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ABSTRACT

In research, data sets often occur in which the
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levels of the predictors is a function of the values of the
predictors. In this situation, the use of weighted least-squares
(WLS) or techniques is required. Weights suitable for use in a WLS
regression analysis must be estimated. A variety of techniques have
been proposed for the empirical selection of weights with the
ultimate objective being a better "fit." The outcomes of the analysis
must be interpreted once the fitting is complete. Problems can arise
in the interpretation of some of the statistics when using a computer
package. In this paper, such problems in the application and
interpretation of WLS regression using the SPSS statistical package
are demonstrated, both algebraically and by example. For the purposes
of the example, an artificial data set (whose underlying parametric
structure is known) has been created. Each of the statistics commonly
reported in the WLS regression analysis of such a data set are
isolated and their interpretation discussed. Where necessary,
adjusted statistics that more reasonably represent the outcomes of
the analysis are proposed and their use illustrated. (BAE)
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INTERPRETING THE RESULTS OF WEIGHTED LEAST~SQUARES REGRESSION

CAVEATS FOR THE STATISTICAL CONSUMER

Quite frequently in educational, psycholagical and
socimlogical research, datasets occur in which the variance of the
distribution of the dependent variable at given levels of the
predictors ia a function of the values of the predictors. In this
situation, the use of weighted, rather thanm ordinary, least~sqguares
technigues is required in the fitting of regression models (Draper
% Smith, 1981).

Typically, weights suitable for use in & weighted least~
sauares (WLS) regressichn analysis are not known in advance and must
be estimated in situ by "a combination of prior knowledqge,
intuition and evidence" (Chatterjee & Frice, 1977, p. 101). A
variety of techniqgues have been proposed in the statistical
literature for the empirical selection of the weights, ranging from
strategies that incorporate substantive knowleddge of the form of
the residual variance as a function of the predictors (Miller,
1986) to two—-stage strategies in which an initial unweighted (0QOLS)
analysis is used to inform the selection of weights (for instance,
biweighting in Mosteller % Tukey, 1977). Whatever the selected
approach, the wltimate objective is to achieve a "better” fit in
that "while the [ordinaryl least-squares estimates and fit may be
satisfactory, the precision of the [ordinaryl least-squares

estimates may be different from that indicated under standard
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assumptions" (Cox % Snell, 1981, p. 83).

0f course, regerdless of the manner in which the empirical
weights have heen selected, there remains the guestion of
interpreting the outcomes of the analysis once the fitting is
complete. It is during this interpretation that tha consumer can
be leac wildly astray by the output from a computer package such as
sr58”, For some of the cvomputed statistics (zuch as the estimated
slopes) there is no problem. However, pitfalls can arise in the
interpretation of other statistics for three reasons. First, by
virtue of the manner in which the empirical weighting must be
applied in the WLS regression by SPPSX, several important
statistics (i.e., the standard errors associated with the slope
estimates, elements of the regression ANOVA table. the root mean—
square error and related statistics) are likely to be incorrect.
Second, because the regression statistics created in a WL analysis
are expressed in the metric of the weighted variates, it is not
immediately abvious how even those statistics which have been
computed correctly (i.e., the coetficient of determination) should
be interpreted. Third, even though an optimal set of weights may
have heen selected, many of the important statistics and
diagnostics (i.e., the standard errors and associated t-statistics,
the regression ANOVA sums-of-souares, mesn-sguares, Festatistic snd
other related statistics) may not be invariant under aultiplication
of the weights by a constant - a process which modifies the
measurement metric in the weighted world and railses questions about
how the empirical weights might optimally be scaled.

In this paper, such pitfalls in the application and
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interpretation of WLS regression using the SFSS" statistical
package are demonstrated, both algebraically and by example. For
the purposes of the example, an artifical dataset (whose underlying
parametric structure is known) has been crzated. Each of the
statistics commonly reported in the WLS regression analysis of such
a dataset are isolated and their interpretation discussed. Where

necessary, adjusted statistics that more reasonably represent the

outcomes of the analysis are proposed and their use illustrated.

WEIGHTED LEAST-SEUARES

As Mosteller & Tukey (1977, p.346) suggest, the action of
assigning "different weights to different observations., either for
objective reasons or as a matter of judgement" in order to
recognizé "some observations as "better" or "stronger" than others"
has an extensive history. Whether the investigator wishes to
downplay the importance of datapoints that are intrinsically more
variable at specific levels of the predictor variables, or simply
to decrease the effect on the fit of remote datapoints, the
strategy is the same.

