AUTHOR
TITLE
SPONS AGENCY
REPORT NO
PUD DATE
NOTE
AVAILABLE FRON

PUD TYPE

EDRS PRICE
DESCRIPTORS

Parl, Teri Hochi Hanning, Joan M,
Homen, Numbers and Dreams, Blographical sketchen and Math Activities.
Homen' E Educational Equity Act Program (ED),
Washington, DC.
180N-0-938625-07-1
82
186p.; For toacher's manual, soe SE 047776. Photographs may not rep̧roduce well.
National Homon's History Project, P, O, Dox 3716 , Santa Rosa, CA 95402 (\$18.95, includes tancher's manuail.
Guldos - Clabaroom Uso - Meterials (For Learner) (051)

MFOL PIUs Postago. PC Not Available from EDRS. *Blographies; Careers; Elomentary Socondary Education: Famalos: Learning Activities; Mathematics Education: Mathematics Instruction; Kotivation; Number Concepts; Sax Blas

ABSTRACT

This booklot was writton to provide role models lor young poople. included are stories of 13 interesting vomen who have worked in careors that requira substantial training in mathomatica, with the hope of encouraging etudents to aspire to careers in ilaids using mathomaticr. Both contemporary and noncontemporary vomon aro included to provide contrast betweon situations faced by women today and in the past. Mathomatics activitias are inciuded to show that mathamatics is Ear mora than tho arithmetic learned in elomentary schools. Elementary number theory concepts such an prime numbers, triangular numbers, and comon multiplas ara rainforced in mathematics ahade-ins, where picture is tied to the story. Role play is also incorporated. Biographical stories are given for Mary Somerville, Ada Lovolace, Sonya Kovalevskaya, Mary Boole, Emmy Noether, Lenora Blum, Evolyn Boyd Granvilio, Fanya Montaivo, Edna Paisano, Grace Yang, and threo computer consultants Erom Wisconsin. (MNS)

[^0]

WOMEN, NUMBERS AND DREAMS

BHOCRAPHICAL SKETCHES ANO MATH ACTIVITIES

Terl Hoch Perl Joan M. Manning

Graphle Deslgn: Analeo Nunan

The reader io permilted and encouraged to mate photocople of the math activiles.
(C) 1982 Tranta

ISDN 0.288635.07.1

Disctimination Peohibited: No petwon in the United States shall, on the gotud of sacc, colof, or national origin, be exduded from participation in, be denied the benefits of, or be subjected to disetimination under any progam of activity receiving federal finat, ial assistance, or be so treated on the basis of sex under most edueatron programs or activites reciving federal asoinance.

The acivity which as we subject of this icport was produced under a contract from Whe U.S. Edueation Department, under the auspices of the Women's Edueational Equity Aet.

Pinced and disuibuted by The National Women's
Ilistory Project, IO Box 3716, Sants Rosa, CA 95402.

Acknowledgments

The authom wish ta thank sctetal prople who hate teen panticulaty hedpful in the complation of this bxok: ILery Dacon, Doject Editor, for hef incisive and inportant tugections and difection on the biographier and math activilics; Alee Klecman, for her killful and patient ward proceminge Lynn Woodward, for het expent eraphica work; Carol Whitlen, WEEA Projea Oilief, for her encouragemert and anintanoe; and Polsy Chisunet, for her major contributions to the Teacheris Manual.

Thanks zo to the following people whio gencrously contuibured their lime and knowtedge to evaluate the work: all the EOUALS panticipanta al the teschef meminam at Laurence Ilall of Science, cipecially io Kay Gilland and Nancy Kreinuerg EOUALS Cor Ditccors; to Lenore Dlum, Miriam R. Retin, Cathy Peaver, Johanna and Eliza Hjozken, Chisilina and Sarah Manninge Polly Mation, and Rocalce Shepherd; to those who made introductions to the cubjects or pityided valuable souree matcital: Peesy Woodworth. Pat Kensehafi, Jamei Rudd, Joanne Pugh, D. M, Tahta, and Owanah P. Anderion and Fian Walton of the Ohoyn Resouree Center.

Most speed thanks to all the conicmporary subjects of the biogtaphics, for then conthuiasm and paticnce during the intet aicw, witing and zeratiling procosk, and for ghaing so frecty of their life expeniences.

Table of Contents

Herface $\%$
Hographle and Activiles
May Somerville 9
Activy: PGuran Shade th 臭
Activify; Mulliples of 3 and 5 18
Adivity: Piewure Shode'in 19
Ada Lavclace 70
Activity: Portail Shade-ta 4
Activity: Triatetular Number 30
Activity: A Dit of Basie 31
Sonta Karalculiaya 18
A tivity Hortail Shoderin 38
Acivity. Fitme numbers 4
Mary Everti Doole 51
Aetivity: Curve Sitehing 62
Ematy Nocther 66
Aetivith Pormait Syade-in 66
 73
Aetivity: Clock Arithmetic 75
Activity: Common Mulliples of 2 and 3 77
Lenore Hum 79
Activity: Math-Science Network 94
Activity: Mutiples of 3 95
Activity: Pleture Shaderin 96
Evelya Boyd Granville 99
Aetivity: Itow Many Scats 107
Activity: The Pascal Triangle 108
Fanya Monlalvo 115
Activity Fibonacel Ifumben 125
Acinity: Picture Shade-in 126
Edas Lee Parano 129
Activin: Patterns in a Suip 138
Grace L Yang 145
Acuivity: What is Suthatic 152
The Wicconsin Three 159
Activity: Machine Languxec 168
Acivity: Plature Shiderin 176
Expanding Your Horimons. 179
Who, then and there 125
Scluthons to Activiles 186

Women, Numbers and Dreams

Preface

This in the lact quancy of the rmeatich century, and mati bomen capect to wom the
 work thas been very important to them. Some of these women lived long trefore pou arse bern. Like jou, they are from differen betkerounds.

To all of thenh, their work hat been tewarding in many way, They wotk ow incteting problems. They are proud of the rcsults of their woik, thone the contemporary wromen, good salaried allow them independence. These women ate the lucky once.

In the las chapicr, you will icad aboul a anference ta inspite young momen fo join these lucky once. It ta a fue crory, as ate all the oftef wotice in this book.

Young women growing up now ean become whatevef theif balents and deanna allow. Become one of the fucty onea. Dream big and keep yout options wade open.

A.

MARY SOMERVILLE
 1780-1872

 (0)

Miss Primrose's School

 Hes,

Homo Life

A.

Puzzles and Clues

 जबicenct

 4.4titurgh

 all bac andics at bodtre.

 throuet the mode.

Accomplishments

Marriage

Her husband did not forbid Mary to study but he had no good words for her occupation. Like most other people, he thought that educating women and girls was foolish and useless.

During the next three years, two sons were born to the couple. Then, suddenly, Samuel Greig died. In those days illness often carried off people very suddenly. There were no drugs or innoculations against diseases such as cholera, pneumonia or influenza.

Widowhood

Mary moved with her babies back to her parents' house. At twenty-seven she was a widow. There was one thing she could do-throw herself into her beloved studies.

For the first time in her life she did not have to meet with anyone's approval, for she was now independent. She resumed her old schedule of early morning and late evening study. She devoted the days to her children.

A Career

At this time there were "ladies magazines" that contained sewing and needlework patterns and recipes just as the "Ladies Home Journal" and "Woman's Day" do today. "The Ladies' Diary," for instance, was a magazine that was published for well over 100 years in England during Mary's lifetime.

Magazines and journals then had one major difference. They contained problems and puzzles in mathematics. Mathematics was something new to ordinary people who were not educated, and women were interested in the subject equally with men. It was not thought that mathematics was "over the head" of women.

Mary began to work on problems given in one such journal. She sent her solutions to the editor, Mr. Wallace. He was impressed with them and he sent back his own solutions.
"Mine were sometimes right and sometimes wrong," she wrote, "and it occasionally happened that we solved the same problem by different methods."

Finally Mary solved a problem in algebra and won a prize. It was a silver medal with her name on it. She was very pleased.

This same Mr. Wallace became Professor of Mathematics at the University of Edinburgh. Mary told him she wanted to learn "the highest branches of mathematical and astronomical science" and he gave her a list of books which were written in French, Latin,
and English. The list included books on algebra, physics, calculus, geometry, astronomy, logorithms and probability theory.
"I was thirty-threc years of age when I bought this excellent little library," she said of herself. "I could hardly believe that I possessed such a treasure when I looked back on the day that I first saw the mysterious word 'Agebra', and the long course of years in which I had persevered almost without hope. It taught me never to despair."

A Proposal

Mary received several offers of marriage. One offer, sent in writing as was the custom, listed the duties of a wife in such a narrow-minded way that Mary tossed it right away. She was no longer a child and she knew what she wanted.

After a time a cousin named William Somerville proposed marriage and Mary gladly accepted. He and Mary were married for sixty years and they were very happy together.

William, whom Mary always called "Somerville" in her writings, was very proud of Mary's growing skill as a mathematician. He searched out books at libraries for her. Since he was very interested in the correct use of language, he re-copied her manuscripts before they were sent to the printer in order to correct any errors in spelling, punctuation and grammar. He was not jealous of her fame or her mental brilliance. He was, Mary wrote many years later, one in ten thousand.

The First Book

Lord Henry Brougham, a publisher, realized that an English translation was needed of a new and important work on astronomy, written in French. He asked Mary to do the work. Because she had never studied at a university and had taught herself, she doubted her own ability.

She told her husband and Lord Brougham, "You must be aware that the work in question never can be popularized, since the student must at least know something of the differential and integral calculi, and as a preliminary step I should have to prove various problems in physical mechanics and astronomy. Besides, La Place (the author) never gives diagrams or figures, because they are not necessary to persons versed in the Calculus, but they would be indispensable in a work such as you wish me to write. I am afraid I am incapable of such a task, but as you both wish it so much, I shall do my very best upon condition of secrecy, and that if I fail the manuseript shall be put into the fire."

