUDENT CAREER INTERESTS IN JUNIOR HIGH SCHOOL. Journal for Research in Mathematics Education 17: 49-59; January 1986.

Abstrāt and cor ints prepared for I.M.E. By CEYDE A. WILES; Indiana University North.est, Gary.

1. Purpose

The purposes were two: 1) "to investigate parent attitudes and student career intérests rē̄ative to their contribution to a theoretical model of mathematics achievement in junior high school;" (2) "to
 and parent attitudes, between student attitudes and student career interests, and between parent attitudes and student career fnterest."

2. $\bar{R} a \bar{t}$ ionāle

The variables chosen for the models to be used to explain student achievement were selected on the basis of their importance in other studies of achievement correlates. Ā the junior high level, thēse included attitudes towards mathematics; spatial visualization ability, and sex: The variables identified as inportant at the senion high level did not include sex; but did include parents' attitū̄̄̄; career interests, and participation in mathematics courses. The evidence for the importance of parent attitudes and student career interest was viewed as béng inadequate. It was believed that this study "would contribute to anderstanding of (a) the part that these variablés play in explaining mathematics achievement in junior high school and (b) the relationship(s) among $\overline{\mathrm{s}} \mathrm{c} u \overline{d e n t}$ attitudes, parent attitudes, and student career interests in junior high school:"

3. Research Design and Procedures

The 974 seventh-grade and 1008 eighth-grade subjects were chosen from 13 smail, Midwesters, rural junior high schools. Numbers of boys and girls involved in the study were about equal, and minorities in some schools were as high as 35% of the total enrollment. Nationał norm percentiles on the standārdizè achievement tē̄st used by the various schools were taken as measures of stadent achievement. Spatial visualization ability was measured by a standard test, sex in the obvious way, student attitude by the nine-subscale test of Fennema and Sherman (1975), and parent attitudes by the "Math as a Male Domain Scāe" and by adaptations of the "Mother Scaie" or "Father scale" of the Fennema and Sherman attitude test that the students rook. Student cāreer interests were measured by the Unisex ACT Intērēst Inventory (UNIACT) (American College Testing Program, 1977).

Student data were obtáned by one of three teams who did on-site testing and reviewed school files. Parent data were obtained by sending forms home with the children, who then returned the completed instruments to the school; return rates by school were in excess of $\overline{\mathbf{8}} 5 \%$.

The data were discussed in terms of six variables: 1) parent attitudes; 2) student career interests, 3) spatial visualization ability, 4) student attitudes, 5) sex, and 6) the "dependent variable", māthématics āchievement. Variablés 1, 2, ānd 4 were actually fanilies of variables.

A regression analysis was done to determine the total amount of variance accounted for in the dependent variable by all five of the other variables. The five variables were their eliminated in turn from the model, and the reduction in \bar{R}^{2} resulting from the eifination of each was tēsted for significancē. The two vāriables of particular intērēst, parent attitudes and student career interests, were then both dropped from the analysis, and again the reduction in R^{2} was tested for significance.

Further analysis using canonical correlation analysis was done on three sets of variables. Student Attitudes were relaced to Parent Attitudes; Student Attitudes were related to Student Career interests; and Student Career Interests were related to Parent Attitudes. Significant canonicāl variates were sought for each analysis.

4. Findings

The regression analysis showed that the only reduction in R^{2} not found to be significant was the reduction resulting from dropping the variable sex from the analysis. The variance accounted for by parent attitudes and student career interests; apart from the variance already accounted for by sex, student attitudes; ànd spatial visualizātion ability was also significant. The authors report their belief that variance resulting from the variable sex was hidden within that of the other variables; they do not belleve that this variable is a non-predíctor of student achiévement.

The order of the variables in terms of the greatest reduction of the total R2 variance was: spatial visualization (.093), student attitudes (.092), parent attitudē and student career interest taken together (.021), student career interest (.010), parent attitudes (.010); arti sex (, 000). The total R^{2} variance accounted for by all the fariāblēs was .375.

Three canonical variates were found for each of the first two sets of variables, but only one was found for the third set. The interpretations given to the canonical variates were asoilows:

1. student attitudes vs. parent attitudés:

1st: a student self concept factor within parent attitudes.
2nd: a judgmental factor on sex-typing of mathematics
3rd: à father's-influence factor

II. student atétudes vs. student career interēsts:
 1st: student attitudes and careers in science, servicēs, and business
 2nd: high male math-domain implies low interest in business and technology
 3rd: high math anxiety correlates with futerests in arts and technology
 III, student career interests vs. parent atitudes
 lst: student interests in science and business correjates with parents' perceptions of child as a learnēr of mathematics.

5. Inturpretations

Both parent attitudes and student career interests of junior high students make à significant contribution to the variance of mathematics achievement over and above that accounted for by other variablés comonly used for prediction. Questions remain about how these variables are related to those at the senfor high level and to participation in mathematics coirsēs àt the senior high school levél.

It was believed that anderstanding of the relationships bētween student attitudes and parent attitudes requires that átention to relationships among students' sēlf-concept; sex-typing of mathematícs; and a father's-influence factor. The other canonical variates and possible relationshíps $\bar{s} \bar{f} \bar{p} \overline{a r e n t s} '$ and students' attitudes with student career intéerests need further study.

Absitrāctor's Comments

The study was carried out and reporté in a disciplined manner: The attempt to rēate this study with other studies of predfction of achíevement was articulated well: An understanding of the meaning of this study is facillitated by the use of familiar instrumentation: The findings do support the plausibility of student career interest and parent attitudes as having important éffects upon a junfor high school student's achievement in mathematics.

The use of percentilés as the measure of student achievement presents some problems. But, as noted by thē authors, the effect is thought to be the weakening of the power of the tests to discover rēlationships. I expect a réatively large measurement error in measuring achievement in this fashion that also works against the purposes of the authors.

The choice of independent variables was a bit arbitrary from my view. How can we néglect meāsurē of ability other than spáiáa visualization when we are looking for known corrēatēs of mathematics achievement? The fact that the entre set of variables accounts for something less than 40% of the total variance calls into question the adequacy of this selection of predictor variables. This selection of independent variabiés seems to be better suited on the face of it for researching differential expectations for boys and girls rather than for general prediction of achievement in mathematics. Several comments throughout the report suggest that this is a major concern of the authors. If it is, I wonder how they relate what they found to this concērn.

