AUTHOR TITLE	Kupari ; Pekka, Ed:
	Mathematics Education Research in Finland Yearbook 1984.
INSTITUTION	Finnish Association óf Mathematices and Science
	Education Research.i Jyvaskyla Univ. (Finland). Inst.
	fōr Educátional Research:
REPORT NO	I SBN-951-679-359-9
PUB DATE	85
NOTE	136p.i Report 365 from the Institute for Educational
	Research; for the 1983 and 1985 yearbooks, see SE 047
	958 and SE 047 960, respectively.
AVAILABLE FROM	University of jyvaskyla, institute for Educational
	Research, Seminaarinkatu 15, SF-40100 Jyvaskyla 10,
	Finland (40 Fiñish marks)
PUB TYPE	Collected Works - Sēriais (022)
EDRS PRICE DESCRIPTORS	MF01/PC06 Plus Postage.
	Cognitive Development; *Cognitive Processess
	Cognitive Style; Computēr Usēs in Education;
	Developmental Psychology; *elementary School
	Māthematics; Elementary Secondary educationj Foreign
	Countries; Geometry; Learning Strategies; Mathematics
	Education; *Mathematics Instruction; *Mathematics
	Skillsí Microcomputers; *Secondary Schōol
	Mathematicsip Yearbooks
IDENTIFIERS	*Finland; *Mathematics Education Research

ABSTRACT

Focusing primarily on student cognitive processes; this second yearbook of the Finnish Association of Mathematics and Science Education Research coniains five articles and a thesis summary on mathematics teaching and learning. Areas of investigation inciude: (i) learning styles and strategies; (2) processes and strategies in solving elementary verbal multiplication and division tasks; (3) use of a microcomputer as an educational tool and research instrument; (4) position of applications in junior secondary school mathematics teaching; (5) development of geometric thinking; and (6) development of a concept of number. Biographical notes of the contributing authors are also included. (ML)

[^0]

TO THE EDUCATTIONĀL RESOI INFORMATION CENTER IERIC

KASVATUSTIETEIDEN TUTKIMUSLAITOKSEN JULKAISUJA
REPORTS FROM THE INSTITUTE FOR EDUCATIONAL RESEARCH

JYVASKILAN YIIOPISTO
UNIVERSITY OF JYVASKYLA

MATHEMATICS EDUCATION RESEARCH IN FINLAND YEARBOOK 1984

Edited by Pekka Kupari

REPORTS FROM THE FINNISH ASSOCIATION OF MATHEMATICS AND SCIENCE EDUCATION RESEARCH

ISBN 951-679-395-9
ISSN 0448-0953

COPYRIGHT (c) 1985 by University of Jyviskeyla
the Institute for Educational Research and the Finnish Association of Matheratics and Science Education Research

Jyvăskyizn yiiopiston monistuskeskus ja
Kirjapaino Oy Sísä-Suomi - Jyvăsky1ä 1985

THE FINNISH ASSOCIÄTION OF MATHEMATICS AND SCIENCE EDUCATION RESEARCH

MATHEMATICS EDUCATION RESEARCH IN FINLAND YEARBOOK 1984

EDITORIAI BOARD

Pāavo Malinē, Teacher Training College, University of Jyvazskylu
Oili Martio, Department of Mathematics, University of Jyvassky Jarkko Leino, Department of Education, University of Tampere Pēkkā Kupari, Institute for Educational Research; University of Jyväskylä
Pirkko Remes, Institute for Educational Research, University of Jyväskylả

Reports from the Institute for Educational Research 365/1985
ISBN 951-679-395-9
ISSN 0448-0953

PREFACE

The Finnish Association of Nathematics and Science Education Research published its first yearbook (Yearbook 1983) last yearThe present volume, which covers research pubiished in 198i4; centers around papers presented by Finnish researchers at the Fifth Intemational Congress on Mathematical Education (ICME 5) held in Adelaide, Austrāīā; on August 24 th - 30 th; 1984. Although the articles have no common theme, most of them share an interest in students cognitive processec as well as problem solving and application.

In the first article Leino puts forth the principles and general outines of a project on leaming styles and strategies; which he is directing. In the author's opinion to know and to under= stand the learner better is what the Finnish educational system needs most. The purpose of the project is to improve the possibilities of attaching more attention to the student's personality as à basis of instruction. Leino stresses that bringing teachers ${ }^{\prime}$ and students ${ }^{\prime}$ style profiles into the focus of educational research does not necessarily help teaching practice immediatèly. In order to bé abble to make use of the sutyle thē teacher has to know the theoretical basis of the styles and how they manifest themselves in the teaching-learning process.

Keranto's extensive article examines, from both a theoretical and an experimental viewoint; the problems of the third stage of the author"s iongitudinal study begun in 1982 and discusses the following questions: a) What kind of solution strategies do children use in miltiplication and division tasks whose mathematical stmuture corresponds to that of the types $\bar{q} \cdot \bar{d}=\bar{x}, \bar{q} \cdot \bar{x}=$ a and $x \cdot \bar{d}=\bar{a}$, b) How are Piagetian abilities connected with the multiplication and division tasks mentioned above?; c) What role does the individual's memory capacity play in measurement and partitive division?; d) How and at what stage do pupils acquire the ideas of fractions and ratios involved in the con-
cept of rational number and how does this connect with the contents investigated in the earlier stages of the study?; e) What kind of leaming and tēaching situations emphāsize the interpretation and use of rational number as fractions and ratios? and f) How does the concept of rational number develop and what stages and associated solution strategies are involved in the process?

In the third article Bjorkqvist describes research of a kind which, as yet, has been rather limited in Finland. In this first attempt emphasis was put on developing the necessary routines for the simultaneous use of the microcomputer as an educational tool and a research instrument. The main reason was to develop a methodology for problem solving research in general, with an emphasis on school mathematics in as realistic situations as possible. Another set of goals were those comected with computer education - to know how to teach students how to use compitiers efficiently you need to know details about the way they think while they work with computers:

In the fourth article Kupari examines the position of applications in junior secondary school mathematics teaching. The au= thor deifberates upon the problems of the present situation by concentrating on three questions: what roie do applications piay in subject matter? How are applications taught? and of what significance is it to the pupil whether the applications are interesting or not? Then the author presents some empirical observations about the teaching of applications and learning results and sets forth some general outlines for improving the teaching of applications:

In the lāst article Silfverberg presents a research project in which an attemot was made to describe the development of pupils ${ }^{\circ}$ geometrical thinking mainly at the three levels of the van Hiele theory. The main purpose of the study was to answer the following questions: First, can we perceive in the pupil's thinking a transition from a holistic way of perception to one analyzing
and classifying properties and at what stage does such a transi= tion tākè plàe? Secondly, in às far às à pupil recognizes; names, classifies and compares figures analytically, are these properties separate or connected with each other?

The yeartook endes with a sumnary of a doctoral thesis by Vornanen, approved in 1984. The thesis describes the development of a concept of number in first-graders by using a developmental psychology approach.

Pekka Kupari
The Institute for Educational Research University of Jyväskyla

table of contents

PREFACE I
COGNITIVE STYLES AND STRATEGIES
Jarkko Leino 1
pRocesses and strategies in solving elementary
VERBAL MULTIPLICATION AND DIVISION TASKS: THEIRRELATIONSHIPS WITH PIAGETIAN EXPERIMENTS, MEMO-Ry capacity and rational number
Tapio Keranto 15
COMPUTER ANALYSIS OF COGNITIVE PROCESSES IN PROB-
LEM SOLVING
Ole Björkqvist 75
application in jumior secondary school level
MATHEMATICS
Pekka Kupari 95
STUDY CF LEARNING CONCEPTS RELATED TO TRIANGLES
and quadrangers on the basis of van hille's
TTEORY
Harry Silifverberg 115
THE DEVELOPMENT DF A CONCEPT OF NUMBER IN FIRST- GRADERS (A DEVELOPMENTAL PSYCHOLOGY APPROACH) SUMMARY OF A THESIS
Irma Vornanen 125
BIOGRAPHICAL NOTES 129

COGNITIVE STYLES AND STRATEGIES

Jarkko Leino

RESEARCH PLANS

The purpose of education in school is to influence the personal development of the educand. The teachers at school and parents at home try to understand the child's thinking and acting; as well as guide them by means of encouragement, advice, and argunent in the direction educationally valued by them. This. guiding process often happens unconsciousiy and only in close connection with the actual situation like e.g. by uans of remarks of unsuitable behavior etc. Through interaction with the imediate environment tie child gradually adopts social rules and principles behind them, while the amount of his knowledge and experience keops increasing and being structured. He learns proper ways of orientation to things; animals; people, situations ètc. He adopts and develops the ways and their critēria which guide and control his thinking and acting:

Psychology has developed systems for describing personality and its componentss by means of which hunan behavior can be described and explained. These systems are important for educators because they make educators inderstana the educand, structure his ways of thinking and acting; find out difficulties in certain situations or tāsks and reásons for those difficulties. Man's species-specific characteristics and ways of action serve as a foundation for descriptive syatems. Individuals differ fron ean other in term of each characteristic within certain iimits.

There are naturally very different types of characteristics: Some physical ones can be directiy seen and even measured (hight, age, slimess etc.) but intellectual characteristics can most clearly be seen only in actions (intelliḡence, impulsiveness, honesty étc.). Consequentiy describing many character= istics is at the same time describins anticipated, typical or potential activities (e.g. structure of abilities).

Human activities and performances have ioug been investigated in terms of the qualitative features as vell as structure. In order to cuescribe perfomances comprehensively, batteries of tasks have been developed which contain situations simulating humān activities often in a comparatively simpified form. Attempts have been made to describe the sōcalled intēlígent activities, verbal and problem solving activities in particular, as an important action characteristic of only the human being but, of course, other forms have also been investigated.

Action is characterized by similarities and differences. Dueing the process of scientific development experimental psychology and differential psychology have become more differentiated from each other in spite of the same purpose of describing the regularities of psychological processes. Experimental psychclogy has concentrated on the effects of different experimentā conditions in processes and to a great extent omitted individual differences including them in error term. Individual differences; on the other hand; form the starting point and explanatory basis for differential psychoiogy. The differing starting points of these two branches have understandably lead to different methodological solutions. Amons the representatives of the two branches there have been those who have consciously tried to narrow the gap thus createf. Some differential psycho= logists have tried to interpret traits considered as static to be dynamic and some representatives of experimental psychology have, in turn, tried to take individual differences into account in their formulations of theory. Inspite of that, fixed ideās often come to be seer consciousiy or unconsciously. Atten-
tion has been given to the fact even in Finland. For instance Wright (1984) considers the description of action strictly different from the description of traits based on individual differences and has reservations concerning the possibilities for combining these two description systems within the same research (Leino $\overline{\&}$ Léno 1982).

It is the writer's opinion that cognitive psychology serves a possibility for combining the approaches mentioned above. Thus the starting-point would consist, on one hand, of conception of man as an information processor with all the different stages of the process as well as monitoring and controling strategies, encoding and decoding processes and; on the other hand, the system theoretical description of the individual personality. An excellent description of this approach is giveri by Royce and Powell (1983): A corresponding approach is also represented by the studies in which an attempt is made to investigate the traditional ābilitiēs by interpreting abilities as dynamic conceptions e.g. how a particular combination of abilities is seen at the jevei of action (see ég. Leino 1981): We have the same question when cognitive styles and strategies are studied by asking what it means from the view point of the use of strategies that a person has a particular cognitive profile: (combination of cognitive styies).

From the point of view of educational science the results of both experimental psychology and differential psychology create only conditions for investigatins pupils personal interactions in educational practice. In order to be able to gilde the stu= dying strategies of pupils who are very much different in terms of their styles the teacher needs plenty of information about styles and their manifestations; sensitivity to "read" the pupil, and skili to comparatively spontaneousiy apply this information in different teaching situations. This skill presupposes such a degree of internalizātion that he does not have to remain reflecting upon the activity; the teacher generaily has to act spontaneously according to the demands of the situation.

There are no possibilities for reflecting upon consequences of different altematives in the teaching situation. In a certain sense the question of how to guide a verbally gifted child and how to guide an impulsive child are analogical. Both styles and abilities are manifested in action and form a reality for personalizing instruction.

STYLES AND STRATEGIES

Man is an active, a purposeful; and preorientating creature, and not only responding to stimuii. Life with all its aspects has personal meaning to man which cannot be explained only by means of theories of conditioning. Even though many things during one's life span seem to take place randomiy, purposefūnēss comes to be seen in the use made of situations. Friendship relations, career, and interests show conscious choice and goaiseeking behavior: Risks and strain are connected with many goals but man is ready to face them and even consciously takes risks.

In cognitive science man's interaction with his environment is considered as information processing. The flow of information in man's cognitive system can be described by means of different stāges and speakk about different functional units ilke sensory register, short-term memory, working memory, and long-term memory. From the point of view of learning the most important are awareness of information; monitoring, and control by means of which man selects, compares, manipulates, transforms, encodes, and decodes information in the memory. It is these mechanisms, monitoring and controiling processing; which essentially influence how things are learnt and how they can be used. Strategies and styles are connected with these questions of how.

To monitor and controi mechanisms of the information of \bar{a} certain situation are isually cailed strategies or cognitive styles according to how closely connected they are with the type
of situation and the task. Bruner, Goodnow and Austin (1956) used the term strategy to describe the ways which the subjects used while looking for rules for categorizing the figure cards given to them. Later on the term has been particularly used by representatives of experimental psychology to denote ways of acting and thinking which are used in certain types of situations or tāsks. In studies of school leaming it has been used e.g. of the ways of retaining written texts (Wright et al. 1979) or the ways of solving certain types of elementary equations (Keranto 1984). Based on the preferences for different strategies the subjects have been categorized as e.g. hoilstes or serialists, which is an approach typical of differential psychology. If the connection with the type of the task has simultaneously been given up, which is easily revealed by the language of the report, the transfer has aiready been made to the field of cognitive styles.

Cognitive style can be defined as a person's individual way of monitoring and controiling information processing. Styles are comparatively stable acquired habits of directing àttention, abilities, and strategies in difrerent tasks. Even though styles àe comprehensive, several style dimensions are needed to cover e.g. Ways of processing typicat tasks in school. To change the styles generaliy presupposes long-lasting and systematic guidance.

Figure 1 cleariy shows the position of styles in the comprehensive description of personality (Royce \& Powell 1983, 13).

FIGURE 1. The Basic Systems and Interactive Relationship of Integrative Personality

As can be seen in the figure personality is considered as a suprasystem which consists of two lower-level systems, namely the systems of styles and values: Lower in the hierarchical description are the cognitive and affective systems which monitor the sensor motor system of senses and muscies. The higher the hierarchical level the more important the units are in the integration of personality; the stabler they are, and the greater priority they have in terms of action. The cognitive system contains the system of abilities as dynamic concepts whtch is to be understood as a factor description of potential skills (see also Gustafsson 1984): The affective system of the corresponding level can be considered as a factor description of emotions. The monitoring system of styles and values direct objectives of action of the lower systems so that styles are in
charge of how processing goes on and values what goes on-

Cognitive styles have been investigated for decades in very many contexts and attempts have been made to extract ways of processes characteristic of individual in terms of which individiajis are different from each other. The system of description of styles which has been used in our project is based on Letteri's research (1980). The system consists of seven dimensions which were originally discovered when an attempt, was made to comprehensively explain the school achievements in academic subjects. The central stage descriptions necessary in information processing can be discovered even by means of logical analysis in the different dinensions of the system.

1. Focusing = Nonfoousing; the dimension is concerned with the way of selecting relevant details from the information offered by environment:
2. Field-Independent - Field-Dependent (Analytic = Global); the way of analyzing the field or perception and discovering the needed information in the complex situation.
3. Reflective - impuisive; the dimension is concerned with how fast a person is in his decision-making process.
4. Tolerant - Intolerant; the dimension deals with the degree of a person's tolerance of ambiguous or unfamiliar information.
5. Leveling - Sharoening; the way of giving attention to items which seem familiar in the situation versus different compared with earlier items.
6. Broad versus Narrow Categorizing; the extent to which an individual uses many narrow versus few comprehensive categories in processing information.
7. Cognitive Complexity; the way of evaluating and dealing with the enviroment by means of efther a complex or a relatively simple conceptual system.

The first two dimensions are connected with different ways of perceiving and they are to be seen in the perception strategies an individual deais with varying tasks while the two last men-
tioned dimensions describe constructing the conceptial system and its use in evaluating the information offered by the environment. The fifth dimension connects the perceiving and the conceptual system with one another and also as an influence on the development of cognitive constructs. The third and the fourth dimension describe how a person begins to perform a task or how he rejects it (the defence mechanism of self).

The number of style dimensions is altogether comparatively suall which is quite natural in the beginning of the project. If the systen proves inadequate it has to be complemented naturaily. The relations between dimensions have not been analyzed more closely even though the correlations between the measures used have been iow. So far the dimensions have been considered parailel even though e.g. Royce and Powell (1984; 135) consíder Field-Indépendence - Field-Dependence more general than the other style dimensions mentioned above.

STYES AND TEACHING

Relationships between cognitive styles and teaching and leaming have not been much investigated. Styles are related to teaching methods preferred by teachers in such à way $\overline{\mathrm{Q}} . \overline{\mathrm{g}}$. that Field= Dependent teachers prefer discussion method to lecturing which is teacher-centered (Messick et al.)(1976). Styles are aiso related to the subject that teacher represents (Rancourt \& Diome 1981). Styles explain as well subjects which students prefer. By investigating style profiles of students preferring each subject and by comparing them with the profiles of teachers of each subject a clear correspondence can be noticed at the senfor secondary sshool level. It is to be seen that styles are connected with career preferences. The student whose styleprofile resembles that of the teacher appreciates this kind of teacher more than the one with a different profile because it makes commication easier (Witkin ēt all. 1977). On the other hanc the teacher can develop his repertoire so that he can
better respond to the expectations of students of differing styles (Tinsman 1981).

The research resuits which we have received in our project show that styles are connected with teaching methods the students prefer and learning difficulties they heve (Lapatto 1984). In studying mathematios Field-Independent students un solve problems better than Field-Dependent students who have difficulties in finding relevant information in a task; particularly if it contains surplus information. Reflective students like teachercentered instruction better. Impuisive students, on the other hand, get easily tired of similar tasks and working so the tendency to make mistākē increases. Thēse results correspond to those received in other countries where the relationship between Field-Dependency and probiem solving, surplus information and teaching methods have, in particular, been investigated (Numendal \& Collēa 1981, Roberge \& Flexer 1983, Strawitz 1984).

The resuits we have received of the relationship between learning difficulties and styles compare well with those received by Letteri (Aimo $\&$ Viilo 1983, Létteri 1982). According to them if a pupil can be characterized by at least three of the following traits, namely Nonfocusing - FieldeDependent Impulsive - Intolerant - Leveling - Broad Categorizing Cognitively Simple, hè hās difficultiès in school work.

Styles do not seem to change much during the school years if there is no systematic guidance to change them. Letteri's results (1982) compare well in this respect also with Finnish replication research (Vifio, in progress).

A study is in progress concerning the relationship between the styles and the strategies used in mathematical tasks and topics as well as attitudes towards mathematics. According to the theory styles should become manifest in the choice of strategies. In the remedy of iearning difficulties the styie profile

18
is considered only as an indicator of inadequacies and weaknasses in processing: Argumentation has naturally to begin at the level of strategies but according to the basic idea the new strātegiēs are gradually made more generalizable and their usefulness is really shown by means of their transferability through a variety of tasks:

The sustyles enphāsize the student's characteristic ways of processing which makes our project different fror psychological studies. Knowing the student's styles is a key to understanding him. Cognitively oriented psychoiogical research on strategies can have a theoretically fim basis but educationally it remains quite superficial with few consequences of practical importance. The styse system is very central for understanding the student's personality and gives a comprehensive basis for guiding the educational progress with the student as a startingpoint. To know and to understand the learner better is what our educational system needs most. The purpose of our project is not to change the school system but oniy to improve the possibilities of giving more attention to the student's personality as a basis of instruction. There are greater possibilities for these attempts now with the new school laws making it; in fact; easier to use flexible student grouping which in many cases means smaller groups.

In the so-called time resource quota system (tuntikehysjärjestelmä) the teacher of a certain subject gets more time for instructional purposes and each school is given a possibility to use flexible grouping. One experiment of our project concerns grouping c the basis of students impulsivity which according to the pilot stydy was connected with the teaching methods students preferred but not with their school achievements (Lapatto 1984). By means of grouping teachers hopefuily give more attention to student characteristics and hence make the choice of teaching methods easier.

Bringing teachers and students style profiles onto the focus ō educational research does not necessarily help immediately teaching practice. In order to be able to make use of the style the teacher has to know the theoretical basis of the styles and how they manifest thenselves in teaching-learning process. This helps him to become aware of his own styles and understand the students different approaches to tasks and situations. Only in this way can he flexibly take these into account in his teaching and help the students who have leaming difficulties.

It is characteristic of this projeci to employ teachers who are post-graduate students of education as researchers. Thus there is a ciose connection between research and real school learning situations: These teachers gather material conceming the diagnosis of styles and try to find out instructional means of using more effective strategies having their own students as subjects.