She did not fail and tier first book, The Mechanism of the Heavens, was published in 1831. In the work Mary published her own solutions to difficult problems set by La Place. She gave clear accounts of experiments and gave examples. She wrote an introduction which was suitable for the ordinary reader.

The book was an instant success. It was used as a textbook for stucients at Cambridge University which was the center for the study of mathematies in England.

Professor Peacock, a mathematician from Cambridge, wrote to Mary, "I consider it to be a work of the greatest value and importance . . . which will contribute greatly to . . . the knowiedge of physical astronomy."

After this she published three more books: The Connection of the Physical Sciences, Physical Geography and Molecular and Microscopic Science. Mary had discovered her niche-spreading knowledge about her beloved subjects. Her books were used by mathematicians, scientists and students. They sold well and were important in popularizing science.

This was a time when science was becoming a great influence upon the lives of ordinary people and many people were excited and curious about it.

Fame

Mary received many honors, honorary degrees, and medals. A statue of her was placed in the Hall of the Royal Society in London. In 1834, The Royal Astronomical Society named her and Caroline Herschel as its first honorary female members. A new sailing ship was called the "Mary Somerville" and a copy of her statue was placed on the ship's prew as a figurchead.

Because Mary was a woman working in a field where almost no women were to be found, she was especially famous. Since she successfully combined marriage, family, femininity and a scientific eareer, she helped the cause of other women interested in mathematies and seience. She accomplished this at a time when women were not even admitted to universities.

As she grew older she continued to be very energetic. She packed every day with activity. As long as she lived she rose early, studied until early afternoon, then put her books away. From then on she took care of her household and went out to visit friends. Of course she, like everyone of her social class, had servants to make this schedule possible.

Family Life

She and William became interested in minerals. They invested their money in gems such as rubies, sapphires, topaz and amethysts. In the evenings they liked to take their collection out of the cabinct and arrange the gems or just admire them.

Mary had three daughters. The oldest, a child of unusual talent, died and Mary grieved for a long time. The two surviving daughters, Mary and Martha, never married but stayed in their parents' houschold.

In the 1840's when Mary was in her sixties the family moved to Italy. William was ill and the doctors advised a warmer climate. Woronzow Greig. Mary's son by her first marriage, continued to live in England with his own family. Mary and Woronzow were very close; they often visited and wrote letters back and forth. Woronzow handled Mary's legal and publishing affairs.

As her eareer progressed, Mary turned from mathematics to science. She later regretted this decision since she believed her greatest gifts were in mathematics.

A Pet

All her life Mary loved birds, especially songbirds. A mountain sparrow was her pet for eight years and when Mary sat in bed in the moming, writing and reading, the bird would ny in and perch on her arm.

She had a horror of killing animals, either by hunting or by vivisection-even for scientific experiment. After she grew up she petitioned the lawmakers of England and Italy to oullaw these practices, which she believed were crucl. When Mary was a very old woman she wrote that she believed that God, in his great mercy, would provide an everlasting home for the helpless animals, as well as for human souls.

Old Age

Mary Somerville lived to be 92 years of oge. By that time few of her friends remained alive.
"I am nearly left alone," she wrote. Indeed, her beloved husband and son had died before her.

Her daughter Martha published her memoirs a couple of years after her death. Martha wrote that Mary worked up to the very day she died. She was quite deaf but her eyes were good until the end-so good that she could pick out the threads of her needlework canvas without using glasses.

Mary's great happiness was that she never lost the power of her mind nor her memory. Even in her ninelies, she could work difficult problems in algebra with the same joy and determination she knew as a young girt.

MULTIPLES OF 3 AND 5

Numbers that are common muldiples of 3 and 5 are numberf that are muluples of 3, and at the same time are muluples of 5 .

The last digit of all numbers that are muluples of 5 is cither five or zeto. Any number that ends in anything but five or zero fails that test.

All numbers that are multiples of 3 leave no remainder when divided by 3, and have a digital sum that is 3 or 6 or 9 . The digital sum test is easy 10 do.

Sce page 95 for detalls.

All numbers that pass both tests are common multiples of 3 and 5 .

Shade these common multiples and you will see Mary on her way to the Ball.

Mary's System

Mary Somenville used a sytem in her work that would be useful today. If she couldn't find the key to unlock a difficull problem she slopped wotking and rumed instead to the piano, ber needlework, or a walk out-of-doons. Aftenward, she retumed to the problem with her mind refreshed and could find the solution.

If she could not understand a passage in her reading, she would read on for several pages. Then, going back, she could often undentand what was meant in the part which before had been confusing

When she was trying to master geometry she worked out problems mentalty at night in bed, beginning with the simplest problems and proceeding to more complex once.

Her suceess as a mathematician may have depended in part upon these basic habits.

ADA LOVELACE
 1815-1852

Pury con prasy cot wherc hate you becos?
Ite bect to limulon to look at the guren.

Ifinhitence a fillie mouse under hor chatr. . .
 ofd hean knew, for she bud leansed to keep the feclings in ber healt sectict, Her mother callod bef "the yount Lioness" when she was prescned to the quect in the London nexson of 1833.

 She had aticnded few partict in the pat but in the mintor of 1833, the went to many tuats and dinnerk, This was her "coming our" ceason.

Al these gihetinge, for the firt time in her life, the met many important and famous people. Many of item wefe nor only famons, but they wete intelligent, accomplished and witty. Ada ycurncd to be part of their group.

Lord Byron, Her Father

In a way you could say that Ada had been bom into suctiageup. Her fathef. Cconge Gonton, Lond Byron, was a poct who was known and lowed throughour ine monld,

Lord Byon had come to London when he was a joung man. Ite becanc known in socicty quickly because of hif poctry, which made fun of the greal lictature and witch of

 proyed for hic woul, and poinced out thic proticmi in long"minded speconco.

One year wat all the marriage lasited. A weck aftcr the bint of theif dexghtct, Ada, hustuand and wife separated foreves.

Lady Anabeila went to her parchis' Mome with Ada; l.cord thyon Nommed anzy to 14aly,

 for Grect fredorn fiom the Tunk.

The Scparalion," as crefyone Enelish wactety called it was eastipect aboul fof
 Dut though crepthine was "huth-hush," the youne git fell something, When ine hewh of

 Which is brough on by afcui. Again, in hef midtecni, an allack had tientening
 (bow tor

Ambition

 with toy thipf and boxts.

 between two Young Ladice of Ranki to be heteinatler published no doun for the द.

During her "coming own" scason in Lomotot, Ada was looking for cthcts to starc hot

 Somerwille.

Babbage and the Difference Engine

 the\# molher to see his pel projext, waty compuler.

 ate governenent to build hats machine.

 throrghout her life,

 wonking wich Eabbxe.

Romance

 ane tocall

Home and Family

 Payiquent.

The Analytical Engine

 1s80's.

filled a real need. Ada translated Membrea's article Into English and, in the process, expanded the contents in important ways. Her notes, three times the length of the original article, set down in concrete terms the powers and limitations of the machine.

A Published Work

The work was published, and Babbage proudly distributed copies to the leading scientists of the time. He was tremendously impressed with Ada's paper, and asked her why she had not written a separate original article on the subject. She replied that the thought had not occurred to her. To do such a thing seemed out of the question. In fact, even signing her own work brought her great anxicty.

Although her paper was clearly the work of an expert, it was also the work of a woman and a woman of rank at that. For such a woman to publish a scientific article was higlily unusual. It was even more unusual when the area in question was such an "unfeminine" one as mathematical computation. After much indecision, Ada signed her paper "A.A.L.", using her initials only. It was many years before the author's identity was commonly known.

Babbage proposed using punched cards for putting data into the Analyticnl Engine. This was similar to the elever method invented by J. M. Jacquard, who used punehed cards to control the sequence of threads in a loom in order to weave fabulous fabric designs.

Ada saw an equal beauty in the Analytical Engine, and she wrote: "We may see most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard loom weaves flowers and leaves."

Ada's paper provided the public with the best account of the machinc, an account which Babbage saw was far clearer than he himself could possibly have Jone. As it turned out, this paper was the summit of Ada's carecr. No one knew why she never went on. Her health was bad, and somehow she could not focus her attention on iniellectual problems.

Musical Ambitions

She wrote to Woronzow Greig: "I am not dropping the thread of science, Mathematics, etc. These may still be my ultimate vocation. . . Although it is likely to have a formidable rival . . . musical composition."

Ada was a promising musician. In her paper on the Analytical Engine, she suggested that the computer might be used to compose music, "if," she wrote, "the
fundamental relations of pitched sounds in the selene of harmony and musical composition were susceptible of auffieienily precise formulation."

Ada predicted computer musie a whole century before it was actually produced!

Health and Money Troubles

But she was really not well enough to work at eilher musie or mathemates. She wrote to Woronzow:

There is in my nenous system such a want of all ballast and stadiness. . And I
am just the jersori to drop off some fir: day when nobody . . . apects it. . . Do
not fancy me ill. I am apparently very well at procht. But ithere are sects of
destruction within me. This I know:
Ada swung between feelings of doom and exuberant joy and optimism. Het husband was different. The life of this ordinary mortal was wrapped up in the management of his estates. Developing and maintaining them was an expensive matter, and Lord Lovelace was not generous with money for other things.

He gave Ada 300 pounds yearly (or what would today be 5840). This amount was part of her marriage settlement, a substantial 16,000 pounds (about $\$ 15,000)$. The entire sum was plaeed in a trust for her and would come into her hands only upon the death of her mother, Lady Byron. A much larger fortune, the bulk of her mother's large estate, would go directly to her husband, Lord Lovelace, according to the inheritance laws of the time.

As the only child of a very rich woman, Ada resented the small amount she was expected to live on. Her husband, she pointed out, would reecive 7000 pounds per year-a sum, she wrote, "he is to enjoy to my exclusionl" Adi, it lurned out, had reason to be concerned about moncy.

Playing the Horses

Perhaps Ada's greatest love was horses. When she was seventeen, she tried to avoid going on a vacation to Brighton resort because she had just got a new horse named "Sylph," and she so much wanted to ride instead. Lord King was an excellent rider, and the two of them loved to ride together.

