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ABSTRACT

The paper briefly explalns the loglc underlying the baslc
calculations employed 1in canonical correlation analysis. The
paper also discusses three common fallacious interpretation
practices that may lead to incorrect conclusions based on
canonical results. A small hypothetical data set is employed to
make the discussion concrete. It 1s suggested that canonical
correlation analysis is a powerful analytic method that
frequently best honors the complex nature of the reallty about

which the researcher wishes to generalize.



Several trends in analytic practice seem to be discernable
as incremental changes that are moving social sclence slowly
toward more productive 1lnqulry. For example, researchers have
increasingly recognlized that statlistical significance may not be
a particularly effective criterion with which to evaluate res:lts
(Thompson, 1987); popular developments in meta-analysls (Jones &
Fiske, 1953; Glass, McGaw & Smith, 1981; Rosenthal, 1984) may
have compelled more researchers to recognize the Iimportance of
effect slzes 1n thelr studles. Researchers have also increasingly
recognized that statlstical control, such as that employed 1in
analysls of covarlance (ANCOVA), must be used with extraordinary
caution; these methods tend to either be unnecessary or seriously
distort results (Thompson, 1986b, pp. 19-25) and 1lead ¢to
"traglcally misleading analyses" (Campbell & Erlebacher, 1975, p.
597).

However, the trend away from the use of classlcal analysis
of wvariance methods (Goodwin & Gonodwin, 1985) may be the most
noteworthy trend of all, since the use of the methods can have
several deleterious effects (Cohen, 1968; Thompson, 1986a). Even
when analysis of wvarlance methods represent good analytic
cholces, regresslon or general llnear model approaches to the
methods stilll tend to be superior since these approaches tend to
yleld greater power agalnst Type II error and tend to be more
theoretically grounded (Thompson, 1985a).

The gradual shift away from the use of analysis of variance
approaches has been due 1n part to an increased recognltion that
all parametrlc unlvariate methods are speclal cases of regression

analysis (Cohen, 1968). The shift has also been due to ilncreased



recognition that many researchers
prefer eXperiﬁental over correlatlonal research
designs because experimental designs provide more
complete informatlon about causality. Why does this
situation contribute to OVAlsm? Because some
researchers confuse research desligns wlith the
statistical techniques whilch are used to analyze
the data which the deslgns help to genexate.
(Thompson, 1981, p. 5)

As Thompson (1986b, p. 17) notes,
The fact that OVA methods are approprlate when
predictor varlables such as experlmental assignment
naturally occur at the nominal level of scale has
stimulated some researchers to unconsciously [and
incorrectly] assoclate the consequences of
experimental design selection with OVA methods.

However, 1n reallty all parametrlc signlflicance tests,
including those which are multivarlate, are speclal cases of
canonlcal correlation analysis (Knapp, 1978). indeed, Thompson
(1985b) 1illustrates how various wunivariate and multivariate
analyses can all be conducted\\using canonical «correlatlon
analysls. Thompson (1986c) notes that the evaluation of several
hypothesis tests within a single study Inflates the
experimentwise Type I exror probabllity, wusually to a somewhat
unknown degree. The fallure to use multlivarlate methods - often
.also distorts the reality about which the researcher is

attempting to generallize--the least of these distortlons occurs



when a researcher complétes several univariate tests and finds no
statistically significant results when significanée would have
occurred 1if a multivariate test had been employed (Thompson,
1986c). Thompson (1986c) presents a data set 1llustrating how
this can occur. These various consliderations suggest that
canonical correlation analysis may be a powerful and Important
weapon in the soclal sclentist's arsenal of analytic weapons.

The purpose of the present paper is to briefly explain the
logic underlying the basic calculations employed 1in canonical
correlation analysis. The paper also discusses three common
fallacious 1interpretation practices that may lead to 1incorrect
conclusions based on canonical results. A small hypothetical data

set 1s employed to make the discussion concrete.

