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Abstract

Computer learners often develop explanations of events they observe during

training. Recent work on generalization suggests that explanations may be

valuable in permitting learners to develop generalizaticns from one or a few

examples. We explore this idea by describing four generalization paradigms in

which explanations play a part: explanation-based generalization (EBG), structure

mapping analogical generalization (SMAG), modificational analogical

generalization (MAG) and synthetic generalization (SG). We describe a model, thc

EXPL system, capable of applying MAG or SG to the generalization nr simple

procedures in human-computer interaction. We present evidence that EXPL's

analysis procedure, which constructs explanations as needed by MAG or SG,

embodies heuristic principles used by human learners, and that MAG provides a

good account of some human generalization, when retention of examples is not a

problem.
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Introduction

In a series of thinking-aloud studies of word-processor learning (Lewis and Mack,

1983; Mack, Lewis and Carroll, 1983) it was noticed that learners often

spontaneously offered explanations of why things happened thc way they did.

Learners were under no explicit demand to produce such explanations, yet they

showed considerable fluency and ingenuity in developing them. Why were they

doing this? Lewis (1986b) speculated that the explanations arsisted

generalization: determining how their actions were related to observed outcomes

could be crucial in permitting learners to build new procedures for accomplishing

novel tasks.

This speculation meshes well with recent work on mechanisms of generalization

under the headings "explanation based learning" (DeJong, 1981, 1983a, b;

Kedar-Cabelli, 1985, Mitchell, Keller, and Kedar-Cabelli, 1986, DeJong and Mooney,

1986) and "analogical generalization" (Pirolli, 1985; Anderson and Ross 1986). In

these approaches, in contrast with earlier "similarity-based" methods which look

for regularities among large numbers of examples (for review see Dietterich and

Michalski, 1983), generalizations are based on an analysis of one or a few

examples. The analysis aims to determine why an example is an example, so that

further examples can be recognized or constructed.

In this paper we discuss the application of these analysis-based generalization

methods to the task of generalizing simple procedures in human-computer

interactim. That is, given an example procedure and its outcome, we will use

analysis-based methods to obtain new procedures to produce new but related

outcomes. We will then consider data that test the extent to which these models

6



reflect analysis and generalization as practiced by human learners.

Analnikburalscnralizatign

In similarity-based approaches generalizations are developed by examining a

number of examples of a to-be-lesrned concept and constructing an economical

description that is satisfied by all the examples (and not by any known

non-examples.) The generalization produced is the conjecture that any item that

satsifies this description is an example of the concept.

Analysis-based approaches attempt to build generalizations not by characterizing

a number of examples but by discerning the essential features of a single

example. By explaining what makes this example an example, we can characterize

a larger class of examples, nimely the class of examples for which the same

explanation holds.

reaplAngimhad1cnoralizatiga2,132, Mitchell et al. (1986) describe an

analysis-based technique, called EBG, in which the analysis of an example conshts

of a proof, within a formal theory of the example domain, that the example

belongs to a specified goal concept. The generalization process examines this proof

and constructs a characterization of the class of examples for which essentially

the same proof would work. In contrast to similarity-based generalizations, a

generalization constructed in this way can be formally proven to be correct, even

though it inty be based on only one example.

De Jong and Mooney (1986) discuss a broader framework, called

explanation-based learning, in which the analysis of an example is embodied in a

7
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set of interlocking schemata which the example instantiates and which account

for the aspects of the example that are to be understood. Just as EBG generalizes

to the ciass of examples for which a given proof would go through,

explanation-based learning generalizes to the class of examples to which a given

schema or collection of schemata can be fit. While De Jong and Mooney discuss

some advantages of the schema approach, and some other improvements to EEG,

the differences between these two explr.nation-based methods are not important

to our discussion here, and we will use EBG as a representative of this class of

approac h.

EBG requires a domain theory to be given, which is unavailable in many realistic

learning contexts, as Kedar-Cabelli (1985) and Mitchell et al. (1986) note. In the

domain being considered here, procedures for operating computers, learners

frequently encounter examples that they cannot explain on the basis of prior

knowledge.

Command names provide a simple example of this difficulty. In some operating

systems "dir" is command for displaying a directory offiles. When a learner

first encounters this command he or she would probably not know this. Thus

when an example using "dir" is first encountered, say in a demonstration, the

learner's domain theory is inadequate to prove that the example accomplishes the
observed outcome, and so no generalization is possible in EBG. But it seems

probable that as a result of seeing an example of the use of "dir", the learner can

readily grasp what "dir" does, and augment his or her knowledge accordingly. It

appears in cases like this that extending the domain theory to account for new

examples is a key process in generalization, one not encompassed by EBG.



We will return to this issue, and what might be done about it, after determining

whether learners are actually able to generalize in the absence of adequate

background knowledge. In the meantime we will table EBG as a model of

generalization of procedures, and consider other candidates.

AnawsigAlungializatign, Given a procedure P, its outcome 0, and some new

outcome 0', we can form an analogy involving a new, unknown procedure, X, as

follows:

P:0::X:0'

If we have an analysis describing why P produces 0, which picks out particular

relationships between the parts of P and aspects of 0, we can use structure

mapping (Gentner, 1983) and try to impose these same relationships on X and 0'.

As the name suggests, having determined what we think is the important

structure in the P : 0 pair we map that structure across the analogy and impose it

on the X 0' pair. In favorable cases this structure, which is represented as a

collection of relationships that must hold between X and 0', will constrain X

enough that we can construct it. For example, our analysis of P and 0 might

attribute the appearance of a particular file in 0 to the presence of a step in P

that mentions the name of this file. If a different file appears in 0' we can satisfy

this relationship by including in X a step mentioning the name of the new file. Let

us call this method SMAG, for Structure Mapping Analogical Generalization.

Another approach to dealing with the aoove analogy is to rearrange it as follows:

0:0'::P:X

9



If we can find a transformation that maps 0 into 0' we expect that the same

transformation should change P into X. Thus we will constnic; X by modifying P,

suggesting the name MAO, for Modificational Analogical Generalization, for this

approach. Anderson and Ross' PUPS system (Anderson and Ross, 1986) is an

implemented MAG system; similar ideas are discussed in Pirolli (1985) and

Dershowitz (1985). We will follow PUPS in our discussion.

As applied to our domain, a to-be-generalized example in PUPS consists of a

procedure, a descriptiol . of its outcome, and indications of the roles played by the

parts of the procedure in producing the outcome. Given a new outcome a simple

substitution mapping is coustructed that transfo:ms the old outcome into the new

one. This mapping; is then applied to the parts of the ()id procedure, giving a new

procedure that (it is hoped) produ-:',-..!.. the new outcome.

Here is a simple example. Suppose the procedure TYPE "DELETE", TYPE

"EGGPLANT" removes the file named EGGPLANT from a system. How would we

remove the file BROCCOLI? In mapping the. old outcome to the new one we need

only replace EGGPLANT by BROCCOLI. Applying this same replacement to the

command we get the, new procedure TYPE "DELETE", TYPE "BROCCOLI". This

example is trivial, in that we did not need any information about tne roles of

parts of the procedure.

Now suppose we wish to accomplish the new goal of printing the fike EGGPLANT.

