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Abstract

This study compared five density estimation techniques applied to samples

from a population of 272,244 examinees' ACT English Usage and Mathematics

Usage raw scores. Unsmoothed frequencies, kernel method, negative

hypergeometric, four-parameter beta compound binomial, and Cureton-Tukey

methods were applied to 500 replications of random samples of 500, 1000, 2000,

and 5000 from these populations. The four-parameter beta compound binomial

produced the most accurate estimates, and the kernel method yielded only

slightly less accurate estimates. Cureton-Tukey ranked third in accuracy.

All methods involving smoothing produced more accurate estimates than

unsmoothed frequencies except the negative hypergeometric. Negative

hypergeometric estimates varied erratically by test and score level. The

methods studied have the potential to improve the estimation of norms and the

equipercentile equating function.

Key Words: Nonparametric density esttmation, test score models, smoothing

norms, equating
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A Study of Methods for Estimating Distributions

of Test Scores

Statisticians have traditionally taken a parametric approach to

estimating a probability density function from sample data: assume or try to

deduce the function (e.g., binomial, beta, normal, Poisson), then estimate

function parameters from the sample statistics. Only recently have they

actively cultivated a nonparametric approach (Silverman, 1986; Tapia &

Thompson, 1978) involving few or no assumptions about the function. Yet

already one finds a considerable body of theory and methods of nonparametric

density estimation.

Nonparametric methods show promise for estimating test score

distributions from sample data. Here we adapt one of them--the kernel

method--to estimating discrete test score distributions of ACT English Usage

and Mathematics Usage tests. Another nonparametric method, the CuretonTukey

weighted moving average method (Cureton & Tukey, 1951), is also studied. We

compare results by these methods to those from two parametric methods: the

negative hypergeometric (Lord, 1965) and fourparameter beta compound binomial

test score models (Keats & Lord, 1962; Lord & Novick, 1968, chap. 23). These

methods have the potential to improve the estimation of test norms and the

equipercentile equating function.

Density Estimation Techniques

Four techniques for estimating population densities are described, in

addition to the sample relative frequencies. All of these techniques produce

discrete density estimates.

Negative Hypergeometric Distribution (Beta Binomial)

The negative hypergeometric distribution was described by Keats and Lord

(1962) and was discussed by Lord and Novick (1968). Lord and Novick (1968)
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present a procedure for generating the distribution given the mean and the

variance for a test of a given length. One way to derive the negative

hypergeometric is to assume that proportion-correct true scores have a tw-

parameter beta distribution, ranging from 0 to 1, and that for examinees of a

given proportion-correct true score, observed scores are distributed binomial

with parameters equal to the number of items and proportion-correct true

score. The observed score distribution over all examinees that results from

this process is the negative hypergeometric. The negatiie hypergeometric

distribution is often said to be the observed score distribution arising from

the beta binomial model.

The negative hypergeometric is a discrete unimodal distribution. If the

mean proportion-correct score is below .5 then the distribution is positively

skewed, and if the mean is above .5 then the distribution is negatively

skewed. Keats and Lord (1962) and Lord and Novick (1968) showed that the

negative hypergeometric can fit many test score distributions very well.

Four Parameter Beta Compound Binomial Method

To improve the fit to data, Lord (1965) generalized the beta binomial

model. He used a four parameter beta distribution for proportion-correct true

scores rather than a two parameter beta distribution. This four parameter

beta distribution has parameters for the high and low proportion-correct true

scores in addition to the two parameters used to describe the two parameter

beta distribution. The low parameter is allowed to be greater than zero and

the high parameter less than one. A lower bound for true scores that is above

zero seems especially sensible for multiple choice tests, where an examinee

can correctly answer a substantial proportion of items through random

guessing.
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In this model, Lord (1965) used a twoterm approximation to the compound

binomial distribution for observed scores given true score. Lord and Novick

(1968, p. 525) suggested that the compound binomial may be more realistic than

the binomial for this situation. Practically speaking, one major difference

between the binomial and the two term approximation to the compound binomial

is that the latter typically has smaller variance. The observed score

distribution under this model is the four parameter beta compound binomial

distribution.