REFERENCES

Aimo, K. $亠$ Viilo, M. $\mathrm{L} .(1983)$ Kognitiivinen profiili ja koulusaanitukset (Cognitive profile and school achievements). University of Tampere. Reports from the Department of Education Ser. A 29.
Gustafsson, J.-E. (1984) A unifying model for the structure of inteliectual abilities. Inteliigence $\overline{8}, 179-203$.
Keranto, T.(1984) Kysynyksià; huomioita ja tuloksia suoritusprosesseista perus̃tavissà sanallis̄is̄sa kèrtó ja jākolāskutehtavisse (Quéstions, obseervations and results about processes on solvins elementary verbal multiplication and division tasks). In J. Leino (Ed.) Matematifkan opetuksen tutkiminen ja kehittłminen. University of Tampere. Reports from the Department of Education, Ser. A 33, 7-20.

Lapatto; R. (1984) Cognitive style in solving mathematical problems. In P: Kupari; (Ed.) Mathematios education research in Finiand. İearbook 1983. University of Jy= viskyla. Reports from the Institute for Educational Research 347.
Leino, A. - \& Leino; J. (1982) Oppimisvaikeudet kognitivis ten prosessien näkokulnasta (Leaming difficulties from the point: of view of cognitive piocesses). Universtty of Helsinki. Reports from the Institute of Education 97.
Leino, J. (1981) Psychometric test theory and cognitive processes: A theoretical scrutiny and empirical research. University of Helsinki. Institute of Education: Research Builetin No: 57:
Letteri; C.A. (1982) Cognitive profile: relationship to achievement and development. In Personality-EducationSociety; 8th World Congress of W.A.E.R in Helsinki, 540548.

Letteri, C.A. \& Kunzz, S.W. (1980) Manuai of instruments and procedures for testing and constructing cognitive profiles: Burlington; Vt.: University of Vermont.
Messick; S. (1976) (Ed.) Individuality in leaming: implications of cognitive styles and creativity for human development. Sān Francisco: Jossey-Bass.
Nummedal; S. \& Collea; F: (1981) Field independence, task ambiquity, and performance on a proportional reasoning tāsiks. Journal of Research in Science Teaching 18, 256-266.
Rancourt; R: \& Dionne, J. $-P$. (1981) A study of the teaching and iearning styles in Ontario Schools. Ontario: Ministry of Education.
Roberga,J.J. \& Flexer, B.K. (1983) Cognitive style, operativity, and mathematios achievement. Journal for Research in Mathematics Education 14; 344-353:

Royce, J.P. \& Powell; A. (1983) Theory of personality and individual differences: factors; systems, and processes. Englewood Cliffs: Prentice-Hall.
Strawitz; B.M. (1984) Cognitive style and the effects of two instructional treatments on acquisition and of the ability to control variables: A longitudinal study. Journal of Research in Science Teacining 21, 833-841.
Tinsman; S : (1981) The effects of instructional flexibility training on teaching styles and controlled repertrire. In B.R. Joyce, C.C. Brown \& L. Peck, (Eds.) Flexibility in teaching. New York: Longman.
Witkin; H.A., Moore, C.; Goodenourh; D. \& Cox; P. (1977) Fieldindependent cognitive styles and their educational implications. Review of Educational Rēearch 47; 1-64
von Wright; J. (1984) Oppimisen strategian ja oppimistyylin kẻsitteista (on the concepts of iearning strategy and learning style). Kasvatus $1 \overline{15}, 302-306$.
von Wright; J., Vauras, M. \& Reijonen, P. (1979) Oppimisen strategiat kouluiassä 1 (Learning strategies in school age 1). University of Turku. Studies in psychoiogy 33.

22

PROCESSES AND STRATEGIES IN SOLVING ELEMENTAPY VERBAL MULTIPLICATION AND DIVISION TASKS: TEEIR RELATIONSHIP WITH PIAGETIAN EXPERTMENTS, MEMOry capactit and rational numer

Tapio Keranto

INIRODUCTION

This report examines from both the theoretical and the experi= vental viewpoint the interrelationships between the mathema= ticological contents which were the onjects of study in the third stage of a iongitudinal study begu in 1982 (for reports of the first two stages of this study, see Keranto 1983a, 1983b, 1984). The mathēatico-logical contents under investigation were the following:
A. Piagetian abilitiés (the understanding of transitive judgement, quantitative correspondence, and multiple correspondence) see e.g. Brafnerd 1978; 1979; Copei=nd 1979; Flaveit 1963; Keranto 1979; 1981; 1983a, 1984; Piaget 1952; Plaget et al. 1960)
B. Memory capacity (the retention of number words - in short term memory - throughout a given operation, e.g. the arranging of blocks into sub-sets of a given size (see Case 1972, 1980; Keranto 1983a; 1983b , 1984; Leino 1981; 1982):
C. Sequence skills (skills relating to the listing of number words; e.g. upward and downward listing from a given number by a given number of number words and insting in
given intervals) (see Fuson \& hall 1982; Fuson et al 1982;
Keranto 1981; 1983a, 1983b, 1984).
D. Muitiplication skills and related counting strategies on elementary multiplication tasks of the type q.d=x.
E. Division skilis and related counting strategtes on elersentery division tasks of the types $x \cdot d=a$ and $q \cdot x=a$.
F. Rational muber interpretations as rations; fractions and quotients (see ē.g. Freudenthal 1973; Greeno 1976; Kieren 1975; Noelting 1980a, 1980,b; Payne 1976; . Piaget \& Inhelder 1952).

There is little knowledge based on both theoretical studies and experimentai measurements as to how the contents outlined above interconnect in the mind of the individual at any given point of time. Froil the point of view of mathematical theory and of rational task analysis, these contents are related, and their interrelationships are examined briefly in the following section (for the idea of rational task analysis, see Resnick 1976).

THEORETICAL INTERRELATIONSHIPS

Of central importance in this study is the arithmetic of natural numbers and the way it relates to the concept of rational numbar. The basic operations performed with natural numbers are adition and multiplication. In Peano's axiomatic system these operations are explicitly related. The multiplication operation is defined as a recursive addition operation as follows: m $(n+1)=m \cdot n+m$, where $n+1$ rafers to $n ' s$ successor n. Addition for its part is defined as a recursive operation using the idea of a natural number successor: $m+n \equiv$ ($m+n$) +1 (for a more detailed expositíon; see ē-g. Landau 1960).

Peano's system gives prominence to the "holistic" nature of atural numbers and their connection with comting activity, of whose ēseentiā featurē it can be considered an abstrection (cf. Brainerd 1979; Keranto 1981). It is consistent with this to trace the process of learising to multiply natural numbers to the 1 baming of sumber listing and addition. In this stưdy number 1isting skills are representod by "llistine from a eutain number by à certain number and/or sin certain intervals" (see Reranto 1983a, 1983', In fact fros the point of view of rational task analysis there is reason to assume that the nost demanding listing sixilis concerned ais on the level of eieaentary wentai mitipícation tasies. This point will be taken up later when strategies used in solving multiplication and division taskes are examined.

The other way to sej! to define natural nubers is based on the idea of bijective function. Natural numbers are defined as finite cardinal numbers which are equivalence classes of sets of equal power. In this way the operation of adding and muitipiyine natural numbers comes to be defined thus: let $\mathrm{a}=$ card(A) and $b=c a r d(B) ; a+b:=c a r d(A U B)$ where $A n B=\varnothing$ and $a \cdot b: \equiv c a r d(A \bar{x} B)$.

Thus in the cardinal approach addition and maitipiication are not explicitly bound to each othar as in Peano's ordinal system. For the multiplication operation is defined as the power of the nroduct set. Moreover the cardinat approach views numbers as individual entities: in other words it is an "atomistic" approach in contrast to the "holistic" character of Peano's system (cf. Brainerd 1979; Keranto 1981):

Piagetian Abilities and Arithmetieal Skills

Piaget's theory of developmental psychoiogy gives no direct expression of how such things as conservation, classification and certain relational judgments are connected to the usual contents of school māthematics tēaching ānd the strāēgies

$$
3 \quad 25
$$

appifed to them. It has been one task of the iongitudinal study to seek to explain how success/failure on tasks such as those involving conservation, classification and transitive reasoning relate to and influence success in school arithmetic and measurement tasks and the kinds of strategies used.

On à general level positive correlations have been observed bêtween Piāgetiān ābility sim variables and arithmetical sum variables. This does not, however, necessarily show anything more than that Plagetian tasks may be "good" predictors of arithacts performance at a certain school level in the same way is intelligence tests aree "good" predictors of success in certain subjects (cf. Hiebert \& Carpenter 1982). This kind of "global" approach does not give any clear indications as to how Plasetian abilities relate to school matnematics and whether trairiing of these abilities hàs any influence on performanee in arithmetical tasks.

On the specific level certain types of arithmetical addition and subtraction tasks logically require a grasp of conservation and class inclusion. This is particularly the case with problems where the addend or minuend/subtrahend is the unknown quantity, and with tāsks relating to the comparison schema. In the case of tasks relating to combine-and-change schemata, in which the part or the start set \& change are given; demands on logical inference ability are not so great. This picture is supported by correlations obtained in experimental measurements (see Hiebert \& Carpenter 1982; Keranto 1983a, 1983b). On the other hand, even high correlations between Piagetian abilities and performance on addition and subtraction tasks do not indicate whether piagetian abilities are necessary prerequisitēs of ärithmātic skills and of the acquisition and training of their associated strategies. "All" they show is that the more demanding arithmetic tasks are more closely connected with logical inference abilities than mathemātical tāsks that can be solved by direct counting algorithms or routine counting. In fact, results suggest that pupils may use considerably developed counting stratégies, e.g.
counting-on strategies, though they are non-conservers (Hiebert et al. 1982; Keranto 1983a; 1983b; 1984).

For the purpose of the present study, it would be important to know how Piagetian abilities are connected with oridinary school multiplication and division tasks. This is here examined from the theoretical point of view. As I have observed in my previous studies, pfaget and the Geneva school in general have focussed their attention from the outset on prenumerical functions and their internalisation as nmental" operations. Muit主pi主cation and division operations in the development and training of the concept of number form no exception. The research sample is dominated by the cardinal view of number based on one-one correspondence. Counting and the search for the significance of number words are of secondary importance: Consequentiy; for Piaget multiplication is bound up with the understanding of miltiple correspondences (see Keranto 1979; Inhelder \& Piaget 1958; Piaget 1952). On the operational level the child should be able to generailise $\mathrm{N}+\mathrm{N}$ as the multiplication $2 \overline{\mathrm{x}} \mathrm{N}$; $\mathrm{N}+\mathrm{N}+\mathrm{N}$ as 3 x N etc. In addition, if it is known that $\bar{a} \bar{b}=\bar{c}$, then the child should be able to understand on the operational level that $a=c: b$ and its inverse. In other words, ās in the case of addition operations; Ptaget requires the understanding of inverse relation for maltiplying operations, too. A typicaily piagetian experiment designed to define the developmental level of the multiplication operation reveals one further notable feature. Piaget seeks to innk the understanding of multiplication with partitive division and moreover to a specific one-one correspondence strategy. In other words the strategy hinted at is none for me; one for you, one for her etc." This experiment is examined below (ç. also Keranto 1979; Piaget 1952, 203-220).

There are bunches of 10 flowers (e.g. 5 bunches) and 10 flower vases. The child places the flowers from one bunch into the vases (one in each) then transfers them to a jus, then does the same with the second bunch. At this point the question is posed: if the flowers in the jug are put back into the flower vases;
how many flowers will there be in each? The same procedures and questions are repeated with the remaining flower bunches. If the child is able to infer the multiple correspondences 2 and 1,3 and 1, 4 and 1, 5 and 1, then according to Piaget this is an indication of the understanding of unitiple relation on the operational level. It should be noted that iogicaily the above process is connected witin conservation and transitive judgement. For looking at it logimally the child must think of the number of flowers in the gniup as the same regardiess of its spatial form. In addition; by means of putting the flower \sim into the vases (observed/concrete one-one correspondence) the quantitative equivalence of the flower bunchē is established by transitive reasoning. It is not surprising; therefore, that Piaget links the operational developmental level of muitipiqcation and division ideas with the developmental level of conservation and transitive reasoning.

For the purposes of the experimental section of this study the above experimental design was developed in the direction of \bar{a} standard measure in such a way that when difficulties arose during the performance process, the conservation and transitive judgments involved in the process could be checked by means of standard questions (see Appendix 2).

Counting Strategies Relating to Multiplication and Division Skills

The multiplication and division tasks in the experimental section of this study are in mathematical structure of the types $\mathrm{q} \cdot \mathrm{d}=\bar{x}, \mathrm{q} \cdot \mathrm{x}=\mathrm{a}$ and $\mathrm{x} \cdot \mathrm{d}=\overline{\mathrm{a}}$. Further, the study does not restrict itself to partitive division situations for division tasks, but seeks also to investigate measurenent divisions carried out with corresponding numbers. In a partitive division situation, the number of the part sets into which the basic set is to be divided is given. In measurement division, it is the number of objects in the part set which is given. The task is to
deteraine the number of sub-sets (see Appendix 1: partitive division tasks PARD and measurement division tasks MEAD). There is no experimental evidence as to what kinds of solution strategies children use on the miltiplication and division tasks concerned. The investigation of this is one of the main goals of this study (see Section 2: Theoretical interrelationships). Here the question is considered from the theoretical point of view.

On the basis of the previous studies concerning addition and subtraction strategies it can be assumed that children way use the following strategies in internalising and abbreviating operation on the multiplication type $m \cdot n=x$ (of. Keranto 1983a, 1983b; 1984):

1. Long processes: The child takes the required number of part groups (times) containing the number of members indicated by the maitipifcand and counts the members of the whole group one by one; e.g. $3 \cdot 5=?: 1, \ldots 5,1, \ldots 5,1, \ldots 5$; $1, \ldots 15 \Longrightarrow 15$
2. Abbreviated processes: the child makes use of now better developed number-iisting s̄kills and is able to do the tāsk mentally; e.g. $3 \cdot 5=?: 5,10,15$ or $5,10,11,12,13,14,15 \rightarrow 15$
3. Rnowledge or derived knowledge: the answer comes off the shelf" ($t<2 \bar{s}$); it emerges from the child's explanations whether answers to previous tasks have been made use of (derived knowledge)

What then $\overline{a r e}$ the possible counting strategies relating to division skills? Since counting strategies relating to measurement and partitive division situations are different to some extent; they are here treated separately to start with. First, the measurement division strategies:

$$
6
$$

1. Long processes: the child takes the number of objects to be divided and groups them into sub-sets of the size indicated by the divisor and finally counts the number of

2. Abbreviated processes: the child makes use of now better developed number=listing skills and is āble to do the tāsk

3. Knowledge or derived knowledge: the answer is taken "off the shelf" ($t<2 s$); it emerges from the child's explanations whether use has been made of the inverse relation of multiplication and division efther in connection with previous tasks or multiplication tables; e.g. the answer to the task $\bar{x} \cdot \overline{5}=15$ is 3 ; because $\overline{3} \cdot 5=15$; or because "I just did the ‘same' sum. ${ }^{n}$.

Finally, the partitive division strategies are as follows:

1. Long processes: the child uses syetematic none-one systems" (cf. Piaget) or a "try and see" strategy; e.g. 50x=15; one for the first,...one for the fifth, a second for the first:-: \exists second for the fifth; three for the first..: three for the fifth $->3$; or using the ntry and seen strat\bar{e} egy starts with the 5-member groups, in which case the whole set divides out equally but there is not the appropriate number of sub-sets; continues with 4-member groups, ieading to unequal division; then continues with 3-member groups, which yields 5 equal part-sets $->3$
2. Abbreviated processes: the child uses now more developed number-iisting skills linked to a "try and see" strategy; e.g. 50x=15; 5; 10; 15 ; or the reverse, and notices that there is not the appropriate number of parts; then tries with 4; 8; 12; 16 and notiaes it does not work; then tries in intervals of 3 and so finds that 3 is the answer:
3. Knowledge or derived knowledge (see the corresponding ievel for measurement division).

As can be seen from the above; the strategies used on measurement and partitive division situations at levels 1 and 2 differ to some extent. In fact with measurement division what the number of sub-sets should be is given. Presumably as a result of this; the tasks in question can be solved on the concrete operationai level without any strain on the memory. In addition, the trial and error procedure is presumably easy to eliminate. For it is known at the outset how to begin grouping or from which number to begin listing and by how many. In the case of partitive division the situation is different when the subject does not know or cannot use a systematic one-one strategy. While using the "tryy and see" strategy, he has to retain in memory the number of sub-sets: This constitutes an additional load on memory as compared with the measurement division sitiuation. At present there is no knowledge of what role the individual's memory capacity plays in such division tasks. This question is investigated in this study through the development of a memory capacity measure IPC related specifically to division situations (see Appendix 4). In the test in question the subject has to group a set of 15 objects into sub-sets of 3 while at the same time retaining in menory a certain number of oraliy given number words. From the previous studies there are grounds to assume that memory capacity measured in this way shouid correlate particularly with performance on multiplication and division tasks (on the content-specific nature of memory capacity, see Keranto 1983a, 1983b).

The foregoing aralysis suggests that number-listing skills in particuiar are closely connected with multiplication and division skills and strategies. It is to be assumed that this will be observable in the experimental section of this study in the form of a high correlation between number-ifsting skilis and multipifcation and division skilis. In addition it can be
assumed that Piagetian abilities wili not show a marked correlation with multiplication and division skills. As pointed out above, Páaget's experimental designs are suggestive of á certain specific strategy (the "one-one" structure) and of partitive division.

From Natural Numbers to Rational Numbers

Addition and multiplication with natural numbers are central counting operations, in other words the resuits of adding or muitiplying two natural numbers is always a natural number. The situation is different as regards the inverse of these operations, subtraction and division. This means that using the set of known natural numbers it is not aiways possíble to solve the equations $m+x=n$ and $m n=x$ where $m, n \in N$.
For "uninhibited" performance of mathematical operations, therefore, the range of numbers needs to be expanded. The expansion of set N to a set of whole numbers Z is initially carried out in such a way that the solution of the equation $m+x=n$ is also possible in cases where $n<m$. For the set of ordered pairs (m, n) $\in \mathbb{N N}$ an equivalence relation is defined which divides the product set into the equivalence classes we refer to as whcle numbers. Thereafter multiplication and division and order are detemined for the set of "numbers" in question in such a way that the basic properties of natural numbers are "preserved" in set Z; too. In fact it is easy to demonstrate that the set of non-negative whole numbers and the set of natiural numbers are identical. In other words the set of naturai numbers and the set of non-negative whole numbers are describable as unequivocal inversions of each other such that addition and muitiplication and ordering are preserved (for further details see e.g. Pehkonen 1978,137-175).

The set of whole numbers Z is still deficient, however, in that it does not always allow a solution of the other earation $m x=n$ where $m, n \in Z$. The set Z is therefore enlarged into the set Q of rational numbers, where the equation is always soluble provided
that $m \neq 0$. The expansion is carried out here too by means of an equivalence relation. An equivalence relation is defined for the $\bar{s} \bar{t} \bar{z} \times \bar{z}$ which divides the members of this set into equivalence classes known in mathematics as rational numbers. For the set of rational numbers obtained, addition and muitiplication and ordering are then defined in such a way that the properties of natural numbers are preserved. In fact it can be shown that rational numbers of the form (m,i) are isomorphous with whole numbers; in other words (m, i) and m are equivalent where $m \in Z$. Finally this leads to the familiar result that rational numbers can be expréssed as a quotient of two whole numbers; i.e. (m, n) $=\mathrm{m}: \mathrm{n}$, where $\mathrm{n} \neq 0$.

In the elementary school syllabus, an algebraic approach to the expansion of the number range described above is to be observed. As early as the fourth grade, the concept, reading and writing of whole numbers; as well as their ordering by size and comparison, is dealt with (see Kouluhallitus 1982). But it is also to be noticed that the teaching of rational numbers is begun on the third grade with the teaching of the concept being based on the idea of fractions. Also introduced is the expression of rational numbers as decimals. On thēse bases it is then sought to deepen and broaden the concepts of whole numbers and positive rational numbers in parailè and separately from each other. It may well be asked, as Leino with good reason has done, how desirable it is to adopt whole numbers in elementary school mathematios teaching from the point of view of both learning and of needs (see Leino 1977,75-78). Unfortunately the situation at the moment is such that there is no knowledge based on detailed empirical research of how pupils understand whole numbers and of what conscious processes and other factors the learning of finite numbers demands. This would be an important and interesting area for research; but is not taken up any further in this sutudy. Instead the focuis of attention in the present study is on how at what stage pupils acquire the ideas of fractions and ratios involved in the concept of rationail number and how this connects with the contents
investigated in the earlier stages of the iongitudinal study.

Rational Numbers as Rations, Fractions, and Quotients

The learning and teaching of rational numbers involves several interpretations in which different conscious and pedagogical structures and strategies are emphasized (for the different interpretations of rātional number, see Kieren 1976). Of central importance in this study are the kinds of learning and teaching situations which emphasize the interpretation and use of rational numbers \bar{s} fractions and ratios. Aiso ō interest are the "precomparative" judgements involved in division situations with discrete object sets. These māy be related via partitive divisiou processes to the idea of rational number most closely connected to continuous models. By comparative judgenents here is meant the comparison between the celative sizes of two ratios in quantitative contexts: More precisely; the focus of interest here are those situations where the pupil has to be able to decide whether the relational parts of certain fraction, ratio or partitive division contents are equivalent or not. The intention is thus to investigate how the concept of rational numer develops and what stages and associated solution strategies are involved in the process.