Suppose further that in addition to the knowledge that TYPE "DELETE", TYPE

"EGGPLANT" removes the file EGGPLANT we know these facts: "Dr1LETE is the

command for removing" and "WRITE is the command for printing." Mapping the

1 0



old outcome, removing the file EGGPLANT, to the new outcome is accomplished by

replacing "removing" by "printing". In contrast to the first example, the term

"removing" does not appear in the to-be-modified procedure, so we seem to be

stuck. We can't just replace "removing" by "printing" because "removing" does not

aPpear in the procedure we are trying to modify.

The PUPS process gets around this impasse by examining the roles of the parts of

the Procedure. Finding that the role of DELETE is "the command for removing", it

applies the mapping to this role, obtaining "the command for printing." It then

looks for an implementation of this modified role, obtaining WRITE. It then

substitutes WRITE for DELETE, obtaining TYPE "WRITE", TYPE "EGGPLANT'.

SMAG and MAO have in common the exploitation of the idea of analogy, and the

dependence on an analysis of how a to-be-generalized example works. SMAG

embodies this analysis in the structure that is attributed to P and 0, and that is

then imposed on X and 0'. MAG embodies the analysis in the assignment of the

roles that are used to guide the modification process. But the two methods differ

in their treatmeat of unaralyzed aspects of examples, an issue which will be

important in our later discussion. SMAG only imposes on the new procedure X

those constraints which it has discerned in P and 0; any aspects of P that were not

implicated in the anal} sis of its relationship to 0 -All not be mapped over to X

and 0', and hence will not be reflected in X. By contrast, any aspect of P that is not

assigned a role in MAG will be left unchanged by the modification precess, and

will survive in X.

Analogical generalization resembles explanation-based generalization in that it

can operate on a single example, and requires an analysis of how the example

11



works, rather than just a description of it. But unlike explanation-based

generalizations those based on analogies may be invalid. For example, in the case

last discussed it could be that DELETE only works with files whose names begin
with E. This possibility does not occur in explanation-based generalization

because of the requirement for a formal domain theory in which membership in a

concept can be rigorously proved; analogical generalization relaxes this strong

requirement and pays a price for it.

synthetiaieneralization (BM, In earlier work on the role of explanations in

learning (Lewis 1986a) the author developed a generalization technique that

resembles SMAG and MAG in not requiring a formal domain theory, but that

produces new procedures by buildIng them out of small, separately-understood

parts rather than by modifying an example, as in MAG, or by mimicing the

structure of an example, as in SMAG. Richard Alterman (personal

communication) calls this distinction the "little chunk - big chunk" contrast in the

context of planning systems. A "big chunk" planner works by finding a known

plan that accomplishes roughly what is needed, and then modify'..ng it as

required. A "little chunk" planner works from a repertoire of small steps whose

behavior it knows. Faced with a novel goal, it builds a procedure to accomplish it

from scratch, using these primitive steps.

SG works as follows on the TYPE "DELETE", TYPE "EGGPLkNT" example. Assur

that an analysis of the example has yielded the information that TYPE "DELETE"

specifies a removal operation, and that TYPE "EGGPLANT' specifies the indicated

file. From a second example it gleans that TYPE "WRITE" specifies a print

operation (say) and that TYPE "BROCCOLI" specifies the file BROCOLLI. The

examples themselves are discarded; only the information anout primitive pieces

12



is retained. Given the demand to remove BROCCOLI, it synthesizes the procedure

TYPE "DELETE", TYPE "BROCCOLI" by putting together TYPE "DELETE" and TY

"BROCCOLr.

The principles underlying SG are very close to those underlying the work of

Winston and colleagues on learning physical descriptions for objects with

functional definitions (Winston 1980, 1982, Winston, Binford, Katz, and Lowry

1983). Winston et at use auxiliary examples, called precedents, to establish

connections between physical features and functional properties; these

connections correspond to SO's connections between pieces of a procedure and

aspects of its outcome. Because of the goal of recognizing objects rather than

constructing them the Winston work does not build collections of features, as

would SG's synthesis process, but rather constructs efficient recognition rules for

constellations of features that might be observed in other examples.

NIechanism.vs. superstition, A key point about SG is that it might produce the

procedure TYPE "BROCOLLr', TYPE "DELETE" rather than TYPE "DELETE", TYF

"BROCCOLr'. Its knowledge about DELETE and filenames does not include anything

about the order in which steps invoMng them must occur, and the SG procedure

does not have access to the original examples from which its knowledge was

derived. By contrast, MAO will rarely reorder an example, because a new

procedure is always obtained by substituting parts in the example. Only in the

special circumstance that a substituticn interchanges parts would reordering

Occur.

A similar contrast emerges in the treatment of unexplained parts of a procedure.

In SG an unexplained step will never be included in a new procedure, because

13
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the synthesizer will have no description of its effects. In MAG an unexplained

part of a procedure, that is, one that has no role, will in general be left unchanged

in the modification process.

Let us call SG a mechanistic process, in that generalizations include only features

of examples that are understood, and MAG a superstitious process, in that

features of examples that are not understood are carried forward into

generalizations. Under this definition SMAG is a mechanistic process, for reasons

discussed above: parts of a procedure that do not participate in known

relationships with its outcome will not be reproduced in the generalived

procedure.

We might expect superstitious generalization to be important in complex,

poorly-understood domains. Mechanistic generalization will not perform well

when a complete analysis of how an example works is net available.

Analysis of examples

All of these methods require information about the roles of paro of an example.

Where does this come from? In tho procedure-learning context, how does a

learner glean from observing an example like TYPE "DELETE", TYPE "EGGPLANT

what the parts contribute to the outcome? The thinking-aloud studies mentioned

earlier (Lewis and Mack, 1982; Mack, Lewis, and Carroll, 1983) provide a couple

of suggestions. First, learners seemed to pay attention to coincidences, or

identities, between elements of their actions and elements of results. For example

one learner conjectured that a message containing the word FILE was the

outcome of a command containing the word FILE, though in fact the message was

14
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unrelated to the, command and the occurrence of FILE in both was a coincidence.

Second, faced with examples containing multiple actions and results learners

appeared to partition results among actions in such a way that a single action was

presumed to have produced a single result. These cases suggested that learners

may possess a collection of heuristics that enable them to conjecture the

relationships among actions and outcomes in a procedure.

The identity heuristic, Suppose that we are watching a demonstration of an

unfamiliar graphics editor. After a series of actions which we do not understand

the demonstrator draws a box around an object on the screen. After some further

unintetpretable actions the object in the box disappears. We might conjecture

that the drawing of the box specified the object that was to disappear; that is, that

the earlier user atlion of drawing the box around the object was causally

connected with the later system response involving the identical object. This

heuristic, which ties together actions and responses that share elements, is

reminiscent of the similarity cue in causal attribution (Shultz and Ravinsky

1977), in which causes and effects which are similar in some respect may be

linked.

The loose-ends heuristic, Suppose in watching another demonstration we are able

to explain all but one user action and all but one system response, which occurs

later. We might conjecture that the otherwise unexplained action is causally

linked to the otherwise unexPlained response. We might justify your conjecture

with two assumptions: that a demonstration shows an economical way to

accomplish its outcome and that all aspects ofsystem responses are attributable

to some user action.

15
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This heuristic captures some of the observed partitioning of results among actions

by learners mentioned above. It is consistent with the "determinism" assumption

discussed in the causal attribution literature (Bullock, Gelman and Baillargeon

1982), by which all events are assumed to have causes.

