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INTERPRETING THE RESULTS OF WEIGHTED LEAST-SQUARES REGRESSIONi

CAVEATS FOR THE STATISTICAL CONSUMER

Quite frequently in educational, psychological and

sociological research, datasets occur in which the variance of the

distribution of the dependent variable at given levels of the

predictors is a function of the values of the predictors. In this

situation, the use of weighted, rather than ordinlry, least-squares

techniques is required in the fitting of regression models (Draper

& Smith, 1981).

Typically, weights suitable for use in a weighted least-

squares (WLS) regression analysis are not known in advance and must

be estimated ill situ by "a combination of prior knowledge,

intuition and evidence" (Chatterjee & Price, 1977, p. 101). A

variety of techniques have been proposed the statistical

literature for the empirical selection of the weights, ranging from

strategies that incorporate substantive knowledge of the form of

the residual variance as a function of the predictors (Miller,

1986) to two-stage strategies in which an initial unweighted (OLS)

analysis is used to inform the selection of weights (for instance,

biweighting in Mosteller & Tukey, 1977). Whatever the selected

approach, the ultimate objective is to achieve a "better" +it in

that "while the [ordinary] least-squares estimates and fit may be

satisfactory, the precision of the [ordinary] least-squares

estimates may be different from that indicated under standard
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assumptions" (Cox & Snell, 1981, p. 83).

Of course, regardless of the manner in which the empirical

weights have been selected, there remains the question of

interpreting the outcomes of the analysis once the fitting is

complete. It is during this interpretation that the consumer can

be lead wildly astray by the output from a computer package such as

SPSSx. For some of the computed statistics (such as the estimated

slopes) there is no problem. However, pitfalls can arise in the

interpretation of other statistics for three reasons. First, by

virtue of the manner in which the empirical weighting must be

applied in the WLS regression by SPPSX
, several important

statistics (i.e., the standard errors associated with the slope

estimates, elements of the regression ANOVA table, the root mean-

square error and related statistics) are likely to be incorrect.

Second, because the regression statistics created in a WLS analysis

are expressed in the metric of the weighted variates, it is not

immediately obvious how even those statistics which have been

computed correctly (i.e., the coefficient of determination) should

be interpreted. Third, even though an optimal set of weights may

have been selected, many of the important statistics and

diagnostics (i.e., the standard errors and associated t-statistics,

the regression ANOVA sums-of-squares, mean-squares, F-statistic and

other related statistics) may not be invariant under multiplication

of the weights by a constant -- a process which modifies the

measurement metric in the weighted world and raises questions about

how the empirical weights might optimally be scaled.

In this paper, such pitfalls in the application and
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interpretation of WLS regression using the Sne statistical

package are demonstrated, both algebraically and by example. For

the purposes of the example, an artifical dataset (whose underl),ing

parametric structure is known) has been created. Each of the

statistics commonly reported in the WLS regression analysis of such

a dataset are isolated and their interpretation discussed. Where

necessary, adjusted statistics that more reasonably represent the

outcomes cf the analysis are proposed and their use illustrated.

WEIGHTED LEAST-SQUARES

As Mosteller & Tukey (1977, p.346) suggest, the action of

assigning "different weights to different observations, either for

objective reasons or as a matter of judgement" in order to

recognize "some observations as "better" or,"stronger" than others"

has an extensive history. Whether the investigator wishes to

downplay the importance of datapoints that are intrinsically more

variable at specific levels of the predictor variables, or simply

to decrease the effect on the fit of remote datapoints, the

strategy is the same.

Although the results of this paper are easily generalizable to

the multiple predictor case, the discussion presented here deals

with the estimation of the relationship between a dependent

variable and a single predictor. We will assume that observations

or measures on two related variables, Y and X, have been obtained

from a random sample of n independent subjects and that the
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relationship between these two variables in the population is given

by:

y. 1= p p x. .E
0 1 1

[1]

where p and p
i
are the unknown intercept and slope parameters to0

be estimated. Furthermore, we will assume that the Ei are

unobserved random errors which are normally distributed with zero

mean and variance 2
X
2

a. Thus, the random errors reaE

heteroscedastic and the typical OLS strategy for estimating po, pi

iand (TE is nefficient (Neter et al., 1965).