Rational Numbers às Retios

The mentat development of the idea of ratio and proportion has been investigated in various mental contexts. Piaget's studiēs in parti ular heve been pioneering (probability and chance $;$ Piaget $\dot{\&}$ Inhelder 1951; geometrical uniformity / Piaget et ál 1960; certain physical laws; speed and time / Inhelder \& Piaget 1958; Piaget 1970; 1971). Karplus and Peterson; and Iater Noel= ting, have tried to develop Piaget's in̄e of research in such a way that it might be possible to present the levels of operational thought by means of execintive strategies (Karplus \& Peterson 1970; Noelting 1980a,1980b). Given the line of research
and the experimentai ains of the present iongitudinal study; Noeiting's experimental designs and research angle are of particular note. Indeed, Noelting saems to have developed a measure of the concept of ratio number by means of which the mental level of the concept of ratio in situations involving comparison can be rellably weasured. The following table gives a condensed picture of Noelting's experimental design, with a typical task and description for each level.

> TABLE 1. Developoental Levels ne the Concept of Ratio
> f.ccording to Noetting (crf. Noelting 1980a;231;

[^1]35

The basic question posed in this experiment is: which nixture tastes sweeter (or more of orange), or dis both mixtures ajate the same (cf:Appendices 3 and 5)

Ncelting distinguishes two main types of solution strategy vo used on this task: Where the subject operates on the "inner statel of each mixture (Juice vs. water) and bases his judgenent on the products he obtains (in certain cases on the resulty of division), Noelting talks of a "within strategy". Foi instance,
 one is weak and this one is juicy, so this one ($2: 1$) 15 sweeter"; on the stage IIA task $1: 1 \mathrm{vs}$. $2: 2$ the subject may that nthis one is just right; and so is this one, so they are just as sweet" (these examples are taken from interviews con ducted during the experiments in the present study). On the stage IIIA task $1: 3$ vs. $2: 5$ the subject may work out how mach water there is to one part juice and come to the figures 3 and $\overline{2} 1 / 2$; therefore che $1: 3$ mixture is weaker anc the $2: 5$ ougture sweeter. On this basis it can be observed that the within smaty egy is related to and leads to the understanding of percataise num ars. The other main type of strategy is the between stant ogy and relates and leads to comon denominator algorithoms, as the following example wil. show. Jsing the between strategy of ine stage IIIA task $1: 3 \mathrm{vs}$. $2: \overline{5}$, the startirs point or focal point is the "Hower" inner state 1:3. This is worked on (e.g. cof ted to higher terns) so that the quantities of juice are aust: "There should now be six glasses of water to two oi juice, Stroe there are five glasses of water in this one, this (2:5) is cie s̄weeter milxture:"

Noelting's theoretical and empirical resuits strongly susgegt that the system described above forms a hierarchy (Table 1), Indeed the basic idea is that the strategies at each stag contain the essential peatures of the strategies of the pryioig stage. For the pupil to advance from one stage to anotyen an qualitative change has to happeri in the strategies used, feoor' ding to Noeiting, the remark "Now ì get it!" signals that the
pupil has made the appropriate modifications to his executive strategies (cf. learning with understanding/ Ausubel 1963; equilibrium / Beth \& Piaget 1966; adaptive restructuring / Noelting 1980b): As can be seen in Tabie 1; stage IA tasks are solved via comparison between the first terms (between strategy). This operation is included in the stage IB stirategy, in which by means of the between strategy the first terms are found to be the same and the sucond tems different. To solve stage Ic tasks it is not sufficient, to soncentrate on one "between" relationship at a time; there also has to be an examination of the "within" relationships. To solve stage ita tasks the chilé shouid understand that these tasks are solved either by means of the within strategy or by means of between strategy. At stage IIB, miltiplication and/or division operations become necessary: The solution of stage inia tasks roquires for the first time a synthesis of two operational systems. The pupil has actianlly to be able to combine multiplication and addition operations aith each other: Since at stages IIIA and IITB the product;s of certain operations are subject to further operations; it is now a question of operations on oparations or formal operations (cf. e.g. Beth \& Piaget 1966).

The above analysis leads to the logical conclusion that multiplication and division skills become really necessary on tasks at the IIB stage: The experimontal measuremants in the present study were carried out on second graders ranging in age between 8 and 9. According to the age estimates presented by Noelting, most of the pupils in question might be expested to ve at stages IC and IIA. Thus it is to be expected that the stages measured on the ratio test will not be particulariy related to the uniriplication and division skills and their associated countirg strategjes examined in the present study.

Rational Numbers as Fractions and Quotients

When we seek to answer the question "How great a part?" or "What part of the whole?" we are dealing with the fraction interpretation of rational numbers. This interpretation centres on the division of a certain whole into parts of equal size and the simultaneous olsservation of the quantitative relationship of the parts thus formed and the original whiole. We also speak of fractions of a whole and write these as a / b. Here b is known as the denominator and indicates the number of equal parts into which the whole has been divided, and a as the numerator, showting how many equal parts are observed. As is apparent from what was said in the previous section, on the more demandins ratio number tasks pupils may make use of che fraction symbolics they have learned. In other words the ratio may be expressed as a/b, but this is fundamentalily a question of the quantitative comparison of two parts of the whoie. If for instance we have 4 parts juice and 6 parts water, then the quantity of juice is $4 / 10$ or $2 / 5$ of the mixture, and the quantity of water. correspondingly $6 / 10$ or $3 / 5$. But the ratio of juice to water can also be expressed using the fraction symini sysiem as $4 / 6$ or $2 / 3$, but this must be read as "four to six". Tais suggests; then, that the teaching of the symbolic expression involved in the concept of rational number should begin with fraction inter= pretations and the symbolics learnt can then be employed in the teaching and learning of more demanding ratio number tasks. (This proposal is in keeping with the elementary school mathematics syliābus; Kouluhailítus 198̄2).

The problen is at what stāge to teach fractions and to what observational models to ise from the point of view of fraction interpretations. Both surface models and set models have been used in school mathematics. Instructional research carried out hās shown surface monels to be clearly superior in the teaching of tasks involving the addition or subtraction of fractions of a different denominator and verbal ratio problems. Surface models
also lè to better resuits on tasks involving part-part and part-whole comparisons (Greeno 1976; Payne 1976). These results suggest that it is more difficult for pupils to perceive partwhole relationships when models involving discrete sets of objects are used. it would appear that set models are closely related to the idea of ratio muber examined above where comparison focuses on the relationship between parts. In addition, the results indicate that the idea of equivalent fraction numbers is learnt more easily with the help of surface models. The equivalence of the 'fraction numbers" $1 / 2$ and $2 / 4$ can be observed in a very concrete way with the help of 'rectangular' or 'round' models; where the size of the units to be compared remains constant (cf. Greeno; Leino 1977,77; App. 3 and 6). With the set theory approach the situation is different. For the change in the denominator entails a change in the number of wabers in the set. The quantitative invariance of the units to be compared is thus lost. The consequences are evident in the results obtained in instructional research.

The above observations indicate that the learning of the concept of rational number is at first tied to certain models and interpretations. It is apparently only after a long process of teaching and learning that the pupii is abie to switch freely between models and interpretations. This is an area which the present study also seeks to survey empirically. In connection with the fraction interpretation $\mathrm{a}^{\prime \prime}$ caks" model is used. The pupil has to compare certain fractions (portions) of equal-sized cakes and decide if there is more to eat in one than the other or the same amount. The fractions in question are chosen to correspond with the number ratios in Noelting's experiment (see App. 3). For
 corresponding to the fractions $1 / 3$ and $2 / 6$ in the cake tēst (see App. 5 and $\overline{6}$). On the basis of the theoretical observations above, it can be assumed that there will not be a marked correlation between the ratio and fraction tests at the second-graders' level.

The above does not say anything directly about how the fraction concept develops and at what stage its fundamentals could be taught to pupils. Both Piaget's research and studies carried out in the U.S. suggest that second-graders ought generally to be ready to learn the basics of fractions and the associated sym= bolics (Payne 1976; Piaget ētait. 1960). This éssentialiy con= cerns surface models, where division is into two, three or four equal parts. It is a dipferent matter at what stage the pupil understands the idea of equivalent fractions and can apply this knowledge in the addition and subtraction of practions with dirferent denominators. Empirical research is needed to throw light on this. Similarly research is needed into the question of what mental schemes and strategies are required for the pupil to be able to understand the fraction \bar{a} / b as a quotient $a: b$ of the numbers \bar{a} and b. Instructional research is also needed to find out how best to teach this relationship betwnen the fraction a / b and the quotient a:b.

Touching on this question, the present study investigates experimentally the proportional reasoning of second-graders in partitive division situations. As in the "juice" and "cake" tests, so in the "chocolate" test the pupil has to divide it to different proportions. The pupil has actually to be abie to decide which of two groups getes most pieces of chocolate or if they get the same amount (see App. 4 and 7). The difference between this and the previous tests is that in this case the tasks can be solved fairly easily using multiplication and division strategies. Thus it can be assumed that the chocolate test will correiate more significantiy with mulipifcation and division skilis than will the juice and cake tests. It is the task of the next stage of the research progranme to investigate how muitiplication and division skills are connected with the ability to extract out a part of a number or quantity. In this way it will be possible to seek an answer to the question of how the pupil discovers the connection between the fraction \bar{a} / b and the quotient a:o.

The main tasks of the experimental part of this study are presented in the form of questions as follows:

1. What kind of counting strategies are used by secondgraders in solving elementary multiplication and division tasks and what are the fiequencies of such strategies?
2. How and to what extent are piagetian abilities; memory capacity and numberisting skilis related to miltipícation and division skilis and to each other?
3. How and to what extent do miltiplication and division skilis, and the numer-insting skilis (ilsting by certain intervals) ciosely associated with them, develop during the second year of school?
4. How and to what extent do tests measuring proportional reasoning involving ratio, fraction and partitive division contents form hierarchies and correspond to each other?
5. How and to what extent are Piagetian abilities; memory capacity, number-iisting skills and miltiplication and divi= sion skills related to proportional reasoning with ratio, fraction and partitive division contents?

The questions posed above are examined with the help of frequency tables and correlation and regression analyses. T-tests calculated are not reported here, since they did not provide any additional information on these questions.

Methor

Measurements for the third stage of the longitudinal study were

$$
41
$$

taken out in individual interviews heid during the period Sept. 9 - Nov. 18, $198 \overline{3}$ at the training school of the University of Tampere, Teacher Training College of Hameenlinna. The subjects were pupils beginning their second school year. Each pupil ($\mathrm{N}=36$) took part in four interviews, conducted by the author himself. The first test studied number-ilsting skills and solution processes on multiplication and division tāsks. This took the pupil $30-40$ minutes depending on the levei of skills and processes used; and included a short break (see App. 1) The second tēst measured Plagetian abilities, and lasted 15-20 minutes (App. 2). The third interview was concerned with charting the understanding of ratios and fractions; and took $20-30 \mathrm{mi}=$ nutes (App. 3). The fourth interview measured memory capacity and tie idea of partitive division, again lasting 20-30 minutes depending on the pupil's ability (App.4). Measurements for the development. of the more demanding number-ifsting skilis and the solution processes on the mitipilcation and division tasks were perfomed during the April 1984.

The Measures

The types of tasks used and the abbreviations together with their explanations are outined below. The test type abbreviations and number of items per test type are given in parentheses. The individual tāsks āre set out in détail in Appendices 1-4.

Piagetian abilities: "Length Transitive inference" (LTR/li). "Cardinal Transitive inference" ($\overline{C T R} / 2$), "Equivalence Conservation" (EC/3). "Identity Length Conservation" (Itc/2). "Muit!plicative Correspondence" (MSP/3).
of the above, CIR and MCP are new variables developed further from Piaget's multiple correspondence tasks (of. Piaget 1952, 203-220). The other variabies were aiso used in the earifer ștudiés (see Keranto 1981, 1983a, 1984). A brief examination of
the mental development of these variables is given in connection with the presentation of results on the first and third question.

Memory Capacity: "Information Processing Capacity" (IPC/15). The task presentation and combinations of numbers used in this IPC measure were as for the ESP(S) measure in the earlier studies (cf: Keranto 1983a,19836, 1984) except that now the pupil worked with wooden blocks. The pupil was told the numbers to be remembered, which he had to repeat straight away. Then the blocks (15 in random array) had to be grouped into threes. When the grouping was complete; the pupii had to announce the numbers remembered. It was the intention that the IPC tasks should correspond in content as far as possible with the functional processing used on content division tasks.

Number-listing skilis: "Count UP from \bar{x} BY "N"" (UPBY/4), "Count
 number min (SABY/6): The task types were the same as the more demanding of those used in the two earlier stages of the longi= tudinal study (cf. Keranto 1983a, 1983b, 1984). One new task was "continue in intervals of six: 6,12..." (SABY/6).

Multiplication skills: "Muitiplication" (MULTI/5). The tēst involved elementary verbal tāsks of the type $m \mathrm{n} \overline{\mathrm{x}}$; selected to fail in the $1-20$ number range and using the school text book as an aid ("ecological vaildity").

Division skills: Measurement division" (MEAD/6); "Partitive division" (PARD/6). Content and partitive division tasks were chosen in such a way as to correspond as well as possible with the multiplication tāses and with each other both contextually and numerically.

Understanding of basics involved in the rational number concept: "Proportional reasoning in RATIO-content" (RATIO/19), "Proportional reasoning in FRACTION-content" (FRACT/19), and "Proportional reasoning in PARTITION-content" (PART/15).

Proportional reasoning in connection with the concept of ratio was tested by means of Noelting's "juice" test (Noelting 1980a, 1980b): The test involves the pupil couparing the sweetness of mixtures poured into two jugs. For each task there was a pictorial representation showing the quantities of juice and water to be poured into the jugs (see App. 5). Proportional reasoning invoived in the fraction interpretation was investigated by means of the "cake" test. The fractions involved were chosen to correspond with the ratios in the fuice test. Thus the numbers used were made "constants". Proportional reasoning in partitive division was investigated by means of the "chocolate" test. As with the fuice and cake tests, here too the pupil was able to use pictoriā aids (see App. 6 and 7).

Scoring

For Piagetian abilities and the process involved in performance the scoring was as foilows: LTR and CTR: 0 for failure, 1^{\prime} for success on task but inadequate reasoning, 2 for success and correct reasoning; EC: 0 for correspondence not "conserved"; 1 for "conservation" but unsatisfactory reasoning, $\overline{2}$ for an expla= nation based on reversibitity, compensation, numbers or non-addition/non-subtraction; IIC and EIC: 0 for an immediate "wrong" answer of "shorter" but inability to explain why; 1 for the right answer without sufficient explanation or for an even= tual wrong answer but evident understandins of compensation, 2 for a correct and well-reasoned answer "it's not cut", "you can straighten it again" etc.; MCP: $\overline{0}$ for lack of understanding, 1 for the right answer but no or insufficient explanation, 2 for a well-reasoned answer.

Memory capacity scoring was dichotomous as follows: $\overline{0}$ for performance inadequate in some respect (incorrect grouping, numbers given needed repeating, numbers remembered in the wrong order; one of the numbers forgotten during grouping), 1 for completety satisfactory performance.

Number-listing skills were scored on-a trichotomous scale: UPBY and DOBY: $\overline{0}$ for failure; $\overline{1}$ for success using finger counting; 2 for correct solution arrived at mentaily (for more detail on memory strategies; see Keranto 1983a,1983b, 1984); SABY: 0 for inability to manage two "steps"; 1 for success in handing two or more "steps" by iisting the intervening numbers, 2 for successfully completing two or more "steps" without number-listing.

Miltiplication skills scoring again involved the performance process and the strategies observed: 0 for failure even with the help of blocks or fingers; 1 for a solution process based on concrete aids, where the pupil takes from the box the required number of subugroups of a certain size and finally counts the number of objects in the whole group (long processing); 2 for mental strategias based on the more demanding number listing skills mentioned above; e.g. on the task $5 \quad 2=$? cocnting $\overline{2}, 4,6,8,10$; or $2, \overline{4}, \overline{6}, \overline{8}, 9,10$ giving the answer 10; 3 for a promptly given answer based on knowledge or derived knowledge (e.g. noticing the relationship between the different tasks; solution time < 2 s).

Division skilis scoring corresponded to that ined on multi= plication skills: MEAD and PARD: 0 for failure even using blocks or fingers; 1 for success using concrete aids: on MEAD tasks the pupil groups directiy into sub-groups of the number indicated by the divisor and finally counts the number of sub-groups; on PARD tasks the situation is more problematic. If the pupil uses a "try and check" strategy, he has to bear in mind the whole time that the division has to work out evenly and that the number of groups must be that indicated by the divisor; if he uses the "one at a time for each" strategy (cf. MCP tasks) the situation is easier as regards memory capacity; 2 for performance based on mental processing using addition/subtraction/number-iisting skills; 3 for a prompt answer based on bnowledge or derived knowledge (e.g, noticing the connection with the multiplication tāskes).

Understanding of basics involved in the rational number concept the scoring here was: RATIO: 0 for failure or an answer based on guessing; 1 for competent performance; which was based mainiy on "within" or "between" strategies. Using the "within" strategy the pupil examines the "internal" proportions of the water and juice to be mixed in the jug and then compares these propor= tions; e.g. 2:2 and 3:3 are both "Just right", in other words equally sweet. With the "between" strategy the relation between the parts of water or juice are compared with either the water or the jufce as constant; e.g. in the case of $1: 3$ and $2: 5$ the pupil may make the juice the constant such that 2:6 = $1: 3$ and then compare the ratios $2: 6$ and $2: 5$. The right and wrong strategies used by the pupils will not be examined in any greater detail in this study; but will be the concern of a later stage of the study.

FRACT: 0 for inability to do the task mentally or for an answer based on guessing or; where pictures were used, on a direct visual comparison; 1 for the right answer and adequate reasoning. Às can be seen from Appendix $\overline{3}$, \bar{a} íigure was àlways shown after a mental attempt or performance. It so happened; however, that the pictorial material used invited \bar{a} direct visual comparison (the required fractions of the cakes were ready shaded/cf. school textbooks). For our purposes it would probably have been better to use pictures without the shading; in other words such as to require the pupil to seek and compare the portions to be observed for himself (cf. Turmi, Reinikkā $\overline{\&}$ Tiira 1984). It is for that reason that the scoring used was dichotomous and based on correct/incorrect mental performance:

PART: 0 for an unsatisfactory guess or answer based on direct visual observation; 1 for competent mental performance or performance based on distribution of the figures ("chocolate bärs"). PART tasks could have been scored trichotomousiy, but this analysis was left for the further stages of the study.

Sum Variables

The following sum variables were formed in connection with the above task types and scoring:

FRACT $=\sum_{\neq 1,3,5,8}^{10}$ ERACT $_{1}$ ja PART= \sum_{L}^{15} PART $_{I}$

The formation of the sum variables is supported not only by criteria of content but also by the comrelation and hierarchy analyses of the items relating to the RATIO, FRACT and PART variables shown in Appendix 9. The hierarchy analysis of the IPC test is given in Appendix 10.

Results

Results Pertaining to the First Question and the Frequencies and Development of Plagetian Abilities and NumberListing Skilis

An attempt to answer the first experimental question is made using the following table, which shows the frequencies of strategies used on multipiication and division tasks.

TABLE 2. Frequencies of Strategies Involved in Multiplication and Division Skills ($N=36$). (In parentheses below; figures where technical errors are taken into account.)

On the basis of this table the following observations can be made:

1. The number of unsuccessful performances on multiplication and division tāsks was very small if we exclude technical errors due to wrelesness. The instances of failure on content division
tasks PARD3-6 were mainly due to the use of an inclusion strategy in the content division situation. In addition there were two failures on trask PARD3 due to the unsuccessful use of the "try sn̄ check" strategy.
2. On the multipifcation tasks MUTil-3 the main strategy was "abbreviated mentai processes"; i.e. the pupil used the more demanding number-listing skills in arriving at the solution. On tasks MUTI4-5 a slight tendency becomes apparent to "shift" to the use of cuncrete aids. In the case of division tasks; long processes relying on concrete aids formed the main strategy. An exception to this was the content division task PARD2, which from the point of view of the performance process proved in many cases to be an addition task $5+5=10$. The tabie does not directiy show how many of the children used a none-one" strategy on the long processes level on content division tasks; the number was in fact between three and five. This result is parailel to those in the earifer studies, in which the formation of numerical equivalence was one area on investigation; there, too, the oneone strategy was of a very low frequency (cf. Keranto 1981, 1983玉).
3. Use of factual knowledge was, as expected, low in frequency. Derived knowledge was used mainly on tasks MULTI2, IEAD6 and PARD6; i.e. on those tasks where the pupils were able to make conscious use of the relationship and sinilarities between the tastis. In other cases of factual knowledge, the answer was "simply" known.
4. On the basis of the frequency distributions it can be tentatively observed that only some multiplication and division tāsks involving a certain mathematical equation are ciosely connected in the mind of the child. More detail of the highest intercorrelations between items can be found in Appendix 8, but mention can be ade here of the following: MEAD1, PARD1 ($8: 4=$?) (0.68***); VEAD2; PARD3 (12:4=?) (0.72***); MUTI1 (4 2), PARD1 ($0.65^{* * *}$); MULTI5 (5 2); MEAD3 (10:2) ($0.65^{* * *) . ~ O t h e r ~}$
correlations relating to tasks involving a certain mathemati/a equation were below the 0.60 level (App. 8).