The representativeness of the sample is a worry. The attitudes and expectations of junior high students in smail rural communities, presumably in Southern Illinois; may be thought to be more than a
 those of their parents to be of the most traditional variety. If we were èver to find the variable $\bar{o} \bar{f} \bar{g} \overline{e n d e r} \bar{t} \bar{o}$ be differently related to attitude, I would expect it to be hēre. While the authors do make a case that sex differences are "nested within" the other variables; 1 suppose that the argument is as valíd for predicting à nēsting of career interests or parent attitudes within the other variables. But, this was not the case. In fact, the joint reduction in R^{2} for parent attitudes and student career interests taken together is about what one would expect if the two sets were independent of each other (which, incidently, the canonical analysis shows they surèly were not).

Maybe all this is related to my concerns about statisticā power, significance; and importance. The size of the population (about 2,000 observations) produces à grēat deal of statistical power agañ any null hypothesis. A measure of this is that a reduction of 0010 in R^{2} is significant beyond the .001 level. However, this reduction is only about 1% of the total variance. While the authors refer to this difference as a substantial contribution; and it is à statistically significant contribution, I have strong doubts about its real importance.

Referencés

Fennema, E., and_Sherman, J. (1976). Fennema-Sherman mathematics attitude scales. Psychological Documents; 6 (2); 31; (Ms. No. 1225).

American College Testing Program. (1977): Unisex ACT Interest Inventory. Lowa City; IA; Author.

Péterson, Pénélope L, and Fennema, Elizabeth. EFFECTIVE TEACHING; STUDENT ENGAGEMENT IN CLASSROOM ACTIVITIES, AND SEX-RELATED DIFFEPENCES IN LEARNING MATHEMATICS. Americān Educational Research Journal 22: 309-335; Fā11 1985.

Abstract and comments prepared fō $\mathfrak{i} . \bar{M} . E$. by RUTH ANN MEYER, Western Michigan University.

1. Purpose

The purpose of this study was $\overline{\text { to }}$ identify classroom activities that were related to the low cognitive level and high cognftive level mathematics achievement of boys and girls. The investigators were especially intérested in whether these activities differed for boys and girls.

2. Rationale

Although research has identified variables assocfated with sex-related differences in mathematics (Fox, 1981); 1ittie is known àbout teachèr and classroom activities that contribute to these differences. This study focused on identifying some of these activities. It also investigated the effect of participation in classroom activities on high cognitive levei and low cognitive level achievement ō boys and girls.

3. Research Design and Procedures

Four questions were invēstigated:

1. Do fourth-grade $\bar{g} \dot{f} \overline{\text { s }}$ and boys differ significantly in mathematics achievement on low level and high level itéms, and do they differ significantly in their achievement gains over a six-month period?
2. Do fourth-grade boys and girls differ significantly in the percentage of time that they ar engaged in various types of activitiés during mathematics class?
3. Do significant relationships exist between the type of mathematics ciassroom activity in which girls and boys are engaged and their low levē and high level achievement, and do these relationships differ significantly for boys and girls?
4. Are thère significant sex-related differences in engagement in classroom activities between classes that show low level and high level mathematics achievement gains that are greater fos boys than girls; greater for girls than boys, and do not differ for boys and girls?

Fourth-grade teachers and thetr 36 classes participated in the study. A pretest and a posttést, each consisting of 14 low level (LL) and 14 high levei (HL) mathematics items from the National Assessment of Educational Progress; were administered to the students. Between administrations of the pretest and posttest; trained obsērūers, using an engaged time observation instrument; observed for three weeks the engagement/nonengagement in mathematics activities of six random selected students of each sex in each class.

To analyze the data, meāns and standard deviations of the target girls' and boys' pretest and posttest mathematics achfevement scores and rēsidualized gain scores were computed. Anālysēs wère run separately for the subtest scores on the LL and HL items. Means and standard deviations of the sccres on the engaged-time observations were also computed. These two sets of data were used to investigate questions one and two.

To examine the relationship between giris' and boys' engagement in classiroom activities and thér mathematics achievement on $\overline{\mathrm{LL}}$ and HL items, partial correlations between scores on engaged-time observation categories and posttest mathematics achievement, controlling for pretest mathematics achievement, were computed.

To investigate the fourth question, two scaterplots; one for LL achievement gains and another for HL achievement gains, were constructed. For each plot, the averaged residualized aci evement gain for girls in each class was plotted against the averaged residualized achievement gain for boys. Three groups were identified for each scatterplot. One group consisted of classes in which girls clearly achieved greater gains than boys. The second group consisted of the classes in which boys dēfinitèly achieved greater gains than girls. No difference classes constituted the third group.

The means on the engaged-time observation categories for each of the three groups of classes and for girls and boys within each group were computed. The investigators did three pairwise comparisons for groups using Tukey's HSD method, based on a familywise alphá of 05 ; and three additional pairwise comparisons using Tukey's method to teest the Sex X Group interaction.

4. Findings

Boys and girls did not differ significantly in their mathematics achievement on pretest or posttest or in their residualized gain in mathematics achievement. Neither díd boys and girls differ in the percentage of times they were engaged in various activities during mathematics classes.

There were several significant partal correlations between scorē on engaged-time observation categories and postest mathematics achievement controlling for pretest achievement. Table 1 contains the correlations which differé significantly from zero at $p<.05$.

Table \bar{I}

Engaged-time observation category	Māth Achievement Lower Level		Math Achínement High Level	
	$\overline{\mathrm{Cin} 1 \mathrm{~s}}$	$\overline{\text { Boys }}$	Girls	Boye
Expected activity: Social	-. 30	-. 38	-. 43	
Setting of Activity				
Small group-Different sēx			. 41	
Teāehér-student	$-.53^{\text {a }}$			-. 34
Engaged in mathematics		. 34	. 31	. 30
Math-symbolic		. 29		
Being helped by teacher		-. 35		
No helping		. 37	. 32	. 30
Competitive	$-.40^{\bar{a}}$			
Neither competitive nor cooperative		. 30	. 30	. 29
Nonengaged in mathematics		-. 35	-. 30	-. 30
Social	-. 37	-. 41	-. 34	
Waiting for help			$-30^{\text {a }}$	
Off-task		-. 34		-. 32

For the LL achievement gain oroups, the Engaged-time categories, Engaged in mathenatics: no heiping by teacher or other student and Competitive were significant in favor of boys.