The Baslic Loglc of Canonical Calculations

Thompson (1983) notes that canonical correlation can be
conslidered as an example of the bivariate case. This
conceptualization has instructional appeal because most students
feel comfortable working with bivariate correlation -oefflcients.
The view 1s also Important because it forces reallzation that
canonical analysis, 1like all parqmetric methods, 1involves the
creation of '"synthetic" scores fo; each person. 1In regression
analyses the synthetic scores are the predicted dependent
variable scores of each of the subjects, sometimes termed "YHAT";
the correlation between the subjects' actual and synthetic
variables is the multiple correlation coefficient, while the sum
of squares of the "YHAT" Scores equals the sum of squares

explained. 1In factor analysis these synthetic varlables are the



factor scores of each subject on each of the factors. In
discriminant analysls these gsynthetlic varlables are the

dlscrimlinant scores of each subject on each of the dliscrimlnant
functlions.

Table 1 presents a hypothetlcal data set that will be
employed to 1lllustrate how scores'of individuals are converted
into the éynthetic varlables that are actually the focus of a
canonlcal correlatlon analysls. The data are adapted from those
presented by Harrls (1987). The data set 1nvolves two criterlon
varlables, "X" and "Y," and two predictor variables, "A" and "B".
Slnce canonlcal correlation analysls presumes at 1least two
predictor and at least two criterlon varlables, the data set
represents the simplest cése for which a true canonlcal analysls
can be conducted. If a canonical analysls of a smaller data set
was conducted, most researchers would refer to the analysls using
some other name, such as multiple regresslon analysls. Table 1
also presents each of the five persons' scores on the four

varlables converted into thelr equlivalent Z-score forms.

Varlous analytic methods yield welghts that are applied to
varlables to optlimize some conditign——such welghts lnclude beta
weights, factor pattern coeffliclents, and discriminant functlon
coefflclents. These welghts are all equlvalent, but 1n canonlical
correlatlion analysls the welghts are usually labelled
standardlzed functlon coefflclents. These welghts are applled to
each indlvidual's data to yleld the synthetlc variables that are
the basls for canonical analysls.

However, in canonlcal analysls several sets of weights and of



the resulting synthetlic variabies can be created. These canonlcal
functions are related to factors, are uncorrelated or orthogonal,
and can be rotated in various ways (Thompson, 1984). The aumber
of functlons that can be computed ir a canonical analysis equals
the number of variables iIn the smaller of the two varlable sets,
as expleined by Thompson (1984). 1In the present example, sSlnce
each variable set consisted of two varlables, two canonlcal
functions could be computed. Table 2 presents the canonical
functlon coefficlents and other selected results from the
analyslis.

INSERT TABLE 2 ABOUT HERE.

Table 3 1llustrates the computation of the synthetlc
variables for each of the five subjects using the Function I
function coefficlents; the reader may wish to compute the
corresponding values assoclated with the Functlon II results. For
a glven functlon, two synthetlc scores are produced for each
subject--one assoclated with the composite of welghted criterion
varlables, and one assoclated with the composite of welghted
predictor variables. For example, as noted in Table 3, the
criterion synthetic varlable score, "CRITCOMP," for subject one
was 1.29589 ([-1.44986%-1.35287] ;‘[+1.04101*-.63850]). By the
same token, the predictor synthetic varlable score for sublect
five was -1.21913 ([-1.58021%+1.32563] + [1.24215%+.676061).

INSERT TABLE 3 ABOUT HERE

The canonical correlation (Rc) is nothing more (or 1less)
than the Pearson product-moment correlation between the synthetlc

varlable scores of the subjects on a given function. This can be



11lustrated 1n several ways using the present results. For
example, for thls case, the blvarlate correlatlon equals the sum

of the cross-products of the two varlables, the sum then belng

divided by n - 1. The cross products of the synthetlc varlables
for each of the five subjects are presented in Table 3, as ls the
sum of these <¢ross products. The sum dlvided by n -1
(3.999947/4) equals, wlthin rounding error, the actual Rc result
reported In Table 2 for Functlon I.

