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Abstract

Computer learners often develop explanations of events they observe during
&aining. Recent work on generalization suggests that explanations may be
valuable in permitting learners to develop generalizaticns fror one or a few
examples. We explore this idea by describing four generalization paradigms in
which explanations play a part: explanation-based generalization (EBG), structure
mapping anaiogical generalization (SMAG), modificational analogical
generalization (MAG) and synthetic generalization (SG). We describe a model, the
EXPL system, capable of applying MAG or SG to the generalization of simple
procedures in human-computer interaction. We _présent evidence thiat EXPL's
analysis procedure, which constructs explanations as needed by MAG or SG,
embodies heuristic principles used by human learners, and that MAG provides a

good account of some human generalization, when retention of examples is not a

problem.



Introduction

In a series of thinking-aloud studies of word-processor'leaming (Lewis and Mack,

1983; Mack, Lewis and Carroll, 1983) it was noticed that learners often

spontaneously offered explanations of why things happened the way they did.

Learners were under no explicit demand to produce such explanations, yet they

) showed considerable fluency and ingenuity in developing them. Why were they
doing this? Lewis (1986b) speculated that the explanations assisted

generalization: determining how their actions were related to observed outcomes

could be crucial in permitting learners to build new procedures for accomplishing
novel tasks.

This Speculation meshes well with recent work on meéfxanisms of generalization
under the headings "explanation based learning" (DeJong, 1981, 1983a, b;
Kedar-Cabelli, 1985, Mitchell, Keller, and Kedar-Cabelli, 1986, DeJong and Mooney,
1986) and "analogical generalization" (Pirolli, 1985; Anderson and Ross 1986). In
these approaches, in conti‘ast with earlier "similarity-based" methods which look
for regularmes among large numbers of examples (for review see Dietterich and
Michalski, 1983), generalizations are based on an analysis of one or a few
exa;nples. The analysis aims tc determine why an example is an example, so that
further ex:amples can be recognized or constructed.

In this paper we discuss the application of these analysis-based generalization
methods to the task of generalizing simpie procedures in human-computer
in'teractio;‘ Th..t is, giVen an example procedure and its outcome, we will use
analysls-based methods to obtain new procedures to produce new but related

outcomes We wnll then consider data that test the extent to wh:ch these models



reflect analysis and generalization as practiced by human learners.
Analvsis-based lizati

In similarity-based approaches generalizations are developed by examining a
number of examples of a to-be-learned concept and constructing an economical
description that is satisfied by all the examples (and not by any “nown
non-examples.) The generalization produced is the conjecture that any item that

satsifies this description is an example of the concept.

Analysis-based approaches attempt to build generalizations not by characterizing
a number of examples but by discerning the essential features of a single
example. By explaining what makes this example an example, we can characterize

a larger class of examples, namely the class of examples for which the same
explanation holds.

Exnlnnﬁmn;basgdmgml}zmm Mitchell et al. (1986) describe an
anaiysis-based technique, ;:alled EBG, in which the analysis of an example consists
of a proof, within a formal theory of the example domain, that the example

belongs to a specified goal concept. The generalization process examines this proof
and constructs a characterization of the class of examples for which essentially

the same proof would work. In contrast to similarity-based generalizations, a
gexleralization constructed in this way car be formally proven to be correct, even

though it may be based on only one example.

DeJong and Mconey (1986) discuss a broader framework, called

explanation-based leaming, in which the analysis of an example is embodied in a

7
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set of interlocking schemata which the example instantiates and which account
for the aspects of the example that are to be understood. Just as EBG generalizes
© to the éiass of examples for which a given proof would go through,
explanation-based learning generalizes to the class of examples to which a given
schema or collection of schemata can be fit. While DeJong and Mooney discuss
some advantages of the schema approach, and some other improvements to EBG,
the differences between these two explz.nation-based methods are not important
to our discussion here, and we will use EBG as a representative of this class of

approach.

EBG jrequires a domain theory to be given, which is unavailabie in many realistic
learning contexts, as Kedar-Cabelli (1985) and Mitchell et al, (1986) note. In the
domain being considered here, procedures for operating computers, l2arners
frequently ehcdunter examples that they cannot explain on the basis of prior
knowledge.

Command names provide a simple example of this difficulty. In some operating
systems "dir" is 2 command for displaying a directory of files. When a learner
first encounters this command he or she would probably not know this. Thus
when an example using "dir" is first encountered, say in a demonstration, the
learner's domain theory is inadequate to prove that the example accomplishes the
obserired outcome, and so no generalization is possible in EBG. But it seems
probable that as a result of seeing an example of the use of "dir", the learner can
readily grasp what "dir" does, and augment his or her knowledge accordingly. It

’ aﬁpédrs in cases like this that extending the domain theory to account for new

examples is a key pr'dcess in generalizaticn, one not encompassed by EBG.
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We will return to this issue, and what might be done about it, after determining
- whether learners are actually able to generalize in the absence of adequate
background knowledge. In the meantime we will table EBG as a model of

generalization of procedures, and consider other candidates.

Analogical generalization, Given a procedure P, its outcome O, and some new
outcome O', we can form an analogy involvirg a new, unknown procedure, X, as

follows:
P:0:X:0O

If wé. have.an analysis describing why P produces O, which picks out particular
relationships between the parts of P and aspects of O, we can use structure
marping (Gentner, 1983) and try to impose these same relationships on X and O".
As the name suggests, havmg determined what we think is the important

siructure in the P : O pair we map that structure across the analogy and impose it
otithe X : O' pair. In favprable ceses this structure, which is represented as a
collection of relationships that must hold between X and O/, will constrain X

‘ ehough that we can construct it. For example, our analysis of P and O 1night
attributé the appearance of a particular file in O to the presence of a step in P

that mentions the name of this ile. If a different file appears in O' we can satisfy
this relationship by ihéluding in X a step mentioning the name of the new file. Let

us call this method SMAG, for Structure Mapping Analogical Generalization.
Another approach to dealing with the avcve analdgy is'to rearrange it as follows:

O:O'::P:X



| If we can find a transformation that maps O into O' we expect that the same
transformation should change P into X. Thus we will construc: X by modifying P,
suggesting the name MAG, for Modificational Analogical Generalization, for this
approach. Anderson and Ross' PUPS system (Anderson and Ross, 1986) is an
implzmented MAG system; similar ideas are discussed in Pirol!i (1985) and

Dershowitz (1985). We will follow PUPS in our discussion.

As applied to our domain, a to-be-generalized example in PUPS consists of a
procedure, a descriptio:. of its outcome, and indications of the roles played by the
patts of the procedure in producing the outcome. Given a new outcome z simple
substitution mepping is coustructed that transfo:ms the old outcome into the new
one. This mappiry is then applied to the parts of the old procedure, giving a new
procedure that (it is hoped) produ:: the new outcome.

Here is a simple example. Suppose the procedure TYPE "DELETE", TYPE
"EGGPLANT" removes fhe file named EGGPLANT from a system. How would we
remove the file BROCCOLI? In mapping the. old outcome to the new one we need
only replace EGGPLANT by BROCCOLI. Applying this same replacement to the
command we get the, new procedure TYPE "DELETE", TYPE "BROCCOLI". This
example is trivial, in that we did not need any informafion about»tne roles of

parts of the procedure.