Typically, an empirical response to the inefficiency of the

OLS estimation involves the creation of a set of weights, wi, which

4r@ inv@rtoly proportional to the squared magnitudes of the

observed X.. These IN. are then applied in the re-fitting of the
1 1

regression model by weighted least-squares. Of course. in

practice, it is unlikely that the functional dependence of the

heteroscedasticerrorvarianceontheX.will be known exactly.

However, in an empirical analysis, the error structure is usually

inferred from a "combination of prior knowledge, intuition, and

evidence" (Chatterjee & Price, 1977, p. 101). Often. the required

evidence is obtained by inspection of residuals created in an

initial unweighted (OLS) regression analysis (Neter et al., 1985.

p. 170).
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Equations for the WLS estimates

Providing the w
i
are known, the more efficient WLS estimates

of po and Pil their sampling variances, and (YE can be estimated by

direct minimization of the sum of the squared weighted residuals

(for instance, see Neter et al., 1985, pp. 167-170). Equivalent

results can also be obtained by transformation, in which the

original variates are multiplied by the square-roots of the wi

(Neter et al., 1985, pp. 171-172).

Whatever the method of estimation, of particular interest are

the estimates of po and pi (all summations taken over the index

i=1, n):

(EW.)(EW.X.Y.) (EW.X.)(2W.Y.)
1 1 1 1 1 3. 1 3.

P
aw.)(sw.xt) -

1. 1.

awiYi) PiawiXi)
Po -

)

and their estimated sampling variances (standard errors):

) = 0E1
1

(Ew..1('Ev). X. ,) (Ew. X. )
1 1 1

2.

7

1:23

[3]
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(N.V")
1 1S.8.(t50) = aE

2
(Ew )(Ew.X.) (Ew X.) "

3. 3. i

2where the mean-s,11,,re error '
, an unb4ased estimate of theaE

variance of the q is estimated from the sum of the weighted

squared residuals:

Ew. (Y.- Y. )4-
3. 3. 3.

ccE

n - 2

C53

C63

and Y
i
is the predicted value of Y

i
obtained in the WLS analysis.

The coefficient of determination, R2 , is also estimated in the

transformed world. It is a measure of the proportion of the

variation in weighteq Y that can be accounted for by weighted X.

Its estimation is based on the sum of the weighted squared

residuals in comparison to the sum of the squared deviations of the

weiglTbed Y.
1

= 1 -

Notice

through C73

estimator, except

transformed

weighted by

about their (weighted)

Yi)

mean:

WLS estimators in Equations [2]

to the corresponding OLS

results have been obtained in a

each point in the dataset has been

w
i

. If all the w
i
are set equal to

L:73

1,

E.
1

that

is essentially

"world"

the

1 1
Y.

1
Zw.

each of these

equivalent

that the WLS

in which

appropriate
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then the simpler OLS estimators can easily be recovered.

Scaling the weights

Other than simply choosing the .Forra of the weights by

examining an empirical residual plot (perhaps obtained in an

initial OLS regression analysis of the same data) and estimating

the functional dependence of the w
i
on X9 the absolute magnitude or

scale. of the weights must also be decided. At first glance, simple

logic might suggest that the multiplication of all the wi

simultaneously by the same numerical constant would not influence .

the outcomes of the analysis. Notice, for instance, that in the

estimation of po, pi and R2 (Equations C2] C3] and C73) the

multiplication of the w
i
by such an arbitrary constant does not

influence the estimates obtained in the WLS regression because of

cancellation of the constant in the numerators and the denominators

of these equations. Thus it seems that, given the necessary

functionaldependenceofthew.on X
i

, the absolute magnitude of

the weights is unimportant.

However, in the estimatiori of the mean-square error (Equation

[6]), no such cancellation occurs and the estimation depends upon

the scaling of the weights. In particular, if all the weiqhts are

doubled then the mean-square error is quadrupled (and the root

mean-square error is doubled). This is not entirely unexpected,

since the mean-square error is being computed in the metric of the

transformed world, and this metric is affected by the application
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of an arbitrary multiplier. Nevertheless, the ad-hoc inflation of

the error estimates by the arbitrary manipulation of scale is

somewhat disconcerting in the sense that what is being estimated

here -- Cr
l
a population parameter of fixed value -- is not

fluctuating with the selection of arbitrary global magnitudes for

the weights.