An alternative presentation ls graphlic. Figure 1 presents
the scattergram 1in which the five palrs of synthetlic wvarlable
scores from Table 3 are arrayed. For example, note that the flrst
subject's scores 1In Table 3 indicate that thils subJect Is
represented by the asterisk in the upper right position wlthin
the scattergram. Flgure 1 also presents the least squares
regression line best fltting these asterisks. In the two variable
case, since the synthetlc varlables have means of zero, the slope
of thils regression line equals a beta welght, also equals the
bivarlate correlation between the synthetlc varlables, also
equals the canonical correlation coefficient, i.e., .99999.

INSERT FIGURE 1 ABOUT HERE.

Table 4 presents computatlons that 1lllustrate the meanlng of
two other canonical results, structure coefflclents and 1Index
coeffliclents. Structure coefficlents have the same meaning in a
canonlcal analysis as 1In other analyses, l.e., structure
coefficlents are blvarlate correlatlion coefflclents between a
glven criterlon or predictor variable and the synthetlc varlable
involving the varlable set to which the varlable belongs. For

example, slince "ZX" was a crliterlon varlable, the correlation



between "ZX" and "CRITCOMP" is the structure coefflclent for
"ZX." Note that the sum of the cross products of "ZX" and
"CRITCOMP", 1labelled "XSTRUC" In Table 4, once divided by n - 1,
equals wlthln rounding error the structure coefficlent for "zX"
presented in Table 2. An index coefficlent 1s the correlation
coefficlent between a varlable and the synthetlc variable
conslsting of varlables from the varlable set to which the
varlahle does not belong. Table 4 illustrates the calculation of
the 1index coefficlent for "ZX" on Function 1I. Thompson (1984)
dlscusses the lmportance of these coefflclents in greater detall.

INSERT TABLE 4 ABOUT HERE.

hree Common Interpretation Fallacles

The challenge of lnterpreting canonical results can glve
pause to even the most seasoned analyst. As Thompson (1980, pp.
1, 16-17) notes, one

reason why the technique 1s rarely used 1involves
the dlifficulties which can be encountered 1n trylng
to 1interpret canonical results... The neophyte
student of canonlical correlation analysls may be
overwhelmed by the myriadxcoefficients which the
procedure produces... [Butl]l canonical correlation
analysls produces results which can be
theoretlically rich, and 1f properly implemented the
procedure can adequately capture some of the
complex dynamlics involved In educatlional reallty.
However, the interpretation of canonlcal results can be

facllitated if three common interpretation fallacies are avolded.
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Interpretation of Function Coefficlents

In an artlificlal world of forced-cholces, the analyst would

interpret structure coefficients while ignoring function

coefficients. Structure coefficlents are the most helpful

coefficients to consult when interpreting canonical results,
although many researchers do not interpret and some do not even -
report structure coefflclents. Since structure coefficlents
inform the researcher of the correlation between each varlable
and the synthetlc varlables, these coeffliclents are what ilnform
the researcher regarding the meaning of what is actually belng
correlated In a given analyslis.

As noted previously, structure coefficlents have the same
meaning 1n the canonlcal cases‘as in the other analytic methods
which the canonical methods subsume as speclial cases. For
example, in principal components analysis the correlation between
the scores on one varlable and the factor scores on one factor ls
the structure coefficient for that variable on that factor. And
as Gorsuch (1983, P. 207) notes, "the baslc matrix for
interpreting the factors ls the factor structure." Similarly, 1in
a discriminant analysls, the corrq}ation between the scores on a
predictor variable and the discriminant functlion scores on a
glven function 1is the structure coefficient for that varlable on
that function.

In the regression case, the correlation between scores on a
predlctor varlable and the "YHAT" scores 1s the structure
coefficient for the predictor varlable. Just as structure

coefficlents are vitally important in interpreting results in

11



other analytic cases, structure coefflclents can be very
important in interpreting multiple regression results (Cooley &
Lohnes, 1971, pp. 54-55). Thompéon and Borrello (1985) present an
explanatlon of thls appllcatlion and an actual research example in
which the interpretatlion of beta welghts rather than structure
coefficlents would concelvably have lead to incorrect
conclusions.
Thus, with respect to canonlcal analysls, Meredlth (1964, p.