The EXPL system (Lewis, 1986a) was developed to explore these and similar

heuristics, and their role in generalization. It implements a small set of heuristics

in such a way as to produce the information required by MAG or SG from an

example. Thus combining the EXPL analyis with MAG or with SG provides a

complete model of procedural learning from examples, in which extracting

information from examples, and use of that information to produce new

procedues, are both represented. There appears to be no reason why the EXPL

analysis could not drive SMAG, but this has not been done. We will discuss in the

following sections those aspects of EXPL pertinent to the examples considered in

this paper; complications and extensions needed to handle more complex

examples are described in Lewis (1986a).

encoding Examples are represented to EXPL as a series of events , each of which is

either a user action or a system response. An event is made up of one or more

components, which may represent objects, commands, operations, or other

entities. These components are treated by EXPL as arbitrary, uninterpreted

tokena, with a few exceptions that need not be considered here. No significance

attaches to the order in which components of an event are listed. Figure 1 shows

an example as described in English and as encoded for EXPL.

Insert Figure 1 about here

16



This primitive encoding scheme has many limitations; it cannot represent

relationships among entities within an event, such as the information that a

Collection of entities all appear on the same menu, for example. But it has proved

adequate to support the analysis of examples of moderate complexity and it is

sufficient to support the implementation of the EXPL analysis heuristics which are

our focus here.

1,11Lidradax.lautiAticilnEXPL, When a nomponent of a system response has

occurred earlier in a user action, EXPL asserts that that user action specified that

component of the system response. For example, if clicking a mouse on an object

is followed by the disappearance of that object, EXPL asserts that it was clicking

on the object that leLl to that object, rather than some other, disappearing.

EXPL's implementation relies on the encoding process to enable the identity

heuristic to be applied in some cases. Suppose a picture of an object disappears

after the name of the object is mentioned. The encoding of these events must use

the same token to represent the picture and the name. Otherwise the identity

heutistic will be unable to link the mention to the disappearance. A more

sophisticated implementation would permit encodings with multiple descriptions

of events, and use background knowledge to link tokens which are not identical

but have related meanings. EXPL's primitive approach is adequate to support our

discussion, however.

Iht itligatga4gratiguletignicuristig,EXPL's analisis assumes that system

responses occur rapidly with respect to the pace of user actions, so that system
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responses will occur as soon as all contributing user actions have been made.

Consequently, some contribution from the immediately previous user action must

'always be posited.

The loose-_ends heuristic, If EXPL finds a user action which it cannot connect to

the goal of an example, and it finds a component of a later system response that it

cannot account for, it posits that the unexplained user action is linked to the

unexplained system response. In the current system the goal of an example is

identified with the final system response. This is inadequate in general but will

not cause trouble in our discussion here.

Euvious action, When any components of a system response cannot be attributed

by the above heuristics to any prior user action, the EXPL analysis attributes

them to the immediately previous user action. This can be seen as a weakened

version of the very powerful temporal succession cue in causal attribution, in

which an event which.follows another immediately is likely to be seen as caused

by that event (Duncker 1945). EXPL's encoding does not include quantitative

timing information, so the dependency of this cue on precise timing is not

captured.

The previous action heuristic plays a complementary role to the obligatory

previous action heuritic described earlier. Obligatory previous action ensures that

the latest user action will be assigned some causal role, even if there are no

unexplained system responses. Previous action ensures that all aspects of a

system response wili be assigned a cause, even if there are no unexplained user

actions.

18
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Prerequisite mlations, In tracing the contribution ofuser actions to the ultimate

system response it may be necessary to recognize that an action contributes to an

intermediate system response that permits a later action to be carried out. EXPL

can make this determination in some special cases, but the examples we will

discuss below do not require it. The interested reader can consult Lewis (1986a)

for a description of the mechanism.

Applying the heuristics, The heuristics are implemented by a PROLOG program

which processes the events in an example in chronological order. Eac heuristic is

applied in the order listed above to each system response, and places lirdcs

between earlier user actions and components of the response. The order of

application dictates that any attributions based on identity will be made before

any based on loose-ends, for example. In applying a heuristic the components

within an event are processed iu order, which is assumed to be arbitrary.

Analysis of an example. Figure 2 shows the output of EXPL's processing of the

example in Figure 1. Note that EXPL's attributions agree well with an intuitive

interpretation of the English version in Figure 1.

Insert Figure 2 about here.

.111MMININI.11111NMMIlleMMINONONNMOM

11Q1132f.priszlincatraismillukozontlEardit110" Tne EXPL heuristics assume

nothing in the way of prior knowledge, other than what may be implicit in the

decisions made in encoding events in a particular way. Undoubtedly prior

knowledge plays a substantial role in the analysis of real examples, when



learners have some familiarity with the system and the tasks being performed.

EXPL also gives no account of the fate of analyses which are proved incorrect by

later experience. A complete theory would have to desciioe the process by which

initial conjectures, such as those developed by EXPL, are refined and revised.

Generalization

To support MAG the results of

EXPL's analysis must be converted to the form assumed by the MAG machinery,

in which the procedure to be modified is explicitly represented, and the roles of

its parts, when these are known, are specified. Figure 3a shows the resulting

information expressed informally.

The MAO machinery now accepts the statement ofa new outcome. It constructs a

mapping to take the old outcome to the new one, in the form of a set of

substitutions, as shown in Figure 3b. It then applies this mapping to the old

procedure.

Insert Figures 3a, 3b, 3c, and 3d about here.

If a part has no substitution, but does have a role specified, MAG attempts to

make substitutions in the mi.?, znd then to find'a new part that implements the

modified role. In general, background knowledge, or knowledge gleaned from

other examples will be needed here. Figure 3c shows the results of analyzing
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another example, part of which will be needed in modifying the current one.

The role-mapping process is shown in Figure 3d. The resulting procedure adapts

the example using biowledge gathered from the auxiliary example.

Using.SG to generalize an analyzed example, SG requires the results of EXPL's

analysis to be cast in a different form. The links shownln Figure 2 are extracted

from the example and combined with similar links extracted from the analysis of

the example shown in Figure 3c to produce the collection of links shown in Figure

4a.

Given a new outcome, SG selects from its data base of links actions which will

contribute the needed components. Figure 4b shows the resulting procedure.

Insert Figures 4a and 4b about here.

Adding substitution to SG. The example just discussed shows how SG can combine

the analysis of two examples to build a new procedure. If only une example is

available EXPL's version of SG uses a simple substitution scheme to generalize the

single example. Components are assigned to classes, aipart of the encoding

process, so that pictures on the screen might form one 71 ass, names of files

another class, and so on. If a component is sought, but no link is available that can

provide it a search is made for identity links that provide a component of the

same class. If one is found, the associated user action is modified by substituting

the new component for the old one. The modified action is presumed to produce
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the new component. For example, if clicking on a picture of a hat is seen to be a

way to specify the picture of the hat, then clicking on a picture of a fish would be

presumed to be a way of specifying the picture of the fish.

This extension of SG can be seen as the inclusion of part of the MAG machinery in

the SG framework. Without it, SG is unable to generalize many procedures

without using links derived from other examples.

these

How well do these EXPL-MAG and EXPL-SG models, or a hypothetical EXPL-SMA(

model, account for the behavior of people in analyzing and generalizing

examples? While the EXPL analysis heuristics are based in a general way on

observations of human learners more specific tests of the use of these heuristics

by people are needed. Similarly, evidence is needed regarding whether MAG,

SMAG or SG can account for generalizations constructed by people.