Before proceeding to results in the second main area of has investigation, it wili be heipfui to é mine the table befon showing the frequencies of scores obtained on Piagetian tagks and number=listing tāsks.

TABLE 3. Frequencies of Scores Based on the Performance Process on Piagetian Tasks and Number-Listing Tayk

	N					$\begin{aligned} & \overline{7} \\ & \text { 弟 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { No } \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\pi} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \overline{2} \\ & \text { I } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { (1) } \\ & \hline 8 \end{aligned}$		
0	0	5	9	1	18	0	0	1	6	2	4	2	8
0	14	23	21	7	16	11	13	12	13	10	12	13	13
36	22	8	5	28	2	25	23	23	17	24	20	21	15

failure
aids/intervening numbers used
cone mentaily

On the basis of Table 3, the following can be observed:

1. In the case of transitive reasoning and conservation $\boldsymbol{j}^{\hat{C}}$ observed one-one correspondence nearly ail the pupiis hyd attained the level of valid explanation. A binomial tey indicated that a significant (p<opi) and highiy significapt
(p<.001) development hād occurred on tasks LTR1 and LTR 3 within the span of a year (cf. Keranto 1983a; aiso see Keranto 1981, 1983b; Siegel 1958).
2. Conservation judgements relating to lengti were stili ciearly at a developmental stage. A binomiai test showed \bar{z} sígnificant and fairiy significant development on tasks ILC1 and ELC1 within the span of a year (cf. Keranto 1983a).
3. Piagetian miltiple correspondence tasís were performed successfully from the point of view of accuracy by almost 100% of the pupils. This result is consistent with that obtained in a doctoral dissertation directed by the author (Toivonen $\&$ Tuomi 1984):
4. Accurācy of performance on nuber-ifsting by cer tain intervals revealed the following scale of difficulby: SABYi-SABY2-SABY5-SABY3-SABY4-SABY6. This corresponds to the order observed in the fall term of 1982, but differs from the spring 1983 order with respect of SABY3 and SABY4 (cf. Keranto 1983a,1983b): UPBY and DOBY frequencies are similar to those obtained in spring 1983 (Keranto 1983b). In other words these skills shoied no noticeable lmprovement in the interval between the soring and fall measurements 1983. This was also observed in binomal tests. Ir the case of SABY skilis; however, statisticaliy signeficant advance was seen to have oxcurred during the same period in the ability to list numbers in intervals of three and five (tāsks SABY3 and SABY5).

Results Pertaining to the Second Question

The second question is elucidated with the help of the regression models presented below which were derived from stepwise selective regression analyses (the level of significance at least 5 \% with both t-values ind F values).

The correlation matrix used in the regression analysis appears in Appendix 10.

TABLE 4. Regression Models of the Muli, MEAD and PARD Variables, where the Predictor.s are Piagetian, IPC and Number-Listing $S k$ Il Variables ($N=36$). Coefficients are Valuex.

| object predictors TR,EC,LC,MCP = PIA | $R(\not)$ |
| :--- | :--- | :--- |
| MULTI $=0.3 \overline{1} \mathrm{LC}$ | 14 |
| MEAD $=0.38 \mathrm{MCP}$ | 14 |
| PARD $=0.35 \mathrm{LC}$ | 12 |

predictors PIA,IPC,SABY,UPBY,DOBY

MULTI	$0.60 \mathrm{SABY} \mp 0.38 \mathrm{UPBY}$	72
MEAD	$0.49 \mathrm{SABY}+0.43 \mathrm{UPBY}$	E\%
PARD	$0.37 \mathrm{SABY}+0.34 \mathrm{DOBY}$	40

(SABY; UPBY;DOBY) $=\overline{S E Q}$
predictoi's PIA,IPC,SEQ;MEAD, PARD
MULTI $=0.37 \overline{M E A D}+0.38 \mathrm{SABY}+0.25$ DOBY 77
predictors PIA,IPC,SEQ,MUTI,PARD
MEAD $=0.53$ MILII +0.42 PARD 74
predictors PIA, IPC,SEQ,MULTI, MEAD
PARD $=0.76 \mathrm{MEAD} \quad 58$

The main pointa to be observed from the above are:

1. The predictive power of Piagetian variables with regard to multipifcation and division variables is relatively low; this is consistent with logical analysis.
2. Number-listing skills represented a highly significant predictor of the deviation of multiplication and division vari= ables; again this is consistent with logical analysis:
3. IPC could be omitted from the models: most of the pupils were at the t!ree-bit level.
4. The above results were in keeping with the expianatory models presented in the two earlier stages of the longitudinal study concerning the relative explanatory power of Piagetian variables and numer-listing skill variables as predictors of the variance found with addition and subtraction variables; the best predictors bēng number-lis̄ting skill vāriābles (cf. Kērāto 1983a, 1983b, 1984).

The figure below illustrates on the "macro-level" how Piagetian variables relate to multiplication and division variables:

FIGURE 1. A Model of Dependeriy Relationships of the Sum Variables PIAGET, SEQ, MULTI and DIV, whero -pla, .ipe, .seq Indicate that the Variables PIAGET; IPC and SEQ are constants: $\bar{P} I A G E T=T R+E C+E C+E C+\bar{M} C O ; \quad S E Q=S A B \bar{Y}+U P B \bar{Y}+D O \bar{B} \bar{Y} ;$ DIV=MEAD+PARD ($\mathrm{N}=36$).

53
!

The figure shows that the connection of Piagetian abilitiē to muitipícation and division skilis comes via number=jisting skills. Another point is that making "IPC abiifties constant is of little significance as regards the relationship of numberlisting skilis with mitiplication and division skills. It is aiso noticeable that muitipiication and division skilis are significantly correlated when the SEQ sum variable is the constant.

The results suggest that the use of Pfagetian tasks loginally relating to multiplication and division skills in the training of these skills is highly problematic. Although positive statistically significant correlations are observed between Piagetian variables and multipifcation and division skills variables, this does not necessarily mean that Piagetian abilities are prerequisites for the solving of the elementary multiplication and division tasks concerned. A similar indication is given by the results of a study on this particuiar question directed by the author (Toivonen \& Tuomi 1984).

As regarca the relationship between ipe abilities and multiplication and division skills, there is at least a fairly significant correlation between the IPC variable and the MULTI and MEAD variables. The reason that correlations did not turn out to be any higher than this may well be that most children were already on at least the three-bit leavel; oniy four were on the two-bit level. In other words most of the children were able to retain threa numbers in memory while at the same time grouping 15 blocks randomiy arranged into groups of three. Logically this mount of memory capacity ought to be sufficient for the information required by MULTI; MEAD and PARD tasks to be retained in memory during processing. This and the content-dependent nature of the IPC measure are reflected in the results (cf: Keranto 1983a,1983b, 1984).

Results Pertaining to the Third Question

An answer to the question of the extent to which miltiplication and division skills develop during the second year of school can be presented with the help of the following tables:

TABLE 5. The Development of Multiplicātion During the Seecond School Year ($\mathrm{N}=36$) spring 1984
level à b) c)
fait 1983

| a) | $\left.\begin{array}{lll}5 & 12 & 3 * 2 \\ \text { b) } \\ 0 & 5 & -10 \\ \text { c) } \\ 0 & 0 & 2 \\ 0\end{array}\right]$ |
| :--- | :--- | :--- |

Binomial test
p<,001***

TABLE 6: The Development of Division During the Second School Year ($\mathrm{N}=36$)
spring 1984
level a) b) \bar{c}
fall 1984

The tables show that during the second school year (pupils aged 8-9) there is a highly significant development in the direction of mental processing in multiplication and division skills ($p<0.001$). In the case of multiplication, there appears to be a ciear deveiopment from level \bar{a}) (iong processes based on external aids) via b) (abbreviated processes based on the more demanding number=listing skills̄) to level c) (knowledge or derived knowledge): As regards division tasks; however; the tyoical development ō processes is more probiemacic and requires further investigation.
"Listing in certain intervals" skills develop as a mule through the following stages:
a) the child is unable to continue the number sequence;
b) the child iists the intervening numbers in his mind, silently;
c) the child is able to list in certain intervals without listing the intervening numbers:

With reference to these levels of skill and to performance on the different listing tasks it was possible to chart the levels of ability among the pupils as shown in the following figure:

Tāsk:
$(10,20 \ldots)(5,10 \ldots)(2,4,6 \ldots)(3,6 \ldots)\left(4, \overline{8}^{2} \ldots\right)(6,12 \ldots)$
c)

FIGURE 2. The Solution Profiles on "tisting in Certain Intervals" Tasks, Measured in Spring 1984 ($N=36$)

This cross-sectional examination indicates that "listing in certain intervals" skilis develop in a certain order; and indeed in the longitudinal study as a whole it is evident that individual developing processes do follow this ine of development.

Results Pertaining to the Founth Question

The question of the hierarchical nature and intercorrespondences of ratio, fraction and partitive division tēsts̄ wās examined with the help of the scales used by Guttrian (Guttman 1944; Keranto 1983a, 58-71). Table 7 shows the extent of hierarchy in the RATIO test, iists the solution frequencies and gives a description of the performance at each "level".

In the table the ratio test can be seen to possess a complete hierarchy in the full sense of the word. The recomended critē rion values would nmemely" be $\overline{C R} \equiv \overline{0} \cdot 90$; MMR < 0.80 and PPR > 0.70 (cf. Keranto 1983a; Noeiting 1980a; White addition there is a ciear decrease performance as we move from the "intuitive level" tasks to tasks on the "low concrete opera= tions level", and from there to the "high concrete operations level" tasks. Tasks on the "formal operations level" were as expected, too difficuit for the second- grade pupils. The resuilt obtained is consistent with those in Noelting's experiments, and the order of difficulty corresponds largely with the order Noelting has presented. Slight differences were observed within each sub=level (cf. Noelting 1980a,228). Similār results were obtained in another study carried out undel the supervision of the author (Nurmi, Reinikka \& Tiirz 1984).

TABLE 7. Order of Difficuity of items in the ratio Test and Clāssification of Level ($\mathrm{N}=36$); Hierarchy figures CR , $M M R$ and PPR

"Level"	Item	Combin.		Freq.	Description
10w	2	4:1	1:4	36	succeeds by
intuitive	4	3:1	2:2	36	comparing first
average	3	1:1	1:2	36	or second terms
intuitive					
					difference vs.
high	5	2:1	3:3	35	similarity
intuitive	8	2:2	3:4	32	
low coner.	6	1:1	2:2	20	Equivalence class
operations	7	2:2	3:3	20	1:1 rright"
high concr:	9		2:4	4	"whatever" equiv=
overations	10	4:2	2:1	3	atence class
formai	11	2:3	1:2	1	one or other set
operstions	12	2:1	$4: \overline{3}$	0	of terms multiple
	13	2:1	3:2	0	
	14	2:3	1:2	$\overline{0}$	conversions
	15	6:3	5:2	0	necessary -
	16	3:2	4:3	0	operations on
	17	5:2	7:3	0	operations
	18	З $\overline{5}$	5:8	0	
	19	5:7	3:5	0	
	1.00,	$\mathrm{MR}=0$	0.70	PPR $=$	1.00
Combin. $=$ com	binatt	On; Fre	q. $=$	lution	frequeny

The following table presents the mental solution frequencies on the FRACT test, together with description of performance processes and hiēraproy valuès.

TABLE8. Order of Difficulty of Items in ine FRACT Test; Tevein and Description of Process. hierarchy Values CR; MR and PR ($N=36$)
$\left.\begin{array}{lccccl}\text { nLevel" } & \text { Item } & \text { Combin: } & \text { Freq. } \\ \text { nescription }\end{array}\right]$

Items 2-10: CR $=0.91, \bar{M} \overline{M R}=0.88, \overline{\mathrm{PPR}} \equiv 0.40$
Iteus $2,4,6,7,9,10: C R=0.96, \mathrm{MRR}=0.88, \mathrm{PPR}=0.67$

Table 8 shows that there was clearly a les mi-defined hierarchy on the FRACT test than on the RATIE vest. The extent of hierarchy and intercorrespondence among performances increases if only items $2,4,6,7,9$ and 10 are considered. The FRACT tasks on the "formal operations level" were, as expected; altogether to difficult, as on the RATIO test. In contrast with the RATIO tēst, the FRACT tēst Mierarchy" was made somewhat problematic by items 3; 5 and 8. Logically items 5 and 8 should be solved via comparison with a haif. Thus item 5 should have occupied a place after, not before, items 6 and 7 on the scaie of difficulty. Otherwise the scale of difficulty observed seems to be what would logicaliy be expected.

From the point of view of rational task analysis, the ratio and FRACT tests hāe only à pärtial hierarchical correspondence where the number correspondences used are $a=b$ \& $c d$ vs. $a / a \mp b$ $\& c / c+d$. The correlation between the RATIO and FRACT variables of 0.45** suggests that in the mind of the second-grade pupil the schemes involved in the understanding of ratio and fractions are not get well co-ordinated. In other words the suggestion is that these contents are quite infependent of each other without shāring any "umbre" la scheme" which would enable free movement between models. Similar results were obtained in connection with the FRACT test in the study already referred to (Nurmi et al. 1984).

The results in connection with the pART test are similarly presented below with the help of Table 9:

TABLE 9. Order of Difficulty on the PART Test and Description of Performance Lèvelss. Hieraruhy Values $C R$; MMR and PR ($N=36$)

Level	Iten	Combin.		Freq.	Description
intuitive	2	15:3	12:3	35	succeeds without multiplication and division calculations
1-20	3	12: $\overline{6}$	12:4	35	
	5	3E:4	32:4	34	
20-100	6	42:7	49:7	34	
	4	25:5	20:5	33	
concrete	8	9:3	8:3	24	mental calculations needed
operations	7	4:2	6:3	23	
	10	24:6	28:7	21	or use of
20-100	12	27:3	28:4	21	"chocolate bar" models
	9	15:4	18:6	20	
	13	48:6	40:5	20	
	14	35:7	32:8	19	
	15	45:9	42:7	18	
	11	30:5	36:6	17	

$\mathrm{CR}=0.96 ; \mathrm{MMR} \equiv 0.76$ and $\overline{\mathrm{P}} \overline{\mathrm{P}} \overline{\mathrm{R}} \equiv 0.35$

Again the table shows high values for degree of hierarchy. The ōrder ō difficulty for PART items can be considered perfect". The correlations of the PART sum variables with the RATIO and FRACT variables were 0.37^{*} and $0.47 *$ respectiveiy. This again indicates their "independence" in the pupiz's mind at this stage. Resuits in the other study referred to (Numil et al 1984) were similar.

Results Pertaining to the Fifth question

On the question of how Piagetian abilities, memory capacity, number-iisting skilis and multiplication and division skills interrelate with proportional reasoning, the fol lowing seeks to provide an answer with the help of regression models and partial correlation models (see also App. 11).

The best singie predictor proved to be the MULTI variable relating multiplication skills. It is logical that number-listing variables and multiplication and civision variabies best predict proportional reasoning in the case of partitive division contents (the PART variable); their predictive power in respect of proportional reasoning is weakest in the case of ratio contents. Piaget variāblē as predictors "behave" similarly. with the PART
variable in particular; Plagettan variables were high predictors. It is worth noting that the piagetian tasks in this study relate logicaliy to maltipication and division skilis and not directly to ratio contents. This is empiriually shown in the fact that there were no significant predictors of the RATIO variabie among the Pqagetian variabies. It is a matter for further research to show how and to what extent Piaget's tasks measuring the understanding of probability relate to the RATIO test. Logically these may be expected to show a close emplrical reiationsh三p (see e.g. Chapman 1975, Falk ét al. 1980, Piaget \& Inhelder 1951).

The above results are naturaliy enough reflected in and complemented by the partial correlation model which follows.

FIGURE 3. A Model of the Dependency Reiationships of the Sum Variables RATIO, FRACT; PART and DIV = MEAD + PARD; Subscripts Indicate the Variables PIA, IPC, SEQ and MULTI Taken as Constant.

The first thing that is striking in the above is that the relationship of division skilis with proportional reasoning in ratio, fraction and partitive division contents are expiained via the MULII sum variable. Secondly, it is notable that some of the reiationships between RATIO variables and $\overline{F R A C T}$ and $\overline{P A R T}$ variables are explained via the PIAGET $=T R+E C+L C+M C P$ sum variable. Thirdiy, it is noticeabie that the intercorreiations between the variābē in the model are relatively little affected by the IPC variable (cf. App. 11).

REFERENCES:

Ausubel; D.P. (1963) The psychology of meaningful verbal learning. New York: Grune and Stratton:
Beth; E. W. \& Piagēt, J.(1966) Māthematical epistemology and psychology. Dordrecht: Reidel.
Brainerd; C.J. (1978) Piaget's theory of inteíigence. Englewood Cliffs, N.J.: Prentice-Hall.
Brainerd, C.J. (1979) The origins of the number concept. New York: Praeger.
Cantor; G. (1962) Gesammelte Abhandiungei: dathematischen und philosophischen Inhalts. Herausgegeben un Ernst termeio, Nebst einem Lebenlauf Cantors voindoif Fraenkel. Hildesheim: Georg olms.
Case, R.(1972) Validation of a nec-Piagetian renizu capazicv construnt.Journal of Experimentā Cnild Ps, mivosy 14; "37302.

Case, R. (1980) The underiying mechantsm of insoctúl development. In J.R. Kirby \& J.B. B:ggs; (Eds. development and instruction. New York: Academic Pris:..
Chapman, RoH. (1975) The development of children's unuevtanding of proportions. Child Development 46; 141-148.
Copeland; R.W. (1979) How chìldren iearn mathemetic New York: Macmillan.

Fāk, R.R. \& Levin, I. (1980)A potential for learning probabilityin young children. Educational Studies in Mathematics 11; 181-204.
Flaveli; J.H. (1963) The development psychology of Jean Piaget. Toronto; London; Melbourne: Van Nostrand.
Freudenthai, fí (1973) Mathematices as an éducationai task. Dordrecht: Reídei.
Fuson, K. \& Hall, J.W. (1982) The acquisition of early number Word meaning:s: A conceptual analysis and revfew.In H.P. Ginsburg (EC.) Children's mathematical thinking. New York: Academic Press.
Fuson, K. हichards, J. $\overline{\text { F }}$ Briars, D.J.(1982) The acquisition and elaboration of number word sequence. In C. Brainer (Ed:) Progress in cognitive development. Children's logical and mathematical cognition (Vol 1). New York: Springer Verlag:
Greeno, J.G.(1976) Cognitive ōbjectives of instruction: theory of knowledge for solving problems and answering questions. In D.Klahr (Ed.) Cognition and Instruction. Hillsdale, N.J:: Lawrence Erlbaum:

Guttman, $\mathrm{L}(1944)$ Basis for scaing qualitative data. American Sociological Review 77, 139:150.
Hiebert, J. \& Carpenter, T.P. (1982) Piagetian tāsks as readiness measures in mathematics instruction a critical review: Educational stixdies in Mathematios 13, 329-345.
Giebert, J. \& Carpenter, T. \& Mosin, J.M. "982) Cognitive development and chinser's sol tions to verbal artthmetic problems. Joxrmal for Eesearch tif Mathematios Eduration 13; 83- J.
Inhelder, \bar{B}. $\overline{\&}$ Figet, \therefore (1958) La genese des stristurēs logiques elextaires (The early groweh of asic in thechild: classtfication and seriation). iondon: Romilengo nc Kegan paui.
Karplus, R. \& Peterzor. AW. : AYoliteil otual developont

Keranto; T. (1979) Lapsen lukukảsitteen kehittymisen ja kehittamisen matemaattisdidaktinen nıkokuime. (Mathematicsdidactic view on the acquisition and aided development of children's concept of number). University of Tampere. Reports from the Teacher Training College in KHmeenlinna 2 .
Keranto, T. (1981) Lukukäsitteen kehittyminen ja kehittaminen: matemaattis-loogiset perusteet jaluvun kognitiivinen rakentuminen. (The acquisition and aided development of the concept of number: wathemationl-logical principles and cognitive structuring of number). Acta Universitatis Tamperensis, Ser. A. Vol. 125.
Keranto, T. (1983a) Matemattiset ajatteluprosessit ja strategiat: yhteydet yksilon tiedoliiseen rakentumiseen j.i informaation käsittelykapasiteettin. (Mathematical thought processes and strategies: their relationship with cogritive structuring and information processing capacity). University of Tampere. Reports from the Teacher Training College in Hä= meeniinna 8. English summary in ERIC/SMEAC, Ohio state University, Columbus.
Keranto; T. (1983b) Aritmeettiset prosessit jā strātegiāt: yhteydet matematifanopintomenestykseen; opiskelumotivas= tioon ja asenteisin. (Arithmetical processes and strategies: their relationship with study achievement, motivation and attitudes). University of Tampere. Reports from the Teacher Training College in Hämeeniinna 10. Engilsh sum: mary in ERIC/SMEAC, Ohio State University, Columbus.
Keranto, T. (1984) Cognitive processes and strategies in alementary mathematics In P. Kupari (Ed.) Mathematies edu ationresearch in Finiand. Yearbook 1983. Universityof Jyvaskyla. Reports from the Institute for Educational Researich 347, 25-51.
Kieren; T (1976) On the mathematical; cognitive and instructional foundations of rational numbers. in R . tesh (Ed.) Number and measurement: Papers from Research Works̄hop, ERIC/SMEAC, Ohio State University, Columbus.