Although the results of this paper are easily generalizable to
the multiple predictor case, the discussion presented here deals
with the estimation of the relationship between a dependent
variable and a single predictor. We will assume that observations
o measuwres on two related variables., Y and X, have been obtained

from a random sample of n independent subjects and that the
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relationship between these two variables in the population is given

bys

(11

(]
~E

Yy = Ry v By + &

where ﬁo and ﬁi are the unknown intzrcept and slope parameters to

be estimated. Furthermore, we will assume that the Ei are

uwrohserved random errors which are normally distributed with zero
e )

mean and variance GFX“. Thus, the random errors are

heteroscedastic and the typical OLS strateqy for estimating ﬁo, ﬁ]

e
and GE is inefficient (Neter et al., 198%5).

Typically, an empirical recponse to the inefficiency of the
OLS estimation involves the creation of a set of weights, Wi which

are invaersely propartional to the squared magnitudes of the

observed Xi. These w, are then applied in the re—~fitting of the
regression model by weighted least-squares. (Of couwrse. in
practice, it is unlikely that the functional dependence of the
heteroscedastic error variance on the Xi will be known exactly.
However, in an empirical analysis, the error structuwre is wuswually
inferred from a "combination of prior knowledge, intuition, and
evidence" (Chatterjee % Frice, 1977, p. 101). Often. the required
evidence is obtained by inspection of residuals created in an
initial unweighted (OLS) regression analysis (Neter et al., 1985,

p. 170).



Equations for the WLS estimates

Froviding the wi are known, the more efficient WLS estimates

% can be estimated by

of ﬁo and ﬁi’ their sampling variances, and Gt

direct minimization of the sum of the squared weighted residuals
(for instance, see Neter et al., 1985, pp. 167-170). Equivalent
results can also be obtained by transformation, in which the
original variatea are multiplied by the square-roots of the Wy
(Neter et al., 1985, pp. 171-172).

Whatever the method of estimation, of particular interest are
the estimates of ﬁo and ﬁi (all summations taken over the index

i=l, vhey N)2

. (AW, JCEW. X, Y. ) — (W, X, 3 (ow. Y, |
o (,:_..Wl ] ""'wllel )] (.¢w1x1 )(,z_wlY:L ) .
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and their estimated sampling variances (standard errors):
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where the mean-sciare ervor Ge, an unbiased estimate of the

variance of the < , is estimated from the sum of the weighted

squared residual s

Sw, (Y, - Y. )%
N w, (Y, = Y,
0f = 14 z \ L&
(: ~
n - 2«

and ¢i is the predicted value of Yi obtained in the WLS analysis.

The coefficient of determination, Rz, is also estimated in the
transformed world. It is & measuwe of the proportion of the
variation in weighted Y that can be accounted for by weighted X.
Its estimation is based on the sum of the weighted squared

residuals in comparison to the sum of the squared deviations of the

weighted Yi about their (weighted) mean:

- W, (Y. = Y, )

RS = 1 - 1 lzw.\l/ 5 . £71
1 1
“Wy

Notice that each of these WLS estimators in Equations [2]
through [73 is essentially equivalent to the corresponding OLS
estimator, except that the WLS results have been obtained in a
transformed "world" in which each point in the dataset has been

weighted by the appropriate W e I+ all the w, are set equal to 1,



then the simpler 0OLS estimators can easily be tecovered.

Scaling the weights

examining an empirical residual plot (perhaps obtained im an
initial OLS regression analysis of the same data) and estimating
the functional dependence of the W, on Xy the absolute magnitude or
gcale of the weights must also be decided. At first glance, simple
logic might suggest that the multiplication of all the W,
simultaneously by the same numerical constant would not influence
the outcomes of the analysis. Notice, for instance, that in the
estimation of B,, B, and R® (Equations [21 [31 and [71) the
multiplication of the Wy by such an arbitrary constant does not
influence the estimates obtained in the WLS regression because of
cancellation of the constant in the numerators and the denominators
of these equations. Thus it seems that, given the necessary
functional dependence of the W, on Xi’ the absolute magnitude of
the weights is unimportant.