Now suppose we wish to accomplish the new goal of vrinting the file EGGPLANT.
Suppose further that in addition to the knowledge that TYPE "DELETE", TYPE
"EGGFLANT" remroves the file EGGPLANT we know these facts: "DELETE is the

command for removing" and "WRITE is the command for printirg." Mapping the

10
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old outcome, removing the file EGGPLANT, to the new outcome is gccomplished by
replacing "removing" by "printing". In contrast to the first example, the term
“removing" does not appear in the to-be-modified procedure, so we seem to be

stuck. We can't just replace “removing" by "printing" because "removmg" does not

appear in the procedure we are trying to modify.

The PUPS pfocess gets around this impasse by examining the roles of the parts of
the procédure. Finding that the role of DELETE is "the command for removing", it
applies the mapping to this rofe, obtaining "the command for priniing." Itthen

| looks for an implementation of this modified role, obtaining WRITE. It then
substitutes WRITE for DELETE, obtaining TYPE "WRITE", TYPE "EGGFLANT".

SMAG and MAG have in common the exploitation of the idea of analogy, and the
dependenc? on an analysis of how a to-be-generalized example works. SMAG
embodies this analysis in the structure that is attributed to P and O, and that is
then imposed on X hnd O'. MAG embodies the analysis in the assignment of the
roles that are used to guide the modification process. But the two methods differ
in their treatmeut 6f unaralyzed aspects of examples, an issue which will be
important in our later discussion. SMAG only imposes on the new procedure X
those constraints which it has discerned in P and O; any aspects of P that were not
v implicated in the analy sig of its relationship to O will not be mapped over to X
' and O, and hence will not be reflected in X. By contrast, any aspect of P that is not

assigned a role in MAG will be left unchanged by the modification precess, and
will survive in X,

Analogical generalization resembles explanation-based generalization in that it

_can operate on a single example, and requires an arialysis of how the example |

11




works, rather than just a description of it. But unlike explanation-based
generalizations those base:] on analogies may be invalid. For example, in the case
last discussed it could be that DELETE only works with files whose names begin
with E. This possibility does not occur in explanation-based generalization
because of the reqhirement for a formal domain theory in which membership in a
concept can be rigorously proved; analogical generalization relaxes this strong

requirement and pays a price for it.

Synthetic generalization (SG), In earlier work on the role of explanations in

learning (Lewis 1986a) the author developed a generalization technique that
resembles SMAG and MAG in not requiring a formal domain theory, but that
produces new procedures by building them out of small, separately-understood
parts rather than by modifying an example, as in MAG, or by mimicing the
structure of an example, as in SMAG. Richard Alterm;m (personal
communication) calls this distinction the "little chunk - big chunk” contrast in the
context of planning systems. A "big chunk" planner works by finding a known
plan that accomplishes roughly what is needed, and then modify’ng it as
required. A "little chunk" planner works from a repertoire of small steps whose
behavior it k'n’ows.'Faced with a novel goal, it builds a procedure to accomplish it

from scratch, using these primitive steps.

SG works as follows on the TYPE "DELETE", TYPE '_'EGGPLANT" example. Assur
that an analysis of the example has yielded the information that TYPE "DELETE"
specifies a removal operation, and that TYPE "EGGPLANT" specifies the indicated
file. From a second exainple it gleans that TYPE "WRITE" specifies a print

operation (say) and that TYPE "8ROCCOLI" specifies the file BROCOLLL The

eXémiples themselves are discarded; only the information anout primitive pieces

g | 12




is retained. Given the demand to remove BROCCOLY, it synthesizes the procedure

TYPE "DELETE", TYPE "BROCCOLI" by putting together TYPE "DELETE" and TY
"BROCCOLI'.

The principles underlying SG are very close to those underlying the work of
Winston and colleagues on iearning physical descriptions for objects with
functional definitions (Winston 1980, 1982, Winston, Binford, Katz, and Lowry
1983). Winstoo et al. use auxiliary examples, called precedents, to establish
connections between physical features and functional properties; these
connections correspond to SG's connections between pieces of a procedure and
aspects of its outcome, Because of the goal of recognizing objects rather than
constructing them vtheWinston work does not build collections of features, as
would SG's synthesis process, but rather constructs efficient recognition rules for

constellations of features_ that might be observed in other examples.

Mmhmmpgmnm A key point about SG is that it might produce the
procedureTYPE "BROCOLLI", TYPE" ELETE" rather than TYPE "DELETE", TYEF
"BROCCOLT". Its knowledge about DELETE and filenames does not include anything
' about the order i in which steps involving them must occur, and the SG procedure
does not have access to the ongmal examples from which its knowledge was
denved By contrast, MAG will rarely reorder an example, because a new
procedure is always obtamed by substrtutmg parts in the example. Only in the
‘ specral ctrcumstance that a substltutx mterchanges parts would reordenng
= occur. .

A srmilar contrast emerges m the treatment of unexplamed parts of a procedure.

an_:unexplamed step will never be mcluded ina new procedure, because
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the synth_esizer will have no description of its effects. In MAG an unexplained
part of a procedure, that is, one that has no role, will in general be left unchanged

in the modification process.

Let us call SG a mechanistic process, in that generalizations include only features
of examples that are understood, and MAG a superstitious process, in that
features of examples that are not understood are carried forward into
generalizations. Under this definition SMAG is a mechanistic process, for reasons
discussed above: parts of a procedure that do not participate in known

reiationships with its outcome will not be reproduced in the generalized

procedure.,

We might expect superstitious generalization to be important in complex,
poorly-understood domains. Mechanistic generalization will not perform well

when a complete analysis of how an example works is net available.
Analysis of examples

.v All of these methods require information abou th roles of parts of an example.
Where does thxs come from? In the procedure-learning context, how does a

learner glean from observmg an example like TYPE "DELETE", TYPE "EGGPLANT
what the parts contnbute to the outcome? ‘The thmkmg-aloud studies mentioned

~ earlier (Lems and Mack, 1982; Mack, Lewis, and Carroll, 1983) provide a couple

of suggestxons Flrst, learners seemed to pay attention to coincidences, or

1dentmes, between elements of thexr actions and elements of results. For example

one learner conjectured that a message containing the word FILE was the

. - outcome of a cornmand contammg the word FILE though in fact the message was

.,n
e L
EE . AR
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unrelated to the command and the occurrence of FILE in both was a coincidence.
SeCond, faced with examples containing multiple actions and results learners -
appeared to partition results among actions in such a way that a single action was
presumed to have produced a single result. These cases suggested that learners
may possess a collection of heuristics that enable them to conjecture the

relationships among actions and outcomes in a procedure.

| The identity heuristic, Suppose that we are watching a demonstration of an
‘unfamiliar graphics editor. After a series of actions which we do not understand
the demonstrator draws a box around an object on the screen. After some further
uninierpretable actions the 6bject in the box disappears. We might conjecture
that the drawing of the box specified the object that was to disappear; that is, that
the earlier user action of drawing the box around the object was causally
connected with the later system response involving the identical object. This
heuristic, which ties together actions and responses that share elements, is
reminiscent of the similarity cue in causal attribution (Shultz and Ravinsky

1977), in which causes and effects which are similar in some respect may be
linked.