To gather such evidence paper-and-pencil tasks were devised in which simple

fictitious computer interactions were presented as a sequence of events in text

form, with a picture showing the contents of the computer screen. Participants

were asked to answer questions about the roles of particular steps in the

examples, or to indicate how they would accomplish a related task. Items were

constructed to probe the following issues.

larafidgntity anciloose-ends heuristick The loose-ends heuristic should permit

participants to assign a role to a step by a process of elimination, even when that

step contains no particular cue for what its role might be. The identity heuristic

7: 22
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should set up the elimination process by previously linking some steps to some

aspects of system responses, thus excluding them as candidate loose-ends.

If a step with no obvious role

immediately precedes a system response the obligatory previous action heuristic

will assign it a role, whereas the same step appearing in the midst of a sequence

of user actIons might not be assigned any role.

Mechanistic vs. superstitious generalization, As discussed above, superstitious

generalization will normally preserve order of steps, while mechanistic

generalization will accept reorderings as long as no logical constraint, such a

prerequisite relationship between two steps, is violated. An example was

constructed in which two steps could be reordered without violating any

apparent constraint, and participants were asked to judge whether the reordered

example would work.

Another item examined the treatment of an uninterpreted step. As discussed

earlier a superstitious generalizer will leave unchanged aspects of the example to
which it has assigned no role, since it has no basis for modifying them. A

mechanistic generalizer will show the opposite handling: only interpreted steps
can appear in a generalization, since steps will be included a procedure only if

they contribute to the goal for which the procedure is being built. An example

was prepared that included an apparently unnecessary step. While some

participants might assign a role to the step, it is possible that participants who
assigned it no role would nevertheless keep it in a generalization.
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Participants, Ninety students in an introductory psychology course served in the

experiment as part of a course requirement. As a rough gauge of computer

background they were asked to estimate hours of computer use. Estimates rangeo.

from 0 to 1000, with a median of 55 and lower and upper quartiles of 20 and

100.

matIriall, Test items were presented on single pages of test booklets. Each page

carried the name of a fictional computer system, with a sketch of a display screen

and (if used in the example) a keyboard. A brief example of an interaction with

the system was then presented as a sequence of written steps, followed by one or

more questions about the example. Figure 5 shows the picture for a typical item;

the example and question were placed on the same page immediately below the

picture. Table 1 shows the content of each item. Groups of participants were

given different versions of the booklets, diffefing in the items included and the

order of certain items, as shown in Table 2. Items TRAIN, PERSON, Pnd HOUSE

relate to the problem of identifying hidden events in analyzing procedures and

will not be discussed hem.

MIEHNIsormmoNNIEM.MINNemasamodo...INNION

Insert Tables 1 and 2 about here.

malammoams mmm mmouwameMbw.iomeamosae

All booklets contained an initial practice item, which was discussed with

participants at the start of the experimental session, and a final page with

background questions on computer use.
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pria,durt, Participants were run in groups of five to twenty in a classroom. In

early sessions participants were assigned to Groups A and B in alternation on

arrival; later Groups S and T were formed in the same manner. Participants were

given instructions verbally. Points covered were that questions were intended to

investigate their interpretations of the examples, regardless of the am..ant of

their knowledge of computers, that each item referred to a differf:,it fictit4ous

computer system, that accordingly they should not attempt to correllate their

answers to different items or go back and change earlier answers. The use of a

touch screen, in examples where no keyboard was used, was exaplained.

Participants were asked to look at the practice item and to suggest possible roles

for its first step. It was stressed that there were no correct or incorrect answers

since the intent was to discover each person's interpretation of the examples, and

that participants were free to indicate when they could not determine an ansver.

Participants were then asked to begin work, moving at their own pace, and to

turn in their booklets and leave when finished.

Codina and analysis of responses. Coding categories, given below for each item,

were constructed for each item before any responses were examined. Three

raters coded all responses independently, with final codes assigned by majority

rule. Responses for which no two raters agreed were coded as "no agreement". No

codes were discussed among the raters, either during the rating process or in the

assignment of final codes. The G or log likelihood ratio test (Sokal and Rohlf 1981)

was used to test for differences in response frequencies.

graukaAndAiscimign,

Table 3 shows the responses for each item. Where the same item was presented
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to more than one group, G tests did not indicate significant inter-group

differences, except in the case of item RABBIT. Accordingly, results are pooled

across groups except in that case.

Insert Table 3 about here.

Item TRUCK, This item was given in two forms, one with the second step

contain;ng "truck", the other with the second step containing "red". Together, the

identity and loose-ends heuristics should result in the first step, which is the

same in both items, being assigned the role of sper:4ing theaspect of the system

response that is not mentioned in the second step.

This is confirmed by the data. Table 4 tabuictes just those responses indicating a

specification of color or of object or location. The difference due to the form of the

item is highly significant (0.61, 1 df, p<.001).

Insert Table 4 about here.

Item LADDER, This item examines whether attributions made using identity and

loose-ends in an earlier part of an example can be carried forward to

disambiguate later phases ofan example. Identity and loose-ends should indicate

that "NNA" specifies rotation in analyzing steps 1 and 2. If this interpretation is

carried forward to steps 3 and 4 the analysis will indicate that "da9" specifies the

tree. Finally, analysis of steps 5 and 6 will connect "n6131 with shrink, given the

connection of "da9" with tree.
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Most participants responded in a manner consistent with this outcome, but there

are other possible explanations of the outcome. It is possible that participants

assume that items type always consist of an operation followed by an operand,

and atsociate "n6b" with "shrink" on this basis.

Jtem MAKAGERS, This item provides a test of the interaction of the loose-ends

heuristic, the previous action heuristic, and the obligatory previous action

heuristic. Assume that the steps in the examples are encoded as shown in Figure

6a: typing the meaningful term "display" is separated from typing "3". Assume

further that the relationship between "display" and "show list of' is known and

available to establish ati identity link accounting for this aspect of the system

response. Figure 6b shows the state of analysis following construction of this

identity link. Note that in neither form is there a link drawn from the last user

action to any later system response. If the obligatory previous action heuristic is

now applied, as in the EXPL implementation, a link will be placed attributing the

first unaccounted-for component of the system response to the previous action, as

shown in Figure 6c. The loose-ends heuristic will now connect any unattributed

components of the system response to the earliest unaccounted-for user action,

with results shown in Figure 6d. This analysis predicts that participants seeing

Forml would attribute "manager's" to step 2 and "salaries" to step 1, while

participants seeing Form 2 should attribute "manager's" to step 1 and "salaries" to

step 2. As the tabulation in Table 5 shows, this pattern does not occur.

MN. MEND MOM

Insert Figures 6a, 6b, 6c, 6d, and 6e and Table 5 about here.
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If the obligatory previous action heuristic is not used the ar.alyses obtained are

shown in Figure 6e. As can be seen, the attributions are consistent with the

dominant pattern of participants' responses.

Although a modified EXPL analysis can account for these results it seems

imprudent to attach much weight to these examples in assessing the interactions

of the heuristics. The items have the drawback that the analysis is heavily

dependent on encoding, including the order of components. A change in encoding

of the system response from "show manager salary" to "show salary manager", for

example, would change EXPL's analysis.