Kouluhaliitus (1982) Peruskoulun matematiikān oppimảáa ja oppimerarasumitelma (Syllabus and curriculum plans for mathematicsin thecomprehensiveschooi). Helsinki:Vaition painatuskeskus.
Lānday, E. (1960) Grundiagen deranalysis. New York: Chēlséā Publishing Company.
Leino; J. (1977) Matematíkan didaktifkka 1 (Didactics of mathematics 1). Helsinki: Kirjayhtym.
Leino, J. (1981) Psychometric test theory and cognitive processes: a theoretical scrutiny and empirical research. University of Heisinki. Institute of Education. Research bulletin 57.
Leino, J. (1982) Kognitivisten prosessien tưtkimis matematiikan opetiksessaulkomailia. (Research on cognitive processesin mathematics teaching abroad). In P. Kupari (Ed.) Kognitiivis̄èt prosēs̄sit jā matematiikan opetuss. University of Jy= vaskylis. Institute for Educational Research. Builetin 199.
Noelting; G. (1980a) The development of proportional reasoning and the ratio concept. Part 1. Differentiation of stages. Educational Stuc in Mathematics 11, 217-253.
Noelting, G.(1980b) lhe development of proportional reasoning and the ratio concept. Part 2. Problem-structure at successive stages: problem-solving strategies and mechanism of adaptive restructuring. Educational Studies in Mathematics 11, 331-363.
Nurmi, M.; Reinikka; T. \& Tilra, H. (1984) Rationałłilukutaitojenhierarkkisuus ja strategiat sundelukiu; murtoluku= ja ositusjakotēstēisša peruskoulun 3.: 6. luokkien oppilaila (Hierarchy and strategies of rational number skills in ratio-; fraction- and partition division tests of pupils on grades 3.-6. in the comprehensive school). Unpublished project reportin education. University of Tampere. Teacher Training College in Hameeninna.

Payne, J.No(1976) Review of research on fractions: In R. Lesh (Ed.) Number and measurement: Papers from Research Workshop, ERIC/SMEAC, Ohio State University, Columbus.

Pehkonen, E.(1978) Matematiikan peruskurssi 1 korkeakouluja varten. (Basic course 1 in mathematics for universities). Hel= sinki: Ktejayhtyma.
Piaget, J. (1970) Genetic epistemoiogy. New York: Columbia University Press.
Piaget, J. (1971) The child's conception of movement and speed. New York: Bailantine Books:
Piaget, J. (1952) The child's conception of number. New York: Humanities.
Piaget; J. \& Inhelder; B_{B} (1951) Là genese de l'idee de hāsārd chez i'enfant: Paris: Press Üniversitaire de France (The origin of the idea of chance in children. New York: Norton, 1975.)
Piaget, J.; Inhelder; B. \& Szeminskā, A.(1960) The child's conception of geometry. New York: Basic Books.
Resnick, L.B. (1976) Tāsk analysis in instructional design: some cases from mathematics. In D. Klahr (ed.) Cognition and instruction: Hilisdale; N. J.: Lawrence Eribaum:
Siegé, S. (1958) Nonparametric statistics for behavioral sciences. New York: MoGraw-Hill.
Toivonen; v. \& Tuomi; J. (1984) Kerto ja jākolākutaidoista seka níden ynteyksistit Piaget-kykyinin ja lukujonotaitoihin (on multiplication and division skijls and their relationship with Piaget abilities ard sequence skills). Unpublished project report in education. University of Tampere. Teactier fraining college in hameeniinna.
White, W. \& Sātz, \%.(1957) Measurement of reproducibility. Psychological Bületin 54, 2, 81-99.

APPENDIX $\overline{1}$. Tests Used to Measure Number Eisting Skilis and Mintipícation and Division Skills.

SABY1 Continue counting in tens: $10,20, \ldots$
SABY2 Continue counting in twos: $\overline{2}, 4,6, \ldots$
SABY3 Continue counting in threes: $3,6, \ldots$
SABY4 Continue counting in fours: $4,8, \ldots$
SABY5 Continue counbting in fives: $5,10, \ldots$
SABY 6 Continue counting in sixes: $6,12, \ldots$

UPBY

Practice 1 Count up from 5 by 2 numbers: 6,7.
UPBY 1 and 2 Count up from 6 by 5 numbers; by 8 numbers
UPBY 3 and 4 Count up from 14 by 5 numbers; by 8 numbers

DOBY -
Practice 2 Count down from 7 by 2 numbers: 6,5
DOBY 1 and 2 , Count down from 9 by 5 numbers; by 8
DCBI 3 and 4 count down from 14 by 5 numbers; by 8

On the following tasks (UNIFIX) counting blocks are available for use; pupilsare urged to make use of these if they cannot solve the task mentaiy.
On the multiplicacion tasks MULTIT=5 the blocks (20) are randmiy arranced in a box.
On the division tasks the blocks are ladd out on the table in the number indfcated by the dividend.

NeNII There are 4 children. Each child picks 2 apples. How mar apples did thay pick altogether?

Binci You use 4 nuts to fix a wheel to a ar. How meny wheis jan you fix to a car with 8 nuts?

MEAE2 There are 12 winter tyres in the garage. fon tiny cars can be fitted with winter tyres? 4 tigres go on one co.

PARD1 There are 8 strawberries. These are shared out equaliy to 4 children. How many does each child get?

MULTI2 New tyres are bought for 3 cars. How many tyres are needed aitogether?

PARD2 There are 10 sweets. These are shared out equally between 2 children: How many does each child get?

PARD3 There are 12 apples. These are shared out equally between 4 children. How many does each child get?

MEAD3 There are some hens in a hen-pen. Altogether they have 10 feet. How many hens are there altogether? Hens have two feet.

MUTI3 There are 3 children. Each child coliects 5 mashroms. How many do they collect altogether?

MEAD 4 A hook is screwed to the wall with 3 screws, How many hooks can be screwed to the wail with 12 screws?

PARD4 There are $\overline{1} \overline{2}$ sweets. These are shared out equaliy between 3 children. How many does each child get?

MEAD5 A radio needs 5 batteries. How many radios is 15 batteries enough for?

PARD5 There are $1 \overline{5}$ pictures. These are shared out equaily between 5 children. How many does each child get?

MUTI4 There are 3 children: Each child buys 6 starnps. How many do they buy altogether?

MEAD6 A torch takes 5 batteries. How many torches is 18 batteries enough for?

PARD6 There are 18 sweets. These are shared out equaily
between 3 children. How many does each child get?

MULTI5 There are 5 children. Each child picks 2 applēs. How many apples do they pick altogether?

APPENDIX 2. The Piāgetian Abilitiēs Measure.

ETR1 Three (Cuisenaire) rods of equal iength are used. The child sees that $A=B$ and $E=C$; is then asked: Is A longer, shorter, or the same lēngth $\bar{\alpha}$ © ? The child does not see A and C at the same time.

ETR2 As for ETRi except with (10-ñock) strings of UNIFIX blocks.

A piece of wire is needea, about 20 cm in length.
IIC1 If you bend this wir: , illi it be shorter?
IIC2 The wire is bent thus:___ Is the wire now sinorter, longer; or the same lengtil?

In addition to the wire, a piece of string of the same lensth is needed. The pupil may compare and see they are the same length. ELC1 If one of these is bent, will it be shorter than the other?
ELC2 Analogous with ILC2

10 paper cups are randomily arrariged on the table, together with one iarge glass jar and biue, white, yeilow and red unifix blocks in random sroups of 15. The child is instructed to take from the blue group one block for each cup. After this the superfluous blacks are removed from the table.
E1 Ars there now as many blue blocks as cups?
EC: Now empty the cups into the glass jar. Are there still as many blue blocks ās thēre āre cupse?
The same procedures are repeated with white blocks for tasks E2 and EC?

CTR1 Now compare the blue and white blocks in the glass jar.

Are there more biue biocks than white; iess; or the same number? MCP2 Let's imagine that you put the bìocks in the jar back into the paper cups so that there's the same number of blocks in each cup. How many blocks would there then be in each cup?
The above procedures are repeated with yellow blocks for tasks E3 and EC3.
CTR2 Now compare the blue and yellow blocks in the glass jar. Question is in CTR1.
MCP2 Now imagine that you put the blocks in the jar back into the paper cups so that theres the same numberin each cup. Question as in MCP1.

The procedures are again repeated with the red blocks.
This time only taks E4 and MCP3 are given.
LTR3 Ās for LTR1 except that now $\bar{A}<\bar{B}$ and $\bar{B}<C$
LTR4 As for LTR2 except that now $\bar{A}<B$ and $B<C$

Nb. After each task the child is asked Why?

APPENDIX 3.The Measure of Proportional Reasoning in Ratio and Fraction Contents.

The "Juice" test (understanding of the idea of ratio) or RATIO ¿est:

The basic question always presented is: which of the jugs contains the sweeter juice (or the juice tasting more of orange), or does the juice in each jug taste the same? The visuāls are shown in Appendix 5. The juice:water ratios are as follows:

RATIO2	4:1 = 1:4	RATIO3	1:1-1:2	RATIO4	3:1-2:2
RATIC5	2:1-3:3	RATIO6	1:1 = $2: 2$	RATIO7	2:2-3:3
RATI08	2:2-3:4	RatIO9	$1: 2=2: 4$	RATIO1T	4:2-2:1
RATIO11	2:3-1:2	RATIO12	2:1-4:3	RATI013	2:1-3:2
RATI014	$2: 3=3: 4$	RATIO15	6:3-5:2	RATI016	3:2-4:3

72

```
RATIO17 5:2 - 7:3 RATIO18 3:5 - 5:8 RATIO19 5:7 - 3:5
```

The "cake" test (understanding of the fraction idea) or FRACT test:

The basic question presented throughout is: who has got more to eat; or hāve they both the same? A practice question is given comparing a whole cake and haif a cake. After each mental attempt at a question the pupil tries the task with the help of pictures.

FRACT2	4/5-1/5	FRACT3	1/2-1/3	FRACT\$	3/4-2/4
FRACTS	$2 / 3=3 / 6$	FRACT6	$1 / 2=2 / 4$	FRACT 7	$2 / 4=3 / 6$
FRACT8	$2 / 4=3 / 7$	FRACT9	$1 / 3=2 / 5$	FRACT 10	$4 / 6=2 / 3$
FRACT11	2/5-1/3	FRACT12	2/3-4/7	FRACT 13	2/3-3/5
FRACT 14	2/5 3/7	FRACT 15	6/9-5/7	FRACT 16	3/5-4/7
FRACT17	$\because 9=7 / 10$	FRACT18	3/8-5/13	FRACT19	$5 / 12=3 / 8$

In sonnection , the mentil attempts on the casks Fanct2-19 the numerical information was presented as follows: e.g. FRACT2: take 4 of the 5 parts and take 1 of the 5 parts. In addition the plipil is asked at the beginning of each task to say by himself how man equal parts the cake is divided into and how many parts are to be taken The visuals are of the type shown inAppendix 6.

NB. After each RATIO and FRACT task the child is asked Why?, in other words has to expiain and justify his answer.

APPENDIX 4:

The Memory Capacity Meāsure.

For the following tasks you get all the numbers to be remenvered in advance. Always repeat the numbers I give you at the beginning. After that group these blocks (15 in random array) into groups of three. When you have finished sāy the numbers I
gave to you at the stārt in the same order. Lēt's practise. To begin with group these blocks into threes. (After this tie numbers 5 and 3 are given:) Repeat then numbers. Try and remember them now whilst you do the grouping you have iearnt. (When the pupil has finished grouping, the pupil is asked to say the numbers again - if he does not already volunteer them.)

IPC1	9,16	IPC2	15;8	IPC3	4,17	IPCH	12;17
IPC5	18,11	IPC6	9,14,5	IPC7 8,	0,12	IPC8	8,17,13
IPC9	11,9,7		IPC10	12,18,13	IPC11	$\overline{7}, \overline{5}, 18,14$	
IPC12	6,9,12,14		IPC13	10,16,14,8	IPC14	11,16,13,18	
IPC15	12,6,9,						

The Measure of Proportional Reasoning in Partitive Division Contents.

The "chocolate" test (understanding the idea of sharing) or PART test:

Thic basia question presented throughout is: who gets more (the boys or the giris) or do they get the same? It is emphasized and explained that it is a question of whether there are more/less pieces per boy or per girl.

PARTI is a practise item: 2 giris get $\overline{2}$ pieces and 1 boy 2 pieces.

PART2	$15: 3-12: 3$	PART3	$12: 6=12: 4$
PART4	$25: 5-20: 5$	PART5	$36: 4=32: 4$
PART6	$42: 7-49: 7$	PART7	$4: 2-6: 3$
PART8	$9: 3-3: 2$	PART9	$16: 4-18: 5$
PART10	$24: 5=28: 7$	PART11	$30: 5=36: 5$
PART12	$27: 3-28: 4$	PART13	$48: 6-40: 5$
PART14	$35: 7-32: 8$	PART15	$45: 9-42: 7$

On tāsks PART2-8 the picture was shown only apter a mentai attempt. On the remaining tásks the picture was present throughoat.

APPENDIX 5

$\because \because \because$

3 ÓSAAN, MUKAAN 1
$=$ Divided into 3 parts; take 1

6 OSAAN, MUKAAN 2
$=$ Diviced into 6 parts; take 2

77

APPENPIX 8；Correlations Between the Variables Relating to Multiplication and Eivision Skiils MUUTI－5； MEAD1－6 and PARDi＝6（ $N=36$ ）．

	$\overline{\bar{c}}$	$\begin{aligned} & \text { N } \\ & \text { 售 } \end{aligned}$	第	$\begin{aligned} & \text { 说 } \\ & \text { 窓 } \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \text { 窣 } \end{aligned}$	鲑	是	或	资	葆	$\begin{aligned} & \text { 亿o } \\ & \text { 总 } \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \text { N } \end{aligned}$
MUGTI	42	42	46	58	51	36	65	$\overline{37}$	57	30	19	47
MULTI2	52	38	39	41	67	44	44	38	41	22	23	29
$\mathrm{MULT} \mathrm{H}^{\text {a }}$	58	52	44	55	51	48	48	41	45	27	58	39
MUII 4	67	29	63	47	55	34	46	54	27	03	27	24
MULTE5	52	47	65	50	56	41	46	34	48	48	30	51
MEAD1							$\overline{6}$	39	40	23	46	27
ME4D2							59	28	72	54	55	50
MEAD3							42	35	24	35	41.	30
MEAD4							63	32	55	41	54	46
MEAD5							55	42	40	41	29	47
MEAD6							52	31	42	48	21	47

APPENDIX 9. The "Innern Correlations of the Component varteotas. of the Sum Variables Tr, EC, LC, MCP, s \because, UPBY, DOBY, MULTI, MEAD and PARD.

	MEAD2	MEAD 3	MEAD4	MEAD5	VEAD 6
MEAD1	50	58	54	45	32
MEAD2		41	65	50	53
IEEAD 3			66	54	26
MEAD4			.	52	35
MEAD5					74

APPENDIX 9. (cont.)

	PARD2	PARD3	PARD4	PARD5	PARD6
PARD1	39	57	23	30	43
PARD2		21	07	18	13
- PARD3			44	46	49
PARD4				25	43
PARD5					53

APPENDIX 10. Intercorrelations of the Sum Variables SABY, URBY, DOBY, MULTI, MEAD, PARD, MCP, CTR; LTR, TR, LC; EC, IPC and a Chronological Age Vāriāble AGE ($\mathrm{N}=36$).

UPBY DOBY MUTI MEAD PARD MCP CTR LTR TR LC EC $\overline{I P} \bar{C} \bar{A} \bar{G}$

SABY	48	54	78	70	56	35	15	33	28	27	26	51	05
UPBY		86	67	67	51	20	37	30	37	25	42	23	-05
DOBY			70	55	55	21	41	31	40	29	39	21	-03
MULTI				80	66	31	32	32	36	38	34	38	07
MEAD					76	38	23	24	25	27	27	43	10
PARD						23	13	25	22	35	15	20	04
MCP							27	02	15	46	36	48	-06
CTR								57	86	54	78	02	23
LTR									91	44	75	04	26
TR										54	86	02	28
LC								-			53	23	17
EC												17	17
IPC													01

APPENDIX 11. The Correlations of the Sum variables SABY, UPBY, DOBY, MULTI; MEAD; PARD, MCP; TR, LC; EC, IPC and the Variable AGE with the Sum Variables RATIO, FRACT and PARI ($\mathrm{N}=36$).

	Ratio	FRACT	PART
SABY	34	50	51
UPBY	30	34	35
DOBY	25	34	39
MuLTI	48	51	60
M:AD	30	45	48
PARD	42	36	48
1 CP	22	37	59
TR.	24	23	45
LC	17	29	65
EC	25	17	53
IPC	-03	31	40
AGE	-11	34	-01
Ratio		45	37
FRACT			40

appendix continues

APPENDIX 11. (cont.)

Hierarchy Values, Order of Difficulty and Solution Frequencies on the IPC Test

Item	Combination	Solution Srequency
1	9,16	36
2	15,8	36
3	14,17	36
4	$1 \overline{1}, 17$	36
$\overline{5}$	18,11	36
9	$11, \overline{9}, \overline{7}$	36
7	$8,10,12$	35
$\overline{6}$	$9,14, \overline{5}$	33
$\overline{12}$	$6, \overline{9}, 12,15$	30
10	$12,18,13$	29
$\overline{8}$	$8,17,13$	28
13	$10,16,14,8$	22
11	$\overline{7}, \overline{5}, 18,14$	21
14	$11,16,13,18$	15
15	$12,6,9,17$	14

COMPUTER ANALYSIS OF COGNITIVE PROCESSES IN PROBLEM SOLVING
 Ole Björkqvis'c

INTRODUCTION

During the last 15 years theory and research about thinking have acquired a richness in details that previously simply was not there. This development towards sophistication coincides with the emergence of the cumputer as a general research tool. Indeed, in the information processing parac .. the conputer analogy of the brain plays a prominent part.

The interest in the cognitive processes of students in schools is connected with the principle of individualization of education. With detailed knowledge of thought processes it is assumed that a matching of teaching methods and learning characteristics is possible.

In mathematics; the traditional analysis of cognitive processes is an indirect one. The object is the product - the calculations written down on a paper; or something equivalent. More direct methods involve the use of interviews or "thinking loud" while solving problems. The tape recorder and the video tape recorder provide means of repeating the sequence for later detailed anālysis.
The microcompater now takes this evolution of methodology one step further. Besides being a widely used instructiorai tooi, it can also bo used as a powerful research instmment. The requirements include program routines that store éach depression of a key into a protocol memory of sufficient size and preferably a possibility of recording the time elapsed between
successive key depressions. The later is used if the time variable is of interest, for instance if the van fous stages of solution are of mequal difficulty to a stixant.
There are limitations; of course. Oniy certain kinds of problem soiving episodes can be investigated - primarily those in which the presentation of the problem and all the work is done on the computer. If the problem involves paper work, the products are of a traditional type and cannot be imediately included in the computer analysis.

A great advantage of the computer is the fact that nany of the responses can be classified automatically, and if statistics or calculations based on the classifications are needed; the resuits can te printed out irmediately after the problem session. In other cases a classification cannot be made in advance. Then the printout can be scanned for patterns and the research itself of exploratory type.
since the problem session is virtiaily soundless; the microcomputer allows the research on jugnitive processes to be taken from the ainical laboratories into the classrooms. This is a welcome development; as the value of clinical results hàs always been at least somw hat in question. It can be argued that the use of the microcomputer makes the probiem solvinf, research artificial in a different way, but this is not necessarily so. The computers are here to stay in mathematicā?. education, and whether we like it or not; they are changing the type of problems that will be dealt with in schools. The changes in the classroms and the changes in research methods converge on the same medium; the computer; and this there is hope for research relevant to actual practice.

A DESCRIPTION OF THE TASK

In the research reported here, emphasis was put on developing the necessar: routines for the simultaneous use of the microcompute: as an educational tool and a research instrument.

KEYBOARD

FIGURE 1. The Keyboard and the Monitor with a Patiern of nots.

FIGURE 2: The Effects of some Key Depressions.

$$
\overline{8} 5
$$

Being a first attempt, the work was not performed in a classroom, utic in in research laboratory. The subjects were upper secondary school students:

The subjects were given a task in the form of a problem presented on a inicrocomputer screen. Iu motivate the students; the problem selected was an abstracic game based on a commercial but not too well know èectronic game; MERLIN (reg. trade mark). When adapted to a microcomputer; it has the advantage that it requires the uise of very few keys, arid thus thie responses are easily ciassified.

The problem selver works with a 3×3 pattern of dots on the monitor (Figure 1), each dot identified by one of the digits 1 9 , and some of them inftiaily inghted, uhile others are dark. By pressing the numerical keys on the keyboard, aiso numbered $\overline{1}$ 9; the solver can change, the parity of a portion of the dots; so that some initially doark dots tum light; while some originally 1 . zht dots darken. However, the action of each key is naknown at the beginning of the game, and the preliminamy stages invoive detection of their effects. Thera is a symmetry to be discovered, but it is rather well disguised by the simultañous lightening arid darkening going on.

The keys corresponding to the comer dots, those numbered 1; 3; 7, and 9; change the parity of exactly the corresponding comer dot, but also change the parity of the three duts next to it; for instance, pressing key number $\overline{7}$ changes the parity of the dots numbered 4; 5; 7, and 8 (Figire 2a).