The loose-ends heuristic, Suppose in watching another demonstration we are able
“to explain all but one user action and all but one system response, which occurs
later.'iWe might conjecture that the otherwise unexplained action is causally
unked to the‘othetwise unexplained response, We might justify your conjecture
with two asénmpﬁons: that a demonstration Shows an economical way to
- acé@mpﬁsh its‘ outcome and that all aspects of system responses are attributable
to some user action, |

15
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This heuristic captures some of the observed partitioning of results among actions
by learners mentioned above. It is consistent with the "determinism" assumption
discussed in the causal attribution literature (Bullock, Gelman and Baillargeon

1982), by which all events are assumed to have causes.

The EXPL system (L.2wis, 1986a) was developed to explore these and similar
heuﬁstics, and their role in generalization. It implements a small set of heuristics
Ain' such a way as to prodtice‘the information required by MAG or SG from an
example. Thus combining the EXPL analyis with MAG or with SG provides a
complete model of procedural learning from examples, in which extracting
information from examples, and use of that information to produce new
proceduzes, are both represented. There appears to be no reason why the EXPL
analysis could not drive SMAG, but this has not been done. We will discuss in the
following sectioﬂe those aspects of EXPL pertinent to the examples considered in
this paper; complications and extensions needed to handle more complex

examples are described in Lewis (1986a).

Encoding Examples are represented to EXPL as a series of events , each of which is
either a user action or a system response. An event is made up of one or more
components, whxch may repres'*nt objects, commands, operations, or other
- entities. These components are treated by EXPL as arbitrary, uninterpreted -
“tokens, with 2 feyv exceptxk_ons that needi not be considered here. No sxgmﬂcance

| atrtac"heslto the order in which components of an event are listed. Figure 1 shows

an example as described in English and as encoded for EXPL.

Insert Fxgure 1 about here
‘ 16



This primitive encoding scheme has many limitations; it cannot represent
relatiohships among entities within sn event, such as the information that a
collection of entities all appear on the same menu, for example. But it has proved
adequate to support the analysis of examples of 1a0derate complexity and it is

sufficient to support the implementation of the EXPL analysis heuristics which are
our focus here. |

Ilmmnmhmmnﬁm When a component of a system response has
occurred earlier in a user action, EXPL asserts that that user action specified that
component of the system response. For example, if clicking a mouse on an object
is fbllowed by the disappearance of that object, EXPL asserts that it was clicking
on the object that led to that object, rather than some other, disappearing. |

EXPL's implementation relies on the encoding process to enable the identity
heuristic tc be applied in some cases. Suppose a picture of an object disappears *
after the name of the object is mentioned. The encoding of these events must use
the same token to represeni the picture and the name. Otherwise the identity
heuristic will belunable' to link the mention to the disappearance. A more
sophisticatéd ilnplementatioh would permit encodings with multiple descriptions
df events, and use background kncwledge to link tokeas which are not identical
but h@Ve related meanings. EXPL's primitive approach is adequate to support our
discu'ssion, ho_we#er.

i S action heuristic, EXPL's ana1y§is assumes that system |

responses oceur rapidly with respect to the pace of user actions, so that system
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responses will occur as soon as all contributing user actions have been made,
Consequently, some contribution from the immediately previous user action must

'élways be posited.

Ih;lg_osg_—_:nds_hmm If EXPL finds a user action which it cannot connect to
the goal of an example, and it finds a component of a later system response that it
- cannot account for, it posits that the unexplained user action is linked to the
unexplained system response. In the current system the goal of an example is
identified with the final system response. This is inadequate in general but will

noi cause trouble in our discussion here.

Pravious action, When any components of a system response'cannot be attributed
by the above heuristics to any prior user action, the EXPL analysis attributes
them to the immediatély previous user action. This can be seen as a weakened
version of the very powerful temporal succession cue in causal attribution, in
which an event which follows another immediately is likely to be seen as caused
by that event (Duncker 1945). EXPL's encoding does not include quantitative

tunmg information, so the dependency of this cue on precise timing is not
captured. '

'i‘he previous action heuristic plays a complementary role to the obligatory
‘ pr_eyious action heuritic described earlier. Obligatcry previous action ensures that
thé latest user action will be assigned some cavsal role, even if there are no
unexplained system responses. Previous action ensures that all aspects of a

) systém responéé wili be assigned a cause, even if there are no unexplained user

actions.

18
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Prerequisite relaticns, In tracing the contribution of user actions to the ultimate
system response it may be necessary to recognize that an action contributes to an
intermediate system response that permits a later action to be carried out. EXPL

© can make this determination in some special cases, but the examples we will

discuss below do not require it. The interested reader can consult Lewis (1986a)

for a description of the mechanism.

Applying the heuristics, The heuristics are implemented by a PROLOG program
which processes the events in an exampie in chronological order. Eac: heuristic is
“applied in the order iisted above to each system response, and places livks
between earlier user actions and components of the response. The order of
application dictates that any attributions based on identity will be made before
any based on loose-ends, for example. In applying a heuristic the components

within an event are processed iu order, which is assumed to be arbitrary.

Analysis of an example, Figure 2 shows the output of EXPL's processing of the
example in Figure 1. Note that EXPL's attributions agree well with an intuitive
interpretation of the English version in Figure 1.

Insert Figure 2 about here.

Rdﬂmmm&mmmmmnm The EXPL heuristics assume
nothing in the way of prior knowledge, other than what may be implicit in the
| declslpns made in encoding events in a particular way. Undoubtedly prior

kndivvled'gé.plays a substantial rolc in the analysis of real examples, when




learners have some familiarity with the system and the tasks being performed.

EXPL also givee no account of the fate of analyses which are proved incorrect by
- later experience. A complete theory would have to desciioe the process by which

initial conjectures, such as those developed by EXPL, are refined and ravised.

Mmmmnmmam To support MAG the results of

EXPL's analySis must be converted to the form assumed by the MAG machinery,
in which the procedure to be modified is explicitly represented, and the roles of

its parts, when these are knoWn, are specified. Figure 3a shows the resulting
information expressed informally.

The MAG machinery now accepts the statement of a new outcome. It constructs a
mapping to take the old outcome to the new one, in the form of a set of

substitutions, as shown in Figure 3b. It then applies this mapping to the old
~ procedure.

Insert Figuxfes 3a, 3b, 3c, and 3d about here.

f Ifd part has no substitution, but does have a role specified, MAG attempts to
. make substmmons m the rele, ond then to find'a niew part that unplements the
B .modtfied role In genera] backgx ound knowledge, or knowledge gleaned from
: _ '}‘other examples, wxll be needed here. Flgure 3c shows the results of analyzing
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another example, part of which will be needed in modifying the current one.

The role-mapping process is shown in Figure 3d. The resulting procedure adapts

the example using knowledge gathered from the auxiliary example.

Hﬂn&ﬁﬁﬂmmmlxz:dﬁamm SG requlres the results of EXPL's

analysis to be cast in a different form. The links shown'in Figure 2 are extracted
from the example and combined with similar links extracted from the analysis of

the example shown in Figure 3c to produce the collection of links shown in Figure
4a. ‘

Given a new outcome, SG selects from its data base of links actions which will

contribute the rceded components. Figure 4b shows the resulting procedure.