Ada's passion for horses was now combined with another passion--gambling. Ada was a compulsive gambler; she could not quit once she started. She began to bet larger and larger amounts of money on horse races. She lost heavily. Part of the problem was her
pride in her mathematieal genius. She kept working on new formulas to help hef figure the odds and pick a winner. It was common gosilp that she and babbage were fellow comspirators in choosing horses to bet on.

Since Ada had no control over the family purse stimeand her huaband did not approve of her largerseale gambling Ads lurned to "ahady moncy lenden fo help meet her debis. Theae people blackmalled her, probably with the theat of telling her mothef. her do-good, sin-hating mother.

Desperate for money, Ada pawned the family diamonds-not once but wiee. Yet the debts kept piling up.

Tragedy's Path

Bad luck seemed to altract more bad luck, and ' 1a's illnesses ferurned with renewed foree. She began to bleed intermally. A tumon was found in her uterus. Cancent And the doctors of the day knew of no cure.

Ada was crushed though she did not give up hope. Between bouts of intense pain, her spirit showed liself again and again. She had her bed noved near her beloved piano, and each day she played. Somelimes she played duets with Annabelle, her daughter, who was now fiffeen years old.

Ada's mother moved into the Lovelace home, and from that time onward, visitors were not permitted to see Ada. Now, Ada could not leave her bed. Babbage in particular was kept away. Ada's mother felt bitter that it was his maid who had carried Ada's bets to the booknmakers.

Ada herself never lost her affection for Babbage. Lord Lovelace wrote in his journal eleven months before her death: "Babbage was a constant intellectual companion and she ever found in him a match for her powerful understanding their constant philosophical discussions begetting only an increased esteem and mutual liking."

The Final Resolution

Now, of course, Lady Byron knew all. Ada's gambling losses could no longer be kept secret. Lady Byron paid out 5000 pounds $(\$ 14,000)$ to cover her daughter's losses.

Daily, Lord Lovelace struggled with his grief and with Ada's creditors, who came for their money-to the house where she lay dying. Ada's agony stretched out for nearly four months while her helpless family waited. Finally, two weeks before her 37 th birthday, Ada died.
"Hy her own wish," a desecndan wrote, "Hey canted fer to he old Newatead country, and laid her by the falier whom she had never known."

Ada's Influence

In the shon years be lived, Ada Lovelace distinguinticd tienalf as a mathematician. and has even been called the Inventor of computer programming. She used hef gifts against tremendous obstadea and showed a spirit that would not be erushed.

As to Babbage and the influence of hia Analyient Engine, his bographern whote, "The Analytical Engine was never built, though Chasles Babtuge lived nearly anothey wo deeades. . The Menabrenkovelace paper remains as the sole witness of the power and scope of the ideas of Babbage's Analytical Engine . . . Unese ideas . . . Iay dormant for another century,"

In a similar way, the Lovelace paper femains the fole witness of the power and scope of Ada Lovelace's spectal genlus. Now, a century later, we marvel an her early contribution to the machines of our own day.

TRIANGULAR NUMBERS

The triangular numbert ate the sums of the comnting numbers $1, \ldots, 3,4, \ldots$ (ice page 111, Paseat Triangle, for more about thece numbera.)

Complete the firat 30 uiangular numbers listed betim,
To ealculate the numbers, use the infomation that $\mathrm{T}_{2}=\mathrm{N}=\mathrm{F}_{1}$, where T_{2} - neat tiangular number; $N=$ firn (1), sceond (2), thitd (3), etc. counting number; $\mathrm{T}_{1}=$ previous uiangular number.

Triangular Numbers	N	T_{1}	
	1	0	
	3		
	3		
	4		
	6		
	6		
	7	-	-
	-	-	-
	-	-	-
	10	-	-
	11	-	-
	19	-	-
	13	-	-
	14	-	-
	18	-	-

Use this list of triangular numbers (T_{2}) so complete the porrait of Ada Lovelace on page 20

A BIT OF BASIC

Many people considey Ada lavelaer rabe the fira petson to descabe whal how known as computer programalae. A new pogramming languge has treanamed aflet her. The language if ealled ADA. II was developed by the United Sates Departhent of Defence (DOD). The DOD hopes Alla will be gdopted as a univeral piegamming language. They hope if will replace the babble of languages now leing teed, and will make sharing programs much simplea.

 to compuier.

The following activity cxplores a few simple statements in HAsic, To do this acivity, you need to have accers to one of four popular mictoconputem: APPIII, TRS 80 (Radio Shack), ATARI or PET (Commodore). This activity will infroduce a phegram that works on each of these machines.

You need to leam thec commands: Nitw, 1, 1ST, RUN.
These commands speak diectly to the computer.
You need to know thee statements, or words: PRINT, COTO, END.
These statements are part of the program and require line numbers.

First turn on the madine,
APPLE: Switch in back, leff. (If you have a disk dive connected to your Apple jou may need to preas RESET to get the dise drive to stop whitting)
TRS-80: Switch in back, sight.
ATARI: Switch on sight side.
PET: Switch in back, Icfl.

NEW and LIST

Tppe NEW and then hit RETURN. NEW telle the computer to dear itis memory. Hitting RETURN \&s very important to remember, and often hard for the new user to
 The compulef's tum to do its pant.

 acten,

PRINT, GOTO, and END

 as long as they are in aequence. Ifowever, it ia eood pactice to leave eaptoctucen numbers in case more lines necd to be added tates.

For example, line numbers could be $10,70,30, \ldots$ of $100,300,300, \ldots$ of 110,170 . $130, \ldots$

The FRINT hatemen will cause any whing of terten, enclowd by quotation maka. to be pinied on the sacen.
 Latet, we will sec the differcnl way the sereen will look when you use any of these,

The GOTO watement docs what you have probably gesaed it docs, It is alwate followed by a line number, and it tells the piogram so jump to that line number and perform the statement at that number.

The END atatement tella the comptict that the program has ended.

Tpe the following progtam exady as you ace it.
Don't forget the quotation mysk.
Don't forget the memicolon.
Don't forect the Jine numbers.
Don't forget to hit RETURN at the end of eseh line.

10 PRINT "TEASE*: (hII RETURN)
- 0 COTO 10
30 END

When jou have completed the typing ipe ILIAT (and hit teturw).
Does the screen echo thal you hate jpped?
If you see a mistalia. frize the line, indudine the numbe:

STOP: CTRL C and BREAK

 the mogram, Th STOP the program:

bpe C This tuHon wonk like the shif key on
the typewfiter.)
TRSEO: Wi BルEAK
ATARI: III BMEAK
HET: Itit RUNRTOF kg

RUN

Now inpe RUN and wath the saren fill. Wowlo:
Slop the pregram.
Type IIST.
Redype Line 10, Thia time leate out the wemireolon.
Run the program again. How docs the seren look now?

STOF the program. IDpe List.
Heype Line 10 again. This time pul a comma at the cod of tine to.
Run the program. How does it look now?
STOP the program. T)pe LIST.
Rerype Line 10 again. This time pur the cemitelon al the end of the line again.
Run the program.

You can fill the sereen with alluative dcaignk uing the Prunt command, as you did in this program.

When you use the seffirgolon in your PRINT farement, comelimes your mescage is printed in nest columni, somatifnes it if printed in diagonale that sey the entife fereen in motion.

Can you prediat when columns will appeat; then dationals will apheal Ifte io a

Alptis	60 columpe wide
THsem	
ATADt:	3f columans wicts
Mit:	40 columas wide

When the number of tetuets and spaces inside the quotes of the PHNT atatment is
 When the number te not a multiple, the setera will fill with thoting diagonals,

For example. Apple's display is 40 columns wide. Pinn ${ }^{*}$ CAND $)^{4}$ will fill the
 of two spacs are aded after CANDY, the screch will fill with a movite diagotal hioplay since 6 and 7 are not multiper of so. Try if and ace.
 exactly as jou bee them. Do jou remember how to Hten and Stot your pogami)

```
10 PANNT *TEASTM;
10 HRINT "WTPASE":
10 PRINT **TYASK**;
```

Add an cxta ling for example 15 HaNT "Pop**;
Sce how the program funs now.

Change the punctuation.
Thy your name.
Try your fiendt name.
Pint any fallerns oftelleri of wotds of sivabols berwect the guotes,
The GOFO datement oxplained on page 32 makes the compater sun the fant satement conlinuously, or until the program is sopped from outside. When a stitiement makes a protram go round and zound in this way, we say the program is in an inflaike loop.

FOR/NEXT LOOPS

 be mun.

The Foblint of satcments that are lo tre fepeated.

$$
\begin{aligned}
& 10 \text { NOR N = } 170100 \\
& 30 \text { DRNT }+3 G H S E * \\
& 30 \text { NDNT } \\
& 40 \text { END }
\end{aligned}
$$

Hun lise progtam.
Lifter 10 and 30 afe the "tread," line 30 as the "fillies."

Linc ${ }^{20}$ is the *illine."
Linc 30 mones the comples in lite 10 alone from Ito 100 .
 diopstolinc 40, and HiDs.

May around with this progam.

Neanbe anylaci, Tiyil.

Tity dillefent mensage in Linc $\mathbf{3 0}$.

Try the messege with and withoul a cofma; with and withoul a scminclest.

Rementer to hit RETURN aflef you comptac a linc of when you bye a command To the compulce.

May alound wich theode ommands.
 thote atoun tatic.

Alt lavelace would be prond of youl

SONYA KOVALEVSKAYA
 1850-1891

 fulct of fixith

A Strict Schoollng

 hrat,

Studying the Wallpapor

 स以

 (xametay

 Fcrank

The World Outside

over Europe. They told of the seris' desire for equality, of women's desire for higher education, and the people's desire for political power.

Many sons and daughters of the aristocracy, like Sonya and Aniuta, criticized the old-fashioned ideas of their parents. They were just beginning to understand that they could not continue their comfortable traditions-marrying early and setuing into their role as upperclass landowners.