In view of the uncenainty in EXPL's treatment it is interesting that participants

were so consistent in their attributions in these impoverished examples. Possibly

participant; were influenced strongly by the order in which the questions were

asked, attributing the first effect they were askdd about to the most recent step,

and then choosing not to attribute two effects to the same step.

ItaniSTAR, Most participants indicate that the reorderea procedure will not

work, without giving a reason beyond the change in order. As discussed earlier,

this would be expected from a superstitious generalization process. On the other

hand, 19 participants indicate that the reordered procedure would work,

consistent with mechanistic generalization. The 95% confidence interval for

proportion of participants accepting the change of order, ignoring uninterpretable

responses, extends from .07 to .46.

While retention of order is consistent with superstitious generalization, it could
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also occur if participants have learned that order of steps is generally important

in computer procedures and apply that knowledge to the item. Table 6 tallies

acceptance of variant order and rejection of variant order with no grounds for

participants reporting less and more than the median computer experience. As

can be seen there is no indication that more experienced participants are less

likely to accept the variant order.

Insert Table 6 about here.

Item FISH, As discussed above, superstitious and mechanistic generalization

differ in their treatment of uninterpreted steps. Table 7 tabulates participants

according to whether they assigned a role to the seemingly unnecessary Step 2,

and whether they retained this step in generalizing the example. As can be seen,

23 participants retained the step even though they assigned no role to it,

consistent with a superstitious generalization mechanism but not consistent with

mechanistic generalization. On the other hand, 7 participants dropped the

uninterpreted step, which is consistent only with mechanistic generalization. One

participant neatly combined 1nechanistic with superstitious generalization by

suggesting that Step 2 be dropped, but put back in if the new procedure did not

work without it.

.
Insert Table 7 about here.

MIIIMM.1114.110.111.NOIMI.MM
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When participants assigned roles to 'c43' they treated it appropriately in the

generalized procedure, consistent with all of the generalization models considered

here. Typical roles included indicating the position of the hat, ,:pecifying a location

in memory for the hat to be put, requesting that Step 1 should be executed, and

indicating that the next object touched should be acted upon. The lone participant

who dropped 'c43' from the generalized procedure after giving it a role said that

it caused the system to exclude the fish from the deletion operation.

Table 8 compares responses to the FISH item with those of the STAR item. Ifuse

of mechanistic or superstitious generalization were consistent by participant,

participants should fall mainly in the "will work, drop" cell, for mechanistic, or

the "order bad, keep" cell, for superstitions generalization. To the contrary, more

partk ipants fall in the other two cells, indicating inconsistency across the two

items. The "will work, drop" cell is empty, indicating that no participants were

consistently mechanistic, while some were consistently superstitious and others

were superstitious on one example and not the other.

Insert Table 8 about here.

Item FISH illuminates another point discussed above. Most participants

generalized the example by replacing Hat by Fish, even though they had seen no

example in which Fish was typed. This generalization is trivial in MAG but cannot

be handled in SC'T without adding substitution.

Item RABBIT, This item showed a significant effect of order, so results are not
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pooled across groups. The comparison between this item and FISH provides a test

of the obligatory previous action heuristic. According to this heuristic even an

apparently unnecessary step must be assigned a role if it immediately precedes a

system response. In FISH the unnecessary step occurs between two user actions,

while in RABBIT it occurs just before a system response. As shown in Table 9

there is some support for the obligatory previous action idea in that of the those

who assigned a role in one and not the other nearly all assigned a role in RABBIT

and not in FISH. This preponderance is significant by sign test at the 95% level in

each group. But the table also shows that the preponderance of participants

assigned a role to the unnecessary step in both examples. This indicates that

analysis should attempt to assign a role to all actions, regardless of position,

rather than giving special handling to actions that immediately precede a system

response. This finding joins the results of the MANAGERS item in casting doubt on

EXPL's obligatory previous action heuristic.

Insert Table 9 about here.

Discuss:um

SuogafatinAlnajiguistigi, The empirical findings support the conclusion that

people use principles similar to EXPL's identity and loose-ends heuristics. The

detailed coordination of these heuristics is less clear, and may differ from that in

the implemented EXPL system. It appears that people tend to assign a role to all

user actions, regardless of position, rather than using EXPL's obligatory previous
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action heuristic.

Suzzatitimorineghanismi While the pattern of results is mixed, and does not

indicate consistency across items within participants, it appears that responses

consistent with superstitious generalization are more common than those

indicating mechanistic generalization. It is possible that this luiwing h dependent

on the fact that participants had full access to the examples while interprcing or

generalizing them. In real learning situations participants would usually face a

serious retention problem, in which w.ecalling complete examples well enough to

use superstitious generalization might be difficult, Undet these conditions

mechanistic methods, which could work with even fragmentary recall of

examples, might be more prevalent.

Encligyigtect The ability of participants to generalize examples that contain

arbitrary, never-seen-before tokens, as in LADDER or FISH, bears out our earlier

contention that F130, at least as charactt,rized by Mitchell et al. (1986), cannot

provide a complete account of learning in this domain. Participants cannot possess

domain theories adequate to construct proofs about nonsense elements like "c43".

To attack this problem the EEG framework might be extended to include addition

to the domain theory as part of the analysis of an example. The EXPL analysis

machinery, for example, could be adapted to produce its output in the form of

theory about the significance of the steps in the example, rather than as links or

role assignments as needed by SG or MAG. The generalization process itself

would work just as it does in normal EBG, but ofcourse the remits would no

longer be rigorously justifiable, being only be as good as the

heuristically-conjectured domain theory.
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How would such an extended EBG model compare with SMAG, MAG or SG? Would

it be mechanistic or superstitious? The behavior depends on the nature of the

domain theory. With appropriate domain theoris EBG can mimic the

generalilations of any of these models.

Suppose first that the dom:in theory specifies how the parts of a procedure

produce its outcome. In this case EBG implements structure mapping.

Kedar-Caberi (1985) describes a procedure called "purpose-directed analogy" in

an EBG framework. If applied to generalization of procedures purpose-directed

analogy would construct new procedures by capturing the relationship between

procedure and outcome in the example in the form of a proof that the procedure

produces the outcome. The proof would then be generalized. The new procedure

would be determined by the constraint that the generalized proof must establish

that the new procedure produces the desired new outcome. This is the SMAG

pzocess, in which the analogy P : 0 :: X : 0' is solved by mapping the relationships

in the P-0 stucture onto the X-0' structure.

Seen in the BUG framework, SG appears as a special case of SMAG. While SMAG

can incorporate arbitrary relationships among attributes of procedures and their

outcomes, SG's synthesis process requires that only general principles of

combination, and specific descriptions of parts, are permitted. Consequently the

domain theory for SG consists of two distinct subtheories. An a priori subtheory

describes how parts of procedures interact when put together. This theory must

be general, not referring to features of any particular examples. The second

bubtheory consists of descriptions of the various possible parts of procedures,

whose behavior may have been extracted from the analysis of examples.
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Figures 7a and b show how Item FISH could be handled in an EBG version of SG.

The a priori domain subtheory is an explicit statement of the assumption

underlying EXPL's SG planner, without the substitution scheme. The part-specific

subtheory contains relationships posited by the analyzer in processing examples.

