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ABSTRACT

The paper briefly explains the logic underlying the basic

calculations employed in canonical correlation analysis. The

paper also discusses three common fallacious interpretation

practices that may lead to incorrect conclusions based on

canonical results. A small hypothetical data set is employed to

make the discussion concrete. It is suggested that canonical

correlation analysis is a powerful analytic method that

frequently best honors the complex nature of the reality about

which the researcher wishes to generalize.
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Several trends in analytic practice seem to be discernable

as incremental changes that are moving social science slowly

toward more productive inquiry. For example, researchers have

increasingly recognized that statistical significance may not be

a particularly effective criterion with which to evaluate res'ilts

(Thompson, 1987); popular developments in meta-analysis (Jones &

Fiske, 1953; Glass, McGaw & Smith, 1981; Rosenthal, 1984) may

have compelled more researchers to recognize the importance of

effect sizes in their studies. Researchers have also increasingly

recognized that statistical control, such as that employed in

analysis of covariance (ANCOVA), must be used with extraordinary

caution; these methods tend to either be unnecessary or seriously

distort results (Thompson, 1986b, pp. 19-25) and lead to

"tragically misleading analyses" (Campbell & Erlebacher, 1975, p.

597).

However, the trend away from the use of classical analysis

of variance methods (Goodwin & Goodwin, 1985) may be the most

noteworthy trend of all, since the use of the methods can have

several deleterious effects (Cohen, 1968; Thompson, 1986a). Even

when analysis of variance methods represent good analytic

choices, regression or general Unear model approaches to the

methods still tend to be superior since these approaches tend to

yield greater power against Type II error and tend to be more

theoretically grounded (Thompson, 1985a).

The gradual shift away from the use of analysis of variance

approaches has been due in part to an increased recognition that

all parametric univariate methods are special cases of regression

analysis (Cohen, 1968). The shift has also been due to increased
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recognition that many researchers

prefer experimental over correlational research

designs because experimental designs provide more

complete information about causality. Why does this

situation contribute to OVAism? Because some

researchers confuse research designs with the

statistical techniques which are used to analyze

the data which the designs help to generate.

(Thompson, 1981, p. 5)

As Thompson (1986b, p. 17) notes,

The fact that OVA methods are appropriate when

predictor variables such as experimental assignment

naturally occur at the nominal level of scale has

stimulated some researchers to unconsciously [and

incorrectly] associate the consequences of

experimental design selection with OVA methods.

However, in reality all parametric significance tests,

including those which are multivariate, are special cases of

canonical correlation analysis (Knapp, 1978). Indeed, Thompson

(1985b) illustrates how various univariate and multivariate

analyses can all be conducted using canonical correlation

analysis. Thompson (1986c) notes that the evaluation of several

hypothesis tests within a single study inflates the

experimentwise Type I error probability, usually to a somewhat

unknown degree. The failure to use multivariate methods often

also distorts the reality about which the researcher is

attempting to generalize--the least of these distortions occurs
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when a researcher completes several univariate tests and finds no

statistically significant results when significance would have

occurred if a multivariate test had been employed (Thompson,

1986c). Thompson (1986c) presents a data set illustrating how

this can occur. These various considerations suggest that

canonical correlation analysis may be a powerful and important

weapon in the social scientist's arsenal of analytic weapons.

The purpose of the present paper is to briefly explain the

logic underlying the basic calculations employed in canonical

correlation analysis. The paper also discusses three common

fallacious interpretation practices that may lead to incorrect

conclusions based on canonical results. A small hypothetical data

set is employed to make the discussion concrete.

The Basic Logic of Canonical Calculations

Thompson (1983) notes that canonical correlation can be

considered as an example of the bivariate case. This

conceptualization has instructional appeal because most students

feel comfortable working with bivariate correlation loefficients.

The view is also important because it forces realization that

canonical analysis, like all parametric methods, involves the

creation of "synthetic" scores for each person. In regression

analyses the synthetic scores are the predicted dependent

variable scores of each of the subjects, sometimes termed "YHAT";

the correlation between the subjects' actual and synthetic

variables is the multiple correlation coefficient, while the sum

of squares of the "YHAT" Scores equals the sum of squares

explained. In factor analysis these synthetic variables are the

3
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factor scores of each subiect on each of the factors. In

discriminant analysis these synthetic variables are the

discriminant scores of each subject on each of the discriminant

functions.