The four parameter beta compound binomial distribution is unimodal. It

is more general than the negative hypergeometric. For instance, it can be

positively skewed even if the mean proportioncorrect score is above .5.

Lord (1965) presented a method for estimating the parameters of this

distribution that is based on the method of moments, and the observed score

distribution is computed analytically. In implementing the method of moments,

sometimes the estimate of the high parameter exceeds 1. In such cases, the

high parameter is fixed ?t 1.0 and the remaining three parameters are

estimated by the method of moments.

CuretonTukey Estimation

Cureton and Tukey (1951) described a method in which the estimated

relative frequency for a given score is found by taking a weighted average of

the relative frequencies at that score and at surrounding scores. A method

using seven relative frequencies in the averaging procedure was used here.
A

For a relative frequency at score x, f(x), the smoothed relative
.*

frequency, fs(x), is taken as [-2f(x 3) + 3f(x 2) + 6f(x 1) +

7f65 + 6f(x + 1) + 3f(x + 2) 2f(x + 3)1/21 . According to Angoff (1982)9

these weights were chosen to preserve "the parabolic and cubic trends within

successive sets of points" (p. 68).
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This procedure sometimes produces negative relative frequencies near the

extremes. When negative relative frequencies occur, they are set to zero. In

addition, sometimes the weights are supposed to be applied to scores outside

the range of possible scores on the tesc. For example, on a 40item

test, f(43) would be involved in finding f:(40)
. It was assumed in this

procedure that relative frequencies outside the range of possible scores were

zero. The smoothing process sometimes results in Lf
s

1.

we define f(x) = f
s
(x)/ L f

s
(x) .

x=0

For this reason,

Kernel Estimation

The kernel estimator was proposed by Rosenblatt (1956). The idea behind

kernel estimation is to spread out the density of each observed score point

using a probability density function. . This probability density function is

referred to as the kernel. The kernel estimator has been used most often with

continuous data, and the normal distribution is often used as the kernel. In

kernel estimation, a parameter is manipulated which controls the degree of

smoothing. Silverman (1986) described in detail the use of the kernel

estimator with continuous data.

In this paper, a kernel estimator is developed for discrete raw test

score distributions. This estimator uses a binomial kernel to produce a

discrete density estimate. The parameter H is an even integer that is the

binomial "number of trials" parameter. H is set by the investigator, and

larger values of H result in more smoothing. The "probability of success"

binomial parameter is .5. For a test with K items and an observed relatire

frequency distribution f(x), x = 0, 1, K, this kernel estimator is

7
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fs(x) = Bin(i x + H/2111, .5) f(i)
i=0

x = 0, 1, K, H is an even integer, and

Bin(y1H,.5) .5Y(1 .5)HY, y = 0, 1, H

0 , otherwise.

7

(1)

(2)

K A*
Because f(x) does not necessarily equal one, the estimator in Equation 1

x=0
is adjusted, and this adjusted kernel estimator is

fs(x) = fs(x)/xi3O fs(x) . (3)

To better understand Equations 1 and 2, first consider the special case

when H = 0. In this case, Bin(i x + H/210, .5) = Bin (i x10, .5). By

Equation 2, if i = x then Bin(010, .5) = 1, and if i * x then Bin(010, .5) =
A* A

0. Thus, for all x, when H = 0, f(x) = f(x) . That ts, the observed

ralative frequency distribution is the kernel estimator when H = 0.

Now consider the case when H = 2. From Equation 2, Bin(0 12, .5) = .25,

Bin(112, .5) = .50, and Bin (212, .5) = .25. All other values of Bin are 0

when H = 2. From Equation 1, if H = 2 and i = x, then i x + H/2 = 1 and

Bin(112, .5) = .50 . Similarly, if i 1 = x or if i + 1 = x, then Bin =
,*

.25. For all other values of i, Bin = 0. Thus, f(x) = .25 f(x 1) +

.50 f(x) + .25 f(x + 1), where f(x) is defined to be zero for x < 0 or
'*

x > K. This indicates that f(x) can be written as a weighted sum of relative

frequencies.
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So far, we have suggested two interpretations of kernel estimators. One

is that kernel estimators spread the density at each score point to other

score points. The second is that the estimated density is a weighted sum of

the observed densities. This second interpretation would suggest that, for

discrete distributions, the Cureton-Tukey method presented earlier is similar

to the kernel estimator. Actqally, the only reason that the Cureton-Tukey

estimator cannot qualify as a kernel estimator is because it uses negative

weights. Both estimators are in the class of estimators described by

Silverman (1986) as general weight function estimators.