Insert Figures 4a and 4b about here.

Adding substitution to SG, The example just discussed shows how SG can combine
the analysis of two examples to build a new procedure. If only ¢ne example is
available EXPL's version of SG uses a simple substitution scheme to generalize the
single example. Components are assigned to classes, as part of the encoding
process, 5o that pictures on the screen might form one ~'ass, names of files
anoth"e'r,clasé, and so on. If a component is sought, but no link is available that can
prdyid¢ it, a‘gearch is made for identity links that provide a component of the

same class If one is found, the associated user action is modified by substituting

the new component for the old one. The modified action is presumed to produce

21
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the new component. For example, if clicking on a picture of a hat is seen to be a

way to specify the picture of the hat, then clicking on a picture of a fish would be
presumed to be a way of epemfymg the picture of the fish.

This extension of SG can be seen us the inclusion of part of the MAG machinery in
the SG framework. Without it, SG is unable to generalize many procedures
without using links derived from other examples.

| How well do these EXPL-MAG and EXPL-SG models, or a hypothetical EXPL-SMA(
model, account for the behavidr 6f people in analyzing and generalizing
examples? While the EXPL analysm heuristics are based in a general way on
observatinns of human learners more specific tests of the use of these heuristics
by people are needed. Su'mlarly, evidence i8 needed regarding whether MAG,
SMAG or SG can account for géneralizations constructed by people.

To gather such evidence paper-and-pencil tasks were devised in which simple
fictitious computer interactions were presented as a sequence of events in text
form, with a plcture showmg the contents of the computer screen. Partxc1pants
were asked to answer questions about the roles of particular steps in the
examples, or to mdxcate how they would accomplish a related task. Items were

constructed to probc the followmg issues.

Mmmmmﬂmmm The loose-ends heuristic should permit
S | paruclpants to assxgn a role toa step by a process of ehmmatxon, even when that

g step contams no partxcmar cue for what its role might be, The identity heuristic

T Re
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should set up the elimination process by previously linking some steps to some

aspects of system responses, thus excluding them as candidate loose-ends.

Hss&fﬂhhgmgmmummm& If a step with no obvious role

immediately precedes a system fesponse the obligatory previ'ous action heuristic
will assign ita role, whereas the sare step appearing in the midst of a sequence

of user actions might not be assigned any role.

Mechanistic vs, superstitious generalization, As discussed above, superstitious

generalization will normally preserve order of steps, while imechanistic
generalization will accept reorderings as long as no Ibgical constraint, such a
prerequisite relationship between two steps, is violated. An example was
constructed in which two steps could be reordered without violating any

apparent consti‘hini, and participants were asked to judge whether the reordered
example would work.

Another item examined the treatment of an uninterpreted step. As discusse&
carliera superstitidus generalizer will leave unchanged aspects of the example to
‘which it has éssigned no role, since it has no basis for modifying them. A
mechanistic generalizer will show the opposite handling: only interpreted steps
can appear in a generalization, since steps will be included a procedure only if
they contribute to the goal for which the procedure is being built. An example
was pfebared that inélud&'i an apparently unnecessary step. While some
participhnts might assigﬁ a fdle to the step, it is possible that participants who
o aSSi'ghéd it no role would nevertheless keep it in a generalization.

23
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Participants, Ninety students in an introductory psychology course served in the
experiment as part of a course. réquirement. As a rough gauge of computer
background they were asked to estimate hours of computer use. Estimates rangec
from 0 to 1000, with a median of 55 and lower and upper quartiles of 20 and
100. '

Materials, Test items were presented on single pages of test booklets. Each page
carried the name of a fictional computer system, with a sketch of a display screen
and (if used in the example) a keyboard. A brief example of an interaction with
the system was then presented as a sequence of written steps, followed by one or
more questions about the example. Figure 5 shows the i)icnne for a typical item;
the example and questidn were placed on the same page immediately below the
picture. Table 1 shows the content of each item. Groups of participants were
giveh different versions of the booklets, differing in the itemas included and the
order of certain items, as shown in Table 2. Items TRAIN, PERSON, and HOUSE

relate to the problem of identifying hidden events in analyzing procedures and
will not be discussed here.

Insert Tables 1 and 2 about here.

All booklets cohtaine_d an initial practice item, which was discussed with
participants at the start of the experimental session, and a final page with
background questions on computer use.
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Procedure, Participants were run in groups of five to twenty in a classroom. In
éarly sessions participants were assigned to Groups A and B in alternation on
arrival; later Groups S and T were formed in the same manner. Participants were
given instructions verbally. Points covered were that questions were intended to
investigate their interpretations of the examples, regardless of the am".ant of
their knowledge of computers, that each item referred to a differe it fictitious
computer system, that accordingly they should not attempt to correllate their
answers to different items or go back and changé earlicr answers. The use of a
touch screen, in examples where no keyboard was used, was exapiained.
Participants were asiad to look at the practice item and to suggest possible roles
for its first st‘cp.v It was stressed that thers were no correct or incorrect answers
since the intent was to discover each person's interpretation of the examples, and
that participants were free to indicate when they could not determine an answer.
Participants were then asked to begin work, moving at their own pace, and to

turn in their booklets and leave when finished.

‘Coding and analysis of responses, Coding categories, given below for eack item,
were constructed for each item before any responses were examined. Three

raters coded all responses independently, with final codes assigned by majority
rule. Responses for which no two raters agreed were coded as "no agreement". No
codes were discussed amohg the raters, either during the rating process or in the
assignmeat of final codes. The G or log likelihood ratio test (Sokal and Rohif 1981)

was used to test for differences in response frequencies.
B ]t I I .. [

Tabie 3 shows the responses for each item. Where the same item was presented

fia B9



to more than eze group, G tests did not indicate significant inter-group
differences, except in the case of item RABBIT. Accordingly, results are pooled

acrcss groups except in that case.

Insert Teble 3 about here.

Item TRUCK. This item was given in two forms, one with the second step
containing “truck", the other with the second step containing “red”. Together, the
identity and loose-ends heuristics should result in the first step, which is the
same in both items, being assigned the role of spe«.iying the aspect of the system

“response that is not mentioned in the second step.

This is confirmed by the data. Table 4 tabulstes just those responses indicating a
specification of color or of object or location. The difference due to the form of the
item is highly significant (G=61, 1 df, p<.001).

Insert Table 4 about here.

Item LADDER, This item examines whether attributions made using identity and

loose-ends in an earlier part of an example can be carried forward to

disambiguate later phases of an example. Identity and loose-ends should indicate
that. "NN A" specxﬁes rotation in analyzing steps 1 and 2. If this interpretation is
,carned forward to steps 3 and 4 the analysis will indicate that "da9" specifies the

tree Fmally, analysxs of steps 5 and 6 will connect "néb" vhth shrink, given the
| connecuon of "da9" with tree.
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vMost ‘barticipants responded in a manner consistent with this outcome, but there
 are other possxble explanations of the outcome. It is possible that participants
assume that i 1tems type always consist of an operation followed by an operand,
and_ t.nsocr_ate "n6b" Wlth "shrink" on this basis.