As required for pttre SG, tvio examples are processed, one to establish how to

specify Delete and one Low to specify Fish. To build a procedure for Removing

Fish we take the intersection of the two goal concepts. As expected from a

mechanistic approach the step c43 is dropped. As expected, the EBG machinery is

doing two things here. First, it is filtering the attributes of the examples so that

only apparently necessary attributes are kept. Second, it is streamlining the

application of the domain theory by replacing more abstract specifications of goal

concepts by more concrete ones.1
Insert Figures 7a and 7b about here.

0,01,11110..IONNIIMINION11.414111.MMINIINIIIIHIMMIMONNIII0.40111140.0

It might appear that a superstitious generalization mechanism like MAG could not

be accompdated in the EEO framework. After all, one of the functions served by

proofs in EBO is filtering features with roles from features without roles, while

MAG simply retains features without roles. Nevertheless, with an appropriate

domain theory EBG can mimic MAO, at least in simple cases.

The domain theory needed for MAO is somewhat different from those for SMAG

or SG. While theories for these models will describe the role of all relevant pats

of procedures, the theory for MAG may not. Instead, the MAG theory must
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indicate the outcome of a procedure as a whole, so that uninterpreted parts will

not be stripped out in the generalization process. To permit generalization to

work at all on the whole procedure, any replaceable parts must be detected and

repined by variables in the domain theory. Thus the domain theory represents a

procedure as a sort of matrix in which some parts, those with known roles, are

substitutable, while parts without known roles are fixed.

Figures 8a and b show the treatment of Item FISH in a MAO-like version of EBG.

Note that the analysis of the example must perform a good deal of abstraction,

but that the relationships that must be detected to do this are the same as are

needed for SG, and are detected by EXPL's analyzer. the step [type delete]

specifies remove , the step [type hat] specifies hat . The required abstractions are

accomplished by replacing tokens that appear in both the procedure (or roles of

parts of the procedure) and the outcome by variables.

Insert Figure 8a and 8b about here.

Roles of explanation in generalization. Consideration of these generalization

mechanisms reveals that explanations can play more than one part in

generalization. In SMAG, SG and EBG, explaining the outcome of a procedure leads

to the construction of hypotheses about the role of the procedure's parts. These

hypotheses are packaged as input to a planner, in SG; as input to a mapping

routine, in SMAG; or as extensions to the domain theory in EEG. As long as the

hypotheses about the parts are correct, and the theory about the behavior of

combinations of parts is correct, new procedures built from the parts will work as
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expected. That is, a complete and correct explanation of how the example works

enables us to build new procedures that will also work.

In MAG. what is explained is not how the procedure determines the .outcome, but

how the outcome detennines the procedurc. That is, explanations in MAG are

used as a guide to changing the example procedure, given that the desired

outcome has changed. The validity of the modified procedure rests not just on the

validity of the analysis of the example but also on the validity of the modification

rules, which are not part of the explanation of the operation of the original

example. It can also rest on the action of unexplained aspects of the example

which are left unchanged by the modifIcation rules.

In EBG, SMAG, and SG an explanation serves to filter relevant procedure

attributek, from irrelevant ones. In MAG relevant features may be explained or

not; explanations play no filtering role but are only used to guide modification.

In EBG only, explanations are further used to streamline the construction of

generalized procedures by simplifying the application of the domain theory to

cases similar to the example. This does not seem to be crucial in the simple

procedural examples we have considered here, though they are in other domains

considered by Mitchell et al.

Drandoraminckgrgund knowledge, To what extent are the analysis and

generalization mechanisms we have been discussing dependent on knowledge of

the specific domain we have considered, human-computer interaction? Could

these same mechanisms be applied to concepts outside this domain, or are they

embodiments of particular assumptions learners make about this particular
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domain, assumptions which must be the result of some prior, possibly more basic

learning process?

The generalization mechanisms are clearly not limited to this domain, since they

have all (except for SG) been developed to deal with other kinds of concepts.

What about the analysis heuristics?

he obligatory previous action heuristic (which did not receive strong suppuri) is

an example of a piece of machinery which might rest ori special asstOptions. The

rationale for it that we discussed above, the assumption that system responses

are fast compared with user actions, certainly would not apply to all procedural

domains. But this argument is not decisive, because this may not be the correct

rationale. As we also discussed above, temporal succession is a very powerful cue

for causal attribution in domains unrelated to human-computer interaction; the

obligatory previous action heuristic could reflect the tendency to attvibuit effects

to immediately prior events, just as the plain previous action heuristic does.

The identity heuristic does not appear to rest on any specific ideas about

humax -computer interaction, though it may reflect assumptions that are not

completely general. While principles akin to identity may be involved in

unravelling many physical phenomena, for example the notion that objects in the

same place are more likely to interact than objects in different places, identity

might seem especially useful in understanding artifacts rather than natural

systems. If red and green switches are available to control red and green lights, it

seems compelling that a well-meaning artificer would have matched up the

colors. There seems much less warrant for the conjecture that drinking a

naturally-occurring red plant extract (say) will be effective in making one's face
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flush red.

But of course just such conjectures are commonplace in prescientific thought; see

discussion in Frazer (1964). So whatever we may think of the support for it, it

appears that the idernity heuristic is not restricted to artifacts, let alone

computers.

The rationale proposed above for the loose-ends heuristic, like that for the

obligatory previous action heuristic, would restrict its application. It was assumed

that the events the learner is seeing constitute a coherent and efficient

demonstration, without wasted motion and mistakes. There is nothing in that that

is limited to the human-computer interaction domain. But it is possible that

learners will apply loose-ends without making even this assumption. Just as

people do not restrict the use of i&ntity to artifacts, they may tie up loose ends

when there are no grounds for expecting them to connect.

Suirunary. We can now collect the above arguments, and the indications in the

data, and draw conclusions about thegeneralization processes participants used.

Pure SO cannot account for participants' ability to generalize from a single

example, though SO plus substitution can. Neither of the mechanistic methods, SG

or SMAG, can =Count for the tendency of participants to reject variant order in

the STAR item, or the fact that some participants retain uninterpreted features of

examples in generalizing. MAO, a superstitious mechanism, appears to be able to

account for the findings in a natural way, except that some participants were

willing to accept variant orders in STAR.

All of these generalization mechanisms could be brought within the EBG
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framework described by Mitchell et aL But a mechanism like EXPL's analyzer

would be needed to build domain theory extensions from examples if EBG is to

operate in yids domain, since participants clearlywere able to generalize

examples for which they h4d no adequate a priori theory.

The results bearing on the analysis of examples support the idea that devices like

EXPL's identity and loose-ends heuristics do play an important role, and that

participants are able to use them to explain the role of parts of unfamiliar

procedures. Such principles of analysis seem to be capable of supporting a variety

of different generalization mechanisms.

Returning to our original question, why explain things during learning? It appears

that explanations organize knowledge about procedures in a way that supports

generalization. Our data suggest that participants used heuristic rules to associate

parts If proce4ures with aspects of outcomes in such a way as to determine what

part of a procedure to change to obtain a modified outcome.

39



REFERFIICES

3 7

Anderson, J. R. and Thompson, R. (1986). Use of analogy in a production

system architecture. Paper presented at the Illinois Workshop on

Similarity and Analogy, Champaign-Urbana, :rune, 1986.

Bullock, M. Gelman, R., and Baillargeon, R. (1982). The development of

causal reasoning. In W.J. Friedman (Ed.), The Developmental

Psychology of Time. New York: Academic Press.