For the Ht achievement gain groups, the significant Engaged-time categories were

Expected activity: Social
Setting of activity: Teacher-student zlone
Engaged in mathematics: No telping by teacher or other student Neither competitive nor cooperative
Nonengaged in mathematics: Social
Waiting for help Off-tāsk

5. Interpretations

The results of the study showed that student engagement and nonengagement in māthematics activitíes in the classroom are rē lātéd to mathematics achievement. They also demonstrated that engagement in competitive mathematics activities was significantly negatively rélated to the LL mathematices achievement of $\overline{\mathrm{g}} \mathrm{i} \mathrm{r} \overline{1} \bar{s}$ and sightly positively related to the LL mathematics achievement of boys: The authors suggested that the boys of the study may have benefited from the "Around the World" game which was of ten played in the ciassrooms; whereás girls' LL mathematics achievement may have been debilitated by participation in this competitive game. it appeared that the girls benefitted more from cooperative activities. Nevertheless, the most positive correlations were found for engagement in mathematics achievement that was neither competitive nor cooperative. According to the authors, their findings suggest that using mathematics activities that are neithei competitive nor cooperative may bé thé best way to teach mathematics.

The findings for offetask behaviour and social activitíes suggested to the authors that to maximize boys' mathematics achievement, the teacher's task might be one of control and minimizing off-task behaviour. To maximize girls' mathematics achievement, the important task for the teacher might be to minimize the amount of time that is spent during mathematics class on activities where the topic is a social or a personal one.

Abstractor's Comments

Overall the study was carefuliy done. Much time and energy obviously went into conducting it. This research will contribute significantly to the literature on sex-rēated differences in mathematics. Implications of the results provide insights into some clāssroom activities that may have different infiuences on giris' and boys' learning in mathematics.

Although the design was weil-conceived, i would like to comment on one of its components. I pèrsonally think thāt tables could have been used more effectively than scatterplots to identify Boy Gain, Girl Gain, and Nō Diffērencé Mathematics Achievemont Groups.

Rēfērences

Fox, L. H. (1981). "The problem of women and mathematics." New York: Ford Foundation.

Schunk, Dale H. and Cox, Pauia D. STRATEGY TRAINING AND ATTRIBUTIONAL FEEDBACK WITH LEARNING DISABLED STUDENTS. Journal of Educational Psychology 78: 201-209; June 1986.

Abstract and comments prepared for I.M.E. by DOUGLAS EDGE, University of Western Ontario.

1. Purpose

There were two stated purposes: to determine how verbalization during cognitive-skill learning and how sequence of éffort-attributional feedback influencéd students' seifnéfficacy and skills.

2. Rātionalē

Sélf-ēfficacy, définē as "ōe's pércéved performance capabilities In a given activity," is belleved to influence a range of behaviors such às choice of activities, effort expended, persistence, and task accomplishments (p: 201): Learning disabled students when faced with difficult tasks of ten are inattentue and appear lazy. it is possible that these behaviors are observed in part because these students beifeve that they cannot be successful with the specific task. Hence strategies which promote student self-efficacy may ultimately result in improved performance.

One strategy that may assist students involves verbalizing aloud while compieting exampies or working on problems. Thís verbaízááon may facilitate learning as it helps focus attention on key aspects of the task at hand. Further; students of ten associate their succēsses and failures with certain attributes: ability; effort; task difficulty; and luck ($\mathrm{p}, 202$). One of these; effort; is under the control of the student Linking effort feedback with school success; especially with learning disabled students, should promote the students' self-ēfē̄acy and skills.

Two hypotheses result: (1) Either of two verbalization conditions (Vérbāization across all sessions or verbalization across the first half of the sessions only) would develop higher sēlf-efficacy and skilis than that ōf a thírd condition of no verbalization. (2) Either of two effort-providing feedback conditions (feedback during the first half of the sessions only or feedback across the second half of the sessions only) would promote higher self-efficacy and skills than that of the condition of no effort feedback.

3. Research Design and Procedures

Ninety students (51 boys, 39 giris; grades 6 through 8; aged 11 yeārs 2 months to 16 yeārs 2 months) participated in the study. 111 students were classified following state guidelines as learning disabled in mathematics. They were sélécted for the study from a group of students identified by their teachers as having difficulty learning subtraction with regrouping.

This study had three stages: pretest, treatment sessions, and posttest. The pretest consisted of an attributions measure as weli as the self-efficacy and subtraction skills measures. The attributions measure comprissed four scales, each ranged in 10 -unit intervals from 0-100. The four scales were labeiled "good at it" (ability); "worked härd" (effort), "ēāsy problems" (tāsk), and "lucky" (luck). From previous research with this measure, the test-retest reliability ; coefficient was 0.80. To complete thís attributions measure the students were asked to imagine a situation when they did well (achieved a high score) on a mathematics test and to "suppose why that might happen."

The self-efficacy assessment was accomplished by showing students 25 pairs of sūbtraction problems for 2 seconds each. The students were shown one pair at a time and asked to make a judgment as to how well they thought they could solve that problem and to record thér beliéf on a scale ranged in 10 -unit intervals from 10 to 100. The testretest reliability coefficient was 0.82 .

The subtraction skill test contained 25 questions; one each on separate sheets of paper. Students answered one at a time. Their score was the total number of correctly solved examples. The examples all focused on regrouping: "regrouping once, regrouping caused by a zero, regrouping twicē, regrouping from one, ānd regrouping across zeros" (p. 203).

Following the pretest, the students were assigned randomly (within gender and school) to one of nine groups based on a 3×3 crossed factorial experimental design (Verbalization: continuous; discontinuous, or none X Effort Feedback: first half, second half, or none). The trāining sessions (45 minutés each on 6 consecutive days) wére conducted by proctors from outside the school: The subtraction trāining program for ēach of the nine groups ail followed the same format. The only differences in presentation were to accommodate the appropriate verbalization instructions (if applicable).

During the continuous-verbalization condition sessions the students were āsked to think out loud: "say out loud what you're thinking about; just like I did while I was solving problems" (p. 204). At the beginning of each subsequent session students were reminded to think out loud. For the discontinued-verbalization condition; stadents at the start of the fourth session were asked to solve their problems wíthout talking out loud although "i'm sure you'll be thinking and working just like before" (p. 204).

With respect to the effort-feedback treatment, all students received monitoring by their proctor while they were individually solving their examples. During each of the sessions, approximately every 6 or 7 minutēs, for a total of five times; the proctor noted the performance of each of her students. The proctor asked each student what page he or she was working on. After the student response, the proctor then answered with the appropriate treatment response. With the students in the first-half-effort feedback groups, the
proctor responded with "You've been working hard:" During the last three sessions performance feedback such ās "That's fine", rather than éfort feedback, was provided. For the students in the second-half-effort-feedback groups, performance feedback only was given during the fírst three sessions; effort feedback was provided during the later three sessions.