Table 1 presents a hypothetical data set that will be

employed to illustrate how scores'of individuals are converted

into the synthetic variables that are actually the focus of a

canonical correlation analysis. The data are adapted from those

presented by Harris (1987). The data set involves two criterion

variables, "X" and "Y," and two predictor variables, "A" and "B".

Since canonical correlation analysis presumes at least two

predictor and at least two criterion variables, the data set

represents the simplest case for which a true canonical analysis

can be conducted. If a canonical analysis of a smaller data set

was conducted, most researchers would refer to the analysis using

some other name, such as multiple regression analysis. Table 1

also presents each of the five persons' scores on the four

variables converted into their equivalent Z-score forms.

INSERT TABLE 1 ABOUT HERE.

Various analytic methods yield weights that are applied to

variables to optimize some condition--such weights include beta

weights, factor pattern coefficients, and discriminant function

coefficients. These weights are all equivalent, but in canonical

correlation analysis the weights are usually labelled

standardized function coefficients. These weights are applied to

each individual's data to yield the synthetic variables that are

the basis for canonical analysls.

However, in canonical analysis several sets of weights and of

4
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the resulting synthetic variables can be created. These canonical

functions are related to factors, are uncorrelated or orthogonal,

and can be rotated in various ways (Thompson, 1984). The aumber

of functions that can be computed ir a canonical analysis equals

the number of variables in the smaller of the two variable sets,

as expled by Thompson (1984). In the present example, since

each variable set consisted of two variables, two canonical

functions could be computed. Table 2 presents the canonical

function coefficients and other selected results from the

analysis.

INSERT TABLE 2 ABOUT HERE.

Table 3 illustrates the computation of the synthetic

variables for each of the five subjects using the Function I

function coefficients; the reader may wish to compute the

corresponding values associated with the Function II results. For

a given function, two synthetic scores are produced for each

subJect--one associated with the composite of weighted criterion

variables, and one associated with the composite of weighted

predictor variables. For example, as noted in Table 3, the

criterion synthetic variable score, "CRITCOMP," for subject one

was 1.29589 ([-1.44986*-1.35287] +s[+1.04101*-.63850]). By the

same token, the predictor synthetic variable score for subject

five was -1.21913 ([-1.58021*+1.32563] + [1.24215*+.67606]).

INSERT TABLE 3 ABOUT HERE

The canonical correlation (Rc) is nothing more (or less)

than the Pearson product-moment correlation between the synthetic

variable scores of the subjects on a given function. This can be
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illustrated in several ways using the present results. For

example, for this case, the bivariate correlation equals the sum

of the cross-products of the two variables, the sum then being

divided by n - 1. The cross products of the synthetic variables

for each of the five subjects are presented in Table 3, as is the

sum of these cross products. The sum divided by n 1

(3.999947/4) equals, within rounding error, the actual Rc result

reported ih Table 2 for Function I.

An alternative presentation is graphic. Figure 1 presents

the scattergram in which the five pairs of synthetic variable

scores from Table 3 are arrayed. For example, note that the first

subject's scores in Table 3 indicate that this subject is

represented by the asterisk in the upper right position within

the scattergram. Figure I also presents the least squares

regression line best fitting these asterisks. In the two variable

case, since the synthetic variables have means of zero, the slope

of this regression line equals a beta weight, also equals the

bivariate correlation between the synthetic variables, also

equals the canonical correlation coefficient, i.e., .99999.

INSERT FIGURE 1 ABOUT HERE.

Table 4 presents computations that illustrate the meaning of

two other canonical results, structure coefficients and index

coefficients. Structure coefficients have the same meaning in a

canonical analysis as in other analyses, i.e., structure

coefficients are bivariate correlation coefficients between a

given criterion or predictor variable and the synthetic variable

involving the variable set to which the variable belongs. For

example, since "ZX" was a criterion variable, the correlation

6
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between "ZX" and "CRITCOMP" is the structure coefficient for

"ZX." Note that the sum of the cross products of "ZX" and

"CRITCOMP", labelled "XSTRUC" in Table 4, once divided by n - 1,

equals within rounding error the structure coefficient for "ZX"

presented in Table 2. An index coefficient is the correlation

coefficient between a variable and the synthetic variable

consisting of variables from the variable set to which the

variable does not belong. Table 4 illustrates the calculation of

the index coefficient for "ZX" on Function I. Thompson (1984)

discusses the importance of these coefficients in greater detail.

INSERT TABLE 4 ABOUT HERE.

Three Common Interpretation Fallacies

The challenge of interpreting canonical results can give

pause to even the most seasOned analyst. As Thompson (1980, pp.