On the other hand, although the root mean-square error appears

as a multiplier in expressions for the standard errors of po and

P
i'

these latter estimates of precision are not affected by the

rescaling of the wi. Even though may double when the weights

are arbitrarily doubled, inspection of Equations [4] and C53 in

conjuction with Equation C63 reveals that the multiplying constant
e.

cancels out leaving the standard errors of po and pi unchanged.

Notice however, that if there is a failure of the estimation of a;

for some reason, then the standard errors in Equations C43 and C51

will also be incorrect -- as is revealed later, this is exactly

what happens when SPSSx REGRESSION is used to fit the model in

Equation Ci3 using the WLS approach.

In essence, viable weighting schemes act to 0owhp1ay the

effect of remote datapoints in the estimation process, and

therefore it is as though "outliers" are being "removed" (or at

least "diluted") by the weighting. Intuitively, this constitutes a

narrowing or focusing of the point cloud around the regression

line. Consequently, we would expect a reduction in the magnitudes

of the standard errors associated with the parameter estimates

(i.e., an increase in the precision of the estimation) under the

WLS regression strategy. This is exactly the effect desired of the
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WLS fitting process and, providing the selected weights have the

appropriate dependence on the X
i'

is independent of the scaling of

the IN.. However, the change in a
E
as a consequence of multiplying

1

the w. by a constant is somewhat disconcerting; the root mean-
1

square error is intended to estimate giz, a parameter that is fixed

in the population! Thus it seems that, although the scaling of the

wi is unimportant in the estimation of Po, pi and their standard

2errors, it is only when wi equals 1/Xi that crZ.. is estimated

appropriately. As is revealed later, this conflicts with a

strategy (of multiplying the wi by n/Ewi) that will be proposed in

order to rectify other problems arising when SPSet REGRESSION is

used for the estimation.

Finally, since R 2 is estimated in a transformed dataset in

which the effects of remote datapoints have been "diluted" in the

estimation process, the obtained coefficient of determination is

bound tm rise when WLS fitting is used. Thus, the estimate of R-

obtained unthinkingly under WLS regression is frequently mqph

larger than the value obtained under the correspondinq OLS fit. To

the naive consumer of computer output, this apparent increment-to-

Fe" can represent a considerable improvement in fit and tends to be

prominently displayed in any account of the analysis, whereas

closer inspection reveals that the increment simply reflects the

extent to which outlying datapoints have been "Irimmed" from the

dataset during weighting. In reality, in terms of the original

point cloud, R 2
cmnot increase in a transition from OLS to WLS

regression analysis because the act of fitting by OLS serves to

minimize the sum of squared distances (para11e1 to the ordinate) of



the observed datapoints from the fitted line with consequent

maximization of R2 . In order that confusion be dispelled, the data

analyst should re-interpret the goodness-of-fit of the WLS

regression in the original metric, not in the transformed world. A

suitable technique is described subsequently.

WEIGHTED LEAST-SQUARES REGRESSION USING SPSe

In this section, the SPSS REGRESSION procedure is used to

analyze a sample of artificial data whose parametric structure is

known. First, the structure and creation of the sample of

artificial data is described. Second, the fitting of the

statistical model in Equation El3 using GPSSI4 REGRESSION is

outlined. Third, the outcomes of the various OLS and WLS analyses

are contrasted, and specific miscalculations and inaccuracies are

noted and suitable adjustments proposed.

The data

For the purposes of this paper, a bivariate sample of 50

observationsonthepairofvariablesEY.,X. 3 were randomly

generated such that:

Y . um 2 + t.5 X .
3.
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where the E. were drawn +rom a normal distribution with zero mean

2andvariance0.04X..Thus, in the hypothetical population +rom

which this sample was drawn, the functional relationship between V.

and Xi has an intercept po 0+ magnitude 2, a slope pi of magnitude

.5, and the random errors are heteroscedastic with variance .04Xt.