ILQDLMAHAQERS.. Th1s item provides a test of the interaction of the loose-ends
heuristic, the prevxous action heuristic, and the obligatory prevxous action
heuristic. Assume that the steps in the examples are encoded as shown in Figure
6a: tvpmg the meamngful term "display” is separated from typing "3". Assume
- further that the relatxonshxp between "display" and "show list of" is known and

1 availoble' to establish ":srijidentity, link accounting for this aspect of the system
resnonse.‘Figure 6b shows the state of analysis following construction of this
identity link. Note that in neither form is there a link drawn from the last user

: action'to any later systemi response. If the obligatory previous action heuristic is
now apphed as in the EXPL 1mp1ementatxon, a link will be placed attributing the
first unaccounted-for component of the system response to the previous action, as
shoyy_n in Fxgure 6_c.~The loose-ends heuristic will now connect any unattributed
comuonents of the system response to the earliest unaccounted-for user action,
with results shown in Fxgure 6d. This analysis predicts that participants seeing
'Forml would attnbute "manager 8" to step 2 and "salaries” to step 1, while
:pamcxpants seemg Form 2 should attnbute "manager's” to step 1 and "salaries” to

A -step 2 As the fabulatxon in Table § shows, this pattern does not occur.

 Insert Figures 6a, 6b, 6c, 64, and 6¢ and Table 5 about here.
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~ If the obligatory previous action heuristic is not used the aralyses obtained are
shown in Figure 6e. As can be seen, the attributions are consistent with the

dominant pattern of participants' respohses.

Although a modified EXPL analysis can account for these results it seems
imprudent to attach much weight to these examples in assessing the interactions
of the heumtlcs The items have the drawback that the analysis is heavily |
dependent on encoding, mcludu_)g the order of components. /A change in encoding
of the system respohsé from "show manager salary” to "show salary manager", for

example, would change EXPL's analysis.

In view of the unceriainty in EXPL's treatment it is interesting that participants
were 80 consistent in their attributions in these impoverished examples. Possibly
paﬁicipaﬁts. were infiuenced strongly by the order in which the questions were
asked, atttibuﬁng the first effect they were asked about to the most receat step,

and then choosing not to attribute two effects to the same step.

It:m_SIAR. Most participants indicate that the reorderea procedure will not
- work, wnhout giving a reason beyond the change in order. As discussed earlier,
thxs would be expected from a superstitious generalization process. On the other
hand 19 pamcxpants mdxcate that the reordered procedure would work, |
consxstcnt with mechamsnc generahzatxon. The 95% confidence interval for
prdbdrt_i@ﬁ of pafticipahts 'acce.p‘titig the change of order, ignoring uninterpretable
| respons_es,hexténds from ‘.O7i‘to‘ 46.

- While retention of order is consistent with superstitious generalizarion, it could
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also occur if participants have learned that order of steps is generally important
in computer procedures and apply that knowledge to the item. Table 6 tallies

| aéce_ptance of variant order and rejection of variant order with no grounds for
paftidipants reporting less and more than the median computer experience. As
can be seen there is no indication that more experienced participants are less

likely to accépt-th‘e variant order.

Insert Table 6 about here.

I::m_EISH. As discussed above, superstitious and mechanistic generalization
differ in their treatment of uninterpreted steps. Table 7 tabulates participants
according to whether they assigned a rcle to the seemingly unnecessary Step 2,
and whether they retained this step in generalizing the example. As can be seen,
23 participants retained the step even though they assigned no role to it,
consistent with a superstitious generalization mechanism but not consistent with
mechanistic generalization. On the other hand, 7 participants dropped the
uninterpreted step, which is coasistent only with mechanistic generalization. One
participant neatly cmeDined ,hechanistic with superstitious generalization by
suggesting that Step 2 be dropped, but put back in if the new procedure did not

- work without it.

Insert Table 7 about here.
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When participants assigned roles to '¢43' they treated it appropriatzly in the

- generalized procedure, consistent with all of the generalization models considered
hefe;'Typical roles included indicating the position of the hat, zpecifying a location
in memory for the hat to be put, reqhesting that Step 1 should be executed, and
indicating that the next object touched should be acted upon. The lone participant
who dropped '¢43' from thb generalized procedure after giving it a role said that

it caused the system to exclude the fish from the deletion operation.

Table 8 compares responses to the FISH item with those of the STAR item. If use
of mechénistic or superstitious generalization were consistent by participant,

| participants should fall mainly in the "will work, drop" cell, for mechanistic, or
the '_'ofder bad, keep" cell, for superstitious generalization. To the contrary, more
parﬁc:ibants fall in the other two cells, indicating inconsistency across the two
iteras. The "will work, drop" cell is empty, indicating that no pérticipants were
consistently mechanistic, while some were consistently superstitious and others

were superstitious on one exarmple and not the other.

Insert Table 8 about here.

Item FISH illuminates énother point discussed above. Most participants
generalized the exampie by replacing Hat by‘ Fish, even though they had seen no
example in ,whic‘:h Fish was iyped. This generalization is irivial in MAG but cannot
be handled in S3 without addihg substitution.

W This item showed a significant effect of order, so results are not

30
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pooled across groups. The comparison between this item and FISH provides a test
of the‘obligatory previous action heuristic. According to this heuristic even an
eppat_fently unnecessary step must be assigned a role if it immediately precedes a
system response. In FISH the unnecessary step occurs between two user actions,
‘while in RABBIT it occurs just before a system response. As shown in Table 9
there is some support for the obligatory previous action idea in that of the those
who assigned arole in one and not the otker nearly all assigned a role in RABBIT
and not in FISH. This preponderance is significant by sign test at the 95% level in
eech grdup. But the tabie also shows that the preponderance of participants
assigned a rcle to the unnecessary step in both examples. This indicates that
analysis should attempt to assign a role to all actions, regardless of position,
rather_f_ha’h giving special handling tc actions that im:mediately precede a system
response. This finding joins the results of the MANAGERS item in casting doubt on
‘EXPL's obliéatbry previous action heuristic,

Insert Table 9 about here.

Support for analysis heuristics, The empirical findings support the conclusion that

| peOple use "prin"c‘iples similar te EXPL's identity and loose-ends heuristics. The
kd"etai'led coordiﬁatien of these heuristics is less clear, and may differ from that in

) »the unplemented EXPL system It appears that people tend to assign a role to all

user actlons, regardless of position, rather than using EXPL's obligatory previous
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action heuristic.

Syp_fzxsnngn_qr_me_chamsmz While the pattern of results is mixed, and does not
indicate consrstency across items within participants, it appears that responses
consrstent with superstmous generalization are more common than those
md1catmg mechamstrc generahzatton Itis possrble that this i5maing iz dependent
on the fact that partmrpants had full access to the examples while iaterpreiing or
' generahzmg them In real learning situations partmrpants would usually face a
serious retentlon problem, in which vecalling complete examples well enough to
use superstmous generahzatron might be difficult. Under ihese conditions
mechamstxc methuds, which could work with even fragmentary recall of

examples, rmght be more prevalent.