The posttest was more or lass identical to the pretest. The attribution measures were assessed imméáāéy after the last training sesssion. Thē self-ēfficacy and subtraction skill measures were tāken on the following day.

4. Findings

Preliminary analysis: There were no significānt between-condition differences on any pretest or subject measure.

Self-efficacy and skill: All thrēe vērbalization and all three effort conditions made significant improvements from pretest to posttest in both self-efficacy and subtraction skili. Using corresponding pretest measures as covariates; posttest self-efficacy and skill were analyzed with a 3 亿. 3 (Vérbalízation X Effort Feédback) multivariate analysis of covariance ($\mathrm{p}, 205$). The MANCOVA yielded two significant main effects-for verbalízation, Wilk's lambdā $\cong .642$, $F(4,156) \equiv 9.69, \mathrm{p}<.001$, and for effort feedback; Wilk's lambda \equiv .740, $F(4,156)=6.34 . \mathrm{p}<.001$.

Planned comparisons for the posttest self-efficacy measure showed the following: verbalization conditions led to higher self-efficacy than no-verbaízation condition; $t(80)=2.46 . \mathrm{p}<.05$; continuous verbalization led to higher seif-efficacy than discontinued verbalization, $t(80)=4.11, \mathrm{p}<.01$ (p. 206).

For the posttest skill measure, the planned comparisons indicated similar conclusions: the verbalization conditions had higher subtraction performance than the no-verbaízátion condition, $\bar{t}(80)=$ 3.37, $\mathrm{p}<.01$; continuous verbalization promoted skili more than the discontinuous verbalization, $t(80)=4.81 ; p<.01$; and effort feedback increasé skíl measures more than no feedback, $t(80) \equiv 5.14$, $\mathrm{p}<.01$ (p. 206).

Attributions: With pretest attributions ās covariātēs, the four postest attributions were analyzed with a MANCOVĀ: A main effect for effort feedback resulted; Wilk's lambda $=.74 \overline{6} ; \bar{p}(\overline{8} ; 14 \overline{8})=2.92$, $\mathrm{p}<.01$. The verbalizātion main effect wàs non-significant. From the planned comparisons applied to the posttest measure of effort attributions; two conclusions were thā provićing effort feedback results in higher effort attributions than not providing feedback;
 the first haif of their iraining sessions believe effort is more important to their success than did students who received the feédback during the second half of the training; $t(80) \equiv 2.68 ; p<.01$ (p. 206).

Training performance: From analyzing the number of problems completed; comparisons indicated that higher performance resultē from the verbalization conditions rather than the no-verbalization condition, $\bar{t}(81)=2.61 ; \bar{p}<.05 ;$ and similarly; more rapid problem solving resulted from the students who received the éffort feedback than from those who didn't, $t(81) \equiv 2.74 ; \bar{p}<.01$. These results were not obtained at the expense of accuracy (p. 206).

Correlational analysis: From the product-moment correlations computed among posttest self-efficacy; skill; and the four attribution measures; self-efficacy was found to te positivēy rēlated to skill, abllity and effort attributions, and training performance: skill was positively related to ability and effort attributions and with training performancē.
5. Interpretations

Overt verbalization was found to facilftate task performance, self-efficacy, and skills. A comparison between the two verbalization conditions showed that the continuous verbalization condition resulted in a higher achievement outcome than did the discontinuous condition. This was contrary to an original prediction. it was thought that with the overt verbalization strategy instilled, further verbalization could bé discontinued without any decreases in performance. It was expected that students could shift this strategy to a covert ievél. This $\bar{d} \bar{d} \bar{d}$ not happen. It is possible that students reverted to some other; better known or seemingly more useful, strategy. Or, simply, the students may have chosen to abandon the think-aloud strategy when it was no longer required.

This study also found that providing students with effort feedback resulted in their having higher self-efficacy and subtraction skilis. The comparison between the two effort-feedback conditions revealed that there was no difference between the two conditions. This was somewhat surprising in that it was félt that providing early effort feedback would be viewed as credible by students whereas providing later effort feedbāck miḡht leàd students to question thēir capabilities, wondering why they still had to work so hard to succeed (p. 207).

Sē̄ērāl implicātions for teaching rēsult: Verbalizing aioud white solving problems and receiving feedback linked to successful problem solving benefited learning dísabled students who were deficient in subtraction skills (p, 208). Other questions result. Could this overt verbalization be faded to a covert level? Might ability-feedback also理prove students' self-efficacy?

Abstractor's Comments

The reporting of this study is exemplary. The article is well crafted. The writing is clear and concise. Purposēs, rationāē, methodology and so on are all approprıately described.

Still, there are concerns which have to do with the study itself. Fō exampie; aithough very detailed information is supplied by thē authors to convince the reader that the students involved in the study were lēarning dis̄abled in mathematics, the authors report that the students selected were chosen by mathematics teachērs who rēported that these "were students who had encountered difficulties learning subtraction with regrouping skills" (p. 202). Presumabiy these students would have been taught this topic several times before, over at least a three-year period. Some may have had instruction that included manipulation of concrete materiais. Others may have had experiences where they were asked to explain how or why the algorithm works the way it does. It is possible thāt most of these students. were now ready to have algorithmic; consolidation-oriented instruction. However, it is also possible that in other samples "students having difficulty leārning subtraction with regrouping" may have had very dífferent subtraction experiences and hence would respond quite differently.

Further, the value of the generalization concerning the usefulness of the think aloud and effort feedback procedures may be related to what extent the topic was being retaught compared to its being fairiy recently taught. Hence knowledge of the topic=specific background of the students is critical. It affects how one views other concerns such as the generalizability of this topic zo other topics in mathematics; the appropriateness of the duration of this study, and/or the relevancy of the training strategy adopted.

Ás a final comment, the authors routinely describe the work assigned to the stadents as problems to be solved. This study has little to do with problem solving. The students were asked to develop algorithmic skill. Think aloud techniques may be very helpfui in skilioriented work; it is not clear whether such téchniques would be helpful in situations requíring probiem solving.
 MATHEMATICS ACHIEVEMENT OF CHINESE, JAPANESE, AND AMERICAN CHILDREN. Science 23: 693-599; February 14, 1986.

Abstract and comments prepared for I.M.E. by HAROLD L. SGROEN, University of Iowa.