55) suggested that, "If the wvarlables within each set are
moderately Intercorrelated the posslbllity of Interpreting the
canonical varlates by lnspection of the appropriate regresslon
welghts [functlon coefficlents] 1s practlcally nil." simllarly,
Kerlinger and Pedhazur (1973, p. 344) argued that, "A canonlcal
correlatlion analyslis alsb yiélds welghts, whlch, theoretically at
least, are 1interpreted as regression ([betal welghts. These
welghts [functlon coefficlents] appear to be the weak 1ink in the
canonical correlation analysis chain." Levine (1977, p. 20, his
emphasis) 1s even more emphatic:

I speclfically say that one has to do this

[interpret structure coefficients] since I firmly

believe as long as one wanfg Information about the

nature of the canonlcal correlation relatlionshilp,

not merely the computation of the [synthetic

functionl scores, one must have the structure

matrix.

The hypothetlcal results presented 1n Table 2 1lllustrate

that the interpretatlon of only function coefficlents can lead to

12



geriously distorted éonclusions. The standardlzed f£unction
coefficients might lead the nalve analyst to conclude that all

four variables contribute appreciable information to the

relationship between the two sets of synthetic variable scores on
Function I. In reality, variables "ZY" and "ZB" share almost no

varlance at all with the function's scores.

Interpretation of Redundanhcy cCoefflcients

If the squared structure coefficlents for a glven set of
variables are added and then the sum is dlvided by the number of
varlables 1n the set, the result informs the researcher regarding
how much of the varlance in the varlables, on the average, Is
contalned within the synthetlc scores for that function. Thls
result 1s called a varlate adequacy coefflclent (Thompson, 1984).
Stewart and Love (1968) suggested that multiplying the adegquacy
coefficient times the squared canonlical correlation ylelds a
coefficlent that they labelled a redundancy coeffliclent. Mlller
(1975) developed a partial test distribution to test the
statistical significance of redundancy coefficlents. Cdoley and
Lohnes (1976, p. 212) suggest that redundancy coefficlents have

great utility. 1In reallty, the interpretation of redundancy

coefficients does not make much sen3e in a conventional canonical

analyslis.

As Cramer and Nicewander (1979) proved in detall, redundancy
coefficients are not truly multivarlate. Thls 1s very disturbing,
because the maln argument in favor of multlvariate methods (for

both substantive and statistical reasons) is that these methods

simultaneously considsr all relatlonships during the analyslis

10
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(Thompson, 1986c).

Table 5 helps to lllustrate the problem. The table presents
the adequacy, redundancy, and squared Rc's for both functions for
the hypothetical data, as well as the pooled values. For example,
the pooled redundancy coefflclent for the criterion varlable set
1s .242783. rTable 6 presents the results of four regression
analyses for various criterion varlables and predictor variable
sets. The table illustrates that the average squared multiple R
for a varlable set equals the pooled redundancy coefficlent for
that varlable set. The redundancy coefficient 1s the average of a
gset of univarlate results!

A redundancy coefflcient for a given variable set on a given
functlion equals the adequacy coefficlent for the set times the
squared Rc for the function. The redundancy ccefficient can only
equal one when the synthetlic variables for the function represent
all the varlance of every varlable in the set, and the squared RcC
also exactly equals one. This does not occur in practice, and it
1s difficult to concelve of any theoretical basls for ever
formulating such an expectation. Thus, redundancy coefficlents
are'useful only to test outcomes that rarely occur and which are
not expected (Thompson, 1980; P 16; Thompson, 1984).
Furthermore, 1t seems contradlctory to emplcy an analysis that
use functions coefficlents to optimlze Rc, and then to interpret
results not optimized as part of the analysls, 1.e., redundancy

coefficients.