De Jong, G. (1981). Generalizations based on explanations. Proceedings

IJCAI-7, Vancouver, 67-69.

De Jong, G. (1983a). Acquiring schemata through understanding and

generalizing plans. Proceedings IJCAI-8, Karlsruhe, 462-464.

De Jong, G. (19834 An approach to learning from observation. Proceedings

of the 1983 International Machine Learning Workshop, Urbana IL.

De Jong, G. and Mooney, R. (1986). Explanation-based learning: An

alternative view. Machine Learning 1.

Dershowitz, N. (1986). Programming by analogy. In R.S.Michalski, J.G.

Carbonell & T.M. Mitchell (eds.), Machine Learning: An Artificial

Intelligence Approach, Volume II. Los Altos, CA: Morgan Kaufmann.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58,



3 8

Whole No. 270.

Frazer, J. (1964). The new golden bough . (T.H. Gaster, Ed.), New York: New

American Library.

Gentner, D. (1983). Structure mapping: A theoretical framework for

analogy. Cognitive Science, 7, 155-170.

Kedar-Cabelli, S. (1985). Purpose directed analogy. In Proceedings of the

Cognitive Science Society Conference, Irvine, CA: Cognitive Science

Society.

Lewis, C.H. (1986a). A model of mental model construction. In Proceedings

of CHI'86 Conference on Human Factors in Computer Systems. New

York: ACM, 306-313.

Lewis, C.H. (1986b). Understanding what's happening in system

interactions. In D.A.Norman and S.W.Draper (Eds.) User Centered

System Design: New Perspectives on Human-Computer Interaction.

Hillsdale, NJ: Erlbaum.

Lewis, C.H. & Mack, R.L. (1982). Learning to use a text processing system:

Evidence from "thinking aloud" protocols. In Proceedings of the

Conference on Human Factors in Computer Systems. New York:ACM,

387-392.

Mack, R.L., Lewis, C.H., & Carroll, J.M. (1983). Learning to use word



3 9

processors: Problems and prospects. ACM Transactions on Office

Information Systems, 1, 254-271.

Mitchell, T.M., Keller, R.M. and Kedar-Kabelli, S.T. (1986) Explanation-based

generalization: A unifying view Machine Learning , 1.

Pirolli, P.L. (1985). Problem solving by analogy and skill acquisition in the

domain of programming. PhD Dissertation, Department of

Psychology, Carnegie-Mellon University, Pittsburgh, August, 1985.

Shultz, T.R. and Ravinsky, F.B. (1977). Similarity as a principle of causal

inference. Child Development, 48, 1552-1558.

Sokal, R.R. and Rohlf, F.J. (1981). Biomehy. San Francisco: Freeman.

Winston, P.H. (1980). Learning and reasoning by analogy. CACM, 23,

689-703.

Winston, P.H. (1982). Learning new principles from precedents and

exercises. Artificial Intelligence, 19, 321-350.

Winston, P.H., Binford, T.O., Katz, B., and Lowry, M. (1983). Learning

physical descriptions from functional definitions, examples, and

precedents. Proceedings of AAA1-83, Washington DC, 433-439.



40

I thank Mitchell Blake, Steven Casner, and Victor Schoenberg for their assistance

in the research described here. Many others have been generous with ideas and

suggestions, including Richard Alterman, John Anderson, Susan Bovair, Gary

Bradshaw, Lindley Darden, Steven Draper, David Kieras, Donald Norman, Peter

Polson, Jonathan Shultis, and Ross Thompson. This work was supported by the

Office of Naval Research, Contract No. N00014-85-K-0452, with additional

contributions from the Institute of Cognitive Science and AT&T.

43



Item In picture &ample 00155ii0A3

41 - 42

TRUCK
Form 1

truck and boat,
on screen,
keyboard

1. Typo "67m" on keyboard.
2. Type "truck" on keyboard.
0»» Truck turns red.

Form 2 ditto 1. Type "67m" on keyboard.
2. Type "red" on keyboard.
0»»Truck turns red.

LADDER tree and ladder
OA set00A,
keyboard

MANAGERS blank screen.
Form 1 keyboard

Form 2 ditto

STAR words alpha,
beta, gamma,
epsilon in bar st
top, star in
lower part of
SUM"

FISK hat and fish
011 SCRAM,
keyboard

RABBIT

1.Type "NNA" on keyboard.
2. Type ':ladder" on keyboard.
mmiedder rotates 45'
3. Type "NNA" on keyboard.
4. Type "da9" on keyboard.
>»)4ree rotates 43'
5. Type "n6b" on byboard.
6. Typo "da9" on keyboard.
»)»aree shrinks to half size.

1. Typo "display3".
2. Typo "n25".
»»)System shows list of

managers' salaries.

1. Typo "n25".
2. Type "display3".
m»Systetn shows list of

managers' salaries.

1. Touch the star.
2. Touclebeta".
3. Touch a place near the

loft side of the screen.
>>>)» Tho star moves to the

left side of the screen.

1. Typo "delete" on the
keyboatt.

2. Typo " c43" .

3. Typo "hat".
»»»Tho hat disappears.

g *1-4

rabbit and carrot 1. Type "rabbit".
toil screen, 2. Type "remove".

3' Pe "414". 44»), pears.

What does Step I do?

ditto

What would you do to make the
ladder shrink?

Which step would you change
if you wanted a list of
managers' egos instead of
managers' salaries?

Which step would you change
if you wanted a list of clerks'
salaries instead of managers'
salaries?

ditto

If 1 tried to move the star to
the bottom of the screen this
way:
Touch "beta".
Touch the star.
Touch a place near the bottom
of the screen.

Would it work?If not., why not?

What does Stop 2 do?

What would you do to make the
fish disappear?

What does Stop 3 do?



4 3

Table 2: Order of items in test booklets for groups

firmariA Group B Group S Group T
(n=13) (n=15) (n=31) (n=31)
STAR STAR STAR STAR
TRUCK TRUCK TRUCK TRUCK

(Form 1) (Form 2) (Form 1) (Form 2)
TRAIN TRAIN TRAIN TRAIN
LADDER LADDER LADDER LADDER
FISH FISH RABBIT FISH
PERSON PERSON MANAGER MANAGER
HOUSE HOUSF (Form 1) (Form 2)

PERSON PERSON
HOUSE HOUSE
FISH FISH

45



44 - 45

Item Number of responses Category of response

TRUCK Form 1 Form 2

0 22 step specifies truck or object
30 3 stop specifin red or color

1 9 step specifies location
13 32 ogler
0 0 no agreement

LAD= 70 'n6b ladder'
20 other

0 no agreement

MANAGERS
FirstQueeitiori Form 1 Form 2

Second Question

6 6 step 1
25 22 step 2

0 3 other
0 0 Itto liffeement

25 23 step 1
5 6 step 2
0 2 other
0 0 no agreement

STAR 19 says will work
53 says will not work Wenn order Is wrong

8 stye will not work Incense order is wrong
NA gives a reason why ordor is 1.iortant

6 says will not work but does not fit ebove
1 none of &Imo
3 no agreement

FISH
First Quostion 9 flap 2 does nothing

26 don't know or can't tell
53 stop 2 is givon some role

1 other
1 SW agreement

Second Question 8
57
25

0

'delete fish'
'delete c43 fish'
other
no sgreement

RABBIT Group S Group T

0 3 nothing
1 2 don't know or can't tell

30 25 does something
0 1 other
0 0

,

110 agreement



Table 4. Inte:pretation of step in Item TRUCK.