A Wild Plan

Aniuta, Sonya's sister, was now a grown-up young woman, longing to be free of her father's strict rules. Yet she was stuck at Palibino. She asked her father if she could study at the University of St. Petersburg and her father said no.

At this point, around 1860 , the University had just opened classes to women, although women could not earn degrees. A couple of years later, when students protested in order to gain more liberties, the University closed. When it reopened, women were no longer permitted to attend classes there, nor anywhere else in Russia.

Sonya, like Aniuta, wanted to leave home. She wanted to study science at a university. Wherever Aniuta went, Sonya decided, she would follow.

Together with Sonya and a friend, Aniuta devised a wild plan. The young women would ask a young man who shared their political beliefs to marry one of them! Such a marriage would set them free. Once they were married, the couple, plus their friends, would set off to study at a university in Germany or Switzerland. In these countries, women had a better chance of being admitted to universities.

Such a marriage, it was understood, would be in name only. After their arrival in the foreign city the husband and wife would live apart.

The first young man they tried to interest in their plan turned them down. But one more "no" did not discourage these three. Next, they tried a promising student of geology. His name was Vladimir Kovalevsky. This young man said "yes."

There was one problem: he wished to marry Sonya, the youngest. He wrote to his brother, "Despite her eighteen years the Sparrow (Sonya's nickname) is extremely welleducated. She speaks foreign languages as fluently as her own. She studies mainly mathematics, is now tackling spheric(al) trigonometry and integrals. She is as busy as a bee from morning till night and still is lively, sweet, and very pretty."

To this bold marriage proposal the General said, "No"I It was unheard of that a younger sister marry before the older. But Sonya had seen her chance to eseape and follow her dream of getting a higher education.

Sheer desperation gave her the courage to do what she did next. She, who was never allowed outside her home unchaperoned, slipped away to join Vladimir in his apartment in the nearby village. According to the rules of the society in which they lived, such behavior was equal to eloping. She left a note for her father, telling him where she was going and why. He followed her there. As she had hoped, her father now allowed their engagement.

Sonya and Vadimir were married with her family's blessing, and within six months, the couple was living in Germany.

Higher Education

During the two years spent at Heidelberg, Germany, Sonya's closest friend was Julia Lermontov, a student of chemistry. Lermontov later wrote about Sonya during these years: "She was just eighteen but looked much younger. Small, slender, with a round face and short curly chestnut hair, she had very mobile features. Her eyes, especially, were exceedingly expressive--sometimes bright and dancing, sometimes dreamy and full of melancholy . . . a mixture of childish innocence and deep thought . . . She took no pains about her personal appearance or dress . . . a trait which remained with her to the last."

According to plan, Sonya became a student in mathematics at the university, and began her climb to fame and honor and, along the way, to tragedy and heartbreak.

Sonya was a daring idealist who was coneerned with bettering human life. She also loved society and its honors. In the other side of her life, she was a lonely scholar living for her work, avoiding other people who would bring desires and disappointments.

Sonya always felt a hunger for love. Her own life, she believed, was terribly lacking when she observed the lives of her friends. As in her childhood, she now felt she was somehow outside circles of love.

Sonya moved to Berlin in order to work under the famous mathe'ma'tician, Karl Weierstrasse. Here she spent four years, finally receiving her degree in mathematics from the University of Gottingen in 1874.

She worked during this period in almost absolute solitude, often sitting for hours in her room trying to solve problems. When she succeeded, she would rise from her desk and
pace the floor talking to herself, walking faster and faster, laughing and finally breaking into a runl

The calm satisfaction of a Mary Somerville she did not have. Rather, Sonya was nervous and withdrawn. She saw no one for days. She went neither to parties nor dinners.

Vadimir, her husband, also lived in Berlin during this period. When he visited Sonya, they would go for long walks. This was her only recreation.

Sonya frequently went back to Russia. From there she once wrote, "I feel released from the prison in which my best thoughts were in bondage. You cannot think what suffering it is to have to speak always foreign languages to your friends. You might as well wear a mask on your face."

Married Life

After five years of a marriage that was a mere business arrangement, Sonya and Vladimir became lovers. True to her passionate temperament, Sonya threw herself into married life, hoping the marriage would succeed as a love match. She also hoped it would produce the happy family life she longed for.

A daughter was born who was also named Sonya. But she was known by her nickname, Fouzi. Sonya put aside all of her studies to care for litue Fouzi and to promote her husband's scientific work. She yearned to be a typical wife and mother. But she was not typical. When Vadimir, a lecturer in geology at the University of Moscow, began to lose interest in science, Sonya wrote his Iectures for him. Instead of attending to his job, Vladimir plunged into business schemes. They failed, one after another.

Sonya believed she had the power to see the future. One night, she had a nightmare that a grinning monster was stamping Vladimir beneath its feet. She was terribly frightened. Later, she realized that the dream monster was Vladimir's business partner. This man cheated Vladimir out of a large sum of money. Through his persuasion all the family moncy, including Sonya's small inheritance from her father, was invested in Russian oil refineries. The refining company was later accused of fraud, and Vladimir was threatened with a lawsuit. While this was happening, the partner convinced Sonya that Vladimir was in love with another woman.

Sonya felt rejected. She left Russia with her daughter and returned to Berlin. There, in a hopeless state of mind, she threw herself once again into mathematics.

Vladimir committed suicide. Sonya was just thirty-two years old, and already a widow. The death of her husband was a great blow. She never stopped feeling somehow responsible for his sad end.

Professor Sonya

In the next ten years, Sonya came into her own. She became a respected mathematician. Her teacher, Weierstrasse, introduced her to Gosta Mittag-Lemer, a Swede, who took up her cause. Mittag-Lemer got her a job as mathematies professor at the University of Stockholm in Sweden. This was a tremendous step forward for Sonya, and for women of science:

The first year, many parties and balls were given in her honor. Swedish girl babies were named "Sonya" after her. After all, she was the only woman professor in the country!

But Sonya had enemies as well as admirers. A famous Swedish writer, August Strindberg, wrote a scomful article about her appointment.

Sonya repeated what he wrote in a letter to a friend. "She proves, as decidedly as that two and two make four, what a monstrosity a woman professor of mathematics is, and how unnecessary, injurious and out of place she is."

Nevertheless her career went so well that she was given a five-year contract in 1884 and asked to become a professor of mechanics, a branch of physics. When she accepted this second job, she joked, "Now I have become a professor squared!"

Mittag-Leffer's sister, Anna Carlotla, a well-known writer, became good friends with Sonya. Sonya now began a second career as a writer. Her themes were mainly about her childhood in Russia.

Both women were feminists and held high hopes for the future of women in the world. The "woman issue," as it was called in Sweden, was a subject of hot debate at that time.

The two women began to work on a drama in two parts, called "The Struggle for Happiness: How It Was, How It Might Have Been." Sonya was so excited about this work that she gave up mathematics for a time. She and Anna Carlotia dreamed about traveling to Germany and Franee to meet literary and theatrical stars and prepare for their coming fame.

They promised to write each other's biographies. With that in mind, they both began saving letters and documents.

It wasn't long, however, before Stockholm began to seem like a boring country lown to Sonya, and one that was desperately cold in winter to bool. Sonya longed to live in a dazaling world capital like Paris. But she needed a job, and women mathematicians were not wanted in many universities-in almoxt none in fack. Rarely were women allowed to be students, much less paid teachers. Sweden was the only country in Europe, except fot Italy, where there were women professors in any subject.

Sonya tried again to find work in Russia. After years of being ignored in her native country, she was made an Associate of the Russian National Academy of Sciences. So, with hopes high, she visited her homeland.

There, she heard of a job teaching mathematios in a girls' high school. When she inquired about it, the Minister of Education told her the position was too inferior for someone of her importance. More likely, she was Iurned doan for two other seasons: the first, because she was a woman; sccond, because as a teenager she had worked with Aniuta and other students who wished to upset the Czar's government. Back to Stockholm Sonya went.

Now, almost as soon as one disappointment occurred, another followed-t 100 fast to lessen the shock. Sonya was carried along, from gricf to despair to death.

Her book, Strussle for Happiness, failed in Sweden. Her beloved sister Aniuta, whom she had called her "spiritual mother," died after a long and painful illness. Sonya buried herself once more in mathematios.

Prix Bordin

Sonya decided to compete for the greatest mathematics prize of the time, the Prix Bordin, offered by the Paris Academy of Sciences. All during the summer of 1888, Sonya worked on the problem she had set herself, staying up all night many times. The title of her research was "The Problem of the Rotation of a Solid Body About a Fixed Point." The subject was the form of Saturn's rings.

Mathematicians try to write equations that will deseribe certain situations that occur in nature, such as the rotation of the earth around the sun. Some of Sonya's most important work involved the study of the shape and behavior of Saturn's rings. This is particularly timely today, for at this very time scientists and non-scientists alike ate holding their breath with excitement as Voyager I rushes past Saturn. Photographs are being broadcast which will confirm Sonya's research or add new puzzec.

Before Sonya's work scientists had considered the shape of Salum's rings to form an cllipse. An ellipse is aspecial oval shape that has two axes of symmetry.

An axis of symmetry is a line across which you can imezine folding an object and fiting it perfectly on the opposite side.

Sonya proved that the cross-section of the Saturn ting must be egs-ihaped. Such a shape, like a lengthwise slice of egg is symmetric along only one axis instsad of two.

Notice that if you fold the figure horizontally, the two parts are cxactly the fame. But if you try to fold the figure on a vertical axis, the two parts won't fit.

Sonya's conclusions about Saturn's rings may or may not be confirmed by the pictures sent back from Voyager I. But the work whe did sill stands.

A Great Prize

After pulting out tremendous energy on her research on Salum's ringx, Sonja submilted her work to the Paris Acadermy of Sciences. On Chrisimas Eve, 1888, whe was named the winner of the great prizel Along with it, she received 5000 franct, an increase of 2000 franes over the usual amount, because her wosk had solved a problem that was it important to the mathernatios of that time.