Fallure to Partlition Using Canonlcal commonality Analysis

Researchers have been aware for some tlme that

11
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interpretation of regression results ls often facllitated by
conducting "commonallty analyses" (Newton & Spurrell, 1967;
Thompson, 1985a). These analyses partitlion varlance to indicat:
how much variance ls unlque to a given varlable, and how mu:n
variance 1s common to other variables. As an example analysis for
the regression case, Selbold and McPhee (1979, pp. 364-365)
present a cancer study ln which the results would have Dbeen
grossly misinterpreted 1f a commonallity analysls had not been
conducted.

Given that multiple regression 1is a speclal case of
canonical correlation analysis, 1t seem3 reasonable to expect
that the same varlance partitlioning procedures might also be very
useful In the true canonical case. Although the detalls of the
procedure are beyond the scope of the present paper, Thompson and
Miller (1985) explain the procedure uslng an actual <research
example ‘in which educators' perceptlons of dylng students and of
death were lnvestigated. It 1s suggested that the procedure may
be very useful in research situatlions in which at least one of

the variable sets consists of variables that are conceptually or

theoretically distinct. As 1n the regression case, the failure to

employ commonality analysis can result in the dlstorted

interpretation of results.

Summary
In summary, the paper has brlefly explalned the loglc
undexrlying the basic calculatlions employed in canonical
correlation analysis. Three common fallacious interpretation

practices that may 1lead to lncorrect conclusions based on

12
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canonical results were presented. A small hypothetical data set
was employed to make the dlscusslon concrete.

Canonlical correlatlon analysis is a powerful analytlic method
that frequently best honors the cbmplex nature of the reallty
about which the researcher wishes to generalize. As Kerlinger
(1973, p. 652) suggests, "some research problems almost demand
canonlcal analysis." Similarly, Cooley and Lohnes (1971, p. 176)
suggest that "1t 1s the simplest model that can begin to do
Justice to thls difficult problem of sclentiflic generalization."
However, the potentials of canonlcal correlation analysis will
only be reallzed 1f researchers uﬁderstand the loglc underlyling
the method and if some serious interpretation piltfalls are

avolided.
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Table 1
Hypothetlical "Blrd Beak" Data

X Y A B ZX ZY ZA ZB
9.0 7.0 10.0 8.0 -1.35287 -.63850 .00000 1.04326
11.0 6.0 10.0 5.0 -.44490 -1.26448 .00000 -.53744
12.0 8.0 8.0 4.0 .00908 -.01252 -.81650 -1.06434
13.0 10.0 8.0 5.0 .46306 1.23944 -~-.,81650 -.53744
14.9 9.1 14.0 8.1 1.32563 .67606 1.63299 1.09595
Table 2
Selected Canonlcal Analysls Results
Functlon I Function II
Stn Fun Struct Stn Fun struct Communality
ZX ~-1.44986 -.69607 -.01281 .71798 1.000008
Y 1.04101 -.00884 1.00924 .99996 .999998
ZA -1.58021 -.61831 .02918 .78593 .999993
ZB 1.24215 .08146 .97723 .99983 1.006295
Rc .99999 .02557
Table 3
"synthetlc" Varlate Scores for Functlon I
zX ZY ZA ZB CRITCOMP PREDCOMP CRITXPRED
-1.35287 -.63850 .00000 1.04326 1.29678 1.29589 1.680484
-.44490 -1.26448 .00000 -.53744 -.67129 -~.66758 .448139

.00908 ~-.01252 -.81650 -1.06434 -.02620 -.03183 .000833
.46306 1.23944 -.81650 -.53744 .61889 .62266 .385358
1.32563 .67606 1.63299 1.09595 -1.21819 -1.21913 1.485131

Sum 3.999947

Note. The sum of the cross-products (3.999947) divided by n-1 (4)
1s, withln rounding error, the canonical correlatlion.