1, 16-17) notes, one

reason why the technique is rarely used involves

the difficulties which can be encountered in trying

to interpret canonical results... The neophyte

student of canonical correlation analysis may be

overwhelmed by the myriad.,coefficients which the

procedure produces... [But] canonical correlation

analysis produces results which can be

theoretically rich, and if properly implemented the

procedure can adequately capture some of the

complex dynamics involved in educational reality.

However, the interpretation of canonical results can be

facilitated if three common interpretation fallacies are avoided.
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Interpretation of Function Coefficients

In an artificial world of forced-choices, the analyst would

interpret structure coefficients while ignoring function

coefficients. Structure coefficients are the most helpful

coefficients to consult when interpreting canonical results,

although many researchers do not interpret and some do not even

report structure coefficients. Since structure coefficients

inform the researcher of the correlation between each variable

and the synthetic variables, these coefficients are what inform

the researcher regarding the meaning of what is actually being

correlated in a given analysis.

As noted previously, structure coefficients have the same

meaning in the canonical cases as in the other analytic methods

which the canonical methods subsume as special cases. For

example, in principal components analysis the correlation between

the scores on one variable and the factor scores on one factor is

the structure coefficient for that variable on that factor. And

as Gorsuch (1983, p. 207) notes, "the basic matrix for

interpreting the factors is the factor structure." Similarly, in

a discriminant analysis, the correlation between the scores on a

predictor variable and the discriminant function scores on a

given function is the structure coefficient for that variable on

that function.

In the regression case, the correlation between scores on a

predictor variable and the "YHAT" scores is the structure

coefficient for the predictor variable. Just as structure

coefficients are vitally important in interpreting results in

8
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other analytic cases, structure coefficients can be very

important in interpreting multiple regression results (Cooley &

Lohnes, 1971, pp. 54-55). Thompson and Borrello (1985) present an

explanation of this application and an actual research example in

which the interpretation of beta weights rather than structure

coefficients would conceivably have lead to incorrect

conclusions.

Thus, with respect to canonical analysis, Meredith (1964, p.

55) suggested that, "If the variables within each set are

moderately intercorrelated the possibility of interpreting the

canonical variates by inspection of the appropriate regression

weights [function coefficients] is practically nil." Similarly,

Kerlinger and Pedhazur (1973, p. 344) argued that, "A canonical

correlation analysis also yields weights, which, theoretically at

least, are interpreted as regression [beta] weights. These

weights [function coefficients] appear to be the weak link in the

canonical correlation analysis chain." Levine (1977, p. 20, his

emphasis) is even more emphatic:

I specifically say that one has to do this

[interpret structure coefficients] since I firmly

believe as long as one wants information about the

nature of the canonical correlation relationship,

not merely the computation of the [synthetic

function] scores, one must have the structure

matrix.

The hypothetical results presented in Table 2 illustrate

that the interpretation of only function coefficients can lead to

9
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seriously distorted conclusions. The standardized fUnCtion

Coefficients might lead the naive analyst to conclude that all

four variables contribute appreciable information to the

relationship between the two sets of synthetic variable scores on

Function I. In reality, variables "ZY" and "ZB" share almost no

variance at all with the function's scores.

Interpretation of Redundancy Coefficients

If the squared structure coefficients for a given set of

variables are added and then the sum is divided by the number of

variables in the set, the result informs the researcher regarding

how much of the variance in the variables, on the average, is

contained within the synthetic scores for that function. This

result is called a variate adequacy coefficient (Thompson, 1984).

Stewart and Love (1968) suggested that multiplying the adequacy

coefficient times the squared canonical correlation yields a

coefficient that they labelled a redundancy coefficient. Miller

(1975) developed a partial test distribution to test the

statistical significance of redundancy coefficients. COoley and

Lohnes (1976, p. 212) suggest that redundancy coefficients have

great utility. In reality, the interpretation of redundancy

coefficients does not make much senSe in a conventional canonical

analysis.

As Cramer and Nicewander (1979) proved in detail, redundancy

coefficients are not truly multivariate. This is very disturbing,

because the main argument in favor of multivariate methods (for

both substantive and statistical reasons) is that these methods

simultaneously consid-,r all relationships during the analysis

10
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(Thompson, 1986c).