The sample data are displayed in Figure C13, where a fan-shaped

scatterplot typical of this type of heteroscedasticity is evident.

Insert Figure C13 about here

Fitting the statistical model

SPSSx REGRESSION was used to fit the statistical model in

Equation [l] to the data displayed in Figure C13. Both OLS and WLS

regression strategies were applied. An additional weighting

variable was created with the COMPUTE statement to contain the w.

(see below), and the WEIGHT command was used to indicate this

variable to SPSSx. This approach, which can be used to weight

4almost any statistical procedure in the SPSS package, causes

individual cases in the dataset to be arithmetically replicated.

Then, rather than per+orming a WLS regression by applying Equations

C23 through C7] in the origine,1 dataset, the package rwis an

OLS regression on the new aritnmetically-modi+ied dataset and

assumes that appropriate estimates will be produced. As is

13
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described below, this assumption is largely unJustified.

For the purposes of the current demonstration, three sets of

(supposedly equivalent) weights were created. Each of these sets

of weights is proportional to the squared inverse of the value of

the independent variable. The three ;sets of weights differ only in

their scale -- any given set of weights being simply a constant

multiple of any other set of weights. Commonsense might lead us to

believe that the arbitrary choice of scaling factor would make no

difference to the outcomes of a particular WLS regression.

However, as is shown below, this is not the case -- the specific

choice of the constant used as multiplier to create a set of

weights is of crucial importance to the correct interpretation of

the findings of the WLS regression. Thus, the weighting schomes

included the basic set of weights:

w EB3

A set in which each weight was double the corresponding weight in

the basic set-above:

w,, = 2 w
41 11

E93

and a set for which the sum of the weighted number of cases equals

the original sample sire (Moser & Kalton, 1972):

14
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n

w = w E1033i
E w 1i1
1=1

The fitting of the statistical model in Equation [1] was carried

out four times: once using OLS regression, and three times using

WLS regression (once for each of the sets of weights presented in

Equations E83 through E103). Excerpts from the obtained regression

results are presented in Exhibits [1] through E43.

Insert Exhibits [1]-[4] about here

Summarizing and comparing the obtained fits

The fits obtained in Exhibits [1] through [4] are summarized

in Table E13, also included are hand-calculated estimates obtained

by applying Equations [2] through [7] directly. All estimates

which have been computed correctly, according to Equations [2]

through E73, have been printed in boldface in Table E13. What is

immediately obvious (and rather alarming!) is that there is very

little agreement between the estimates obtained by SPSS and the

correct estimates obtained by hand. Estimation of each of the

parameters is discussed briefly below.

15
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Insert TablE, C13 about here

Estimated intercept and slope. From Table CIA note that all

three of the SPSSH-computed WLS estimates of po are equal to the

hand-computed estimate, regardless of the particular set of weights

applied. The four WLS estimates of pi also agree exactly. In

addition, the OLS estimates of po and pi are arithmetically very

close to the obtained WLS estimates and neither set of estimates is

very far from the known underlying population values. This is not

ly unexpected as the OLS and WLS estimators are both

unbiased.

Estimated standard errors. The principal objective of WLS

regression, applied in the context of heteroscedastic errors, is to

obtain superior estimates of the precisions of po and pi. In this

context, it is disturbing to report that the standard errors appear

to depend upon which particular set of weights was applied. Notice

that SPSe REGRESSION was unable to obtain a correct estimate of

the standard errors under neither of the first and second sets of

weights, the correct estimates being obtained only under the third

set of weights and by hand-calculation. This is particularly

disconcerting because it is the first set of weights, the wii, that

are the natural first choice of the data-analyst in a situation

such as this.

This fluctuation of the standard errors of p. and p
i
as the

16
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regression weights are rescaled is doubly disturbing when the

earlier argument (centering on Equations C43 and C53) is recalled.