1. Purpose

The authors conducted a large-scale study to determine why American elementary school children lag behind children in China and Japan in reading and mathematics as early as kindergarten and continue to perform less effectively during the years of elementary school. This articie reports and discusses the results from that study which concern achievement in mathematics.

2. Rationale

Poor scholastic performance by American children compared to children of other countríes has focused attention on improving secondary school mathematics and science ediastion. Yet the problems arise as early as kindergarten, suggēsting thāt morē mus̄t bē involved than inadequate formal educational practices. Furthermore, the concentration of remedial efforts on secondary schoois may come too late in the academic careērs of most students to be effective. Research efforts are needed to better understand the bases for the poor performance of young American children and to insure that rēmediātion progrāms proceed in fruitful directions.

3. Research Design and Procedures

The Minneapolis metropolitan area was chosen for the study since it was a large city with à good mix of culturā bākgrounds but without the complicating problems of multiple languages and major economic disadvantage often found in large urban settitgs. if educational
problems were found in Minneapolis; they would probably bē compounded in othèr Americān citiēs. Thē citiēs chosen to bē most comparable to Minneapolis in the other two countries were Sendai, Japan, and Taipei, Taiwan (China). Ten schoós from éach çíty were sélected to provide a representative sample of the city's elementary schools. Two firstgrade and two fifthograde classrooms were randomiy chosen from each of these classrooms; resulting in a sample of 240 first-graders and 240 fifth-gradērs from each city. In addition; a random sample ō 288 kindergàrten childrēn wās chosen from 24 reprēentātive kindergarten classrooms in each city.

A tēam of bilingual researchers from each of the three countries constructed tests and other research instruments with the aim of éíminating as much as possible any cultural bias. Mathematics tests were based on the content of the textbooks used in the three cities. Thè tēsts̄ included items àssēssing computational skills; understanding of basic concepts; and application of mathematical principles to story
 after the beginning of the school year. Reading achíevement and cognitive abilities tests were also administered. Further data were gathered concerning the learning environments in the classrooms (from 1200 to 1600 hours of classroom observations); amount of homework, and attitudēs and beliēfés about schools and learning of the students, teachers; and parents.

4. Findings

The American children's mathematics scores were lower than those of the Japanese children in kindergarten and \bar{g} radēs 1 and $\overline{5}$; and iower than those of the Chinese children's at grades 1 and 5. The Japanese children's performance was consistently superior and the Chineese children tmproved rapidly from kindergarten through fifth grade; while the scores of the American children displayed a consistent decíne relative to those of the other two countries. While there was a high
degree of overlap in the distribution of scores for first-grade classrooms in the three cities; by fifth grade the highest average score of an American classroom was below that of the Japanese classroom with the lowest average score. Another measure of the poor performance of American fifth-graders is that of the $100 \mathrm{highest} f i f t h-g r a d e$ scorers, only one was American. On the other hand, among the fifthgraders receiving the 100 lowēst scorēs thèrē wēē 67 Americāns.

On the reading and cognitive abilities tests; the Americans compared well with the other children. Average reading scores for the American children consistently were in the middie, bē̄ow those of the Chinese but above those of the japanese. On many of the cognitive abilities tasks, American children obtained the highest scores during kindērgartēn and first grade, and by the fifth grade there was no overall difference in the total cognitive ability scores received by the chinidren in the three citíes.

Life in the American classrooms, especially by fifth grade; was very different from that in China and Japan: For example; fifth-grade American Children spent 64.5 percent of their ciassroom time in academic activities, Chinēse children spent 91.5 percent; and Japanese children; 87.4 percent. Taking into account the longer school week in China and Japan, Anerican fiffth graders spend an éstimatē 19.6 hours per week in academic activities; less than half of the 44.1 hours spent by Chinese children and not much more than half of the 32.6 hours spent by Japanese chídren. Furthermore, about 40 percent of time in American fifth-grade classes was spent on language arts compared tō 17 percent on mathematics, and these times varied tremendously from classroom to classroom. In China and Japan, about 25 percent of ciāss time each was spent on mathematics and language arts; and there was relatively little variability between classes. A thírd important diffēence was
 teacher, with the teacher imparting information, much more than in American chassrooms (neariy 90 percent of the time in Taxpé; more than

70 percent of the time in Sendá, and less than half of the t ime in Minneapolis $)$. It was also noted that on 18.4 percent of $\overline{\text { the }} \overline{\text { visitis }}$ to the American classrooms, at least one student who was known to be at school was not present in the classroom. This almost never happened in the Asian schools.

Time spent on homework differed by country more at fifth grade than $\overline{a t}$ the other levels, and these differences are sumarized here. Estimates made by mothers of the children indicate that American children spend much less time on homework (about 46 minutes per weekday and 18 minutes on weekends) than the Chinēse (114 minutēs per weekday and 156 minutes on weekends) and the Japanese (57 minutes per weekday and 66 minutes per weekend). Consistent with these results, American teachers rated the importance of homework at 4.4 on a 9.0 point scale, Chinese teachers rated it at 7.3, and Japanese teachers, at $\overline{5} . \overline{8}$. Another interesting resuit is that regardiess of the amount of time devoted to homework; 70 to 80 percent of mothers in all three countries thought that the amount of homework their children were assigned was "just right." In spite of more demanding homework assignments in their schools, over 60 percent of the Chinese fifth graders chose a smiling or neutral face to express tieir attitude toward homework compared to about 15 percent of the American fifth graders. Sixty percent of the American fifth graders chose à frowing face.

The preceding rather negative f indings notwithstanding, American parents rate the job that thér chíldren's school is doing much more positively than parents in the Asian countries dō, and they aiso express much greater satisfaction with their child's academic performance. Another variable on which there is a marked difference by country is the parents' ratings of factors contributing to their children's. àcadémic succēss. More of ten than American parents̄; Āsian parents rate effort as the most important factor, while American parents are more likely than Asian parents to attribute academic success to the child's innate ability.

The Américan tēachèrē frequently complained of hāving too many nonacademic functions and too little time for teaching. Clāssroom ōbservations tended to lend support to thé téachers' arguments. Even though American and Asian teachers spend about the same number ōf hours per week teaching ($28-30$ hours), teachers in the Asian countries have more time in school to prepare and do academic work: The Chinese . teachers are in school 47 hours and the japanese teachers; 51 hours compared to 42 hours per week for the American teachers. Such probiems for the American teachērs are nc: due to larger class sizés, for the average class size was 21 in Minneapolis, 39 in Sendai, and 47 in taipeí.