A hypothetical example of the kernel method with H = 2 is presented in

Table 1. First, assume the test has 5 items and there are 10 examinees. The

third column of the table shows the computations involved to estimate each

f
s

by Equations 1 and 2. Note that the weight .5 is applied to the relative

frequency at the point and .25 to the tw adjacent points, which suggests the

weighted sum of the relative frequencies interpretation of fs Now focus on

the .4 relative frequency at a score of 3. As can be seen, a relative

frequency of .25(.4) = .1 is spread to scores of 2 and 4 and .5(.4) = .2 is

kept at a score of 3, which suggests the spreading of density

interpretation. The adjusted estimates if the test would have had 4 items are

shown in the rightmost column in Table 1. In this case, each relative

frequency in the fourth column of the table was multiplied by 11.925.

Insert Table 1 about here

Because a binomial kernel with a parameter of .5 is used, there is an

interesting relationship that involves repetition of the kernel procedure.

Consider a situation where Equations 1 and 2 are applied first to the original
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relative frequencies and then again to the smoothed relative frequencies. The

resulting distribution will be the same as that which would have been obtained

by applying Equations 1 and 2 once with H equal to the sum of the two H's in

the repeated application. For example, using H = 4 will result in the same

smoothed distribution as applying H = 2 twice.

Illustration

To illustrate the results produced by the methods, each was applied to a

frequency distribution of ACT Mathematics scores based on 3,039 examinees.

This test has 40 multiplechoice items. The results are shown in Figure 1.

In this figure, the observed frequency distribution is represented by a solid

curve and the fitted distributions by a dotted curve.

.A1004010.....Ywil.W..1Yme....00m8

Insert Figure 1 about here

.............

The negative hypergeometric appears to fit poorly. The fitted

frequencies are too high at the very low scores and at middle scores above 20

and too low at other score points. The observed distribution is positively

skewed with a mean above .5, while the fitted distribution is nearly

symmetric, which may be part of the reason for the apparent poor fit.

The four parameter beta compound binomial appears to fit this

distribution very well. The CuretonTukey fitted distribution is close to the

observed distribution. However, it is not very smooth. This is a problem we

have often noted with the CuretonTukey method.

The kernel method is shown with H = 4, 8, 16, and 32. The distributional

fit with H = 4 stays reasonably close to the observed distribution, although

the fitted distribution is somewhat bumpy. As H is increased the fitted

distribution becomes less bumpy, although it departs more from the observed

1 0
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distribution. For H = 16 and H = 32, the fitted frequencies are above the

observed frequencies at the lower scores.

Overall, the negative hypergeometric appears to fit this Mathematics

distribution poorly, the four parameter beta compound binomial appears to fit

very well, the Cureton-Tukey method fitted distribution is not very smooth,

and the kernel method seems promising.

Comparing the Methods

Mathematics and English test score distributions from a recent October

administration of the ACT Assessment to 272,244 examinees were used to compare

the methods. The Mathematics test contains 40 five-alternative multiple

choice test questions, and the English test contains 75 four-alternative

multiple choice questions.

Comparison Methodology

The relative frequency distribution for the 272,244 examinees was

considered to be the population density. The following procedure was used to

evaluate the methods:

1. Draw a random sample of size N from the population density f(x), x =

0, 1, K, and refer to this sample as replication r.

2. Construct the observed relative frequency distribution fr(x), x = 0,

1, .., K.