Earlier it was argued that the estimation of precision would be

independent of any re-scaling of the weights because the wi

appeared equally in both the denominators and the numerators of

Equations C43 and C53 (by virtue of appearing in the numerator of
^
U..). And yet, in Table C13, we see quite clearly and unexpectedly

that the standard errors of p0 and p
i
are doubling when the w are

replaced by the w2i. The reason for this peculiar and unexpected

fluctuation is largely dependent upon the failure of SPSSx

REGRESSION to estimate at correctly.

. Notice that, in the regression

ANOVA tables of Exhibit C23 through C43, the degrees-of-freedom

associated with both the error and total sums-of-squares vary with

the set of weights applied. Thus, in Exhibit C23, the estimation

appears to have been performed under the mis-apprehension that

there Were 306 subjects in the sample rather than 50, and in

Exhibit C3] more than one thousand additional datapoints have

apparently joined the existing point cloud! It is only when the

third set of weights, the w7i, are applied in Exhibit C43 that the

degrees-of-freedom are correct. This unlikely fluctuation of the

degrees-of-freedom with the selection of different sets of weights

is a consequence of the algorithmic strategy used by SP$Sx to fit

the WLS regressions, in which individual cases in the dataset were

arithmetically replicated rather than applying Equations C23

through C73 directly.
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The principal failure of the arithmetic replication strategy

is apparent when a
E

is estimated. Thus, rather than correctly

applying Equation CEA, SPSSH has based its estimation on the

equation below:

2
^n Ew.(Y - Y.)

i
(YE

- 2
9 [113

where the sum of the weights has replaced the sample size in the

denominator of Equation [67. The numerator of this new estimator

can only be computed appropriately when the first set of weights,

the wii, are applied, whereas the denominator is only correct when

the third set of weights, the w7i, are applied. Consequently, as

is evident in Table El], is nqyer estimated correctly by SESSx

regardless of the set of weights selected! This failure however,

can be rectified by adjusting the estimate of uT. obtained under the

In this case, an approriate estimator of the error variancew3i

is given by:

pe4).i Y v.)..
1 1vF [123

and therefore the estimate of a' obtained under w...2 can be

corrected by multiplying by aw
1i
/n)=(306/50) to give .0381, a

value which equals the value of the hand-computed estimate in Table

El].

18
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Estimating. the coefficient of determination. As noted

earlier, although all of the WLS estimates of R in Table Cl] agree

and are all correct according to Equation C73, none of these

estimates are truly appropriate for describing the empirical

goodness-of-fit. Recall that R2 has been estimated in the

transformed dataset in which the effect of remote datapoints has

been "diluted" during estimation, and therefore the obtained

coefficient of determination is necessarily inflated. A more

informative measure of empirical goodness-of-fit can be computed by

comparing the Y
i
predicted under the WLS fit and the observed Y

i
in

the original metric, not in the transformed world. An equation

suitable for computing such a pse44517R2 estimate can be obtained by

a simple adjustment of Equation C73:

2(Y.- Y.)
1 3.

Fe" = 1
21/.12

n j

C133

where the Y. are the predicted values of the dependent variable

obtained under the WLS fit, and are independent of which of the

three sets of weights in Equations [S] through C1O3 are applied.

In the current application the value of this pseudo-R 2 statistic is

.5108 slightly less than the OLS estimate of .5120 as we would

2have expected, given the maximization of R in an OLS +it.
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RECOMMENDATIONS

As is evident in Table C13, the SPSe REGRESSION procedure is

spectacularly incorrect in its fitting of a simple linear

regression model by weighted least-squares. The magnitudes of many

rlf the obtained estimates depend strongly upon the absolute

jnitudes of the weights used in the WLS fit and, in addition,

several of the crucial reported outcomes are just plain wrong.

This paper has explored these inaccuracies, both algebraically and

by example, and has suggested a variety of fix-ups that can be

easily applied in practice.

In particular, in selecting suitable weights for application

in a WLS regression with SPSSX
, the most successful weights are

those presented in Equation C103. These latter weights have been

adjusted prior to application by taking the theoretically-

appropriate weights of Equation [8] and re-scaling them so that

their sum is equal to the original sample-size. However, even the

application of these re-scaled weights is not entirely without

problem. Specifically, the estimation of g continues to be
*2

incorrect and the estimation of R 2
, while not incorrect, leads to

an inflated representation of the empirical goodness-of-fit which

is misleading at best. Simple and easily-applied adjustments to

correct both of these estimators are presented in Equations C123

and C133 respectively.