A key corresponding to a side dot, those numbered $2,4, \overline{6}$, or 8 , changes the parity of exactly the same side dot; but also changes the parity of the two other dots along the same side;
for instance, pressing key number 6 changes the parity of the dots numbered 3; 6; and 9 (Figure 2b):

The key numbered $\overline{5}$ has the special effect of changins the parity of the dots mmbered $2,4,5, \overline{6}$, and $\overline{8}$ (figure $\overline{\mathrm{c}}$).

The object of the adapted version of the game is to find a sequence of key depressions that lights all the dots. A mathematical anaiysis of tie game shows fris aiways to be possible (Gibbs 1982). For each starting configuration the is a unique optimu solution which never involves more than 9 key depressions to be performed in no specific order. A iater depression of a key that has been used just nullifies the effect of the previous depression. Thus, each key either hās to be touched exactly once or must not be touched at all. However; to find that out, or even to develop a strategy; the solver generally goes through long repetitive sequences. Games of more than 200 key depressions are not unusual for à beginner.

The game is not very sensitive to the specific starting configuration. In fact; using a compietely random stratesy, the expected length of a game variē between 511 and 607 key depressions. Ini that sense all the configurations that arise during a game are comparable to tre starting position; and the number of games olayed is less im..rtant for research purposes than the tral number of situăt ons à specific subject hās faced.

PROCEDIJRE

After several tryouts; the game was played by 10 higizability senior secondary boys; all motivated enough to play it for up to two hours. Protocol materials from 81 games were àccunulāted, the tetal number of positions to be analyzed numbering 3411: This is typical of the capacity nf a computer- the enormous amount of information that can be gathered using just a small number of subjects.

FIGURE 3: Sample Printouc:

The following data were recorded by the computer (an example of a printout is given in Figure 3):

1. Identifying number of position in game:
2. Configuration of iighted dots.
3. Set of optimal (right) keys to press in the given situation.
4. Key actually chosen.
5. Correctness of key.
б. Parity or the dot corresponding to the key.
6. Position of the corresponding dot (comer/side/niddle).
7. Time taken to contemplate situation.
8. Cumulative time.
9. Cumulative average time per situntion.

Included were some or the variabies characterizing the situation and assumed to influence the decision of the problem solver, as well as variables describing the response. Based on the output, new variables were defined such as "reflectivity of thought"; calculated as the ratio of the time taken to contemplate a given situation to the average time per situation. Another secondary variable of interest to the analyses was the frequency with which a subject nülified a previous attempt by repeating it: This would most often be a repecition of $\overline{\mathrm{a}}$ singie key depression, but there occurred instances where up to four key depressions were nullified through repetition, showing that the sifia- .. sed to retion to a specific conftguration and restart ${ }^{r} \mathrm{r}$ II $\mathrm{i} \overline{\mathrm{t}}$. the propartion of such repetitive key depressions defined the variable "repetition".

Same viriables were expected to show a correlation with learning, $\bar{i} . \bar{e} .$, with ilme on task. To investigate such dependence, which conceivably might show within the course of one game; games of more than 60 key depressions were subdivided intc equal parts of not more than 60 (and not le3s than 30) key depressions. The number of such periods co rurk provided a progreseive measure of the interaction between the student and the computer. The periods of work are termed intervals in the following.

$$
\therefore \quad 8 \overline{9}
$$

SELECTED RESULTS

With only 10 subjects, any group measures are, of course, less illuminative than individual profiles and results showing intraindividual change: The large number of positions encountered by each subject makes the jatter reasonably reliable. The group measure, such as mean time taken to contemilate $\overline{3}$ sitiuation and preferences for certain keys; are of interest to show the general properties of the problem and to indicate pychological consequences of its structure.

The total effective playing time for the subjects varied between 30 minutes and 139 minutes; as caiculated directy from the computer sutput. However, as the mean time takei to contempate a situation also showed large variation, from $3 . \overline{8}$ seconis to 29.5 seconds (not particulariy highly correlatod with the total playing time), the number of situatior $\quad \therefore$ red by. each subject varied from only 98 to a higi i teras of intervals of work, the range was $:-15$, with the exception of two extremes at 2 and $\overline{2}$. Tin ecer the number of situations; the rore information was gathered about the subject, of course. On the other hand, extremes in the form of short total playing time or only a small number of situations per game may indicate fatigue or mastery of the problem; respectively, and they are thus particalariy interesting to the study of indi•idual differences in working with a microcomputer.

In Fjgure 4 it is shown why the mean time taken to centemplate a situation, as salculated from the totat output for one subject, is less satisfactory than a graph showing the chanse of that same variable when the subject proceeds to ne intervals of work- For the three subjects, the overall means were approximately equal, but the curves are far from flat and the shape of each 0.3 may be interpreted differently.

FIGURE 4: Average Contempiation Time per Position during Progressive Intervals of Work for Three Subjects. Total Time on Task ālso Indicated.

The 3×3 pattern of dots itself inciuded three types of dots, with possibilities of preference for certain kinds; either as a psychological bias or 3 a conscious strategy. Table 1 gives the distribution of the keys pressed, according to their classification as corner; side; or 5 keys. For each game; the "optimal" keys in the starting configuration have been subtracted, since they were forced rather than open choices. With an ubiased selection of keys, the percentages would be expected to be 44.4, 44.4, and 11.1, respectively. Key number 5; however; was used significantly more often than one ninth of the time, as might be anticipated from the central position of the number 5 dot and the special effect of the number 5 key. The differences between individual subjects in the use of the comer
and side keys；èg．between subjects 3 and 4；point toward the use of strategies that involve the symuetries of the pattern of dots．

In the overall preference order of the keys；no． 5 was foilowed by nos． 6 （12． 4% ）， $2(11.6 \%)$ ，$\overline{3}(10.9 \%), 4$（ 10.4% ）， 1 （ 10.2 \％）， $8(10.2 \bar{q}) ; 9(9.3 \%)$ ，and $7(8.9 \%)$ ．The less frequent use of the keys corresponding to the third row of dots reflects a tendency to use the nomal direction of reading；starting from the top；in the systematic attempts to find out the effect of each key．Interestingly enough；there was a significant preference for the rightmost column（39．5 over the ieftmost colum（ 32.5% ）．

TABLE 1．Distribution of Key Depressions（Percent）according to the Classification of the Keys．

Subject	Corner	Side	5－key
1	38.8	41.1	20.1
2	41.2	44.3	14.4
3	45.7	35.8	13.5
4	$\because 1.2$	58.4	10.4
5	47	40.0	18.3
6	43.6	46.9	9.5
7	42.2	42.2	15.6
8	促。荌	55.4	12.3
9	45.5	$38 . \vdots$	14.9
10	30.5	43.5	26.0
Total	39.4	44.5	16.0

Tuming now to variacies that are mor slosely comected with actual strategies of solution，the repetition of key depressions showed an interval dependence typical of learning．In figure 5；
the proportion of key repetitions for the same three students as in Figure 4 is plotted as a function of the interval of work. Aif the students had at least a short period of random attempts, which typically included à greater proportion or mpetitions; during the initial play.

As is evident from the iist of primary variabies (Figure 3), the parity of the dot corresponding to \bar{a} key was hypothesized to be an importani . - , its selection. This would be true during the period of at ittempts; arit the effect would be expected to remain, s as touch of certain key always does have an effect on the conding dot, in addition to various others.

In fact, the structure of the problem made it possible to judge the influence of the parity on the choice of key. This was so because there is, on the average, no difference in correctness between the two parities; even though for a specific configuration keys corresponding to dark dots may be predominantly right and keys corresponding to light dots

FIGURE 5. Proportion of Key Repetitions for Three Subjects.
5. 93
predominantly wrong; or vice versa: This can be mathematican demonstrated via symetry arguments. Considerin ail in: 512 possible configurations of dots; and the nine posecie ubices of key for each configuration, one quarter of the key depressions are right choices correspiding to dark dots; one quarter right choices corresponding to light dots; one quarter wrong choices corresponding to darik sots; and one quarter right choices corresponding to light dots.

However, the subjects deviated from this straight-forwart distribution of kev depressions. As expected, there was an overall preference for keys corresponding to dard dots; the percentages being 58 to 42 in favor of dark dots (Table 2). The key de. assions corresponding to lignt dots were evenly divided between right ane wrong choices, i accordance with probability expectation. : The key depressions orresponding to dark dots; on the other hand; were ciearly mone often right than wrong. This seems to reflect a characteristic of some conscious strātegiés employed - pressing sequences of keys corresponding to dark dots so that the total number of dark dots is decreased. In a number of cases the configuration itself gives a clue to likely correct choices. The high incidence of rignt choices corres. onding to dark dots thus is partiy an artifact of the game, notably the last stage of it, and partiy a reflection of the characteristics of the successful strategies preferrext by the players.

Facing a configuration which is cuinated by iight dots; the a priori probability of choosing a key corresponding to a iíght dot may be great enough to overcome the tendency $t=$ choose keys of the oppositr kind. Thus there woild be expected to exist a level where the two tendencies balance each other. This wis analyued by calculating the average numer of dark dots in the situations met by a subject, ās a function of the kind of key chosen. Trie results for the different subjects are given in Table 3.

TABLE 2: Distribution of Keys Pressed (Percent) according to Parity ($E=$ dark; $F=$ iight) and Correctness ($\mathrm{R}=$ rigint; $W=$ wrong).

Subject	Pe	RW	WE	WF	E	\bar{F}
1	27.7	27.5	19.7	27.2	47.4	52.6
2	30.6	25.1	23.3	21.0	53.9	46.1
3	37.5	19.0	24.7	18.8	62.2	37.8
4	44.3	17.7	19.2	18.7	63.5	36.5
5	34.1	19.7	22.1	24.1	56.2	43.8
6	31.0	24.2	22.	22.7	53.1	46.9
7	40.8	13.3	25.5	20.4	66.3	33.7
8	41.9	21.8	17.	18.4	59.8	40.2
9	33.2	19.9	36.2	18.9	61.3	38.7
19	35.0	21.8	\% 5	19.6	58.5	41.5
Totã	35.6	21.0	. 2.6	20.8	58.2	41.8

The grand average of 4.07 (statistical expectation 4.50) shows the magnitiude of the tendenoy towards play with as many light dots as possible; i.e.; to eliminate the dark dots. When the key chosen was associated with a dark dot, the average number of dark dots in the configuration was 4.41 (statistical expectation 5.00). The same àverage when the chosen key was associated with a inght dot was 3.59 (sstatistical expectation 4.00). The last number shows that an average of 5.41 dots had to be lit on the screen for the a priori probability of choosing one of the corres; - ling keys to balance the opposite tendency. In Table $\overline{3}$ averages are also given for the number of dark dots when the comrectnesss of the chosen key is considered in conjunction with its parity.

Again, it must be emphasized that the averages for individual sübjects in certāin cāes rēflect strategies adhered to. For
cuite a wile subject number 1 tried to make all the dots dark. His notion (which was expressed when hè was interviewed afterwards) was that it should be easy to light all the dots from that configuration: of course this involves an understanding thät symmetry can be used. Table 2 shows thāt to fulfil his plan he had to press keys corresponding to light dots more ofter than keys corresponding to dark dots; being the oniy subject to do so. In Table 3, the value 4.29 (for the average number of dark dots in sitiations where a key corresponding to a iight dot. was chron! is a deviating number which is specifically ralevant to thet strategy.

TABLE 3. Ay _ $^{\text {. Number of Dart Dots in Configuratior according }}$ to Parity ($E=$ dark, $F \overline{=}$ igght) and Correctness ($R=$ right, $W=$ wrong) of Key Pressed.

Subj.	R	RF	We	WF	R	W	E	F	Tot
1	4.82	4.58	4.65	3.98	4.70	4.28	4.75	4.8	4.51
$\bar{?}$	4.73	3.82	$4.3 \overline{1}$	3.52	4.31	3.94	4.55	$\therefore 58$	4.15
3	3.98	3.27	4.11	$\therefore 89$	3.74	3.58	4.03	3.08	3.67
4	4.63	4.17	4.59	3.95	4.50	4.27	4.62	4.05	4.41
5	4.35	3.90	4.20	3.22	4.19	3.69	4.25	3.52	3.96
5	4.32	3.46	4.55	3.18	3.94	3.85	4.41	3.33	3.90
7	$4.4 \overline{8}$	3.69	$4 . \overline{6} \overline{8}$	3.70	4.28	4.24	4.55	3.70	4.27
8	4.44	3.46	4.91	3.39	4.11	4.14	4.58	3.43	4.12
9	4.08	3.19	4.04	3.40	3.75	3.78	4.06	3.29	3.76
10	4.23	3.88	4.26	3.17	4.10	3.77	4.24	3.55	3.96
Tot	4.41	3.74	4.43	3.44	4.16	3.96	4. $\because 1$	3.59	4.07

The differences between the strateg: $\because \quad \because \quad$ subjects were breat: Tre same suisect also would vary his at empts; és.; $\overline{s e l e c t i n g ~ k e r s ~ c o r r e s p o n d i n g ~ t o ~ s i d e ~ d o t s ~ f o r ~ a ~ l o n g ~ w h i l e ~ a n d ~}$ then turning to the comer dots. The futility of some effurts

		12		Wis	Eis		57	118	50.15
3	dusatide	1ごs	\ddagger	WH	E：4	${ }_{3}$	2	1185．	5
		1＝254	6	R15	Fis	S			$5 \times .067$
	－217tata	125	9	4／5	F／5	${ }^{\text {c }}$	11	137	57．95\％
2 c		1234	3	Fi：	F3	¢	185	15.5	
		120．9	\％	6／4	E／S	c	${ }^{165}$	1	$6{ }_{6}{ }^{\circ}$
	pidisibit	124	6	W／5	E1\％	s	215	175	
2s	¢iltausa	1245	3	W／5	F／4	S	17	1785	
7	－11108tat	104n3	1	R15	E／4	¢	12	183	53.1794
－2	tatitatit	24\％${ }^{\text {a }}$	6	Ri＇4	E／厶	${ }_{5}^{5}$	3	18：8	61．${ }^{\text {c．}}$
23	tugallios	$2{ }^{43}$	4	R13	E／S	5	4	1：390	56．3043
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	粏11140	2	$\frac{8}{2}$	R17	E／S	${ }_{5}$	2	1842	57．\％Eご
				R17	E／S		34		34
－	1r9aliol	$1 \sim 3573$					12	43	23
$\frac{1}{2}$	atioilisa	23chis	5	R15	ETS	5	26	72	24
3	कivisils	2873	5	W／	E13	s	14	86	21.5
4	didat1111	237es	7	Rig	F／S	E	14	18	10．6E57
5	＋1platiop	20：6	4	Lis	F／4	$\stackrel{8}{8}$	13	118	17.7857
5	t10＊）1／dt	2 ta	3	R／5	E／4	${ }_{5}^{5}$	1.5	136	
7	101atipl	$3{ }^{3}$	t	R13	E／5	5	7	143	15．83：3
8	120．71190	24	8	R13	E／S	s	2	145	14.5
$1{ }^{\circ}$	－00118000	$\stackrel{3}{3}$	2	R／1	E／3	5	i	146	13．：3727
－	9001019as	1879	9	514	E14	c	19	19	$1{ }^{10}$
1		157	4	27：5	F12		22	4	
$\underline{2}$	1393：9120	${ }_{174}^{1874}$	4	R1／	E／3	${ }_{\text {s }}$	34	8 82	20.5
8	－${ }^{\text {chilitat }}$	174	5	W／\％	F／J	5	97	179	35．\％
5	（112de．）1	179	b	W／：	Eis	5	－	1：36	31
6	＋1popjota	1785	5	R／4	E1S	5	2	256	33.5
7	0 －7410，	175	4	प，	Fi－	s	72	344	38．
${ }_{9}$	itilisiopo	12\％43	9	－4．	E／t	8	20	364	35.4
18	1110tols：	1769	3	4／3	F17	S	14	378	34．25．36
11	11！d？	：76430	2	4	F．4	S	3	469	
12	－apalacoz	1764\％\％2	5	W1	Eif	5	2	414	29．97i
13	－1p13912	17：97\％	3	R13		5	$\frac{5}{4}$	413	27.2657
14	orplotisi	1764 1935	2	R1：	F15	s	30	44.3	
${ }^{5}$	celisisit	175．935	2	W12			d	449	2E．4ite
15	fatlorsis	1744595	4	8／${ }^{1}$	${ }_{\text {F／}}^{1 / 4}$	${ }_{5}$	4	45.3	25.1857
17	－athtyld	1769\％s：		R／S	F15		1	454	23．9047
18	110901120	17－353：	${ }_{7}$	R17	F1／3		4	501	25.05
$\stackrel{1}{20}$	$\underline{111002 d i t ~}$	139\％边：	6	W／3	E／3	s	2	503	23.95 .4
21	i1sitims	109\％26	9	R17	E／4	c	23	626	28．454．
± 2	1：0102asi	1305－6	2	R／t	F15	S	5	${ }_{6}^{631}$	27．${ }^{26345}$
23	dethesit	1.385	7	W／4	E15	c	${ }^{6}$	635	
24	－01010398	105	$\frac{1}{4}$	${ }^{1 / 8}$	E／5	5	58	723	27．3977
－5	Lilijopat	35667	4	W／4	F1s	S	7	730	
3	－1108paci	－	2.	17	E17	${ }^{5}$	37	757	27．57－7
27	L（atajatas	Scschtic	7	R17		$\stackrel{+}{c}$	4	771	25．5̇t？
23	i¢jitils	35364＝	3	k／3	E／3	¢	39	810	
，	ticidits	S86．42	5	R／5	EIf		9	810	26.4194
8	turathis	8642	$\frac{2}{8}$	${ }_{\mathrm{R}}^{\mathrm{R} / 3}$	E／5	5	2	821	25.595 .3
31	ploghutu：	264	8	81／		s	2	823	24：354
33	ologiculo	64	4	871	E／3		1	824	24．235：

FIGURE 6．Documentation of Three Consecutive End－games by one of the subjects．
would be quite obvious, and the strategy consequentiy abandoned by the student. In this respect a similarity with traditional problem solving in mathematics may be pointed out $=$ when students do not know what to do they may try one strategy after the other until they find a solution, either by way of sudden insight or by accident. When they have found a strategy that works; it is tempting to use it all the time without looking for another, perhaps better, strategy.

In the printout there were to be found instances wher \bar{e} intermedtate goal configurations could be clearly identified. Figure $\overline{6}$ shows the way one of the subjects ended three consecutive games. He obviously had learned that from a - situation with the number 2; 4; 6; and 8 dots dark you can obtain the finai goai by pressing exactiy those same dots. The symmetry of the configuration is certain to make it easy to memorize.

The variabie "reflectivity of thought" revealed many interesting details with regar to specific configurations of dots. To screen out the situations that corresponded to the longest relative contemplation times; an ābitrāry value of 2 wās tāken as an operative criterion- oniy those situations with values exceeding 2 were considered interesting enough to be included in the analysis. Their number was about 11 को of all the positions in the original analysis. The highest value found wās 10, i.̄̄., the students never contemplated a particuiar situation ionger than 10 times the average contemplation time during a certain interval of work.

The configurations that most often were associated with high reflectivity of thought were characterized by efther a smail number of dark dots ($=$ apparent closeness to the final soal), some obvious symetry, or both. The six most frequent configurations are depicted in Figures $\overline{7} a=\bar{f}$. For the purposes of this ciassification, any configurations that may be obtained by rotation or reflection were considered equivalent.

Figure 7 a shows a configuration that is intrinsically difficult. The correct keys to press are the keys numbered $2 ; 4 ; 6,7$; and 9. However; out if the 21 occurrences associated with careful consideration (high reflectivity of thought) only 4 led to depression of a correct key. Figure $\overline{7}$; on the other hand, is intrinstcally easy. There are 6 correct keys to press; and 12 occurrences out of 13 actually led to a correct key depression. The difficulties of the other configurations fell between those two extremes.

FIGURE 7. The Six Configurations of Dots Most Frequently Associated with High Reflectivity of Thought.

The configuration in figure 7 a, being the most frequent highreflectivity configuration and at the same time an interestingly difficult one, was also investigated using the furl documentation. Altogether it occurred 81 times, 30 of which led to a correct choice of key. The distribution of the attempts is given in Eigure 3 along with the high-reflectivity attempts;
using the pattern of the dots. The rumber 2 dot, the only dark one, evidently acted as the center of attention. However, the longer the students contemplated the situation; the more apt were they to choose keys comesponding to the neighborirg dots rather thay the number $\overline{2}$ dot itsel \bar{f}. Since the number $\overline{1} ; 3$, and $\overline{5}$ keys are ail wrong whereas the number 2 key is correct, iong contemplation in this singuiar case does not seem to benefit the process of solution.

FIGURE 8. The Distribution of the Key Selections in Response to Configuration 7a. On the Right, the Distribution of the Hight-Reflectivity Responses.

SUMMARY

The main reason for this piece of research was not to find individual similarities or dissimilarities in the solution of the specific problem; but rather to develup a methodology for problem solving rēearch in general, with an emnasis on school mathematics in as realistic situations as possible. Gradually, technicaily more difficuit anaiyses should be possible as mìrocomputers become more versatile.