A Love Affair

Dung this came year, 1888, Somy fell in lowe. The man's name was Maxim Kovalcuity. She called him "Fat Maxim" in toner of proud affection.

Maxim was a Russian lawyer who was fired from the University of Moscow in Ruskia because be crilicised Ruscian constitutional taw. This was tike ciliciuing the Crar himself. Neithez he nor Sonya could go back to Russia and make a living.

Sonya and Maxim had many Gights. She was jealous and possersine, and she went from lowe to anwer, and back again, over and over. Maxim taught at universities mainly in France and often te left Sonyz. When they were apart, Sonja felt utucty abandonod. Maxim furned up faithfully when she recefied the Prix Bordin in Paris.

Even while the was being honoted in Paris, she was very unhappy because of ber lowe troublen

She wrote a friend, "Letters of congratulation are pouting in from all sides, but ... I am as miserable as a dog. No; I hope, for their sike, that dogs cannol be as unhap,y as human creatures, especially as women."

A couple of year passed, and again it was the middle of a long, hansh winter. For the Christraas vacation, Sonya went with Maxim to Naples. There, eseaping from her bleak life in Stockholm, she spent many happy weeks with Maxim in the sunny atmosphere of Italy. She wrote to ber daughter that the view from their veranda showed a garden "Blooming with roses, camellias and violets, and oranges ripening on the tuees."

At the end of the vacation, the couple separated and Sonya was alone on the trains going north. The weather was cold and rainy and she caught cold.

The end was swift: from cold to inflantumation of the lungs to pneumonis. In there days, the was dead. She was only fortyone years old. The evening iefore she died she sidd, "I feel as if a great ctange has come over me." Face to lace with death, the was suddenly at peace.

The brother of Gosta Millag-Leffer wrote a poem about Sonya. He called her the "Muse of the Heavens." He wrols:

While Satum's ringr srill shine,
While morals bvealhe.
The workf will ever remombery your name.
We do indeed remember her name today.

PRIME NUMBERS

Shade all prime aumbers to complete the plature of Sonya Kovalensicaya on page 38.
For this ackivity it is convenient to have a lis of prime aumbers handy. If you don't have such a lite, try the following aetivity. It is called the Sieve of Erosthenes, after the Greck mathemalician who supposedly made up the idea.

Make the following modifications to the number grid on page 49

- Draw square around [1]. Then remember that I is not a prime number.
- Draw a circle around (2). Two is the fird prime number. Two is also the only even prime number.
- Now draw a hoizontal tine (-) through all muliphes of 2 . This will be all the other even numbers.
- Draw a circte around (3), the next number that has not alicady been crossed out.
- Now draw a vertical line (\mid) through all multiples of 3 .

Notice the numbers crossed out with both vertical and horizontal lines. These are the common muluples of 2 and 3. These are also the multiples of 6 .

- Draw a circle around (5), the next number that has not yet been crossed oul. Now draw a diagonal line () through all multiples of 5 .
- Nexd draw a circle around (7) the next number that has not previously been crassed out.
- Drsw a diagonal line going the other way (\triangle) through all multiples of 7. (You are just about done.)
- Go through the grid and diaw a dicde amund every number that has not yet been crossed out.

These cirded numbers are all the prime numbers befween 0 and 100 . Keep dhis page handy. All the prime numbers you will need to shade are curded here.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	30
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

MARY EVERETT BOOLE 1832-1916

The fwo children croucted domn in the wat mornitg fain. The gifl poked under a teaf with a stick. The boy, smaller than she, pushed aside some wild grass.
"Regardeal" the boy cxdaimed, "un papillon." (look! A buttenty.)
It wing was tom. The gifl curcfully carried the ctealure ingide the house. Taking tuing, they blew on il 10 warm it.

Mary and her brother George often nurwed insects that had been hurt by the frost or rain. Then they tept them for "pets." These and an occasional lont dog were be ontyper the children were allowed to have.

Their father. Thomas Everect, a minider, was seriously ill. He was undst the carc of a famour doctor named Samuel ilahnemann. Though Mary and George had been born in England, they moved to the small village of Poissy in France when wisy was fre fad Gnote was two ycafe old.

Dr, Everexts curc look six yesth. Life wain londy for the childten in Pouby. They belongod to an English eninister's houschold while exeryone clue in the town wras a Fronch Catholic. Also, the Everestr did not approve of French pelifics of that time. The laws of the French monarctry were harkh towand the people. Their fatherfalines worticd both of their parents. Servants looled after Mary and George, but the two childien were montly on their own.

The Leaves and the Root

Mary was a bingh child, oufpoing and talkanive. "You were the nooks and I the leaves of the plant," she wote to Geotge when both wete old.

 up1)

Homeopathy

Their father was a great believer in boncopathy, a medical nytern promoting bealth and pretenting disease. Dr. Hahnemenn was the founder of homeopathy, and Man's father was dewolod to his sytucm. Followerr of homoopathy practiced wome cuucme customs, and in the Everea houschold, , Wary and her brober Croafe had to prochict them 100.
 help thetn rexiti ditcasc. Some thought the cure was wonce than the dincate. Hut Mary was loyal to her father and subnitued to whatever experimentic he dreamed up without complaining. An in penson himself, he war determined that Mary and Georec would etow up to beh

Mt. Everest and Uncle George

Mary's family aame was made famour by her unde Geofe Everect. George wos a suncyor who spent nwenty ycans in India. Because he led a suncy icam up the gresi mouncin, 保识 Everest was named for him.

Unele George did not ofien vian his brotherf family, bul when the did, he beougtal ules of adventure ha far-off places. Mary was a geat favoric of thin unde, and he wanted $t 0$ adopt ber. But the was too attachod to her parcats to agroe. Nary was wery dose to bet father, and for as loag as he lived, whe wras his devotod ascivany.

Mary and her brother George were afwar being scolded for quarteling. George pent ctery Prench "sou" be gor while Mary wais a "pinctpenty." Their father siw ig it that they didn't quarral over money by giving them a join allowance. Somehow, becouse of their common piety bank, Gcorge becume more cautiour aboul fpending, and Mary became more gencrous.

A Crush

Mary had a tutor from the willace. Monsicur Deplace tauthat Mary cwery monting from 400 to 800 . No by abed for an Everexa child

Fiom the fird day, Monsiour Diplace made aithmetic deat to Mary. When ber mother had Uied to teach ker long dhision, it war a ment With Monsiour Deplace, learning was easy. He arked ber a setics of questions. Then be vold hor to wite down the answers. When she read them siloud to him, whe fealized she was rexding eervin ordetily sheps thal would solve her probiem. Mary never forgot this wonderful way of learning.

Mary had a cruin on Monsicur Deplace. Alchough he was pleakant, he never
 him anl ber life.

The Rector's Assistant

When Mary was cleven, her tathet fegoned thin beatit at lac, and the family went back to England. Her father becatic tector ol a church at Wichwat, at the foot of the Cotswold Hills. Mary was taken out of wethool and became her father's assistant in his parish woik Her duties were visiting old people, teaching chatiten in sunday School and helping ber father peepare sermons.

The Differentlal Calculus

For mathcmaticatly minded Mary, kraviag school did nok mesa an cad to chely. She cught hencti caloutus from boote whe found in ber fanterts tibrizy. Whale we was
 help.
"I soon found in the library ond book of Plutions info which I plunged with delighti," she wrote. . "Afice I had been revelling in my prite for a weck, my father found me with the book and took it away, telling me that the fluxion notation was ofd fachionced and inconvenicni, and quite given up now at Cambridge." (Since women cludents were non admited to Cambridge, Mary had no way of dikovering this for bericti.) "I weat back to

Mathematics, Friendship and Love

 John was Professor of Classics the thencrity of Cork
 infroduced to him.

 wain able to wolve the problemin the regulat catoulan tentroak

Mary Incod Goorge Boote very mazt, Itc was a hind and underutanding man, an

 Lator Gcorge camc 10 Atary's home in England and began to fowsh her a scrious coursc in manthenatics.

 cwen hodry it cetllod "Bocicen Alactra."

 around, it was deaf. George had pashed inupertion,

A Boolean Family

 Grove wan fory,

 happy marrixge, and Mas. Booic was athe by her undcritandiag oate to safeguatd her
 itremucus work."

 curve back and forth dhroughour her life.

Mary and Coorge read many book weyther, They cmpyed the great Engtist toot Milton and ocher poets and philowophert. The rwo talliwd about ncw way to chucrue the joung, uking what was bext from Mondicur Deplace, from their eqpericnoc with Gooresc's
 chuculing choir own childireat

Suddenty, Goorge caughe pacmunomia and dida. Mary's joumpote child was sir
 nope.

The Wide, Wide World

 witing and leaching

Mary had never lost the love of learning that led her to pursue her studies atone and seek out scholars like George Boole. George had been interested in the ideas of a man named Frederick Denison Maurice and wanted to invite Maurice to join their discussion clrele. But George's illness and death prevented this plan.

After George died, Mary pledged herself to further George's work. When the opportunity arose (ahe had a problem on which she needed advice) she made an appointment to meet Maurice. Maurice was a lecturer at Queens College.

Queens College In Harley Street

Queens College in Harley Strect, London, was founded in 1847. It was the first women's college in England. Its patron was Queen Victoria. Its purpose was to train young women to become governesses. Neither women nor Jews at this time were granted college degrees anywhere in England, but at least here women could study on a college level.

But Queens College wasn't giving anything away to women. Women could not receive degrees and no women could be appointed to the teaching faculty. The only jobs available were so-called "staff assistants." There was no dircet teaching of students in these jobs.

When Maurice met Mary, the first thing he asked was if she would take a position as librarian at the College. Mary accepted and went to work.

Now she was in her elementl Although she could not teach, she became a friend and advisor to the students. She organized what came to be called "Sunday Night Conversations."

Mary and the students discussed Boole's mathematics, Darwin's natural history, and psychology, and how each subject affected the others. They held logie-practice talks. Mary presided over the meetings. They were a smashing success.
"I thought we were being amused, not taught," a graduate wrote to her later. "But after I left, I found you have given us a power. We can think for ourselves, and find out what we want to know."