EB_G_nmmgd. "‘he abrhty of partrcrpan.s to generahze examples that contain
arbrtrary, never-seen-before tokens, as in LADDER or FISH bears out our carlier
contentton that EBG, at least as characterized by Mitchell et al (1986), cannot

| provrde a oomplete account of learning in this domain, Participants cannot possess

domain 'theories adequate to construct proofs about nonsense elements like "c43".

To attack this problem the EEG framework might be extended to include addition
to the domam theory as part of the analysis of an example. The EXPL analysis
machmery, for exarnple, could be adapted to produce its output in the form of 1
th theory about the srgmﬁcance of the steps in the example, rather than as links or
role assrgnments as needed by SG or MAG. The generalization process itself

L would work just as 1t does in normal EBG, but of course the results would no

longer be ngorously Justtfiable, bemg only be as good as the
| :_heunstrcally-conjectured domam theory
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How would such an extended EBG model compare with SMAG, MAG or SG? Would
it be mechanistic or superstitious? The behavior depends on the nature of the
‘d‘omain theory. With appropriate domain theorizs EBG can mimic the

generalizations of any of these models.

Suppose first that the dom _m theory specifies how the parts of a procedure
produce its outcome. In th1s case EBG implements structure mapping.

* Kedar-Cabel'i (1985) describes a procedure called "purpose-directed analogy" in |
an EBG framework. If appliec‘l to generalization of procedures purpose-directed
analogy would construct new procedures by capturing the relationship between
procedure and outéome in the example in the form of a proof that the procedure
produces the‘outconie. The proof would then be generalized. The new procedure
would be detérminec_i by ,t'he constraint that the generalized proof must establish
that the new procedure produces the desired new outcome. This is the SMAG
piocess, in which the analogy P : O :: X : O' is solved by mapping the relationships
in the P-O structure onto the X-O' structure.

S.en in the EBG framework, SG appears as a special case of SMAG. While SMAG
can mcorporato arbltrary relatxonshlps among attributes of procednres and their
outcomes, S_st ‘_.ynthesxs process requires that only general principles of
combinatior;; and specific descriptions of parts, are permitted. Consequently the
domain,théod for SG consists of two distinct subtheories. An a priori subtheory
déscribéé Liow pafts of procedures interact when put together. This theory must

be gehgral; not refgn'ing to features of 'any particular examples. The second
subiheory éonsiSts of _deScriptions of the various possible parts of procedures,

whose‘jbehaviqf may haVe_ been excracted from the analysis of examples.
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Frgures 7a and b show how Item FISH could be handled in an EBG version of SG.
The a priori domain subtheory is an explicit statement of the assumption
underlymg EXPL's SG planner, without the substitution scheme. The part-specitic
subthe.oi'y contains relationsvhips nosited by the anaiyzer in processing examples.
As required for pure SG, two exaniples are processed, one to establish how to
specify Delete and one Low to specify Fish. To build a procedure for Removing
Fish we take the intersection of the two goal concepts. As expected from a
mechanistic approach the step c43 is dropped. As expected, the EBG machinery is
doing two things here. First, it is filtering the attributes of the exampics so that
only apparently necessary attributes are kept. Second, it is strearalining the
apphcation of the domarn theory by replacing more abstract specifications of goal

concepts by more concrete ones

Insert Figures 72 and 7b about here.

It might appear th'at a superstitious generalization mechanism like MAG could not
be accomodated 1n the EBG framework. After all, one of the functions served by
proofs in EBG is ﬁlterlng features wrth roles from features without roles, while

MAG simply retams features without roles Nevertheless, with an appropriate

| domarn theory EBG can mimic MAG, at least in simple cases.

T'ne»domain theoiy needed for MAG is somewhat different from those for SMAG

or SG. Whrle theones for these models will describe the role of a1l relevant parts

_"of procedures, the theory for MAG may not. Instead, the MAG theory must

34
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indicate the outcome of a procedure as a whole, s¢ that uninterpreted parts will
not be stripped out in the generalization process. To perxmt generalization to
work at all on the whole procedure, any replaceable parts must be detected and
repiaced by variables in the domain theory. Thus the domain theory represents a
procedure as a sort of matrix in which some parts, those with known roles, are

substitutable, while parts vvithout knowr roles are fixed.

Figures 8a and b show the treatment of tem FISH in a MAG—hke version of EBG.
Note that the analysis of the example must perform a good deal of abstraction,

but that the relanonshlps that must be detected to do this are the same as are
needed for SG, and are detected by EXPL's analyzer: the step [type delete ]
specifies remove » the step [type hat ] specifies hat . The required absfractions are

accomplished by replacmg tokens that appear in both the procedure (or roles of
parts of the procedure) and the outcome by variables.

Insert Figure 8a and 8b about here.

Roles of explanation in generalization, Consideration of these generalization

mechanisms reveals that explanations can play more than one part in

generalization. In SMAG, SG and EBG, explaining the outcome ofa procedure leads
to the construction of hypotheses about the role of the procedure's parts. These
h'ypotheses‘are packaged as input to a planner, in SG; as input to0 a mapping

routine, in SMAG' or as extensions to the domain theory in EBG. As long as the
hypotheses about the parts are correct, and the theory about the behavior of

combmatmm of parts is correct, new procedures built fromn the parts will work 2 as
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expected. That is, a compiete and correct explanation of how the example works

enables us to build new procedures that will also work.

In MAG what is explained is not how the procedure determines the cutcome, but
how the outcome .dete'.-'mines the procedurc. That is, explanations in MAG are
used as a guide to changing the exarnple procedure, given tliat the desired
eutcome has changed. The validity of the modified procedure rests not just on the
validity of the 'analysis of the exainple but also on the validity of the modification
rules, which are not part of the explaration of the operation of the original
example. It can also rest on the action of unexplained aspects of the example

which are left unchanged by the modification rules.

In EBG, SMAG, and SG an explanation serves to filter relevant procedure
attributes from irrelevant ones. In MAG relevant features may be explained or

not; explanations play no filtering role but are only used to guide modification.

In EBG only, explanations are further used to strcamline the construction of
generalized ptocedui'es by simplifying the application of the domain theory to
cases similar to the example. This does not seem to be crucial in the simple
proeedural examples we have eonsidered here, thcugh they are in other domains
cons_idered by Mitchell et al. |

Dependence on background knowledge, To what extent are the analysis and

generahzanon mechanisms we have been discussing dependent on knowledge of
the speexﬁc domam we have cons1dered human-computer interaction? Could
these same mechamsms be apphed to concepts outside this domain, or are they

| embodxments of pamcular assumptions learners make about this particular

kb
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domain, assumptions which must be the result of some prior, possibly more basic

learning process?

The generalization mechanisms are clearly not limited to this domain, since they
have all (except for SG) been developed to deal with other kinds of concepts

What about the analysis heuristics?

¥ne obligatory previous action heuristic (which did not receive srong support, is
an example of a piece of machinery which might rest oni special asstduptions. The
rationale for it that we discussed above, the assump:.ion that system responses

are fast compared with user actions, certainly would not apply to all procedural
domains, But this argument is not decisive, because this may not be the correct
rationale. As we also discussed above, temporal succession is a very powerful cue
for causal attribution in domains unrelated to human-computer interaction; the
obligatory previous action heuristic could reflect the tendency to attsibuis effects

to immediately prior events, just as the plain previcus action heuristic does.