3. Estimate the relative frequencies using each of the techniques

described earlier, and refer to this estimated relative frequency as

f (x), x = 0, 1, ..., K.rs

4. Repeat steps 1-3 R times.

This process was repeated for N = 500, 1000, and 5000, each with R = 500

replications. The Cureton-Tukey, negative hypergeometric, four parameter beta

compound binomial (4PB), and kernel methods were used in step 3.

11
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The following

including the

2
Bias

x
=

Variance
x

R
MSE

x
=

r=1

In addition,

2

Bias =

x=0

Variance

MSE E

x=0

observed

[E

=

statistics

K
E

=

MSEx/(K

statistics

R A

f
rs

E

r=1

f (x)
rs

2

Biasx/(K

E Variance
x=0

frequencies:

(x)/R f(x)]

A

f (x)
rs

f(x)

over all

+ 1) ,

x
/(K

+ 1) .

were

R

r=1

2

/R
I

score

+

calculated

2

A

f (x)/R
rs

2
= Bias

x

points

1) , and

at each x for each method,

2

/R , and

+ Variance .
x

were calculated as

(4)

(5)

(6)

(7)

(8)

(9)

The Equation 4 through 9 statistics are based on the estimation of relative

frequencies, and can be viewed as adaptations, to discrete distributions, of

the integrated root mean squared framework for evaluating distributional fit

described by Silverman (1986).

A statistic based on relative cumulative frequencies also was used,

because relative cumulative frequencies typically are the basis for

calculating norms and for equipercentile equating. Only an overall statistic

was calculated which is

A

KS = E sup [F (x) F(x)]/R .x rs
r=1

1.2

(10)
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The K-S statistic in Equation 10 is an adaptation of the Komolgorov-Smirnov
A X A

statistic. For a given replication, Frs = 1: frs(i)' which is the relative
x i=0

frequency at x. F(x) = E f(i), the distribution function value at x. Sp is
i=0

the supremum over x. Thus, in Equation 10 the greatest difference, over score

points, between the estimated relative cumulative frequency and the population

distribution function is found for each replication, and the averaged over

replications.

Results

Tables 2 and 3 compare results of applying the density estimation methods

to samples from distributions

Insert Tables 2 and 3 about here

of ACT English Usage and Mathematics Usage raw scores. Figures 2 and 3 plot

MSE x 10,000 shown in Tables 2 and 3 against method.

Inc'ert Figures 2 and 3 about here

The four-parameter beta-compound binomial (4PB) shows the lowest MSE and

K-S statistics for both tests and all four sample sizes. Tne second lowest

MSE and K-S statistic is associated with kernel estimates of varying degrees

of smoothing. However, the Bias2 of 4PB exceeds that of unsmoothed, Cureton-

Tukey, and kernel with low H. Thus 4PB owes its low MSE to low Variance

rather than low Bias2.

Results for the kernel method show that L1-,a optimal amount of smoothing

varies according to test and sample size. In addition, there is a tradeoff

between Bias2 and Variance. Namely, increased Bias2 accompanies reduced

13
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Variance. For English, MSE decreases up to a binomial smoothing parameter (H)

of about 76 for samples of 500 and 1000. For samples of 2000 and 5000, the

optimum H appears to be closer to 32. For Mathematics, the lowest MSE is

obtained with H = 16 for samples of 500 and 1000, and H = 8 for samples of

2000 and 5000. Although Variance continues to decrease with increased H,
t.

Bias' continues to increase.

MSE for the negative hypergeometric model shows a striking difference

between the two tests. Estimation by this model yields much lower MSE for

English than for Mathematics.

2
Figures 4 and 5 plot Biasx, Variance

x' and MSEx under the different

..... .......
Insert Figures 4 and 5 about here

2
methods for a sample size of 1000. Biasx for the negative hypergeometric is

2
lower than Bias

x for the other methods at most points of the score scale.

Variancex shows a much more even pattern for smoothed frequencies. MSEx,
2

being the sum of Bias
x

and Variance
x' retains some of the bumpiness of

2
Bias

x
, particularly for negative hypergeometric.