Mathematics As Fun

Mary began to teach children, using her own theories. She was most interested in showing how ordinary everyday activilies prepared ehildren to tearn mathematios and selence.
" . . Children do thing such as drawing or sewing, counting in tens . . . slating sin upple or painting a pattern on a wall. And in the uneonselous (usually not to come lito ennsclousness for yeara) is growing ... (an understanding of) zero and infinity, adding or multiplying minus . . . and many other fundamental mathematical . . . (ideas)."

Natural materials and imagination: thar was the magic combination to create exeltement in mathematios class. Gifls in her classes used needles, thread, and eardboard to form curves with long stralght stitches. Boys used their penknives to cut twigs from hedges. They took clastic from hats and slats from cigar hoxes to build three-dimensional figures.

One day the Ilead of the London Board of Education came to Mary's chass. An eleven-year-old student demonstrated a toy the class had made together. It showed a parabola in the aet of changing its rate of curvature. The official was "staggered" at the eleverness of the students.

Children, Mary believed, should "have the opportunity of watching, . . how one geometrical type-form grows out of, or Ilows into, another. A common night-light placed in the bottom of a deep round jar in a dark room throws on a sheet of cardboard held over it patterns of conic sections, which pass into each other as you change the position of the
cardboard." Children love to warch the ahatow change and if in good training for feomelry, she advised.

Mary threw all these ldeas together into a pot and out eame a theh stew-a book called The Preparation of the Chilt for Science (Hhich Ineluded matiematio).

Curve Stitching

Mary invented cards marked for the purpore of curve stitching. They were known as "Boole cards" in England. Mary happened upon curve atithing or whar today we call string gecmetry, by chance, and saw at once if could be an ald in leaning about the geometry of sugles and spaec.
"In my young days," she wrote, "cards of different shapes were sold in pairs, in fancy shops, for making needle-books and pin cushions. The card were intended to be painted on; and there was a row of holes around the edge by which iwin eards were to be sewn together. As I could not paint, It got itself somehow suggested to me that I might decorate the cards by lacing silk threads across the blank spaces by means of the holes. When I was tired of so lacing that the theads crossed in the eentre and covered the whole card, it occurred to me to vary the amusement by passing the thread from each hole to one not exactly opposite to it, thus leaving a space in the middle. I can feel now the delight with Which I discovered that the litte blank space so left in the middle of the card was bounded by a symmetrical curve made up of a tiny bit of each of my straight silk lines; that its shape depended upon, without being the same as, the oulline of the card ..."

A book about experiments with eurve stitching came into print. It was written by a friend of Mary's and was called A Riythmic Approach to Mathernatics. Cards with palterns from ancient times mysteriously appeared in the book.
"Some of the palterns reproduced designs in old Celtie ant; others in old Eegyplian and Greck art; in fact," Mary wrote, "we are hearing from various parts of the world . . . (People say) you have reproduced the omamental work on such or such a very old building.' ${ }^{\prime 4}$

The designs in this book reproduced basie designs that were used in Egyptian, Greek and Celtic art To Mary, this showed that people's unconscious minds were similarno matter when or where they lived.

"Psychic" Sclence

In Mary's time, many people anked questions atrout the spinit wond. They wondered whether it existed and, if so, how it worked. 'Ihey used the word "psyehie" for anything to do wilh the apirit world. Mary had lone thought aboul poyehie happenings, She

Al this time, Mautice was her employer, and he was alse a winher in the Chuth of England. Mauriee prided himself on being a tolerant man, but he stopped shoff of a trook about psychie seienec. Mary's book talked about not only phyical health but also mental health ant called it science? Marys book agreed there was such is thing as thonght Ufanfercnee between people? This was going too far, Maurice thought!

Friends of his who also belonged to the Church of England blocked the publishing: of Mary's book. It took fifteen long years before the trook was finally printed. Hy that time Mary was no longer in Maurice's employ. His opposition could not stop her from publishing.

A Falr Exchange

Mary went to work as Secretary to James Ilinton who had been an old fiend of het father's. Ilinton wrole about evolution and also about the att of thinking. If was the second subject that drew Mary to work with him.

Eseh had something to give the olher. They studied the development of the mind. Mary taught Ilinton mathematies and how to apply equations to the aft of thinking.

The Magic of Numbers

It is possible, Mary believed, to express the basie notions of the universe in equations made of numbers and symbols. The number " 1 ," for example, is the expression of unity in the universc. Zero is infinity, Anything could be translated into mathematical symbols: a rainbow, a butterfy chrysalis, a dust spiral. Mathematios gave pourer to discover truths in all fields of knowledge.

Mary wrote and talked about her belicfs with mystios from the East and psychologists from America. Founders of the progressive education movement in America sludied her writings.

The Cranks

Aary had a group of friends who called themsetvea "the etanks" sitre mer them at a vegetanan festaurant in London: Afte a time, hey put out a magazine called "the Ciank." Mary contribured many atides wilh eatehy tilc like "Are We flefocho of Cthistiang* Stumy old Aaurice couldn' atop hef nowl
for the next thity yeara, book and anides foured ouf of Many, Hef filles show the wide sange of her interests: "Mathematice in Occultam," "The Divining Rod." "The Sehoolgin Medium," "Alout Gints," "What One Aight Say to a Setrootboy,"

Por the twentiethecntury feader, teafing through Maty's Colleral H'rinmo is a lithle like taking a tip vith Nlec through the looking glass: all sorts of odd ideas come akipping atong, wurh as, "It is the moral dury of people nol to go insane. Geniuses ahould live to be old father than 'burning out' and dying young, Having seerets is a makrake."

Mary, for instance, made a rule for herself, when the whe thirteen, never to keep secects. That way she could publish whatever she wished and say whatever the chose.

Mary's daughters were grown up now and gone away, all except tucy; who tived will her. Lucy was a chemiat and she lectured ar the London Sehool of Aedicine for Women. Iler daughter, Nieia, was a mathematician of considerable talent who was baid to have the ability to visualize fipures in a fourth dimenaion. The youngest, Ethet was a nevelist.

Mary spoke at vatious clubs and wociclies, like the Parents" National Educalional Union and the Chrbto. Theosophieal Society. These meetings wefe open to all, and all shades of opinion were welcomed. They were altended by forcign selolara, ministera, cditors, educators and other thinkers.

A Shocking Dream

Mary had grown up on felighous sermons and found it hard to restat what she called "a litue bit of preach." Yet she was always ready 10 deflate windbags or pcople she called "prigs." She may have been a bit of a prig but she didn't mind celling stonies on herxelf.

For example, Mary had a dream which kept repeating itself. In the dream she went outside in a shocking condition,

She said, "I find myself. . . in the street without proper clothing withoul bonnet and doak, of even . . . my nighidress." (1)

When ehe had this drean, she always looked owe the matwectipts which wefe wailing to be taken to the pinter. She wanted to he critath that she hat not fetealot fors mueh of hemelf in hef witine. Sthe did not wan her "Haked" ferlinge lo show to the mond.

World War I: The End of an Era

When Woild Waf itafted, Mafy's healh was failine She was sorty that she was too weak ta knit sweatefs and thankets for the wat effoti. Iter contituiton was to open hes house to the many people who knewh her.
"They eame and found a quici place for an houf, away from the tumoil of a coumby af was and the rerible newa in the neturfaperm."

Mary was by now quite old. She had breathed life into mounded insecta. Slee gave binth to five children-all itiong. She gave the porwer of thinking to students so they eould find out what they aceded to tnow to live well. She cnlivened dy fos dus mathematic dasses for cotantear gifio and boys. Now life was ebbing out of hes.

Mary had been uidowed for fifty jeare. She rased her family alone and now retatives as well as fiends and even her own eyedght were slipning away.
"Ah me!" the wrolc, "Ilut it is a loncly world!" Dut she had a strong relipious failh. And even sadness could be kowen into a rich doth.. Hf one knows the Anthic way of using the world's shadows . . . discords . . . and lutid dask silks. . . ."

Mary died at the age of 84. Her life apanned the Industial Revolution in Enytand. This pesiod brought to England a new set of political and wodal challengen-pubic edueation, public health, trade unions, the coopetative movement.

Mary called herwelf a mathematical paychologikt. This meant she ined to underitand how people (especially children) learned mathemstics and seicnee, using the scasoning parts of their minds, their physical bedick, and their unconseious procencs,

Her work infuenced many othery of her time: "Within the firsl deeade of the present century," wrote her blographer, "new meihods of teaching many rubjects had been developed. Experimental woik went on..."

Today, in your own daacrom, you may learn subjecs the way Mary Boole taught them. Something may remind you of her deal about how wudents learn, especially bow they learn mathematies and seience.

CURVE STITCHING

A nineteenthexhlury mathematician and teacher, Nany thoote, detetotect a

 and sec.

Notice the numbers drawn on both fays of the angles above. Diaw a line contincting point 1 to point 1, another from point 2 to point 2 a thid from point 3 to point 3. Kerp doing this. Watch the vaece of a eurve appear so the lines are added.

If the spaeing berwect points is kept the same white the width of the angle is changed, the shape of the curve will change. Conned the points in the figures telow and wec whal happeras.

Notice what happens when the number of pointi on esen edge is increased while the angle in kept the same.

The mote pothus, the stowthe the curt
 onnecting the poins on this triangle.

Lxpetiment with other destens.
Make youf amon numbered shapes. Try coloring jour derigra like the illustration below. Many allactive destenc can be made this way,

62

 ditrefal cdecs. ser toow the designs chatige.

LINE DESIGNS by Dale Seymour, Linda Silvey and Joyce Saidef a a book whieh qugestr many more ideas you can ty. (Creative Publicaliona, P.O. Bor 10328, Palo Alto, CA 94303)

EMMY NOETHER 1882-1935

An Ordinary Childhood

 getiacos bot het,

 theif wodition they honoted teathite.

 lared to dxnce.

 wibnce was opea io hef.