The identity heuristic does not appear to rest on any specific ideas about

humax computer interaction, though it may reflect assumptions that are not
completely general. While prirciples akin to identity may be involved in
unravelling many physical phenomena, for example the notion that objects in the
same place are more likely‘to interact than objects in diiferent places, identity
might seem especially useful in understanding artifacts rather than natural
systems. If red and green switches are available to control red and green lights, it
seems compelling that a well-meaning artificer would have matched up the
colors. There sé_ems much less warrant for the conjectui'e that drinking a

ngtufélly—occurﬁng red plant extract (say) will be effective in making one's face
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flush red.

But of course just such conjectures are c.ommonplace in prescientific thought; see
dxscusslon in Frazer (1964). So whatever we may think of the support for it, it

appears that the iden:ity heuristic s not restricted to artifacts, let alone
computers. ;

The rati;)nale propused above for the loose-ends heuristic, like that for the
@blig’htory pre'vious action heuristic, would restrict its application. It was assumed
that the events the learner is seeing constitute a coherent and etiicient
demoristr&tion, wiihout wasted motion and misiakes. There is nothing in that that
is limited to the' human-computer interaction demain. But it is possibie that
learners will apply loose-ends without making even this assumption. Jus: as
people do not resmct the use of idzntity to artifacts, they may tie up loose ends
when there are no grounds for expecting them to connect.

Summary, We can now collect the above arguments, and the indications in the
data, and draw conclusions about the generalization processes participants used.
Pure SG cannot accouni for participants’ ability to generalize from a single
examplé, though SG pius substitution can. Neither of tiie mechanistic methods, SG
or SMAG, can aé.éount for the tendency of participanis to reject variant order in
the STAR 1tem, or the fact that some participants retain uninterpreted features of
examples in generalizmg MAG, a superstitious mechanism, appears to be able to
account for the findmgs in a natural way, except that some participants were
v_villihg to accept variarit orders m STAR.

All of these gener:i_ﬁzaﬁOn mechanisms could be brought within the EBG
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framework described by Mitchell et al. But a mechanism like EXPL's analyzer
~would be needed to build domain theory extensions from examples if EBG is to
o’peréte in tiis domaih; sinceparticipants clearly were able to generalize

examples for which they Lad no adequate a priori theory.

The résults bearing on the analysis of examples support the idea that devices like
EXPL's 1dent1ty and loose-ends heuristics do play an important role, and that
parucxpants are able to use them to explain the role of parts of unfamiliar
procedures Such principles of analysis seem to be capable of supporting a variety
of different generahzatxon mechanisms.

Retﬁming to our originhl qhestion. why explain things during learning? It appears
that explanations organize kt_"xowledge about procedures in a way that supports
generaiization. Our data suggest that particinants used heuristic rules to associate
parts of procedures with aspects of outcomes in such a way as to determine what
part of a procedure to change to obtain a modified outcome.
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. . 41 ~ 42

Iablo 1: Tost Itema.
Itom ~ In picture Exsmple Quesiions
TRUCK ‘truckandboat  1.Typo "67m" op keyboard.  What does Step 1 do?
Form!l - onscreon. 2 .Type “truck” on keyboard.
' ~ koyboard »»» Truck turns red.
Form 2 ditto 1.Type "67m" oxx keyboard.  ditto
2.Type "red” on koyboard.

»»»Truck turas red.

LADDER troo aad ladder - 1.Type "NNA" on keyboard.  What would you do to make the
on scroen, 2. Type "ladder” on koyboard. ladder shrink?
koyboard 99 f rotetos 43°
' 3. Typo "NNA" on koyboard.
4 Type "da9" on koybou'd

»»Troo rotatos 45°
5 ’l‘ypo "n6b" on koyboard.
“da9" on koyboacd.
»»» roo shrinks to haif sizo.
MANAGERS blsakscreon, 1.Typo “dhphys“ Which step would you change
Form 1 koyboard 2.Typo "02%". if you wantod a list of
m»Systom shows list of muors sgos instoad of
manasgors' salaries. maasgors' salarios?
Which stop would you change
if you waated a list of clorks'
salarios instoad ot‘ mansgors
salarios?
Form 2 ditto 1.Type "n23". ditto
' 3 Typo "display3".
»»Systom shows list of
muoro salarios.
STAR words aiphe, i. 'l'oueh the star. I1f 1 triod to movo the star to
, beta, ganms, 2.Touch"beta". the hottom of the scroon this
opsilon in barst 3.Touch s place noartho way:
top.starin . loft side of tho scroon. Touch “bota”.
fowor part of »»» Tho star moves to the Touch tho star.
screen loft side of tho screon. Touch a place noar tho bottom
‘ of the scroon.
Would it work?1f not, why not?
FisH hat and fish 1. Typo "doloto” on the Vhet does Stop 2 do?
on scroeq, nybou'd
keyboard 2 Typo c43
: &: Vhat would you do to make the
»m (] hudinppom fish disappoar?
RABBIT nbbit and carrot 1. Type “mhbit 'What doos Stop 3 do?
: ~vascroon,  2.Type "remove".

Cdd

ORI ¢

JAruitoxt Provided



Table 2: Order of items in test bocklets for groups

Group A
(n=13)
STAR
TRUCK
(Form 1)
TRAIN

LADDER -

FISH -
PERSON
HOUSE

PERSCN

LADDER

45

Group S
(n=31)
STAR
TRUCK
(Form 1)
TRAIN
LADDER
RABBIT

- MANAGER

(Form 1)
PERSON
HOUSE
FISH

43

Group T
(n=31)
STAR
TRUCK
(Form 2)
TRAIN
ILADDER
FISH
MANAGER
(Form 2)
PERSON
HOUSE
FISH
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Item ~~ Number of responses  Category of response
TRUCK - . Form1 Form2
0 22 step spocifies truck or object
30 3 stop spocifias red or color
1 9 stop spocifios locstion
13 12 othor
0 0 0o egrooment
LADDER 70 ‘n6b laddor'
: 20 other
0 a0 agreomoat
MANAGERS
First Quoition Form1 Form2
- 6 6 stop 1
23 2 stop 2
0 3 othor
0 0 N0 agreeoment
Second Question ’
23 23 stopl
p) 6 step 2
0 e othor
0 0 00 agreomont
- STAR 19 says will work
' 33 says will not work bocause order is wrong
8 seys will not work bocause ordor i wrong
ALd gives s reason why ordor is i jortant
6 says will oot work but does not fit above
1 none of above
3 00 agceement
FISH
First Quostion 9 step 2 doos nothing
: 26 don't know or can't toll
33 stop 2 is givon somo role
1 ciher
1 10 agroomoent
SocondQuostion 8 - 'doloto fish'
: 37 ‘dolote c43 fish'
3] othor
0 00 sgroement
- RABBIT Group$S GroupT
0 '3 nothing
1 2 . doa't know or caa't teti
30 3 - doss something
S o 1 other . . .



Table 4. Intezpretation of step in Item TRUCK.

| Interpretation of Step 1

Content of |
| o
truck | 30 1
| |
red | 3 31

47
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Table 5. Responses td two forms of Item MANAGERS.