MSEx of the kernel method tends to be slightly greater than that of 4PB

except at very high English and very low Mathematics scores, where kernel
2 2

shows greater Biasx This greater Biasx results from the kernel method's

tendency to overestimate frequencies at the ends of the score scales. The

overestimation increases as the smoothing parameter increases.

Summary and Discussion

The kernel and 4PB methods clearly do the best job of estimating the two

score distributions studied. This result essentially agrees with Divgi's

(1983) findings. He found a four parameter beta binomial model performed

14



14

better than a smoothed cumulative distribution function, two and three

parameter beta binomial models, and a polynomial smoothing of the distribution

function. The 4PB method shows slightly lower mean squared error (MSEx) than

the kernel method over most of the score scales.

One way to compare the methods studied here is on the sample size

required to achieve equal levels of estimation error. Refer to Tables 2 and

3. The MSE for the 4PB method at N = 500 is smaller than the MSE for the

unsmoothed sample frequencies at N = 5000 for both English and Mathematics.

Therefore, the use of the 4PB method has an effect on MSE that is similar to

using the sample relative frequencies and increasing sample size tenfold.

Note that the effect of the 4PB method on the KS statistic is less drastic.

From Tables 2 and 3, the 4PB method appears to be as eff.ective in decreasing

the KS index as a two to two and onehalffold increase in sample size. The

kernel method for the H with the lowest MSE performed nearly as well as the

4PB method.

In planning a norming study a target value for estimation error often is

stated and used in specifying the sample size required. The results of this

study suggest that the sample size needed to meet the target estimation error

may be lowered substantially by using the 4PB or kernel methods.

Kernel MSEx tends to increase at extremely high and low scores owing to a

positive bias: estimated frequencies at the ends tend to be higher as the

smoothing parameter increases. This bias merits concern, especially in

relation to norms estimation. The adaptive kernel method (Silverman, 1986)

shows promise for reducing such bias. This method changes the kernel function

according to observed relative frequencies along the score scale.

The CuretonTukey method failed to perform nearly as well as 4PB and

kernel; nevertheless, it yielded an improvement over no smoothing, and

15
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introduced little bias. Its ease and simplicity of computation make its use

still worth considering.

The erratic performance of the negative hypergeometric method prompts us

2
to advise extreme caution in applying it. Under this method, Biasx

fluctuated wildly along both score scales. Also, the Bias2 and MSE appear to

depend greatly upon the particular shape of the population distribution: MSE

for English remained within reasonable limits, but for Mathematics Usage MSE

often far exceeded that of unsmoothed frequencies.

In sum, all but one of the methods produced density estimates much closer

on the average to population densities than did unsmoothed sample data. We

expect such methods to find extensive application to future analysis of test

score data,

16
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Table 1

Hypothetical Example of Kernel Estimation with H = 2

======......== == ====== = ===

.25 f
i-1

+ .5f
i

+ 25f
1+1 fs(K=5)

fs(K=4)

5 .0 .25(.0) + .5(.0) + .25(.3) = .075 ---
4 .3 .25(.0) + .5(.3) + .25(.4) = .250 .270
3 .4 .25(.3) + .5(.4) + .25(.2) = .325 .351
2 .2 .25(.4) + .5(.2) + .25(.1) = .225 .243
1 .1 .25(.2) + .5(.1) + .25(.0) = .100 .108
0 .0 .25(.1) + .5(.0) + .25(.0) = .025 .027

18
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Table 2

Fit of ACT English Usage Estimated Densities

Measure
of fit

x 10,000

Unsmoothed
Sample

Frequencies

= ========== ===== ====
4 Parameter

Beta
Cureton- Negative Compound
Tukey Hypergeometric Binomial

== =====

Kernel
H=2 H=4 11=16 11=32 H=76 ]