5. Interpretations

The findings presented in this article are directly in ine with those from national studies of mathematics achievement of older children such as the Second Inte national Mathematics Study. The relativeiy poor performance ōf Amerícan chíldren that begins in kindergarten is maintained through the later grades. The lack of time spent teaching mathematics in the elementary schools may be a reflection of the view of American parents and teachers that education in elementary school is synonymous witn learning to read. While it māy sēem clēā to māny thāt a plan to remediāte this situation is ioeded; impetus for change comes froni widespread dissāis̄factirn with
 scoool teachers fail to perceive that American elementary schoo:childien are performing ineffectively in mathematics and that there is a nerd Eut mprovement. If an effective plan to improve American students' performance in mathematics is to bé mountéd; it must be designed with an awarenes of the importance of the elementary school Years: Furthermore, its succēss will depend not only on improving schools but also on developing a greater awareness and an increased willingness by American parents to be of direct assistance tō thēir childrēn.

Abs̄tráctor's Commènts̄

The study reported in this article adds to our understanding of American children's consistently poor mathematics achievement when compared to children of mañ othèr countriés, including Chinā and Japan. The record of mathematical achitvement of eighth- and twelfthḡrade chīidren in Japan; in partícular, was wéli documentéd in the Second International Mathematics Study, and this article provides evidence that younger Japanese children are āso more mathematically able than their American age peers. Evidence from this study also challenges the myth that the hard work and high standards required of Chinese and Japanese childrén causés them à great deal of stress and unhappiness. On the contrary, these children's attitudes about school and about homework are far more positive than those of American children. Chinese and Japanese teachers also have fewer omplaints thān Americān tēachèrs about the conditions of their jobs; in spite of longer work weeks and class sizes nearly double those in American schools.

Some have argued that countries like Japan have sacrificed creativity for an undue emphasis on test performance. The Ministry of Education in Japan shares that concern, and it is often pointed out in support of this position thāt thēre hāve been fē exceptionally creative Japanese mathematicians. However, one eminent American
 outstanding Japanese mathematicians. In his opinion, Japan has become sirprisingly successful in mathematics considering the short time the na ion has been involved in this historically western discipline. Furchermore, the level of mathematical knowledge of the average Jár nese citizen is superior to that of the average American. This is evidprced by the fact that newspapers and popular magazines in Japan
 possible in America (Taylor, 1983).

If a research and development project in this country reported such amazing success and the skeptics who would naturally arise could be quieted, educators would be scrambitng to àdopt the methods and mātériāls. The curriculum and teaching methods of Japan and China wili not be transportable intact into our culture, but they deserve the careful study they are beginning to receive. Like American businessmen, American educators can no longer afford to ignore practicés that are successful in other parts of this global village.

References

Taylor, Jare. Shadows of the Risirg Sun. New York: Quill.

MATHEMATICS EDUCATION RESEARCH STUDIES REFORTED IN JOURNALS AS INDEXED BY CURRENT INDEX TO JOURNALS IN EDUCATION April = June 1986

EJ 327564 Siegel, Ross G.; And Others: A Comparison of Two Models for Predicting Mathematics Performance: Sṓal tearning versus Math Aptitude-Anxiety. Journal of Counseling Psychology; v $32 \mathrm{n} 4,531-38$, October 1985.

EJ 328137 Swanson; H. L.; Rhine, Barbara, Strategy Trānsormations in Leárning Disābled Children's Math Pérformancé: Cluēs to the Development of Expertise. Journai of Learning Disabilitíes, v18 n10, 596-603, Décember 1985.

EJ 328 589 Kuhs, Therese; And Others. Differences among Teachers in Their Use of Curriculum-Embedded 'rests. Elementary School Journal, v86 n2; 141-53; November 1985.

EJ 328648 Research Notess: Eists of Theses and Díssertations Submitted for Higher Degrees in British Universities, 1982-83 and 1983-84. Studies in Scsonce Education, v12, 88-108, 1985.

EJ 328741 Seddon, G. M.; Shubber, K. E. Learning the Visualisation of Three=Dimensional Spatial Relationships in Diagrams at Different Ages in Bahrain. Research in Science and Technoiogical Education, v3 n2, 97-108, 1985.

EJ 328 787. Chang, Ping-Tung. Retesting in a College Remedial Mathematics Course. Mathematics and Computer Education, v19 n3, 175-80; Fall 1985

EJ 328789 Cooney, Thomas J. A Beginning Teacher's View of Problem Solving. Journal for research in Mathematics Education; v16 n5; 324-36; November 1985.

EJ 328790 Steinberg, Ruth M. Instruction on Derived Facts Strategies in Addition and Subtraction. Journal for Research in Mathematics Education, v16 n5, 337-55, November 1985.

EJ 328791 Siders, James A.; And Others. A Screening Procedure to Identify Children Having Difficulties in Arithmetic. Journal for Research in Mathematics Education, v16 n5, 356-63, November 1985.

EJ 328792 Hansen; Randall S.; And Others. Rote versus Conceptual Emphases in Teaching Elementary Probability- Journal for Research in Mathematics-Education; v16 n5; 364-74; November 1985.

EJ 328793 Romberg; Thomas A.; Colliśs Kevin F. Cognitive Functioning and Performance on Addition and Subtraction Word Problems. journal för Research in Mathematics Education, vín n5, 375-82, November 1985.

EJ 328796 Cohen, Herbert G A Comparison of the Development of Spatial Conceptual Abilities of Students from Two Cultures. Journal of Research in Science Teaching; v22 n6; 491-501, September 1985.

EJ 328797 Farrell; Margaret A.; Farmer; Walter A- Adolescents' Performance on a Sequence of Proportional Reasoning Tasks. Journal of Research in Science-Teaching; v22 n6; 503-18; Septémbēr 1985.

EJ 328940 Bali; John; And Others. High-Ability Women and Men in Undergraduate Mathematics and Chemistry Courses. American Educational Research Journai; v22 n4; 605-26; Winter 1985.

EJ 328963 Akāgi, Aiwā; And others Achievenent in Constmer Mathematics among Japanesee Téchnical High School Students-A Comparison with NAEP Data. Evaluation in Education: An International Review Series; v9 n3; 253-76; 1985.

EJ 328964 Harnisch; Delwyn L.; And Others. Mathematics Productivity in Japan and Illinois. Evaluation in Education: An International Review Series, v9 n3; 277-84, 1985.