Table 5 helps to illustrate the problem. The table presents

the adequacy, redundancy, and squared Rc's for both functions for

the hypothetical data, as well as the pooled values. For example,

the pooled redundancy coefficient for the criterion variable set

is .242783. Table 6 presents the results of four regression

analyses for various criterion variables and predictor variable

sets. The table illustrates that the average squared multiple R

for a variable set equals the pooled redundancy coefficient for

that variable set. The redundancy coefficient is the average of a

set of univariate results!

A redundancy coefficient for a given variable set on a given

function equals the adequacy coefficient for the set times the

squared Rc for the function. The redundancy coefficient can only

equal one when the synthetic variables for the function represent

all the variance of every variable in the set, and the squared Rc

also exactly equals one. This does not occur in practice, and it

is difficult to conceive of any theoretical basis for ever

formulating such an expectation. Thus, redundancy coefficients

are useful only to test outcomes that rarely occur and which are

not expected (Thompson, 1980, ,,p. 16; Thompson, 1984).

Furthermore, it seems contradictory to employ an analysis that

use functions coefficients to optimize Rc, and then to interpret

results not optimized as part of the analysis, i.e., redundancy

coefficients.

Failure to Partition Using Canonical Commonality AnalYsis

Researchers have been aware for some time that
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interpretation of regression results is often facilitated by

conducting "commonality analyses" (Newton & Spurrell, 1967;

Thompson, 1985a). These analyses partition variance to indicat.-..

how much variance is unique to a given variable, and how mun

variance is common to other variables. As an example analysis for

the regression case, Seibold and McPhee (1979, pp. 364-365)

present a cancer study in which the results would have been

grossly misinterpreted if a commonality analysis had not been

conducted.

Given that multiple regression is a special case of

canonical correlation analysis, it seems reasonable to expect

that the same variance partitioning procedures might also be very

useful in the true canonical case. Although the details of the

procedure are beyond the scope of the present paper, Thompson and

Miller (1985) explain the procedure using an actual research

example in which educators' perceptions of dying students and of

death were investigated. It is suggested that the procedure may

be very useful in research situations in which at least one of

the variable sets consists of variables that are conceptually or

theoretically distinct. As in the regression case, the failure to

employ commonality analysis can result in the distorted

interpretation of results.

Summary

In summary, the paper has briefly explained the logic

underlying the basic calculations employed in canonical

correlation analysis. Three common fallacious interpretation

practices that may lead to incorrect conclusions based on
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canonical results were presented. A small hypothetical data set

was employed to make the discussion concrete.

Canonical correlation analysis is a powerful analytic method

that frequently best honors the complex nature of the reality

about which the researcher wishes to generalize. As Kerlinger

(1973, p. 652) suggests, "some research problems almost demand

canonical analysis." Similarly, Cooley and Lohnes (1971, p. 176)

suggest that "it is the simplest model that can begin to do

justice to this difficult problem of scientific generalization."

However, the potentials of canonical correlation analysis will

only be realized if researchers understand the logic underlying

the method and if some serious interpretation pitfalls are

avoided.
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Table 1
Hypothetical "Bird Beak" Data

XYAB ZX ZY ZA ZB

9.0 7.0 10.0 8.0 -1.35287 -.63850 .00000 1.04326
11.0 6.0 10.0 5.0 -.44490 -1.26448 .00000 -.53744
12.0 8.0 8.0 4.0 .00908 -.01252 -.81650 -1.06434
13.0 10.0 8.0 5.0 .46306 1.23944 -.81650 -.53744
14.9 9.1 14.0 8.1 1.32563 .67606 1.63299 1.09595

Table 2
Selected Canonical Analysis Results

Function I
Stn Fun Struct

Function II
Stn Fun Struct Communality

ZX -1.44986 -.69607 -.01281 .71798 1.000008
ZY 1.04101 -.00884 1.00924 .99996 .999998
ZA -1.58021 -.61831 .02918 .78593 .999993
ZB 1.24215 .08146 .97723 .99983 1.006295
Rc .99999 .02557

Table 3
"Synthetic" Variate Scores for Function I

ZX ZY ZA ZB CRITCOMP PREDCOMP CRITxPRED
-1.35287 -.63850 .00000 1.04326 1.29678 1.29589 1.680484
-.44490 -1.26448 .00000 -.53744 -.67129 -.66758 .448139
.00908 -.01252 -.81650 -1.06434 -.02620 -.03183 .000833
.46306 1.23944 -.81650 -.53744 .61889 .62266 .385358

1.32563 .67606 1.63299 1.09595 -1.21819 -1.21913 1.485131
Sum 3,999947

Note. The sum of the cross-products (3.999947) divided by n-1 (4)
is, within rounding error, the canonical correlation.