Finally, this paper has considered only a few of the

statistics that are commonly interpreted in a typical regression

20
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analysis. Furthermore, although many of our results are easily

generalizable to the case of multiple linear regression using WLS,

we would advise empirical researchers to be very cautious in all of

their interpretations in this latter instance. In particular,

rlthough we have not investigated the manner in which more complex

and sophisticated statistics such as Mallow's C , Cook's D and the

Hat matrix are affected by an arbitrary re-scaling of regression

weights, it would certainly seem appropriate to advise great

caution in their interpretation too. The empirical application of

weighted least-squares regression analysis using SPSSx would

certainly seem to be a case of "caveat emptor"!!
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EXHIBIT ONE
UNWEIGHTED (OLS) REGRESSION

Coefficient of Determination, R 2
.5120

Root Mean-Square Error .1421

Analysis of Variance

Sum
MeanSource df of
SquareSquares

Model 1 1.0161 1.0161 50.351
Error 48 .9686 .0202
Total 49 1.9847

Variables in the Equation

Parameter Estimate Standard t-statistic
Error (H0: p=o)

1.9853 .0505 39.305

.4974 .0701 7.096

23



EXHIBIT TWO
WEIGHTED (WLS) REGRESSION

Coefficient of Determination, R2 .6737
Root Mean-Square Error ..0776

Analysis of Variance

Sum
MeanSource df of
SquareSquares

Model 1 3.7747 3.7747 627.667
Error 304 1.8282 .0060
TotA 305 5.6029

Variables in the Equation

Parameter Estimate Standard t-statistic
Error (Ho: P=0)

Po

P1

1.9977 .0077 260.630

.4751 .0190 25.053
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EXHIBIT THREE
WEIGHTED (WLS) REGRESSION

w2i = 2w
li

-,

Coefficient of Determination, R`
Root Mean-Square Error

Analysis of Variance

. 6737

. 0774

Sum
Source df of

Squares

Mean
Square F

Model 1 15.0987 15.0987 2523.056
Error 1222 7.3128 .0060
Total 1223 22.4115

Variables in the Equation

Parameter Estimate Standard t-statistic
Error (Ho: p=o)

1.9977

.4751

. 0038

. 0095

522.543

50.270
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EXHIBIT FOUR
WEIGHTED (WLS) REGRESSION

[

n

wsi = n wli
E w .

i=1
11

Coefficient of Determination, R2 .6737
Root Mean-Square Error .0790

Analysis of Variance

Sum
MeanSource df of

Squares Square

Model 1 .6168 .6168 99.105
Error 48 .2987 .0062
:Total 49 1.9155

Variables in the Equation

Parameter Estimate Standard t-statistic
Error (Ho: p=o)

1.9977

.4751

. 0193

. 0477

103.564

9.955
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Table 1: Summary wtatistics from the four OLS and WLS regressions
estimated by SPSe REGRESSION in Exhibits 1 through 4, with
ar.:companying correct estimates obtained by hand-calculation using
Equations [2] through [7].

Estimate
*

OLS WLS

HandSPS.S-calculated
Calc

1 4. 3 1

-,

R`

^2
a
E

0

s.e.(P0)

P

.e. )s(g,
1

.5120

.0202

1.9853

.050F

79.305

.4974

.0701

7.096

.6737

.0060

1.9977

.0077

26( 670

.4751

.0190

25.057

.6737

.0060

1.9977

.0038

522.547

.4751

.0095

50.231

.6737

.0062

1.9977

.0193

103.564

.4751

.0477

9.955

.6737

.0381

1.9977

.0193

103.564

.4751

.0477

9.955

2*Known parameter values of (7_, p. and p
1
are .04, 2, and .5

urespectively.
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FIGURE CAPTIONS

Figure 1: Bivariate scatterplot of the artificial dataset. Values

of the dependent variable Yi plotted against values of the

independent variable Xi, for i = 1, n.
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