However, in the estimation of the mean—square error (Equation
L61), no such cancellation occurs and the estimation depends upon
the scaling of the weights. In particular, if all the weights are
doubled then the mean-square error is guadrupled (and the toot
mean—square error is doubled)., This ig not entirely unexpected,

since the mean—sguare error is being computed in the metric of the

transformed world, and this metric is affected by the application



of an arbitrary multiplier. Nevertheless, the ad~hoc inflation of
the error estimates by the arbitrary manipulation of scale is
somewhat disconcerting in the sense that what is being estimated
here -— 02, a population parameter of fixed value -- is not
fluctuating with the selection of arbitrary global magnitudes for
the weights.

On the other hand, although the root mean-square error appears

as a multiplier in expressions for the standard errors of 50 and

rescaling of the W, - Even though GE may double when the weights
are arbitrarily doubled, inspection of Egquations [4] and [51 in
conjuction with Equation [46]1 reveals that the multiplying constant
cancels out leaving the standard errors of go and 81 unchanged.
Notice however, that if there is a failure of the estimation of Ug
forr some reason, then the‘standard errors in Equations [4]1 and [51]
will &lso be incorrect -— as is revealed later, this is exactly
what happens when spgs” REGRESSION is used to fit the model in
Equation C[1]1 using the WLS approach.

In essence, viable weighting schemes act to downplay the
effect of remote datapoints in the estimation process, and
therefore it is as though "outiiers" are being "removed" (ar at
least "diluted”) by the weighting. Intuitively, this constitutes a
narrowing or focusing of the point cloud around the regression
line. Consequently, we would expect a reduction in the maaqnitudes
of tire standard errors associated with the parameter estimates
(iv&ey an increase in the precision of the estimation) under the

WLS regression strategy. This is exactly the effect desired of the

10
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WLS fitting process and, providing the selected weights have the
appropriate dependence on the Xi, is independent of the scaling of‘
the Wy - However, the change in 36 as & consequence of multiplying
the w, by a constant is somewhat disconcerting; the root mean-
gquare error is intended to egtimate Oer & parameter that is fixed
in the population! Thus it seems that, although the scaling of the

w, is unimportant in the estimation of Pos B, and their standard

1
errors, it is only when w, equals 1/X§ that Gé is estimated
appropriately. As is revealed later, this conflicts with a
strategy (of multiplying the W, by n/Ewi) that will be proposed in
order to rectify other problems arising when SFEa" REGRESSION is

uwsed for the estimation.

-
Finally, since R® is estimated in a transformed dataset in

which the effects of remote datapoints have been "diluted" in the
estimation process, the obtained coefficient of determination is
bound tn rise when WLS fitting is used. Thus, the estimate of RR
obtained unthinkingly under WLS regression is frequently much
larger than the value obtained under the corresponding OLS fit. To
the naive consumer of computer output, this apparent increment-to-
R2 can represent a considerable improvement in fit and tends to be
prominently displayed in any account of the analysis, whereas
closer inspection reveals that the increment simply re{lecﬁs the
extent to which outlying datapoints have been "trimmed" from the
dataset during weighting. In reality, in terms of the original
point cloud, RE cannot increase in a transition from OLS to WLS
regression analysis because the act of fitting by OLS serves to

minimize the sum of squared distances (parallel to the ordinate) of

11
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the observed datapoints from the fitted line with consequent
maximization of RE. In order that confusion be dispelled, the data
analyst should re-interpret the goodness—of-fit of the WLS
regression in the original metric, not in the transformed world. A

suitable technigque is described subsequently.

WEIGHTED LEAST~SRUARES REGRESSION USING SPss”

In this section, the SFSS" REBRESSION procedure is used to
analyze a sample of artificial data whose parametric structure is
known., First, the structure and creation of the sample of
artificial data is described. Second, the fitting of the
statistical model in Equation [11 using SFSS" REGRESSION is
outlined. Third, *he outcomes of the various OLS and WLS analyses
are contrasted, and specific miscalculations and inaccuracies are

noted and suitable adjustments proposed.