Even in this simple problem, where the responses of the students were strictly limited, a number of interesting features of the solution process were identified and quantified. The structure of the problem was such as to admit a variety of strategies, from random attempts to the use of sophisticated
symetry arguments. At the same time, the number of dark dots on the monitor acted as a distractor rather than a real measure of advance towards the final goal. The switches between strategies, the reflectivity of thought at particular stages; and the return to previous configurations via repetition of key depressions were some elements of the solution process that could not have been studied equally closely without the microcomputer functioning às a research tool.

Another; slightly different set of goals in mind for the research were those connected with computer education - to know how to teach students how to use computers efficientiy you need to know details about the way they think while they work with computers.

REFERENCE

Gibbs, R.A. (1982) MERLIN and the magic square. The Mathematics Teacher 75 (1), 78-81.

APPLICATIONS IN THE JUNIOR SECONDARY SCHOOL LEVEL MATHEMATICS

Pekka Kupari

INTRODUCTION

In the teaching of school mathematics applications have an essential role: Applications help to prove the usefulness of mathematics; by means of appifcations nathematical techniques can be usefuliy practiced, and their use promotē conceptial understanding. The value of applications hās ālways been understood and recogniced, but it is generally known that at the present time; the position of appifcations in school mathematics leaves a lot to be desired. The effect of this can be seen also in lēarning rēsults. Sēveral rēcent studiēs of school achievement at this age level (e.g. Foxman et al. 1980, Hart 1981; NAEP 1979) have irdicated that the appifcation skilis of pupils are deficient and that the application process has become mechanized. Thēse dejrects were clearly disclosed āso by the extensive national assessment of mathematios teaching in the comprehensive school in Fintand which was carried out in 1979. (Korhonen \& Kupari 1983). Ā̄ a result, àpplications have been given special emphasis in the effected curricular reforms and development programs for the improvement of teaching. This wis the case aiso in Finiand when the comprehensive school mathematics syliabus was reformed in autumn 1982.
What, then, are the reasons for this deplorable state of
appications and how could we bring about a new and more
inspiring phase - these are questions to which we should try to
find some answers here. In the following; I shall try to provide
a few themes for the deliberation of these issues. I am going to focus mainly on the single question: "How arي applications used in teaching at this age level; and what problems emerge from this, in view of the learner's development?" Finally, \bar{I} shall also present a few ideas on what could be done to help the teachers.

HOW ARE APPEICATIONS USED IN TEACHING?

The word "applications" is used to describe a wide range of different mathematical activities. In his excellent review on applications Burkhardt (1983) gives a good definition of appli= cations: "An application involves the use of mathematics in describing a situation from outside mathematics, usually involving à mathematical model reflecting some aspects of thāt situation".

However; an application is always a relative concept in many ways: Applications can be viewed in relation to the different sub-factors of the teaching entity from the standpoint of: 1) learning material, 2) teaching praciice, and 3) the pupil. it may be asked, then, to what degree the ambiguity of applications is \mathfrak{l} consequence of this relativity: Next; \bar{I} shall discuss thése factors in more detail.

What Is the Role of Appifcations in the Subject Matter?

We may begin by asking how applications are used in the subject matter: In principle; the position of applications in the learning context is one of these two: in the teaching situation, applications come last; or they are the carrying idea in teaching new stuff.
a) When applications foilow the teaching of a new thing, they are used as a means to illustrate the new mathenatical technique. In this case, we speak of iliustrations, and the

Abstract

teaching method which is used is the traditional text-book centered exposition and exercise approach. Several illustrations of a given technique are usual. jor example, inear growth might be illustrated by different shopping and traveling problems ād; correspondingly, exponēntial growth by compound intērēst anđ radioactive decay.

b) Whin applications provide the central theme of instruction they deal with real situations fron outside mathematios and the alm is to discuss these situations by means of different models. By way of example; Burkhardt mentions a study of personal finance which might look at income and expenditure or the use of a mathematical model of capital and interest. The many aspects and viewpoints of such realistic situations make the discussion strategically more demanding for the student; so that the technical demand of the mathematics has to be lower.

Among the major objectives in teaching pupils of this age is to accustom them to use mathematics in forming an organized perception of their environment and to develop the thinking skilis of pupils. In the pursuit of these aims applications of real situations play a central role. On the other hand; the significance of illustrations is obvious in the acquisition of firm arithmetic skills; which is one of the main objectives of teaching at the primary ievel.

In dealing with "reāl situations" the student mis̄t outline and analyse the problem; he has to choose the stiategy for solvilig the problem and he must form a model and decide on the techniques to reach the solution. In doing so, the student is compellē to rely on his own thinking \bar{a} ', he should be encouraged to do so by all means. The student should be encouraged to explain; argue and defend his own theurkts and ideas on solving the problem. Faulty solution efforts shouid be analysed together with the pupil; because they often help in leading the way to the correct solution. If pupils thinkirs processes are raintained in this way, it will be sure to give
them confidence in their own ability to cope hith situations.

Why does the suoject matter contain so few realistic applications? There are several reasons for this. Eirst, teachers feel that these applications are messy and uncertain involving à wide range of open demands which makē them unpleasant. In dealing with these problems it is not certain that there is any single right answer. Therefore teachers think thāt these application problems are not decent matheratices which; in their opinion; is characterized by clarity and precision.

Secondly, teachers believe that realistic applications are too difficuit for pupils. It is true that realistic problems do require a broader view and wider experience and maturity than imitative exercises. But since, according to Burkhardt, no signs of the development of these qualities can be seen in the mathematics ciassroms it is unreasonable to set the pupils tasks for which they have no readinesses. It should be remembered, however; that during this transition phase when pupils change from children to young adults̄, thēse qualities should be ailowed to develop.

Thirdly, applications of realistic situations demand a lot of time. At least as far as Finnish mathematics teachers are concerned, iack of time is regarded as a central problem. When, on the one hand, the increase of applications in an approved development trend, but the other hand, people want to retain the main emphasis of teaching on the practice of arithmetic skilis, we drift to a disastrous situation. In order to include applications, the teaching process must be speeded up and this happeris at the expense of teaching the findamentals which are necessary for the applications. Thus the instruction deteriorates even more.

How to Teach Applications?

Secondly, we will look at applications in relation to teaching practices. Also in this rēspect two àpproachès àre possiblē.
a) First; we may speak of standard models of situations in teaching of applications. These are important in building up à "tool kit" of useful models and techniques (a term used by Burkhardt). They also provide practice in mathematical techniques and reinforce understanding by proviaing concrete illū̄trations of ābs̄trāct concèpts. Stāndān models are tāū̄ht didactically iny exposition and imitative exercise. it is assumed; after a sufficient number of illustrations; that the student will be able to recognize the characteristics of the standard situation when he meets a similar situation (pattern recognitici): An example of this might be calculating the two basic cases of percentages: how much is a given percent of a number and what percentage is à number of another?

Hokever, leaming outcomes indicace cleariv that some points are easily misremembered or different cases get mixed up. Thus it would seem, that by using only standard models it is not possible to adopt new methods and to use them in practice. The reason for this is, that the repetition of similar situations cannot result in the formation of higher level concepts and generalizations which is the prēequisite ror āssimilātion of things and which should be aimed at in this age period, according to piaget and Ausubel (e.g. Bèli et al. 1983; Resnick \& Ford 1981).
b) On the basis of what has been said above, it is obvious that pupils are abls to remember only a small fraction of the models which they employ in the standard applications. Evidence and experience have shown that even small deviations from the standord models of situations confuse students. Thus it is of the highest importance for every pupil to acquire skili and experience in tacking new situations. When a student is faced
by a new situation he or she must resort to his/her own store of knowledge in choosing and; if necessary; in adapting models and techniques. As new situations help the pupil to distinguish the essential features of solution methods he/sine aiso leams to make generalizations. The reason why new situations have not been very popular in classrooms follows to a great extent from the tradition of exposition and exercise in teaching where the tāsks children are asked to perforn involve close imitation of processes demonstrated by the teacher. The role of the teacher is that of a manager; explainer and corrector: It goes without saying, that after the instruction pupis succeed in these imitative exercises mich better than in tasks where they have to select mathematics from their own "tool kit" of techniques.

In approaching new situations the didactic method based on exposition and exercise is not appropriate. The teaching methods have to include more open styles of teaching where the pupil ieads at his or her own level with the teacher acting more as an adviser and fellow pupil. In practising the tacking and perception of situations the methods of general problem solving could be applied; for example following the model of polya (Polya 1957, Resnick \& Ford 1981).

What Is the Role of Applications from the Student's Viewoint?

In the foregoing, applications have been discussed in relation to student's characteristics at this age level. Next, we will deal with one finat dimension; in other words; the various ways in which pupils may experience appizcation probiems. According to Burkhardt (see classification on the next page) appiications differ as far as the interest level of the problems to the students is concerned. According to the rating there are five kinds of applications: 1) action problems, 2) believable problems, 3) curious problems, 4) dabious problems and 5) educational problems. This is of course onily one way of ratins applications from the pipil's standpoint. However, it

Classification of Applieations aeconding to the Interest Level

 of Problems (Burkhardt 1983)1) Action problems concerning decisions which will affect the student's own life.
Example: Organizing one's time to balance the various things one needs or should like to do.
2) Believable problems are action problems related to the student's plans for the future or for someone you care about.
Example: "How can I borrow some money most cheaply?" or "Is it worth my studying for two more years; or should I try to get a job?"
3) Gurious problems are simply fascinating; intellectually; aesthetically, or in some other way.
Example: "Why are total eclipses of the sun rarer than those of the moon?" or "How can sap be "drawn' up a tree ion meters high?"
4) Dubious problems are intended just to make one practise mathematios.
Example: "Calculatē the area of a right-angled triangle when its base is 6 and the adjacent acute angle is 45 :"
5) Educational problems belong to the category of dubious problems which illuminate some matnematical content or concept so beautifully and enticingly that students want to solve tnem.
Examplē: rone drachma was invested at $\overline{5}$ \% compound interest in the year 759 BC. To what sum has it grewn?"

$$
108
$$

Abstract

illustrates very well the point how many different kinds of problems there are and, at the same time, how few types of applications are used in classrooms. According to Burkhardt, applied mathematics hās rārely āimed higher than curious problems and for many students it has been almost entirely dis= cussion of dubious problems. Utilization of this whole range of applications would certainly be significant for the differentiation of teaching; because at this stage of education pupils" readinesses and motivation vary dramatically. We should remember however, that even educational problems always seem curious to some pupils and, correspondingly, some pupils experience believable problems as highly dubious. Therefore, the choice of appli= cation problems is of vital importance in matheuntics teaching.

EMPIRICAL OBSERVATIONS

In Finnish comprehensive school mathematics teaching the role of applications is largely as described above. Teachers consider lack of time the main reason for limited use of realistic appiication situations in teaching. This in turn resuits from the fact that teaching is too strictly tied to the textbook. Since no change has occured in the amount of teacting contents; at least not in the direction of a cut down, Eithough teaching time has been clearly reduced (and a decision made in spring 1985 will further reduce the number of weekly lessons in grade 9 from 4 to 3), it follows without saying; that time-consming material will be eliminated or efforts made to speed up the teaching process. According to Leino (1984) the elimination has been directed to problems related to concrete contexts and to the number of appifcations. On the other hand, the emphasizing of appications and the increase in their number has been a recognized and desired development trend during the last ten years. This is illustrated well by the fact that the number of applications in one 8th=grade textbook almost trebled during 1974-79. Below, I will examine in greater detail learning re-
sults in the area of applications; as compared to other achievements; and the relationships between iearning resuits and teaching. The scrutiny will be based on research material collected in 1979 during the national assessment of mathematics teaching in the comprehensive school.

The population of this extensive situational survey consisted of 2251 9th-graders and 115 teachers from 40 junior secondary schools. Data was collected both on cognitive learning results in mathematics and on structural, attitudinal and process features of the student, the teacher, the home and the school. The assessment of cognitive achievements focussed on measuring objectives defined as most essentiat (so-cailied basic objectives and core subject matter, Kouluhallitus 197.j). Each sutudent wās presented with one out of nine test versions containing together a total of 180 itens. Each version had been so constructed that; by using a ōne-parameter lōgstic model (Rasch's model); we could produce comparable scores for all students. The comparable student scores and item parameters aiso ailowed estimations of various subscores; for example; regarding different behaviour categories.

The test items were classified according to Wilson's (1971) behaviour classification as follows: computation, comprehension and appiłcation and anaiysis. The number of items at each level was:

- computation	95 items	(53%)
- comprehension	29%	(16%)
- application and	56 n	(31%)
analysis		

In view of teaching, the weighting of the areas was correct in that the dominating role of knowledge and computation was clearly emphasized. On the other hand, the proportions of comprenension and appiication items did not reflect the true position of

$$
110
$$

these areas in mathematics teaching.

TABLE 1. The Achievements of 9 th-graders at Different Levels of Behaviour (Estimated Means of Relative Scores, Standard Deviations and Reliabilities, $\mathrm{N}=2184$).

Eevel of behaviour	\bar{z}	\bar{s}	rei.
Computation			
Comprehension	0.49	0.22	.965
	0.53	0.24	.897
Appifcation and analysis	0.48	0.22	.943

The resuits in Table 1. are quite surprising. When analysing learning resuits; we had observed that a majority of students had very inadequate application and problem solving skills. The perception and analysis of items seemed to be éspeciālly diffi= cult and therefore students attempts to solve problems were totaliy mechanical. So ; we were led to expect mastery of appincation items to be clearly inferior to mastery of computation items. This was; however, not the cāse, ās achievements in all areas were very similar. On an average, students mastered 50% of the items in different categories of behaviour:

Reasons for the uniformity of achievements in different areas may be sought in the items prosented and in the nature of teaching. Firstiy, many of the application and analysing items were illustrative i.e. verbally expressed arithmetic operations. Generally they contained only one operation (so-called one-step problems; NAEP 1979); the only additional difficulty compared with "mechanicai" items thus being reading comprehension.

The items were now reclassified so that illustrations were
111
placed either in the computation or comprehension category. An attempt was aiso made at utinizing factor analysis, but the factorizations of individual test versions did not produce viable solutions.

TABLE 2. The Achievements of $9 t \bar{h}$-graders at Different Levels of Behaviour after Reclassification of Items

Level of behaviour	$\overline{\mathbf{z}}$	s	rel.
Computation	0.51	0.22	.969
Comprehension	0.55	0.23	.914
Application and analysis	0.40	0.23	. 918

Now; the outcome based on reclassification is more aiong the predicted ines. Achievements in the application area were about 0.6 standard deviation weaker than those in the area of computation and this difference can already be considered comparatively great. In other words; the mastery of more realistic appication items, which are important from the standpoint of students ${ }^{\circ}$ application skills, was significantly weaker than could be assumed at first (Table 1.). Teachers considered these items a definite part of the core subject matter, aithough this kind of items had not, on an average, received very much attention in teaching.

After this; $\bar{i} \bar{t}$ was interesting to see what impact the weighting of teaching contents had on students achievements.

$$
112
$$

TABLE 3: Teachers Answers to the Question "What aspects do yor emphasize in your mathematios teaching?" ($\mathrm{N}=114$)

	Practical compatation	Thinking and deduction skilis	Appilcation to everyday situations	Application to other subjects
Hardiy ever	0.0	1.8	1.8	$16 . \overline{7}$
Sometimes	20.2	43.9	36.0	64.9
Frequently	79.8	54.3	62.2	18.4

TABLE 4. Teachers', Answers to the Question Mow often do you give your students homework to the fojlowing effect?" ($\mathrm{N}=114$)

	Items similär to those solved in the class	Applications of subject matter discussed in the class	Solutions not dis̄= cussed in the class	Individual problems
Hardiv ever	$1 . \overline{8}$	3.5	41.6	66.4
Sometimes	2.7	46.9	$5 \overline{6} . \overline{6}$	$2 \overline{6} .5$
Frequentiy	95.5	49.6	1.8	7.1

According to results presented in Tables 3. and 4. teachers put strong emphasis on practical computation skill; although a good haif of the teachers often underined the importance of applying mathematics to everyday situations and of thinking and deduction

113

skitis. As for homework, the traditional exposition and exersice came out strongly, as almost all teachers gave homework based on problem types solved in the classroom. Again, about 50% of teachers often used itens requiring appitcation of subject matter discussed in the class. Homework containing new situations was very incidental.

Next; the study was focussed on students ($N=702$) whose teachers had in their teaching often emphasized the application of mathematics to everyday situations and had often given these students homework requiring application of subject matter dealt with in the class (=appiters). The teaching in this group was regarded as having been most application-centred. This student group's achiēements in different behaviour categories were then compared with the achievements of other students ($\mathrm{N}=1482$). It was assumed that the emphasizing of applications would also manifest itself in the form of better performance.

TABLE 5. The Estimated Means (z) and Standard Deviations (s) of Student Groups in Different Behaviour Categories.

114

However; the hypothesis was not correct. On the contary, other students had significantly better means both in application and analysis and in computation and comprehension. The outcome was unexpected, and it was considered a result of the way students from different sets were divided intu these groups. As a matier of fact, the group of appliers did include distinctiy more students from the lowest set, i.e. the general course, than other groups. The impact of this factor was eliminated bi- examining the reaults by set:

TABLE 6. The Estimated Means (z) and Standard Deviations (s) of Student Groups in Different Bēhaviour Cātegoriès by Sēt

- $p<0.5$

We now noticed that there were no differences in the achievemenis of the groups either in the extensive course or in the general course. In the intermediate course the achievements of appliers were better to an extent ($\mathrm{p}<\overline{0}, \overline{5}$) which oniy just reached the level of significance. However, we have to bear in mind that the means of appliers were higher in all behaviour categoriēs and not only in application and analysis.

The results we obtained are interesting in several respects: They confirm clearly that application items are very much seen in an illustrative sense, which favours computation-centred "mechanistic" teaching. Oniy a limited number of more realistic application tasks were used in teaching because of lack of time, and therefore, their mā̄tery was considerably weaker. Items which are more important in view of learning had received less attention:

Results regarding relationships between the weighting of teaching and learning results reinforce further silie picture we have obtained from the teaching of applications. According to teachers own replies; they emphasize practical computation as well as thinking skills and application of mathematics to everyday situations; bit obviously largely on the terms of computation skili. The iilustrative and imitative approach in the teaching of applications was manifested e.g. in that when (strong) emphasis $\overline{\text { as }}$ put on applications the results in all behaviour cate= gories improved in the intemmediate course: This was not the cace in the extensive and in the general course; because there the tēaching went éither below or above students" "reception level". On the other hand, this outcome sems to suggest that increased utilization of carefuily chosen realistic and aiso new application situations in teaching would improve the mastery of all behaviour categories for all students; but especially the application skills of mathematics.

WHAT COLD BE DONE TO HELP THE TEACHERS?

On the basis of what has been said above, there can be no question of that clear changes in the teaching of applications at this age level are necessary in order to make sure that pupils characteristics and changes which occur in them will be taken into consideration. The present-day teaching of applications is characterized by a clear dominance of iliustrations; by teaching practice based on the imitation of standard models of situations and by one-sided application tasks. It is obvious; that this kind of education cannot promote pupils development. in the direction of objectives: The responsibility for the change of teaching style lies mainly with the teachers, and therefore we should find means to help them. This is a challenge to which there is no clear-cut answer; but nany ideas are sure to be found. The following table presents a proposal in principle on the development areas.

TABLE 7. A Model for the Develcpment of Teaching $\dot{\mu}$ pplications

Problem	Development area
What is the role of	Development of teaching
appilcations in the	materials
learning content?	
How are applications	Development of
taught?	teaching styles
What role do	Development of
applications play	teaching
from the pupil's point	arrangements
of view?	

This łable presents each development area inked with a certain problem although it must be understood that they are in close interaction with each other. In teaching materials there is a special need for multi-level, interesting application material. According to Burkhardt, there is a shortage of material particularly in the area of easy, interesting application problens relevant to everyday life. Possibilities should also be investigated of utilizing the fund of application materials around the world.

We know from experience that it is very difficuit to change teaching paractices and styles. A iarge number of different development projects have been carried out all over the world, but no major changes have been produced: For example; it has been found, that printed material has very iittie influence on teacher's teaching style. (Burkhardt 1983). On the other hand, the success of some projects in that pupils have positive attisudes to application-centered teaching and can also cope well with it.
The development of teaching styles has direct impacts on teaching arrangements and some of the emerging questions might be: "What is the optimim size of teaching groups suitable for various open styles of teaching?" or "What arrangements are necessary for the use of microcomputers in the teaching of applications?"

Aiso various kinds of externai pressures have an immense impact on education. Up till now, the social nressures, for example, have been for better technical skills rather than the ability to cope with practicai situations. We shouid try to change these pressures coming from varous sectors (including the society; parents, school administration, teachers' associations, examinations; media) to make them more favourable to application skitis.

Finally, we must remember; that implementation of changes in the ēducātional syştēn is̄ à very s̄low procèss. Therefore we must be
prepared for longterm work and failures as well: All efforts unist be aimed in the same direction. This inplies the necessary support of extensive research and development activities as well. as close commuication between the various influential pearties:

RESERENCSS

Bell, A. W., Costello, J. सuchemann, D. (1983) Research on learning and teaching: A review of research in maíhematical education. Part A. Wiñeror: Nrer-Neison.
Bürkhardi, H. (Ed.) (1983) An international review of appilcations in school mathematics. Washington, DC: National Institution of Education.