Ej 329763 Moore, Nancy Delano. The Progress and Problems of an incredubiy talented sister ard Brother: Roeper Review; v8 n2, 109-12, November 1985.

EJ 329794 Montague, Marjorie; Bos, Candace S, The wfect of Cernitive: Strategy Training on Verbal Math Problem Solving Performance of Learning Disabled Adolescēnts. Journā of Lēarning Disabilities, vi9 ní, 26-33, January 1986.

EJ 329843 Flaman, F; McLaughifn, T. F. Token Reinforcement: Effects for Accuracy of Math Performance and Generalization to Social Behavior with an Adolescent Student. Technique, v2 nl, 39-47, January 1986.

EJ 329872 Bilsky, Linda Hickson; Judd; Thomas. Sources of Difficulty in the Solut fon of Verbà Arithmetic Probiems by Mentally Retarded and Nonretarded individuals. American journai of Mental Deficiency, v90 n4; 395-402; January 1986.

EJ 330231 Collis, Betty. Rēsearch Windows. Computing Teacher; vi3 n5; 46-47, February 1986.

EJ 330373 Pratt, Donald 1 . Responsī́ility for Student Success/Failure and Observed Verbà Behavior among Secondary Science ānd Mathematics Teachers: Journal of Research in Science Teaching, v22 n9, 807-16, Décember 1985.

EJ 330379 Austin, Joe Dan. International Study of Achievement in Mathematics-A Reanalysis: School Scis ce and Mathenatics, v85 n8, 635-44, December 1985.

EJ 330430 Suydam, Marilyn No Research Report: Addition ard Sūb̄raction-Processes and Problems: Arithmet ic teacher, v33 ñ, 20; December 1985.

EJ 330474 Edwards; Jo: Boys and Girls in the Australian Mathematics Competition. Mäthematics in School, v14 n5, 5-7, November 1985.

EJ 330650 Sherman, Lawrence W.; Thomas, Mary. Mathematics Achievement in Cooperative Versus individuaístic Goal-Structured High School Classrooms. Journal of Educational Research, v79 n3, 169-72; January-February 1986.

EJ 330975 Benson; Jeri; And Others. Effects of Test-Wiseness Training and Ethnicity on Achievement of Third- and Fifth-Grade Students: Measurement and Evaluation in Counseling and Development; v18 n4; 154-62; January 1986.

EJ 331044 Erchul, William P.; And Others: Predictors of AbilityAchievemeni: Discrepanciés in Children Rēferred for Psycho= educational Evaluation. Psychology in the Schools, v23 nl, 27-33; 1986.

EJ 331434 Omizo; Michael Mo; And Others. Modelling Techniques, Perceptions of Self-Efficacy, and Arithuetic Achievement among Learning Disabled Children. Exceptional Child, v32 n2, 99-105, July 1985.

EJ 331 480 Thalgott; Mary R. Anchoring: A "Cure" for Epy. Academic Therapy, v21 n3; 347-52, January 1986.

EJ 332023 Becker; Joanne Rossi: Mathematics Attitudes of Elementary Educātion Mājors. Arithmétic Tēāchér, v33 n5; 50-51, Januāry 1986.

EJ 332025 Jansson; Lars C. Logical Reasoning Hierarchies in Mathematics: Journai for Research in Mathematics Education, vil ni; 3-20; January 1986.
 in Teaching Secondary Mathematics. Journil for Research in Mathematics Education, vi? ni, 21-30, Janury 1986.

EJ 332027 Burger, William F.; Shaughnessy; J. Michael. Characterizing the van Hiele Levels of Development in Geometry. Joumal for Research in Mathematics Education, v17 n1, 31-48, January 1986.

EJ 332028 Pedersen, Katherine; And bthers: Parent Attitudes and Student Career Interests in Junfor High School. Journal for Research in Mathematics Education, v17 n1, 49-59; Jãnuāry 1986.

EJ 332029 Watson, Jane M. The Kellér. Plan, Final Examinations, and Long-Tenin Retention. Journal for Research in Mathematics Educātion, v17 n1, 60-68, January 1986.

EJ 33? 031 Battista, Míchael T. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers. School Science and Mathematics, v86 n1, 10-19; January 1986.

EJ 332032 Padilia, Ushael J.; And Others: An Examintation of the Line Graphing Ability of Students in Grades Seven Through Twelve. School Science and Mathematics; v86 ni, 20-26, January 1986.

EJ 332043 Hudson, H. T. A Comparison of Cognitive Skilis Between Completēes and Droupouts in a College Physics Coursé. Journal of Rēsearch in Science Teaching; v23 ní; 41-50; January 1986.

EJ 332054 Thomas, Gaí E. Cultivating the Interest of Women and Minorities in High School Mathematics and Science. Science Education; v70 nl, 31-43, Januáry 1986.

EJ 332094 Suydam; Marilyn N. Research Report: Manipulative Materials and Achievement : Acithmetic Teacher; v33 n6, 10, 32, February 1986.

EJ 332112 Mansfield; Helen. Points̄; Linēs, and Their Reprēsentations. For the Learning of Mathematics v5 n3; 2-6; November 19855.

EJ 332115 Leder, Gilah C. Measurement of Attitude to Mathematics: For the Learning of Mathematics; v5 n3, 18-21, November 1985.

EJ 332121 Muth, K. Denise. Solving Word Problems: Middle School Students̄ and Extrañous Information, School Science and Mäthematics, v86 n2, 108-11; February $\overline{1986 .}$

EJ 332376 Ross, Stéven M.; And others. Adapting the Thematic Context of Mathematical Problems to Student Interests: Individualized versus Group-Based Sitategizs. Journal of Educational Research; v79 n4; 245-52; March-Apríi 1986.

EJ 332474 Elmore; Patricia B.; Vasu, Eijén Storey. A Model of Statistics Achíevement Using Spatial Ability, Feminist Attitudes and Mathematićs-Related Variables as Predictors. Educational and Psychological Measurement, v46 nl, 215-22, Spring 1986.

EJ 332476 Adwerē-Boamāh, Joseph; And others. Factorial validity of the Aiken-Dreger Mathematics Attitude Scale fō Urban School Students. Educational and Psychologiral Measurement, $v 46 \mathrm{nl}$, 233-36, S̄pring 1986.