The data
For the purposes of this paper, a bivariate sample of 50

observations on the pair of variables EYi, XiJ were randomly

generated such that:

12



where the €i were drawn from a normal distribution with zero mean
and variance 0.04X?. Thus, in the hypothetical population from
which this sample was drawn, the functional relationship between Yi
and Xi has an intercept ﬁo of magnitude 2, a slope 51 of magnitude
.Sy and the random errors are heteroscedastic with variance .04Xf.
The sample data are displayed in Figure [1], where a fan—-shaped

scatterplot typical of this type of heteroscedasticity is evident.
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Fitting the statistical model

SFSS” REGBRESSION was used to fit the statistical model in
Equation [1] to the data displayed in Figure [13, Eoth OLS and WLS
regression strategies were applied. An additional weighting
variable was created with the COMFPUTE statement to contain the W,
(see below), and the WEIGHT command was used to indicate this
variable to SPSSN. This approach, which can be used to weight
almost any statistical procedure in the SPSS“ package, causes
individual cases in the datas=st to be arithmetically replicated.
Then, rather than performing a WLS regression by applying Eguations
C2] through [7]1 in the originel dataset, the package simply ruins an
OLS regression on “he new arithmetically-modified dataset and

assumes that appropriate estimates will be produced. As is
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described below, this assumption is largely unjustified.

For the purposes of the current demonstration, three sets of
(supposedly equivalent) weights were created. Each of these sets
of weights is proportional to the squared inverse of the value of
the independent variable. The three nets of weights differ only in
their scale —— any given set of weights being simply a constant
multiple of any other set of weights. Commonsense might lead us to
believe that the arbitrary choice of scaling factor would make no
difference to the outcomes of a particular WLS regression.

However, as is shown below, this is not the case —— the specific
choice of the constant used as multiplier to create a set of

weights is of crucial importance to the correct interpretation of
the findings of the WLS regression. Thus, the weighting schemes

included the basic set of weights:

Wy, = |—s . £33

A set in which each weight was double the corresponding weight in
the basic set above:

W, = 2 W, ., ' L?1

and a set for which the sum of the weighted number of cases equals

the original sample size (Moser & Kalton, 1972):

14



14

. C10]

The fitting of the statistical model in Egquation [1] was carried
out four times: once using OLS regression, and three times using
WLS reqression (once for each of the sets of weights presented in
Equations [8] through [10]). Excerpts from the obtained regression

results are presented in Exhibits [1] through [41.
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Summarizing and comparing the obtained fits

The fits obtained in Exhibits [1] through [4] are summarized
in Table [11, also included are hand-calculated estimates obtained
by applying Equations [21 through [7] directly. All estimates
which have been computed correctly, according to Equations [2]
through [73, have been printed in boldface in Table [1l1. What is
immediately obvious (and rather alarming!) is that there is very
little agreement between the estimates obtained by 8FSs” and the
correct estimates obtainmed by hand. Estimation of each of the

parametetrs is discussed briefly below.

15



s 0ome teg o s 4 (Y s S SaS S Sl Sowe ST SO0 SO PSS SO S U GOAON SRR SR SV vy SO S SO s S B A €904 fatas

S S . o B S G ST ST ST 4 SO AL Seve et et Se SR SAD by SO SOV o SO 0 GOSN O S, Yo St P Y Sem S

Estimated intercept and slop2. From Table [1]1 note that all

three of the SPSS"—computed WL.E estimates of ﬁo are equal to the
hand-computed estimate, regardless of the particula+ set of weights
applied. THe four WLS estimates of ﬁi also agree exactly. In
addition, the OLS estimates of ﬁo and ﬁi are arithmetically very
close to the obtained WLE estimates and neither set of estimates is
very far from the known underlying population values. This is not
en. ly unexpected as the OLS and WLS estimators are both

wnbiased.

Estimated standard errors. The principal objective of WLS

regression, applied in the context of heteroscedastic errors, is to
vbtain superior estimates of the precisions of EO and 51. In this
context, it is disturbing to report that the standard ervors appear
to depend upon which particular set of weights was applied. Notice
that SFS6" REGRESSION was unable to obtain a correct estimate of
the standard errors under neither of the first and second sets of
weights, the correct estimates being obtained only under the third
set of weights and by haﬁd*calculation. This is particularly

disconcerting becauvse it is the first set of weights, the w that

1i°
are the natural first choice of the data—analyst in a situation
such as this.

This fluctuation of the standard ervors of 50 and El as the

16
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regression weights are rescaled is doubly disturbing when the
earlier argument (centering on Equations [4] and [S]) is recalled.
BEarlier it was argued that the estimation of precision would be
independent 64 any re—scaling of the weights because the Wy
appeared equally in both the denominators and the numerators of
Equations [4] and [5] (by virtue of appearing in the numerator of
ge). And yet, in Table [1], we see quite clearly and unexpectedly
that the standarrd errors of go and gi are doubling when the W,; are

replaced by the w The reason for this peculiar and unexpected

2i°
fluctuation ig largely dependent wpon the failure of spes”

Lo ]
REGRESSION to estimate og correctly.