Table 4
Calculation of Structure and Index Coefficients

ZX CRITCOMP PREDCOME, XSTRUC XINDEX
-1.35287 1.29678 1.29589 -1.75438 -1.75317
-.44490 -.67129 -.66758 .29866 .29701
.00908 -.02620 -.03183 -.00024 -.00029
.46306 .61889 .62266 .28658 .28833

1.32563 -1.21819 -1.21913 -1.61487 -1.61612
Sum -2.78425 -2.78424

Note. The sum of the cross-products of "ZX" and "CRITCOMP"
(-2.78425) divided by n-1 (4) is (-.69606), within rounding
error, the structure coefficient of "ZX" on Function I. The sum
of the cross-products of "ZX" and "PREDCOMP" (-2.78424) divided
by n-1 (4) is (-.69606), within rounding error, the index
coefficient of "ZX" on Function I.
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Table 5
Redundancy Calculations for Hypothetical Data

Struc I
-0.69607
-0.00884

SQ
0.484513
0.000078

Struc II
0.71798
0.99996

SQ
0.515495
0.999920

Commun
1.000008
0.999998

Pooled Rd

SUM 0.484591 1.515415 2.000006
Adequacy 0.242295 0.757707 1.000003
Redundancy 0.242290 0.000492 0.242783

-0.61831 0.382307 0.78593 0.617685 0.999993
0.08146 0.006635 0.99983 0.999660 1.006295

SUM 0.388942 1.617345 2.006288
Adequacy 0.194471 0.808672 1.003144
Redundancy 0.194467 0.000525 0.194993

Rc SO 0.99998 0.00065

Table 6
Alternate Calculation of Pooled Coefficients

Criterion Predictor
Variables Variables R R SQ

X A B 0.69630 0.48484
A B 0.02705 0.00073

SUM 0.48557
Mean 0.24279

A X Y 0.61864 0.38271
X Y 0.03153 0.00099

SUM 0.38370
mean 0.19185
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Figure 1
Scattergram of Canonical Composite Scores on Function I
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APPENDIX A: Data and SPSs-X Command Files

File 'SWSmEP.DAT':
90 70 100 80 5 6

110 60 100 50 0 3

120 80 80 40 10 5

130 100 80 50 0 7

149 91 140 81 5 4

File 'SWSMEP.SPS':
TITLE 'ANALYSIS OF adapted R.J. HARRIS DATA *****1

FILE HANDLE RJH/NAME='SWSMEP.DAT'
DATA LIST FILE=RJH/X 1-3 (1) Y 5-7 (1) A 9-11 (1) B 13-15 (1)
Al H1 16-21

CoMPUTE ZX=(x-11.98)/2.20273
COMPUTE ZY=(Y-08.02)/1.59750
COMPUTE ZA=(A-10.00)/2.44949
COMPUTE ZB=(B-06.02)/1.89789
COMPUTE ZA1=(A1-4.0)/4.18330
COMPUTE ZB1=(B1-5.0)/1.58114
COMPUTE CRITCOMP=(-1.44986*ZX)+(1.04101*ZY)
ComPUTE PREDCOMP=(-1.58021*ZA)+(1.24215*ZH)
COMPUTE XSTRUC=ZX*CRITCOMP
ComPUTE XINDEX=ZX*PREDCOMP
PRINT FORMATS ZX TO XINDEX(F8.5)
LIST VARIABLES=ALL/CASES=50
CONDESCRIPTIVE X TO XINDEX
STATISTICS ALL
PEARSON CORR X TO XINDEX
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPFNDENT=X/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPENDENT=Y/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/
DEPENDENT=A/ENTER X Y

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/
DEPENDENT=B/ENTER X Y

MANOVA X Y WITH A B/PRINT=CELLINFO(MEANS,COR)
DISCRIM(RAW,STAN,COR,ALPHA(1.0))
SIGNIF(DIMENR EIGEN MULTIV) ERROR(COR)/DESIGN/

SCATTERGRAM CRITCOMP (-6,3) WITH PREDCOMP (-3,6)

STATISTICs ALL
OPTIONS 4
MANOVA X Y WITH Al Bl/PRINT=CELLINFO(MEANS,COR)

SIGNIF(DIMENR EIGEN MULTIV)
DISCRIM(RAW,STAN,COR,ALPHA(1.00)) ERROR(COR)/DESIGN/
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