Bias2 .0005 .0005 .0200 .0013 .0003 .0003 .0006 .0011 .0038Variance .2590 .0828 .0058 .0094 .0941 .0670 .0312 .0206 .0118MSE .2595 .0833 .0258 .0108 .0944 .0673 .0318 .0217 .0156K-S .0353 .0313 .0293 .0213 .0321 .0309 .0276 .0258 .0246
Bias2 .0002 .0003 .0194 .0011 .0002 .0003 .0005 .0011 .0039Variance .1285 .0407 .0028 .0048 .0463 .0329 .0154 .0102 .0059MSE .1287 .0410 .0222 .0058 .0465 .0332 .0160 .0114 .0098K-S .0246 .0224 .0249 .0151 .0224 .0216 .0194 .0183 .0188
Bias2 .0001 .0003 .0193 .0010 .0002 .0002 .0005 .0012 .0041Variance .0645 .0203 .0015 .0024 .0231 .0165 .0078 .0052 .0030MSE .0646 .0206 .0207 .0033 .0233 .0167 .0083 .0064 .0071K-S .0174 .0158 .0226 J3112 .0159 .0153 .0139 .0136 .0156
Bias2 .0000 .0003 .0192 .0009 .0002 .0002 .0005 .0012 .0042 1Variance .0258 .0083 .0006 .0009 .0094 .0067 .0032 .0021 .0012 .1MSE .0258 .0085 .0198 .0018 .0095 .0069 .0037 .0033 .0053 .(K-S .0110 .0100 .0207 .0075 .0100 .0097 .0090 .0093 .0134 A
or a given sample size, the lowest two MSE and K-S appear in boldface.

20
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Table 3

Fit of ACT Mathematics Usage Estimated Densities

.=======================================================================================
4 Parameter

Measure Unsmoothed Beta
of fit Sample Cureton- Negative Compound Kernelx 10,000 Frequencies Tukey Hypergeometric Binomial H=2 H=4

Bias2 .0009 .0013 .2801 .0082 .0012 .0022Variance .4841 .1470 .0168 .1690 .1185MSE .4849 .1483 .2969
.0348

.1703 .1207K-S .0344 .0303 .0466
.0431

.0229 .0306 .0291

Bias2 .0003 .0009 .2774 .0072 .0007 .0016
.0178

Variance .2392 .0724 .0083 .0835 .0584MSE .2395 .0733 .2857 .0251 .0842 .0601K-S .0240 .0213 .0426 .0166 .0214 .0204

Bias2 .0001 .0008 .2776 .0065 .0007 .0016Variance .1192 .0366 .0044 .0090 .0419 .0295MSE .1194 .0374 .2819 .0155 .0426 .0311K-S .0170 .0150 .0408 .0126 .0152 .0145

Bias2 .0001 .0007 .2779 .0060 .0006 .0015
.0035

Variance .0474 .0149 .0016 .0170 .0120MSE .0475 .0156 .2795 .0095
.0088

.0176 .0135

.0096 .0093
K-S .0107 .0095 .0395

11=8 11=16

.0050

.008805:

.0274

.0043

.0398

.0441

.0193

.0042

.0202

.0245

.0140

.0042

.0082

.0124

.0095

.0131

.0532

.0663

.0259

.0122

.0265

.0387

.0190

.0121

.0135

.0256

.0151

.0122

.0054

.0176

.0129

A

.1

A
A
.(

.(

.(

.(

.0

.0

.0

.0

.0

.0

lithin a given sample size, the lowest two MSE and K-S appear in boldface.
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Figure 1. Fitted distributions for an ACT Mathematics form. (Observed
distribution represented by solid line. Fitted distribution
represented by dotted line.)
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Figure I (continued). Fitted distributions for an ACT Mathematics
form. (Observed distribution represented by solid line.
Fitted distribution represented by dotted line.)
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Figure 4. Bias , Variance , and MEE of ACT English Usage densities

esimated fro4 samples 'if 1000. (UNS unsmoothed, NH negative
hypergeometric, KER kernel, 4PB fourparameter beta compound
binomial, CT CuretsmTukey.)



1.00 -

0.75 -

0.50 -

0.25-

0.00
10 15 20 25

Raw Score

UNS

NH

KER

4PB ,
CT ,

30 35 40 10 15 20 25

Raw Score

2
Figure 5. Bias , Variance ,

eaimated frog
hypergeometric,
binomial, CT

5 16 A A 30
Raw Score
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