If

A Degree But No Job

A Growing Reputation

 (0)

The Noother Boys

Fintyy

One of her former students, Alexandroff, invited her to Russia to the University of Moscow. He later wrote about her visit: "Emmy Noether very easily fit herself in with our life ... she lived in a modest room in the KSU hostel near the Crimean Bridge, and most of the time she walked to the University. She was very much interested in the life of our country, especially in the life of Soviet young people. .."

All during the twenties, Emmy's work in algebra progressed. Her work was part of the new algebra. Her work did not rely on adding or multiplying numbers or solving equations. Instead, her work in algebra dealt with ideas.

A Brilliant Mind, A Warm Personality

Emmy never hoarded her brilliant ideas like a miser. She was generous with her genius. Her students were like her own family. She was interested in their personal lives, and listened to their problems. She was "warm, like a loaf of bread," said Herman Weyl, one of her biographers.

Emmy had a deep voice, like a man's, and it was loud too. She laughed heartily. Though she was not tall, she was heavy-set. She looked solid, earth-bound. Yet her ideas soared with ease and grace, as did her lively spirit.

Departing the Homeland

In 1833, the Nazis, who had come to power in Germany with Hitler at their head, demanded that Jews be thrown out of all university positions. Emmy's brother, Fritz, had to move with his family to Siberia, where he was offered a position at the University of Tomsk. Emmy too had to leave Gottingen, and the beloved country of her birth. One of her Russian students, and a good friend, Alexandroff, desperately tried to secure a place for her at the University of Moscow. But before he could do this, American friends found her a job as visiting professor at Bryn Mawr, a wor *- 's college near Philadelphia. Here, Emmy moved in 1933, when she was fifty-one year: ",

A Woman Mathematician in America

Besides teaching and doing research at Bryn Mawr College, she gave weekly lectures at the nearby Institute for Advanced Study in Princeton, New Jersey, where Albert Einstein and other famous German refugees now worked.

As a professor at Bryn Mawr, Enumy Nocther made quite an impression. A woman who was a student at Bryn Mawr at that time, Betty Morrow Bacon, recalls meeting Emmy soon after her arrival in America.
"Before she came we were told, "This is one of the great people alive in the world today. It is an honor to have her at Bryn Mawr.'
"When 1 first saw her striding across the campus, I felt a little scared. Her expression seemed stern and forbidding. She was large and solid-looking and she wore a long dress. She dicin't speak. She was not at all like other people I knew.
"There was a faraway look on her face, as though her mind was not in this world at all. What was she thinking of? Maybe she missed her old life in Germany. Maybe higher mathematies filled her thoughts. I never knew. . ."

Another student at Bryn Mawr, a graduate student in mathematics, Grace Shover Quinn, recalls her impressions of Emmy after she was settled into her new life at Bryn Mawr.

Emmy Nocther . . . "was around five feet four inches tall and slightly rotund in build ... she had a way of turning her head aside and looking into the distance when trying to think while talking. . . Her lectures were delivered in broken English. She often lapsed into her native German when she was bothered by some idea in lecturing...
"She loved to walk. She would take her students off for a jaunt on a Saturday afternoon. On these trips she would become so absorbed in her conversation on mathematics that she would forget about the traffic and her students would need to protect her."

Anna Pell Wheeler was Head of the Mathematics Department at Bryn Mawr. Professor Whecler had studied at the University of Gottingen and understood the German ife style. She could appreciate how Emmy's carcer was blocked in Germany because of wer scx. She could understand the shock of being uprooted from the German culture, and t ansplanted to another world.

This was the first time Emmy had a department head who was both a mathematician and a woman. Up to this time, all her colleagues were men. When Emmy's
old friends and former students came to Bryn Mawr to visit her, she introduced Professor Wheeler as her good friend.

Death: A Great Shock

In 1935, Emmy Nocther entered the hospital to have an operation. She was gelting well at the hospital when, suddenly, complications set in. Within hours she was dead-a great shock to her unsuspecting friends all over the world.

Emmy did not write about herself. Unlike her great mathematics ancestor, Sonya Kovalevskaya, she wrote no autobiography. But others talked of her and they remembered her.

Soon after her death her Russian friend, Alexandroff, gave a talk to the Moscow Mathematical Society. He said, "Emmy Nocther . . . was the greatest of women mathematicians, a great scientist, an amazing teacher, and an unforgettable person . . ."

ABSTRACT ALGEBRA

Emmy Noether worked in a part of mathematios that is called abstract algebra. This kind of algebra is quite different from the algebra jou leam in school.

In abstract algebra people talk about GROUPS and RUNGS and FIELDS. Fields are more complicated than rings, and rings are more complicated than groups. Belicve it or not, the simplest arithmetic you leam in school is far more complicated than many examples of groups or tields or ringe.

If you don't believe this, try these examples.

Meet Surky

Imagine a stick ligure that can move only its two arms . . . and these wo arms can move only up or down.

Suppose we want to describe the motions Sticky can do. If we do so in a certain way, we can turn Sticky and Sticky's motions into a full-fedged mathematical animal called a group.

Lel's think about the four posssible ways that Sticky can move. Lel's label these four ways $0,1,2$ and 3 .

This is MOTION(0.
Here Sticky does not move at all.

This is MOTION(1.
Here Sticky moves right arm once.*

This is MOTION(2)
Here Sticky moves left arm once.

"By "move once" we mean, if arm(s) is straight out it moves UP. If arm(s) is UP, it moves STRAIGHT OUT.

This is MOTION 3.
Here Sticky moves both arms once.

If Sticky moves right arm rwice, Sticky will be back in first position.
So we can write an EQUATION.

Just as we have learned in ordinary anthmetic that $3+3=6$, we can say here:

See if you can fill in the table below. For each square first do the motion that the figure at the top is doing; then do the motion that the figure at the side is doing.

How do you end up?

That's the answer. Put this answer in the appropriate square.

Do you see that the figures in the squares make a pattem?

CLOCK ARITHMETIC

Another example of a group is the special anithmetic called dock arithmetic.

- Think about the face of a round old-fashioned dock.
- How many numbers do you see on it?

Suppose it is $10: 00$. You tell your friend you will be back in 3 hours. What time will you be back? Right you are. You will be back at 1:00.

You can write a funny-looking arithmetic sentence . . . 100 $3=1$
Nr :ice the circle around the + . That tells those who know, that we're doing eddtion around a circle. This is the special clock arithmetic. Look at the clock and finish the following sentences.

These are all the different ways you can make 5 by adding just two whole numbers.
How about clock arithmelic?
In clock arithmetic, how many ways can you make 5 ?
You can say that $1106=5$

$$
10 \odot 7=5
$$

I'm sure you can think of many other ways.
Now let us consider a very simple example of dock arithmetic and its solution in the square at the intiom of the page. This clock has only 4 positions that matter. We cean think of these as follow:

Now do the sdditions ac you did before, and complete the aquare.

- Remember, 1-1=2 means move one vep dockwise. Then move one more alep clockwise, and you've arrived at position 2.

How about a $2+2=$ \qquad 7

- Notice the pattern of numberf when you've completed the square.

- Compare the difference in the patterns of the cock square and the Sticty equare.

The paltem in each square comes out of cxactly 4 numbers (or clements) and a rule for combining them.

- Why are the solution patterns different for these two squares?

Emmy Nocther's work gave mathematiciani now look to solve old problems. In particular, she developed important new ways of classifying thexe kinds of situations in fings, the next mote complicated strueture after groups.

COMMON MULTIPLES OF 2 AND 3

- All numbers that are common multiples of 2 and 3 are numbers that ate mulifice of 2 as wcll as muluples of 3 .
- All multiples of 2 are even numbers. Therefore common multiples of 2 and 3 are even multiples of 3 .
- Sce page 95 for details on "multiples of $3^{* \prime}$ res.

Using common multiples of 2 and 3 , shade in Emmy Nocther's picture on page 68

SOLUTIONS:

- liotice that for both squases, each number appears only once per tow and column.
- If you were to fold the large square atong the northwest/southeast diagonal, each half would match. This diagonal is a line of mirror symmetry.
- Nolice how the number pancms differ for esch square.

$$
77
$$

ERIC

LENORE BLUM

1944

A Tropical Paradise

The aiplane carning the rwo givis descended, and the city of Caracas, Venerucla, rose up to meet them. It was the dry seavon and fires in the mountains caught their cye. They saw emall aiteraft dropping chemicals to put out the flames. As they approactied the zirficld, the sun illuminated a landscape of palm trees and fowers, modem buildings and streets. To Lenore, the older one, this was paradise, and it was her new home!

Lenore and her 酰er had left their home in New York. The whole family was coming to live in South America. Here, Lenore's father hoped to make a good living in the import-export businces.

The drive from the Caracas airpont to their new home was full of sarange sights. An attempted revolution was taking place. Opposition forces, who wanted to overthrow the diedator, had thrown tacks in the suects to puncture tifes and diarup the ciry. Oufurmas wees were tied to front fenders of ears to sweep away the tacks.

Their lodgings were wonderful-several rooms rented in a large bouse. Views from second-story windows showed the fuch mountains. For the first time in her life she had a back yard. Unkrown in New YorkI In the yard, a parrot squawked-gorgeous, brillianthued, tropical.

Lenore was nine and her sister, Harrict, was seven. They were going to allend the local schoot where only Spanith was spoken and no "foreigners" were enfolled. Thas would be quite a change for Lenore. Most of her friends had been Ameriean in the ofd school. Many Mere Jewish as she was; in fact, in Now Yous ahe had hardy known anjone Who was not Jewish.

65th Avenue, Queens

 catices menory was itancing at the wirdow watching her father, Ining, when be arrined home after World War IL. From the candy sore on the cornct, the bought a Yiddish newspaper, "The Forward," for her grandmother, who lived with the family. Her grandmother spoke only Yiddith. Lenore undersiond Yisdish, and although the didnt speak it herself, she trandated ber grandmoxitor's words into English when people cance to visit.