Answers to |

stepl, step 1 | 2 2
stepl, step2 | 3 4
step2,stepl | 23 20
step 2, step2 | 2 2

47
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Table 6: Relationship of acceptance of variant order in Item STAR with
experience.,

| Reported computer experience
Response to |
new order | less than more than

l
will work | 8 8

I
order bad, I
no reason | 23 23

I

given




Table 7. Intepretation and treatment of extra step in Item FISH.

| Treatment of 'c43'

Interpretation | in new procedure
given role | 32 1

l .
no role 3 ‘
“or role not | 23 7
known |

50




Table 8: Comparison of responses to Items FISH and STAR.

| Treatment of 'c43' in FISH

Responseto | _
- new order | no role, ne role,
- I
wul work | 7 0
I
order bad, |
no reason | 12 7
given |

51
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Table 9. Comparison of role assignment in Items FISH and RAEBIT.

3]

Interpretation of 'HJ4' in RABBIT

I
|
Interpretation’ | given no role
of 'c43' | role or roie not
in FISH | known
I
L_GroupS GroupT _ Group S Group T
I
given rele | 21 16 1 1
| |
no role !
or role not | 9 9 0 5
known |
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User types letter 'd’ on keyboard.
User touches picture of train on screen.
System removes frain from screen.

Example as enccded for EXPL:

utyped
u touch train
s remove train

Figure 1: Example of procedure and outcome.

52

utyped
loose-end link
u touch train
identity link
emovdlrain

Figure 2: EXPL analysis of example in Figure 1.
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Outcome of [[type d 1, (touch train 1) is [remove train 1.
Role of [type d ] is [specify remove ].
Role of (touch train ] is [specify train ).

Figure 3a: EXPL output as provided to MAG for example in Figure 1.

Old outcome is [remove train].
New, desired outcome is [shrink train ).

Substituting shrink for remove maps old outcome to new outcome.

Figure 3b: Determining inapping in MAG. |

utyper
u touch car
8 shrink car

Results of EXPL analysis of auxiliary example:
Outcome of [[type r 1, [touch car 1] is [shrink car ).
Role of [type r1is [specify shrink].

Role of [touch car] is [specify car ].

s o - Figure 3c: Auxiliary examplé:showing shrink operation.
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Original procedure:

[[type d ],[fouch train ]]

Substitution does not apply to [type 4 ].

?ut role of [type d ] is [specify remove ].

Sﬁbstitution transforms this to [specify shrink].

Analysis of auxiliary example shows that [type r] plays this role.
[tyée f] replaces [type d].

Substitution does not apply to [touch train -] or its role.

Resulting modified procedure is [[type r 1, [touch train 1.

Figure 3d: Applying substitution of shrink for remove to the example.
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link([type d ], remove )
link([¢ouch train 1,train )
link([¢ype r], shrink)
link([touck car], car)

Figure 4a: Links extracted from Figure 2 and from auxiliary example in Figure 3c.

Outcome: [shrink train ]

Procedure: [[type r ], [touch train]]

Figure 4b: Procedure constructed for new outcome by using links in Figure 4a.




Figure 5: Picture for Item FISH.
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Form 1 Form %

u type display " u type n25

u type 3 | u type display

u type n25 ' u type 3

s show managers' salaries s show managers' salaries

Figare 6a: Encoding of Forms 1 and 2 of MANAGERS item.

Form 1 Form 2
u type display u type n25
utype 3 _ u type display
 utype n25 utype 3
howjmanagers' salaries s@managers' salaries

Figure 6b: After placement of identity links.

Eorm 1 : Form 2
u type display u type n25
utype 3 u type display

utyps n25 3 | utype3 =
8 }howr.n’ané ers’ salari C\)-\' .
{-’ \_5)” § anesv | 58 5 howeanagerg salaries

. Figure 6¢c: After applying obligatory previous action heuristic.
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Form 1 Form2

u type display utype n25 =~
utype3 u type display
utype n25 = u type 3

s€how gers'(salaries _ ~ sfShow agers'(salaries'

Figure 6d: After applying ioose-ends heuristic.

Form 1 | . fom2
u type display u type n25
utype 3 u type display

sho managers

Figure 6e: Result of eliminating obligatory previous action heuristic.

!
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\ priori domain theory:

A is an aspect of the result of procedure P if S is a step of P and S is linked
to A.

Example 12
u type delete
utype c43

utype hat
s remove hat

! .7 il l 1 . l vl 1 . EE 1].

[type delete ] is linked to remove .
[type hat ] is linked to hat .

Note that [type c43 ] has been given no role.

u type reduce
u type fish
s shrink fish

[type reduce ] is linked to shrink .
[type fish ] is linked to fish .

Figure 7a: Using EBG to perform SG-like generalization for Item FISH.




Goal Concept 1:
Procedures P such that remove is an aspect of the result of P.
Ermf_thmmpls_hs.a.memhemmmmnm

(type delete ] is a step of Example 1
(type delete ] is linked to remove .
Therefore remove is an aspect of the result of Example 1

 Pisin Goal Concept 1 if [type delete ] is a step of P.

Procedures P such that fish is an aspect of the resuilt of P.

(type fish ] is a step of Example 2.

(type fish ] is linked to fish .

Therefore fish is an.aspect of the result of Example 2.
Gerneralization based o

PieinGoal Concept2 if (type fish ] is a step of P.
C :l |- E . 1'»" | ]- l [ E E ].

Desired procedure P lies in intersection of Goal Concepts 1 and 2.
If (type delete ] is a step of P, and [type fish ] is a step of P, P will be in

Goal Concepts 1 and 2. Note that [type c43 ] is not included in the
construction.

| : | Figure 7b: Continuation of Figure 7a.’
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u tjpe deiete
u type c43
u type hat

8 remove hat

Domain theory constructed from example:

(1) Outcome of [ X , [type 431, Y 1is [Q R ] if
role of X' is [specify Q') and
role of ¥ is [specify R .

(2) Role of [:y‘p; delete ] is [specify remove ].

(3) Role of [type 2] is [specify Z].

Goal concept:

Pairs P,O such that the outcome of procedure P is O.

Fig'uré 8a: MAG-like generalization in EBG.
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LetX = [type delete ]
Y = [type ha? ]
Q = remove
| R = hat
W = hat .

Role of [type delete ] is [specify remove ] by assertion (2) in domain
theory, so role of X is [specify Q ].

Role of [type W] is [specify W] by assertion (3) in domain theory, so
role of [type hat ] is [specify hat ] and therefore :
role of Y is [specify R ).

Since the conditionson X, Q, Y, and § in (1) are satisfied,

the outcome of [ X, [type c43 ], Y] is [Q R }; thatis,
the outcome of [[type delete ], [type c43 ], [type hat 11 is [remove hat].

Replaéi'ng hat by a variable, and leaving other terms in the example fixed
we find that any procedure

[eype delete ], [type c43 1, [type Z 1]
and outcome

[remove Z ]

are in the goal concept.

‘Therefore to get [remove fish ] use [[type delete ], [type c43 ), [type fish ]).

Figure 8b: Continuation of Figure 8a.
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