Table 4
Calculation of Structure and Index Coefficlents

ZX CRITCOMP PREDCOME XSTRUC XINDEX
-1.35287 1.29678 1.29589 -1.75438 -1.75317
-.44490 -.67129 -.66758 .29866 .29701
.00908 -.02620 -.03183 =-.00024 -.00029

.46306 .61889 .62266 .28658 .28833
1.32563 -1.21819 -1.21913 -1.61487 -1.61612
sum -2.78425 -2.78424
Note. The sum of the cross-products of "zX" and "CRITCOMP"

(-2.78425) divided by n-1 (4) 1s (-.69606), within rounding
error, the structure coefficient of "ZX" on Functlon I. The sum
of the cross-products of "ZX" and "PREDCOMP" (-2.78424) dlivided

by n-1 (4) 1s (-.69606), within rounding error, the Iindex
coeffliclent of "ZX" on Function I.
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Table 5
Redundancy Calculatlons for Hypothetical Data

struc T S8sQ struc II sQ Commun Pooled RA
-0.69607 0.484513 0.71798 0.515495 1.000008
-0.00884 0.000078 0.99996 0.999920 0.999998
SUM 0.484591 1.515415 2.000006
Adequacy 0.242295 0.757707 1.000003
Redundancy 0.242290 0.000492 0.242783
-0.61831 0.382307 0.78593 0.617685 0.999993
0.08146 0.006635 0.99983 0.99%660 1.006295
SUM | n.388942 1.617345 2.006288
Adequacy 0.194471 0.808672 1.003144
Redundancy 0.194467 0.000525 0.194993
RCc S8Q 0.99998 0.00065

Table 6
Alternate Calculation of Pooled Coeffliclents

Criterion Predictor

Variables varlables R R SQ
X AB 0.69630 0.48484
Y A B 0.02705 0.00073
SUM 0.48557
Mean 0.24279
A Xy 0.61864 0.38271
B XY 0.03153 0.00099
SUM 0.38370
Mean 0.19185
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Figure 1
Scattergram of Canonical Composite Scores on Functlon I
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APPENDIX A: Data and SPSs-X Command Flles

Flle 'SWSMEP.DAT':
90 70 100 80 5
110 60 100 50 O
120 80 80 40 10
130 100 80 50 O
149 91 140 81 5

o ~JU N

Flle 'SWSMEP.SPS':

TITLE 'ANALYSIS OF adapted R.J. HARRIS DATA *kk&x!

FILE HANDLE RJH/NAME='SWSMEP.DAT'

DATA LIST FILE=RJH/X 1-3 (1) Y 5-7 (1) A 9-11 (1) B 13-15 (1)

Al Bl 16-21
COMPUTE ZX=(X-11.98)/2.20273
COMPUTE ZY=(Y-08.02)/1.59750
COMPUTE ZA=(A-10.00)/2.44949
COMPUTE ZB=(B-06.02)/1.89789
COMPUTE ZAl=(A1-4.0)/4.18330
COMPUTE ZB1=(B1-5.0)/1.58114
COMPUTE CRITCOMP=(-1.44986%*ZX)+(1.04101%*7Y)

COMPUTE PREDCOMP=(-1.58021%ZA)+(1.24215%27B)

COMPUTE XSTRUC=ZX*CRITCOMP

COMPUTE XINDEX=ZX*PREDCOMP

PRINT FORMATS ZX TO XINDEX(F8.5)

LIST VARIABLES=ALL/CASES=50

CONDESCRIPTIVE X TO XINDEX

STATISTICS ALL

PEARSON CORR X TO XINDEX

REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPENDENT=X/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPENDENT=Y/ENTER A B
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPENDENT=A/ENTER X Y
REGRESSION VARIABLES=X TO B/CRITERIA=TOLERANCE(.000001)/

DEPENDENT=B/ENTER X Y
MANOVA X Y WITH A B/PRINT=CELLINFO(MEANS,COR)

DISCRIM(RAW, STAN,COR,ALPHA(1.0))

SIGNIF(DIMENR EIGEN MULTIV) ERROR(COR)/DESIGN/
SCATTERGRAM CRITCOMP (-6,3) WITH PREDCOMP (-3,6)
STATISTICS ALL "

OPTIONS 4 A

MANOVA X Y WITH Al Bl/PRINT=CELLINFO(MEANS,COR)
SIGNIF(DIMENR EIGEN MULTIV)
DISCRIM(RAW, STAN, COR,ALPHA(1.00)) ERROR(COR)/DESIGN/