EJ 332501 Eccles; Jacquelynne S.; Jácobs; Janis E. Sociāl Forces Shape Math Attitudes ānd Pērformāncé. Signs, vll n2, 367-80, Wintēr 1986.

```
MATHEMATICS EDUCATION RESEARCH STUDIES REPORTED IN
    RESOURCES IN EDUCÄTION
                Aprí1 - June 1986
```

Ed 263493 Pétersen; Anne C. Crockett, Lisā. Fāctors Influencing Sex Differences in Spatial Ability during Adolescence. 18p. MFO1/PC01 Plūs Pōstage. Available from EDRS:

ED 263517 Lips, Hilary \bar{M}_{-}; And Others. Self-Schema Theory and Gender-Related Behaviors: Research on Some Correlatit. University homen's Participation in Mathematics, Scien. and Athletic: 122 p . MFies. $1 / \mathrm{PC} 05$ Plus Forrase: Available from EDRS.

ED 263874 Spivey, Patsy M. The Effects of Computer-Assisted Instruction on Student Achievement In Addition-and Subtraction at First Grade Eevel: 40p. MF01/PC02 Plus ostage. Availāble from EDRS:

ED 264084 Reidy, Edward F., Jr. An Evaluation of Mathematics. 20 p. MFOl/PCO1 Plus Postāgé. Availlable from EDRS.

ED 264127 Clement, John; And Others. Adolescents Graphing Skills: A Descriptive Añalysis. 5p. MFOi/PCO1 Plus Postage. Available from EDRS.

ED 26412 Mokros, Janice \bar{R}. The Impact of Microcomputer-Based Sctence Labs on Children's Graphing Skills. 7p. MF01;'PC01 Plus Fistaga. Available from EDRS.

ED 264143 Adetula, Lawal 0- The Effects of Language and Schooling on the Solution of Simnle Word Problems by Nigerian Children. A Report from the Project Using the Microcomputer to Teach Problem-Solving Skilles. Program Report 85-17. 35p. MF $01 /$ PC02 Plús Postāgē. Available frōn .. गRS.

ED 265011 Pedersen, Katheŕne; Añ Others: Affective and Cognitive Mathematics Related Variables: A Longitūinā Study. $\quad 43$ p. MF01/PC02 Plus Postage. Available from EDRS.

ED 265 C17 Christiansen, Bent; And Others. Systematic Coo-Operation between Theory and Practice in Mathematics Education. Mini-Conference at ICME 5: Topic Area Research and Teaching (Adelaide, Australia, August 25-29, 1984). 90p. MF01 Plū̃ Postage. PC Not Available from EDRS.

ED 265033 Martel, Henrȳ J., Jir.; Mehāllis, George. An Examinatoon of Factors Affecting Mathematics Enroliment at Broward Community College, South Campus: Societal Factors Affecting Education. 27p. MF01/PC02 Pius Postage. Available from EDRS:

ED 265034 Schmeltzer, Raymond Charles. A Follow-up Study of the Mathenatics Educātion Majors from thē Univērsity of Wisconsin= Oshkosh 1960-1985. 28p. MF01/PCO2 Plus Postage. Avaitable from EDRS.

ED 255050 Weaver, J. F- The Learning of Mathematics. ERIC/SMEAC Mathematics Education Digest Number 1. 3p. 1F 01/PC01 Plūs Postage. Avāilāble from EDRS.

ED 265070 Zehavi, Nurit. Investigation of the Effect of Assignment Projects on Mathematical Activity of Graduating Junior High School Students. 238p. MFO1/PCio Plus Postage. Available from EDRS.

ED 265170 Swinton, Spencer S.; Powers, Donald E. The Impact of Self-Study on GRE Test Perfrmance. 89p. MF01/PC04 Plus Pos̄tāgè. Av̄āilāblē from EDRS.

ED 265719 Jones, Eric D. \bar{c} Krousé, James P- Verbá Mach Problem Sulving: What the Research on instruction Tells Us. 39p. MFO1/PCOZ Plus Postage: Available from EDRS.

ED 265817 Powers, Stephen; And Others. Attributional ritles of Japanese-American and Anglo-American University Stinnts. i9p. MF01/PCO1 Plus Postage. Available from EDRS.

ED 265901 Eldersveid, Paul; Baughan, David- Attitudes-and Stureas Perceptions: Their-Measure and Relationship to Performance in Elementary Algebra, Intermediate Algebra, College Algebra and Technical Mathematics. 23p. MF01/PCO1 Plus Postage. Available from EDRS.

ED 265962 Hess, Robert D.; And Others- Cultural Variations in Family Bellefs abrut Children's Performance in m. amatics:-Comparisons among the People's-Republic of China, Chinesé-American, and Caucasian-Americān Fämiliēs. 46p. MF01/PC02 Plús Postage. Av̄āilable from EDRS.

ED 266019 Suydam, Marilyn N. Recent Research on Mathematics Instruction: ERIC/SMEAC Mathematics Education Digest No. 2 . 3p. MF01/PC01 Plus Postage. Available from EDRS.

ED 266022 Lee, Lynda N.; And Others, Remedial Math at the College Level: A Pilot Study. 10p. MF01/PCO1 Plus Postage. Available from EDRS.

ED 266 031 Suydam; Marilyn N-, Ed.; Kasten; Margaret L., Ed: Invest fgations in Mathematics Education. Volume 18, Number-4. 73p. rfol/PC03 Plus Postage. Avãilāblē from EDRS.

ED 266032 Culler; Katharyn. Racially Integrating College-preparatory
Math Classes-An-Evaluation-of-a-University-High School-Partnership. 29p. MF01/PC02 Plus Postāge. Avāilāble from EDRS.

ED 266033 Marchand, Lois C̣.; And Others. Assessing Cognitive Levels in the classroom. Final Report. 238p. VFol/PCio Pios Postagé. Available from EDRS:

ED 266036 Shavelson; Richard J.; And 0 ers. Teaching Mathematics änd Sciencé: Patterns of Microcomputēr Usē. 50p. MFOl Plus Positage. PC Not Âvāilāble from EDRS.

ED 266 039 Beauvais; Kathleen; And Others: Sex Eguity and Math Achíevement: A Summary of Research and Recommendations: 18 p . MF01/PC01 Plus Postage. Available from EDRS.

ED 266040 Burnham, Tome A Field Tēst of a Structured Television Curriculum on the Mersmātics Achiévément of Incarcērated High School Equivalency Learners. 11p. MF01/PCO1 Plus Postage. Available from EDRS.

[^0]:

[^1]: Subscription Price: \$8.00 per year. Single Copy Price: \$2.75 $\$ 9.00$ for Canadian mailings and $\$ 11.00$ for foreign mailings.