Estimated error variance. Notice that, in the regression

ANOVA tables of Exhibit [2]1 through [41, the degrees—of—freedom
associated with both the error and total sums—of-squares vary with
the set of weights applied. Thus, in Exhibit [21, the estimation
appears to have been performed under the mis-apprehension that
there were 306 subjects in the sample rather than S50, and in
Exhibit L3] more than one thousand additional datapoints have
apparently joined the existing point cloud! It is only when the
third set of weights, the Wy, s are applied in Exhibit 41 that the
degrees—of-freedom are correct. This unlikely fluctuation of the
degrees—of—freedom with the selection of different sets of weights
is a consequence of the algorithmic strategy used by 5Peg" to fit

the WLS regressions, in which individual cases in the dataset were

tht-ough [71 directly.
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The principal failuwe of the arithmetic replication strateqgy
is apparent when 02 is estimated. Thus, rather than correctly
applying Equation [é&1, SPSS" has based its estimation on the

equation below:

) .2
Zwi(Yi— Yi)
- L1173
Zwi -2

TR

~
o

where the sum of the weights has replaced the sample size in the
denominator of Equation [6]. The numerator of this new estimator
can only be computed appropriately when the first set of weights,

the w are applied, whereas the denominator is only correct when

1i?

the third set of weights, the W=,y are applied. Consequently, as
is evident in Table €11, 62 ig never estimated correctly by sFgg’™
regardless of the set of weights selected! This failure however,
can be rectified by adjusting the estimate of Oﬁ obtained under the
Wo o o In this case, an approriate estimator of the error variance

is given by:

. o' ~ ’
Ew, . Ew,. (Y, = Y. 2°
= | i N Jic i i , £127
n W, =~ 2

-l

g

Ty h3

~
and therefore the estimate of 6; obtained under W, can be
corrected by multiplying by (Zwii/n)=(306/50) to give 0381, a
value which equals the value of the hand-computed estimate in Table

Ci3.
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Estimating the coefficient of determination. As noted

earlier, although all of the WLS estimates of R2 in Table [1] agree
and are all correcf according to Equation [7]1, none of these
estimates are truly appropriate for describing the empirical
goodness—of-fit. Recall that R2 has been estimated in the

transformed dataset in which the effect of remote datapoints has

been "diluted" during estimation, and therefore the obtained
coefficient of determination is necessarily inflated. A more
informative measure of empirical goodness—of-fit can be computed by
comparing the ¢i predicted under the WLS fit and the observed Yi im
the original metric, not in the transformed world. @An equation

~
suitable for computing suchk a pseudo-R“ estimate can be obtained by
psevdo—i

a simple adjustment of Equation [71:

where the ¢i are the predicted values of the dependent variable
obtained under the WLS fit, and are independent of which of the
three sets of weights in Equations [81 through [101 are applied.

In the current application the value of this pseudo~R2 statistic is
,0108 —- siightly less than the OLS estimate of .59120 as we would

~
have expected, given the maximization of R® im an OLS fit.
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RECOMMENDATIONS

As is evident in Table [11, the SFSS" REGRESSION procedure is
spectacularly incorrect in its fitting of a simple linear
regression model by weighted least-squares. The magnitudes of many
nf the obtained estimates depend strongly upon the absolute

Jnitudes of the weights used in the WLS fit and, in addition,
several of the crucial reported outcomes are Just plain wrong.
This paper has explored these inaccuraciesy both algebraically and
by example, and has suggested a variety of fix-ups that can be
@asily applied in practice.

In particular, in selecting suitable weights for application
in a WL regression with SPSSH. the most successful weights are
those presented in Equation [10]. These latter weights have been
adjusted prior to application by taking the theoretically-
appropriate weights of Equation (81 and re~scaling them so that
their sum is equal to the original sample-size. However, even the
application of these re-scaled weights is not entirely without
problem. 8Specifically, the estimation of Ug continues to be
incorrect and the estimation of Rz. while not incorrect, leads to
an inflated representation of the empirical goodness—of-fit which
is misleading at best. OSimple and easily-applied adjustments to
correct both of these estimators are presented in Equations [12)]
and [13] respectively.