I Interpretation of Step 1
Content of
Step / 1. color object or location

truck I 30 1

red I 3 31

4 7
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Table 5. Responses to two forms of Item MANAGERS.

Answers to I

4,1ratigns___
stepl, step 1 I 2 2
stepl, step 2 I 3 4
step 2., stepl 1 23 20
step 2, step 2 j 2 2



Table 6: Relationship of acceptance of variant order in Item STAR with
experience.

Response to
new order
in STAR

will work

order bad,
no reason
given

Reported computer expe,ience

less than more than
55 hours 55 Iowa

8 8

23 23

49

48



Table 7. Intepretation and treatment of extra step in Item FISH.

Interpretation
of 'c43'

given role

no role
'or role not
known

Treatment of 'c43'
in new procedure

1 -- drop

32 1

23

50

49



Table 8: Comparison of responses to Items FISH and STAR.

Treatment of 'c43' in FISH
Response to
new order no role, no role,
ID STAR Lteel) drop

Will work

order bad,
no reason
given

7 0

12 7

50



Table 9. Comparison of role assignment in Items FISH and RABBIT.

Interpretation
of 'c43'
in FISH

given rrle
I

no role
or role not

I

known

Interpretation of 'HJ4' in RABBIT

given no role
role or role not

known

Group S Group T Group S Group T

21 16

9 9

1 1

0 5
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User types letter 'd' on keyboard.
User touches picture of train on screen.
System removes train from screen.

Example as encoded for EXPL:

u type d
u touch train
s remove train

Figure 1: Example of procedure and outcome.

u type d

loose-end link

u touch train

identity link

Figure 2: EXPL analysis of example in Figure 1.
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Outcome of [(type d], [touch train]] is [remove train].
Role of [type d] is [spec0 remove].
Role of [touch train] is [specify wain].

Figure 3a: EXPL output as provided to MAG for example in Figure 1.

Old outcome is [remove train].

New, desired outcome is [shrink train].

Substituting shrink for remove maps old outcome to new outcome.

Figure 3b: Determining inapping in MAG.;

u type r
u touch car
$ shrink car

Results of EXPL analysis of auxiliary example:

Outcome of ((We 11, [touch car]] is [shrink car].
Role of (type r] is [specify shrink].
Role of [touch car] is [specify car].

Figure 3c: Auxiliary example showing shrink operation.
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Original procedure:

((type d],(touch train]]

Substitution does not apply to [type d].

But role of [type d] is [specify mmove ].

Substitution transforms this to [specffy shrink].

Analysis of auxiliary example shows that [type r] plays this role.

[type r] replaces [type d].

Substitution does not apply to [touch train] or its role.

Resulting modified procedure is ([type r], (touch train]].

Figure 3d: Applying substitution of shrink for remow to the example.
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link((type d], remove)
link( (touch trainitrain)
link((type r], shrink)
linkatouch car], car)

Figure 4a: Links extracted from Figure 2 and from auxiliary example in Figure 3c.

Outcome: [shrink train]

Procedure: [[type r], [touch train]]

Figure 4b: Procedure constructed for new outcome by using links in Figure 4a.
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Figure 5: Picture for Item FISH.
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E07112,

u type display u type n25

u type 3 u type display

u type n25 u type 3

s show managers' salaries s show managers' salaries

Figare 6a: Encoding of Forms 1 and 2 of MANAGERS item.

anal EQUI12

u type display u type n25

u type 3 u type display

u type n2 4,type3

managers' salaries sWmanagers' salaries

Figure 6b: After placement of identity links.

EMILI.

u type display

u type 3

u type n25 el
,...,

. lc, managers salaries 5 8

arm.2

u type n25

cu type display

u type 3

s how aezeo salaries

Figure 6c: After applying obligatory previous action heuristic.



anal
u type display

u type 3

u type n25

se

Form 2

u type n25

u type 3

u type display

agers' salanll§

Figure 6d: After applying loose-ends heuristic.

Egrml

u type aisplay

u type 3

u type n25

ES21131.2

u type n25

u type display

3

Figure 6e: Result of eliminating obligatory previous action heuristic.
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A&Drigridamain.thcsur,

A is an aspect of the result of procedure P if S is a step of P and S is linked
to A.

Example 1;

u type delete
u type c43
u type hat
s remove hat

Assertions added to domain theory by analysis of Examplel

[type delete] is linked to remove .

[type hat] is linked to hot .

Note that [type c43 ] has been given no role.

Example 2;

u type reduce
u type fish
s shrink fish

Is I IS,5 5 'imik .11111'

[type reduce] is linked to shrink .

[type fish] is linked to fish .

Figure 7a: Using EBG to perform SG-like generalization for Item FISH.
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Goal Concept 1:

Procedures P such that remove is an aspect of the result of P.

Proof that Example 1 is a member of Goal Concept 1:

[type delete] is a step of Example 1.
[type delete] is linked to remove .

Therefore remove is an aspect of the result of Example 1.

GeneralizatiQn based_ on proof;

P is in Goal Concept 1 if [type delete] is a step of P.

aaLCgmaxis.21

Procedures P such thatfish is an aspect of the result of P.

Proof that ZaamplalitimomintslaaLcamacal

[type fish] is a step of Example 2.
[type fish] is linked to fish .

Therefore fish is an aspect of the result of Example 2.

gpneralization based ortoroof:

P is in Goal Concept 2 if [type fish] is a step of P.

I I l II

Desired procedure P lies in intersection of Coal Concepts 1 and 2.
If [type delete] is a step of P, and [type fish] is a step of P, P will be in
Goal Concepts 1 and 2. Note that [type c43 ] is not included in the
construction.

Figure 7b: Continuation of Figure 7a.
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Bcample:

u type delete
u type c43
u type hat
s remove hat

D.12111fililLtheorxsanstniurzilanuatamplra

(1) Outcome of [ X , [type c43 1 Y ] is [Q R] if

role of X is [specify (23 and

role of Y is [specify R].

(2) Role of [type delete] is [specify remove].

(3) Role of [type Z is [specify Z J.

Goal concept

Pairs P,0 such that the outcome of procedure P is 0.

Figure 8a: MAC-like generalization in EBG.
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Proof that the examptLand.i1L2=Qing_sitisfy.ihe_gol concept:

Let X [type delete]

y [type hat]

Q remove

R hat

W-hat.

Role of [type delete] is [specify remove] by assertion (2) in domain
theory, so role of X is [specify Q].

Role of [type W ] is [specify W] by assertion (3) in domain theory, so
role of [type hat ] is [specify hat ] and therefore
role of Y is [specify R].

Since the conditions on X , Q , Y , and S in (1) are satisfied,
the outcome of [X , [type c43 ], Y ] is [Q R]; that is,
the outcome of [(type delete], [type c43 1 [type hat]] is [remove hat].

ceincralizatio based on proof:

Replacing hat by a variable, and leaving other terms in the example fixed,
we find that any procedure

[[type delete], [type c43 ], Dype ]]
and outcome
[remove ]

are in the goal concept.

'Therefore to get [remove fish] use [(type delete], [type c43 ], [type fish]].

Figure 8b: Continuation of Figure 8a.
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