Foxman; D.D.; Martini; R.M.; Tuson; J.A. \& Cresswell; M.J. (1980) Mathenatical development. Secondary surviy report No. 1. London: Her Majesty's Stationery Office.
Hart; K.M. (Ed.) (1981) Childrens understanding of mathematics: 11-16. London: Join Murray.
Korhonen, H. \& Kupari, P. (1983) Quo vàdis̄, school mathematics. In P. Kupari (Ed.) Mathematics Education Research in Finland. Yearbook 1983. Iniversity of Jyviskylai: F orts from The Institute for Educational Research 347.

Kouluhallitus (1976) Matematiikkā. Ehdotus perus̄tavoitteiksi ja perusoppiainekseksi peruskoulussa. (Mathematics. A proposal for basic ōjectives and core subject matter ir the comprehensive school). Helsinki: Kouluhallítus.
Leino, J. (1984) Kculumatematiikan opetuksen nykytilanteesta ja kehityssuunnista. (On the present state and trends in the teaching of school mathematics): Matemaattisten aineiden āikākauskirje 48(3), 119-124.
NAEP (1979) Mathematical applications. Selected results from the second assessment of tithematics. Colorado: Education Comission of the States.

Polya; G. (1957) fow to solve it. New York: Doubleday Anchor Books.
Rēnick, L. $\bar{B} . ~ \& \overline{\&}$ Ford, W.W. (1981) The psychology of mathematics for instruntion. New Jersey: Lawrence Eribaum Associates.

study of leapning concepts rilated io thianeisis and QUADRANCLES ON TME BASIS CF VAN HIELE'S THEORY

Harry Silfverberg

INTRODUCTION

The place of gemetry in the curriculim of the compehensive school is feit to be probiematic; and with reason. placing the subject matter of geometry in between other matters in fairiy short periods may make the perception of wholes more difficult and lead into misimderstandings as to what degree of mastery is to be expected à different stages (Pehkonen 1982):

The content and method of teaching at any given stage are influenced not only by the inner structure of the subject matter taught but aiso by the level of maturity of the learners. Yet very little is known about the geometrical thinking of pupils at different levels of maturity. One way of describing the development of geometrical thinking is offered by the van Hiele theory of phased change in geometrical thinking, already published in 1957. According to this theory, the development of geometrical thinking is characterized by the lessening of hoistic thinking; by the shifting of the focus of perception from the visual shape of the figure into its properties, the organizing of these properties and the assumption of ever more complicātēd mathematical sutructures.

It is obvious that a wider mowledge of geometry as well as separate concepts are acquired by degrees. since any geometrical concepts āe used long before their exact mathematical content has been clarified; it follows that at the preliminary phases or̀ learning such concepts may be regarded as natural concepts; of whose inner structure and assumption cognitive psychology hās been produced a lot of information (Rosch 1973; Rosch et al: 1975; 1976):
j.n the present study (Silfverberg 1984) we made an attempt to describe the development of pupils geometrical thinking mainiy at the thivee lowest levels of the van Hiele theory, which were considered the most essential as far as school mathematios was corcerned. In particular we tried to answer the following questions: first; can we perceive in the pupils thinking a tronsition from a holistic way of rerception into one analyzing and ciassifying properties, and if yes; at what stage does such a transition take place? Secondly; in as far as a pupil recognizes, names, classities and compares figures analytically, making use of the properties of the figure in an explicit way, are, then, these properties separate or connected with one another?

THEORETICAL BASIS

Dutch scholars Piemre van Hiele and Dina van Hielemeldof put forth in their doctoral theses a theory of the levels of mental development in the learning of geometry, \exists transition from one level to another, and classroom strategies assisting the transition. The theory can be considered to be of didactic interest at least for two reasons: first, the theory presents through what kind of phases geometrical learning progresses and how these phases follow one another. Secondiy; the transition from one level to another presupposes the mastery of activities pertaining to the previous level in essence. Especially if the language of instruction is above the jevel of the pupils" thinking; the pupi cannot grasp the instruction given (van

122

Hiele 1959).

The levels of development, later reperred to simply as the van Hiele levels; can be described as follows (Burger 1981; Geddes 1981, Hoffer 1981, 1982; Mayberry 1983; Pehkonen 1982; van inele \& van Hiele-Geldof 1958, Wirszup 1976).

Van hiele Levels of Development in Geometry

Level 0. Visualizātion

At this basic level figures are percieved as totaz entities. Recognition, naming, classifylng, comparison, description etc. are carried out on the basis of the visual shape of the figure; not on the basis of its properties. The pupil is able to recognize and name ordinary geometrical figures. He does not pay attention to the connection between the whole and its components: His thinking is concrete; and geometricsl concepts are mainly names of objects and figures; not so much mental constructions.

Level 1:- Description

According to van Hiele, the qualitative change of mental development while moving on from level $\overline{0}$ to level $\overline{1}$ presupposes the changing of visual structures into geometrical structures. The abstract level of thinking rises; as operating with concrete objects changes into operating with geometrical symbols. At this level the pupil consciously focuses his attention also on the properties of the figure, but the properties remain disconnected, since the relations between them are not discerned. The pupil can compare figures with the help of the relations between the componentes. Also; the pupil can clessify figures with the help of their properties and not only by relying on their similarity. The pupil discovers properties belonging to all triangles; squares etc: and he can draw
comparisons between groups of figures on the basis of their propertiēs. At this level, however, it is not possible for the pupil to explain how the properties of a certain group of figures are related to one another:

Level 2-Abstraction

At this level the pupil can formulate and use definitions and follow deductive conclūsion. He identifiē necessanay and sufficient properties for characterizing a class of figures. He can make use of the properties of \mathfrak{a} forure when examining whether \bar{a} class of figures is included in another. He understands some of the relations between the propertiēs. Groater connections between theorem groups are not grasped, neither is geometry understood as an axiomatic theory.

Level 3. Deduction

At the level of deduction the pupil can conclude what follows from a given fact and discerns relations between theorem groups. Differences between definitions; axions and statements are understood. A pupil operating at this level can recognize what has been given in a problem and what is required.

Level 4. Mathematical rigour

At the highest van Hiele level, the pupil can compare different axiomatic systems; for example different geometriēs. He understands the ifmitations and possibilities of hypotheses and axioms. He can use mathematical models to represent abstract systems and to describe various phenomena through such models.

While looking for the distinguishing signs of holistic perception at the level of visualization, we relied particularly on E. Rosch's observations on the assumption of naturai concepts (Rosch 1973, Rosch et al. 1975, 1976). The visual structures of
level 0 cannot be construced on explicitiy perceived common properties. Instead, the formation of classes is explained to have resulted from a sufficient similarity between objects beionging to the same ciass; a feature which Rosch calls nfamily resemblance", adapting Wittgenstein. Objects belonging to the same class need not have properties common to all. Thus class divisions are not necessarily rigid.

At the level of desuription the pupil adopts the means needed for analyzing similarity and difference. The pupil learns to make use of the properties as an instrument of recognizing; naming and classifying. As stated by the van Hieles; a single property of a figure may become the signal of a concept, i.e. the distinguishing sign for this concept. Since the properties at the level of description are not organized; hierarchic structures cannot be presented in the knowledge structure.

At the level of abastraction; according to the van Hiele theory; the properties of geometrical figures form a partiy organized sys̄tem. Generally it is not until this level thàt an exact and economic definition of concepts becomes possible and the class divisions become rigid.

Even though the van Hiele theory was originally meant to be used to explain the development of geometrical thinking; it was later applied to chemistry and economics as well; at least in Holland. In addition; A. Hoffer has drawn the outines for the application of the model to examining the learning of geometrical transformations and real numbers (Hoffer 1982):

CONDUCTING THE STUDY

The main body of the tests consisted of drawing; naming and defining triangles and quadrangles as well as tasks related to discovering the common properties of the figures. Triangles and quadranglē were supposed to be familiar enough to all
comprehensive school pupils tested, the youngest of whom were in the fifth grade (aged 10-11) and the oldest in the ninth grade (aged 14-15). The first test (triangles) was given to 127 pupils end the second (quadrangies) to 136 pupils. Both the tests were taken by 121 pupils.

RESULTS

As for the first main question, the results were in accordance with the prediction of the van hiele theory. In comnection with the drawing, recongnizing and comparing of figures, geometrical concepts were used in a holistic way.

As índicators for nolistic conceptual perception in connection With drawing we regarded the pupil's limited capacity to modify when producing a series of four different triangles/quadrangles and giving a finite estimate of the possible number of different triangles and quadrangies. A ilmited capacity of modification in the whole series produced (triangles) was apparent especially among the fifth-graders. With regard to quadrangles it was apparent among pupils in higher grades as well. About three out of four fifth-graders thought there was a finite number of different triangles and quadrangles. Even in the higher grades only one out of three was sure that in principle it would be possible to draw an infinite number of different figures. The results may have been distorted by the fact that the pupils were inclined to regard figures belonging to a different type only as different figures; in which case there would naturally be a finite number of such ciasses.

In the test of recognizing triangles the pupils had to pick out the triangles out of a group of 14 given plane figures. The four true triangles and they only were recognized as triangles by about \bar{a} fourth of the fifth-graders and about a half of the pupils in the upper grades. The most common mistake was to
accept trianguiar figures having partiy or totāily curved parts in them as genuine triangles. Out of the 15 quadrangles presented, squares were recognized almost flawlessly; but the rectangies and the parailélograms were correctiy recognized by no more than a fourth of the pupils at any grade level. There seemed to be two main reasons for the difficulties with the recognition of rectangles and parallelograms; the first of which was the fairly constant tendency to try and avoid overlapping in classification. For example only 19.0% of the ninth-graders accepted the square as a rectangle and 9.5 \% the rectangle as a parailelogram. The second factor causing fauites in recognition was the fact that the names of even the most coumon basic figures were not familiar to all pupils. Of the basic fugures presented the square; the rectangle and the parallelogram (all three) were correctiy named by about a half of the pupils in the upper grades. The square and the rectangle (both two) were correctly named by 43.5 \% of the fifth-graders and by 72.5 \% of the other testees. Such a ciassification was interpreied as a sign of a recognition which takes place in an holistic way on the basis of resemblance rather than on the basis of defining properties.

The comparison of figures proved a hard task at every grade level. Properties used as a support for comparison were classified as either holistic or analytical. The higher the grade, the smalier the ratio of the holistic concepts was. Owing to the crude method of estimation used, no more than a half of even the eighth and the ninth-graders were found to have used à clearly analytical way of examination.

As for the pupils who did use an analytical way of examining the propertiē, we studied whether the propertiēs formed a partly organized system. As a characteristic of an arder of properties we regarded the pupil's capacity to satisfactorily define a triangie/quadrangle and his ability to understand that a ciass of figures may be included in another. As stated before, class inclusion with regard to quadrangles rarely occured. An acceptable definition of a triangle and à quadrangle was only
given by a handful of pupils: A certain property becoming a signà, \bar{a} feature mentioned by van hiele, was quite apparent. The signal of a triangle was its shape being triangular and that of a rectangle its being oblong.

Even though the test battery used was not specificaily designed to place pupils at the various van Hiele levels; we can with fair certainty say that nearly all pupils tēsted would have piaced on the two iowest van hiele levels. By way of comparison we might mention that; according to Pyskalo (1968); with the help of classroom strategies based on the van Hiele theory it is possible for all pupils to attain the level of description

DISCUSSION

The holistic way of recording and manipulating information which was discovered in the tēst results of especially the youngest pupils seems to be a natural starting point in the process of learning a new thing. Learning the concepts of elementary geometry probably starts by forming the appropr:ate visual imāēes. Such \bar{a} holis̄tic recording of information seems to be a typical and effective way of storing visual information. Yet from the point of view of learning geometry it is disadvantegous if information can only be manipulated in this form. The exact definition of concepts and understanding the relations between the concepts cannot be nastered i. visual means alone; for that we need knowledge of the propertice of the figures. A sign of relying too heavily on perception was indicated by most pupils" inclination to classify quadrangles disjunctively. We should be able to take the best possible use of the spontaneously hom or purposefully made visual structures; but we should also be able to depart from them when need be. We need, however; to know more acout what these visual structures are like and how geometrical structures proper can be constructed on the basis given by them. In as far as the van Hiele theory is to be used as a framework

- 128

Abstract

$\bar{f} \bar{r} \bar{p} \operatorname{lanning}$ the teaching of geometry, we need to further ciarify the content of each level and their relation to one another. One problem is that the level̄̄ $\overline{\operatorname{ar}} \overline{\mathrm{s}} \overline{\mathrm{s}} \mathrm{o}$ concept-bound. There is evidence of the fact that pupils are at different ievels as to understanding different concepts (Mayberry 1983). The mere placement of pupils at the different van Hiele levels is not of much use as such. We also need to know through what kind of classrom strategies the transition from one ievei onto another can be assisted. This aspect of the van Hiele theory fall.s out of the scope of the present meliminary study.

REFERENCES

Burger; Wor-(198i) Thought ieveis in geometry. Interim report of the study. Prepared for a project directors meeting of the National Science Foundation. Washington, D.C.
Geddes; D: (1981) An investigation of the van Hiele model of thinking in geometry applied to inner city adolescents. Fesearch presession. National Council of Teachers of Mathematics, 1981 Annual meeting. St. Louis, Missouri.
Hoffer; A: (1981) Geometry is more than proof: Mathematics Teacher 74; 7-18.
Hoffer; A. (1982) Van Hiele based research. Unpublished report.
Mayberry, $\bar{J} . ~(1983)$ The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for Research in Mathematics Education 14; 58-69.
Pehkonen; E. (1982) Geometrian opettaminen ylasteella Ii. Yláasteen geometrian kurssi (Teaching of geometry in the upper level if. The geometry course of the upper level in the comp.rehensive school). Matemattisten aineiden aikakauskirja 46, 181-186.

Pyşikālo, A.M. (1968) Geometrija v I-IV klāssākh (Problemy formirovaniya geometricheskikh predstabvienii i mladshikh shkolnikov). Moscow: Prosveschohenie.

Fosch, E. (1973) On the internal structure of perceptual and semantic categories. In T.E. Moore (Ed.) Cognitive development and the acquisition of language, New York: Academic Press.
Rosch; E: \& Mervis, C.D. (1975) Family resemblances: Studiēs in the internal structure of categories. Cognitive Psychology 7,573-605.
Rosch, E., Mervis̄; C. B., Gray, W.D., Johnson, D. M. \& Boyes$\overline{B r a e m}$, $\overline{\text { P. (1976) Basic objects in natural categories. }}$ Cognitive Psychology 8; 382-439:
Silfverberg; H: (1984) Koimioihin ja neikuimioinin ifittyvien kasittēiden oppimisen tarkastelua van Hielen mailin kannalta (Study of learning concepts related to triangles and quadrangles on the basis van Hiele's theory). Unpublished thesis. University of Tampere. Department of Education-.
van Hiéle, P.M. (1957) De problematiek van het inzicht. Unpublished thesis, University of Utrecht.
van Hiele; P.M. (1959) La pensee de i'enfant et la geometrie. Bulletin de íAssosiation des Professeurs Mathematiques de 1'Enseignement Public 198, 199-205.
van Hiele, P.M. \& van Helel-Geldof, D. (1958) A method of initiation into geometry at secondary schools. In H. Freudenthal (Ed.) Report on methods of initiation into geometry. Groningen: ©., W, Wolters.
van Hiele-Geldof; D. (195") De didaktiek van de meetkunke in de eerste kias van het $\overline{\mathrm{F}} \cdot \mathrm{M} \cdot \mathrm{O}$. Unpubiished thesis; Jniversity of Utrecht.

THE DEVELOPMENI OF A CONCEPI OF NUMBER IN FIRST-GRADERS (A DEVELOPMENTAL PSYCHOLOGY APPROACH)

SUMMARY OF A THESIS

Irma Vornanen

This study"s primary goal is to apply Piaget's principles of developmental psychology to the development of numerical concept ir first-graders. The study has to benducted in three parts. The first section, discussed below war carried out between 1981 $=84$, the second partis to be carried out $1983=86$; and the third part in 1985-88. The first part deals with piaget's understanilng of how the child's concept of number develops; the principles of developmental psychology that Piaget believes applicable to the teaching of mathematics, and othes thoughts that piaget has on the subject of developing teacting techniques for mathematics. With these as a foundation a program for developing the numerical concepts of first-graders will be developed: a didactic solution and the training of teachers; experimentation and research fundamentally connected with it. The first part of the study stresses the theoretical aspect of the subject, the second empirical, and the third concentrates on practical application. The research is being carried out in conjunction with the continuing education of teachers. The role of the teachers in the development of teaching procedures has teen significant.

The didactic solution, based on 户iaget's mumerial concept theory, was developed to be appropriate to planned situations intergrated into the normal teaching of mathematics in the first school year. The educational and instructional influences characteristic of school and also the orientation of teaching towards the creation of the abilities presupposed by school instruction mist be considered. Thus the theoretical basis was expanded to include Vygotsky's and Ausubel's concepts of the development of teaching together with learning. In the didactic solution the question was one of increasing sensitivity to developmental readiness; a prerequisite for the start of meaningful mathematical learnins at school. With respect to the training of teachers the goal was to develop the pedagogical readiness that is required if significant development in firstgraders' understanding of numbers is to take place. The testing of the didactic solution in prastice is based upon cooperation between the researchep and tie teachers. The study is one which presupposes cooperation; a stage-by-stage $R \& D$ (Research \& Development)-type of developmentai study.

The research problens of the first part of the study deal with: 1) the level of first-graders' numertcal development at the beginning of school and certain developmental factors, the type of day-care recelved the previous year and the significance of age in relation to it 2) the significance of a developmental program on the development of the concept of numbers, success in a mathematics course the prevention of leaming difficulties and 3) the teachers ${ }^{\prime}$ opinions and experiencēs concerning the developmental roogram. In solving the first problem emphasis is placed on explaining the thought processes behind the answers: The notes taken by the teachers in the test situation piay a significant role in the analysis of resuits. In solving the second problem the attempt is to draw conclusions ābout the situation prevailing at the miment in respect to the problem proposed by Piaget as being mathematios central dídactic problem, that is the fusion of the child's natural numerical development process and a teaching curriculum. In solving the

132

second problem the experimental set-up is that typical of field studies: pre-test; retest; control groups. In sulving the third problen the attempt was to pain knuwledge of the program's relevance to the goal set by the study as a whole: The information was gathered from a questionnaire presented to the teachers. There are 262 subjects in the study and 19 teachers.

According to the resuits obtained, there were various levels of developnent among the 6-7-year-olds starti.ig school. On the basis of how the children react and respond in the experimental sitiation and from the kind of explanations they give for their answers; conclusions can be drawn about the thought processes involved. The attempt to cctimate the general level of development of childrens ${ }^{\circ}$ numerical concept was unsiaccessfill due to inexactness in both the instrimient of measure and measurement procedures. The measure proved, however, to be quite informative from a developmental point of view. The child's age appeared to be significant to the level of numerical development at the start of school. Those borm in the beginning of the year had a headstart compared to those bom at the end of the year. On the other hand, whether oir not the children attended nursery schiool or recsived any other form of daycare the preceding year did not appear to have any eqfect on the ievel $\bar{\gamma} \bar{f}$ numerical development. The effect of a developmental program based upon Plaget's theories, on calitiowieppraisal, appeared to be positive. On the other hand the program had only ifttie positive effect on the prevention of learning difficulties; and there were even indications of effect in a negative direction. The teachers' opinions and experiences conceming the relevance of the developmental program were for the most part positive. However the need for further developing the program became evident.

In accordance with the nature of a developmental study; the study at hand was assembied from the study data available at the present moment. On this basis a program for developing the development of mumerical concept in first-graders was designed. The program was tested in practice. According to the feedback
received, the program proved to be functione. Need for correction; suppiementation; and specification was observed in the study's various parts: the didactic solution, the training of teachers, research. The program must therefore be further developed. Feedback on the trial use was also obtained; suggesting in which atrection further research is needer.

134

bIOGRAPHICAL NOTES

Ole Bjorrkquist

Associate Professor of Mathematics Didactics; Doctor of Education, Teacher Training College of Vaasa, Department of Education in Ăbo Akademi.

Tapio Keranto

Associate Professor of Mathematics Didactics, Doctor of Education; Department of Teacher Training; University of Oulu. Au= thor of mathematics textbooks for the lower level of the comprehensive school.

Pekka Kupari

Researcher officer of Mathematics Education; Master of Science; Institute for Educational Rēsearch, University of Jyvāskyle. Author of textoooks and tests on school mathematics:

Jarkko Leino

Professor of Education; Doctor of Philosophy; Department of Education, University of Tampere. Author of numerous studies and books on mathematics education.

Harry Silfverberg

Lecturer of Mathematics, Physics and Chemistry, Master of Sciense; Training School; University of Tampere.

Irma Vormanen

Debuty Associate Professor of Education; Doctor of Education, Departmer of Teacher Training in Kajaani, University of Dulu.

135

MATHEMATICS EDUCATION RESEARCH IN FINLAND YEARBOOK 1984

Published annually by the Finnish Association of Mathematics and Science Education Research and the Institute for Educational Research

Edited by Pekka Kupari
Price 20 Fmk
Address and orders: University of Jȳväskylä
Institute for Educational Research
Semināarinkatu 15
SF - 40100 Jȳvāāk̄̄lä
Finland
Printed in Jyväsky̆än yliopiston moinistuskeskus
Cover: Sisä-Suomen kirjapaino

136

[^0]:
 Reproductions supplied by EDRS are the best that can be made
 from the original document.

[^1]: Age $=$ age whem 50 of the age group su_nged
 II orange
 \square 三 water