Finallyy this paper has considered only a few of the

statistics that are commonly interpreted in a typical regression

20



analysis. Furthermore, although many of our results are easily
generalizable to the case of multiple linear regression using WLS,
we would advise empirical researchers to be very cautious in all of
their interpretations in this latter instance. In particular,
¢lthough we have not investigated the manner in which more complex
and sophisticated statistics such as Mallow's Cp, Cook’'s D and the
Hat matrix are affected by an arbitrary re-scaling of regression
weights, it would certainly seem appropriate to advise great
caution in their interpretation too. The empirical application of
weighted least-squares regression analysis using S5FEs" would

certainly seem to be a case of "caveat emptor"!!

21
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EXHIBIT ONE
UNWEIGHTED (0OLS) REGRESSION
Coefficient of Determination, Rz 9120
Root Mean—-8quare Error 1421
Analysis of Variance
Sum Mean
Source d¥f of F
Squares Square
Model 1 1.0161 1.0161 50.351
Error 48 « 246864 « 0202
Total 49 1.9847
Variables in the Equation
_ . Standard t-statigtic
Farameter Estimate Error (Hot B=0)
B 1.9883 0505 39.3085
51 4974 - 0701 7.094
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EXHIBIT TWO
WEIGHTED {(WLS) REGRESSION
1
w,. = |—
i 2
X3
~
Coefficient of Determination, R® 6737
Root Mean-Square Error « 0776
Analysis of Variance
Sum
Source df of pMean F
Squares Lquare
Model 1 3.7747 3.7747 L27 . b7
Error 304 1.8282 " Q060
Tot.al 308 S. 6029
Variables in the Equation
s o2y 2 s b e g Standard t-statistic
Farameter Estimate Etr o (Ho: B=0)
ﬁn 1.9977 077 260,630
Fy » 4751 LOLR0 2. 055

Q)
(Y2
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EXHIBIT THREE
WEIGHTED (WLS) REGRESSION
Woj = 24
~
Coefficient of Determination, R L 6737
Root Mean-8quare Error QD774
Analysis of Variance
Bum M
Source df of S i:pe F
Squares 9
Model 1 15. 0987 15.0987 2523.054
Error 1222 7.3128 « QOG0
Total 1223 22.4115
Variables in the Equation
Standard t-statistic
Farameter Estimate Ertor (Hot E=0)
ﬁo 1.9977 L0038 522,547
ﬁl 4751 « QOP5 90,230
| v
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EXHIBIT FOUR
WEIGHTED (WLS) REGRESSION

n
Wzi  |™h “ii
Ew,
i=l
Coefficient of Determination, R* . 6737
Root Mean—-Square Error . Q790
Analysis of Variance
Sum Mean
Source d+ of g € e F
Squares qua
Model 1 L6168 6168 99. 105
Error 48 . 2987 o OQ&2
Total 49 1.9155
Variables in the Equation
: . Standard t—-statistic
Farameter Estimate Error (Hot £=0)
ﬁQ 1.9977 L0193 103.544
ﬁi 4751 Q477 7.955
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Table 1: Summary ;tatistics from the four OLS and WLS regressions
estimated by SFS5" REGRESSION in Exhibits 1 through 4, with
accompanying correct sstimates obtained by hand—-calculation using
Equations [2] through [71].

¥
Eatimate aLs WLS
Hand
[
oPStcalculated Cale
W1 W2 W:5 Wi
™~
R L5120 6737 6737 6737 6737
/';2 .
o2 . 0202 . 0060 . 0060 . 0062 .0381
Eo 1.985% 1.9977 1.9977 1.9977 1.9977
s.e.céo) . 0505 . 0077 L0038 L0193 .0193
t 39, 305 2oC IO 522, 543 103. 564 103.564
B . 4574 .4751 .4751 . 4751 4751
s.e.célu L0701 L0190 L0095 . 0477 . 0477
t 7.096 25, 053 50, 231 9.955 9.955

L
Frnown parameter values of ¢

and ﬁl are .04, 2, and .3
respectively.




FIGURE CAPTIONS

Figure 1: Bivariate scatterplot of the artificial dataset. Values
of the dependent variable Yi plotted against values of the

independent variable Xi’ for i = 1, aaay N.
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