When she was young, relatives commeared to each outher. "How antistic Lenore ist" At was ber fivorite acinity, though she usually dide't thow her projests to others. One time she uked an orange as a base and buith a hand puppet from papier mache, using suips of ncwipaper and paint. The pruppet had bond hair made from wool yam. If was different from anthing that could be bought to the storts. It had "personatify."

Lenore visited libraties and muscums with relatives and even by hervelf. She loved the dinosaurx at the Museum of Natural Hixory and the wild animal habitats. Sornctimes whe traveled by subway to the New York Public Library sad the great muscums in Manhatuan-the Meuropolitan Musetsm of Aft and the Muscum of Modetn Arr. They filled her with wonder.

Her dorisins, Ellen and Shelley, IVed in her neighborhood and they, Harriet and she played together. This was in the casty days of television and on one program, called "The Magic Cocuage"" children applied through the mail to be on the show and win prizes. All four gitls eageity applied. Shelley and Harriet were chosen. Ellicn and Lenore lalked and persusded, persuasded and talked until the other rwo gat in. Elien and Lenore appeared on the xhow.

Many of the prizes were of sorre valuc, weth as a child's rocord player. But Lenore saw just what she wanted: a puppet which folded up taso its cwn tiate case!
"Why didn't you pick the record player? It's much more valuable," Ice grownups wanted to know. Valuablic? To the others, matbe, but not to Lenore.

Growing Up

 Tho of these women were lawyert and a thitd wes a leather,

They oflce spoke of their ofder brother, Sol, who had broome a modical doctof, Though he fad died at the gec of 32, his presence was strongy folt. As the oddest child of an innmigrany family, he had led the woy,

 follow.

 cousinh She uscd New York, the larges Ametican city, as her playgound. She had ploaty of frec lime. No one kep close track of leth. This saited hef peticetly.
 ill when no one else was there. But the years of hee childhood rassed and her foxt was never tealized. Suddenly, she was moving sway to South Ametica.

South American Scenes

 things ould alweys happen to her.

 they ran around the two Amcrician giths. How humiliating:

Then there was the prit. pal. Here wefe fwa young Ametican "ninazat who "no habian Epanol." Dut they must lean to epcat Spanioh-pfonto: The pricipal would leach them one hour each day in his ofilec, beginning wilh the subjutaine tence of the verto.

 tooked cxaety aliket
 thas beruriful in the would. Such bright would, too, zter munless dsys in New Yepk.
 were for ber sisister, doo.

A Year of Freedom

 now place than to leave them in the local ishool.

So the dccition was made. For one year, Lenore, going on ken years ola, and her
 mother. They look in atl che dighes of che ciry, No formal lessons now, ouly informal ancs
 where the "foncigners" met. The gils ordered ice cream sodss. Life became much eation for latrofe.

Homesickness

 ${ }^{\text {n }}$

 sat in, the goosenced lamp wo the chdetiy women could sew ated tead the memspapet, the

位地

 attod timela Cump Aloste.

Escuela Campo Alegre-The American School

An Impression

Los Pavos

Like many teenagers, Lenore had mar / lmages of how she wanted to be, She was rying out a variety of roles and sometimes her actions seepred contradictory, even in herself.

When she whin in high sethol, her triends we ${ }^{-c}$ ins pavos," which was Caracas slang meaning the fast crowd. Or: day, while she was riding with a boyfriend on his motoreyele, they had an aceident and cri. he :. :enure fet, on her bead. She felt the wound where blood was clotting.
"My brainsi My brains ire spill ng oun" thought the panieky thirteenxyearold. But, with only a head patch and tw. wesks' time, she was well again. Then tind there she decided that motorcycles were not worth the rirk.

Cars, wothes, bikes and romances were part of the American school scene. Money was thrown around and partic, were frequent. Lenore's parcils were tolerant. To them. she was the older daughter, the lin egirl whe had tahen eare of her grandmother so faithfully. They set no limits, so ienore set lier own: a $1: 30$ curfew, and she never came home luter.

A Coup

When Lenore first arrie ed in Caracas, an altempted revolution was taking place. Five years later, on New Years Day in 1958, the dictator, Colonel Marens Perez Jimenez. was finally overthrown. The citizens of Caracas were jubilant. The hated secret police fled and ordinary people ran the country. Boy Scouts directed traffic and university students helped maintsin Jrder. Sometimes students who were friends of Lenore's took her with them on their patrols after the curfew fell at night. She loved being part of the excitement. The controlling junta-the new ruling group--promised elections in the fall. Every five years thereafter, frec elections have taken place in Venezuela.

Searching for a Profession

Mathematics was Lenore's favorite subject. Instruction in mathematics at the high school Lenore attended was poor, and so she learned a whole year of mathematies on her own. When she expressed an iaterest in going on with mathematics in college, her teacher advised against it.
"Everything important was diseovered 2000 years ago," he told her. "You don't want to go into a dend field."

Was that true? The sixteen-year-old transplanted New Yosker did not know. All she knew was when she looket at proof on the board, her heat awelled. "It's so beauiful, so perfect." Mathematio eared for no onc's opinlon. Malhemalies was, that was all.

Buiddings, benutiful modenn conerete forms were springing up all over the eity of Cameas. Asehtecture was exeiting creative. Here was a carcer field that combined her two loves.-mathematles and art. That is what her college major would be.

Dut where to apply? To MIT, of course, where Manuel was and where so much exciting work was being done.

To Lenore, MIT was the pinnacle, but, to her great dismay, she was not admitted. In response to her upplication, MIT officials said, "We have only twenty treds in the girls" dormitories and incoming students must live on campus." Only very few women were aceepted. [This excuse of dormitory space was corrected some years later. One of the first women to graduate from MIT, Kathatine McCormick, gave a large sum of money to be used solely to build a dormitory for women studenis. I Lenore decided to go to Carnegie Institute of Technology in Pitisburgh, Penns, vania. wstesd.

Graduation Summer

Lenore was valedictorian of tis high school graduating class. Manucl came to Caracas for the ceremony, and her senior prom was their first date. That summer, the two young people talked about many things: Freud and modern psychology, philosophy, and the make-up of the brain. A neuron could be expressed mathematically. Fascinating! More than ever now, she looked forward to college.

Fron Caracas to Pittsburgh

Pittsburgh was an industrial town, a maker of steel-old and dingy. Quite the opposite of sparkling Caracas. The students of architecture at Carnegie Tech were very serious about their career goals. They worked together in a room that took up an entire floor of a building. Often they worked through the night to finish projects. Older students offered criticism and advice. Everyone was helpful and friendly.

Matiematios is an important tool for architects and they were interested in leamina formulas. Lenore on the other hand, was interested in learning where these formulas came from and why, She mised the be ruty of mathematics.

In her second year at Camegie Tech, Lenore changed her major from architecher to mathematics. She knew immediaty tiat alie had made the tighe choiec.

Marrlage and MIT

Lene: was now elgheen reara old and ahe and Manuel martied. 'ithey moved to Boston and rented a small aparment. The young couple's home was open to a growing circle of friends.

Manuel worked in Warren MeCulloch's Neuro-Physiology Lab at MIT. Ilere people from all over the world - from Australia, England, Isfael, Itolland, Italymentue to work. 'These people were electrieal engineers, mathe'mati'cians, philosophers, biologists, piychologists. They eame together to work on a common probtem-the unders:anding of the brain.

Lenore's and Manuel's apartment became a gathering place for the young people in the evenings. Eation, singing and playing drums in the small living room gave way to lively debates. One might recite a jazzed-up version of "Jabberwocky," a poem by Lewis Cirroll. A poem by William Blake could start a discussion about infinity (and other myaterious idcas) thar would last through the nigh:.

To see a World in a r,rain of sond, And a Heaven in a wildflower.
Hold Infirity in the palm of your hand. And Ereming in an hour."
"Auguries of Innocence." first stanza, by William Blake.

Continuing College

Since she was now living in Boston, Lenore applicd and was accepted at Simmons, a women's college. She hadn't the courage to apply again to MIT.

 teacher wan ladore Singer.
"Here was clase will substance, deph, pace:cveryhing fidimagined agood course to be. 11 was hard, it was deep, it was abstis. . . . I Irusted thiz guy who was teaching it. He was a top mathematieal researcher. The topics were important; they wete leading somewhefe. He wasn't just reading it out of a book," Lenore was transformed!

She was very quiat in dask. Stic eidn' know whete she stood. She was just grateful to be there. The class was huge, neaty 100 atudents. Ienore finhlied the semester as one of the top students. Yet, when she applied to the graduate program in the Mathematio Department, she was told by the admissions officer, "MtI' is no place fur women. Here is a list of fine graduate schools. Apply to these," the man told her. "I would give my own daughters the same advice."

Lenore felt devasiated. It fooked as though the would again be furned down by the only place she wanted to kO , a place where exciting mathematies was happening.

That weckend, there was a party at MIT and Professor Singer was there. He overhend a group of people discussing "the gitl who wants to enroll in the graduate mathemntics program."
"Who was she?" Singer weadered. It was Lenore Blum. Professor Singer epoke up: she was one of his best students.

Within a fiw days Lenore received a letter of acceptanec from MIT. (Himes nave changed. "Poday, MIT' brochures state, "MIT is a place for women.")

Graduate School

Lenore decided she would atart off graduate school with a bang. Most people took two or three courses each semester. Lenore would take eight. It was said that if a woman married she would not finish the program. Lenore wis married and she would finish. It was said that a woman with a baby would drop out. Lenore would have a baby anu remain. In spite of everything she would continue.

At first, life was difficult. Eight couses were more than anyone could handle. Lenote dropped them one by one.
 Woking will a woman eq: ne even tied to dive a weder between het and Mamel. for feasonstenote couluri ithom.

There were two wher women in her elass, both matied and both with babies, Hus
 a eatmon atrugele.

Nevertheless, Iater on in the program, in older woman atudent spent a lot of hme
 women could help women.

A Fantastic Baby

She and Manuel trad planmed the afrival of beif beby to eoincide with the end of the selocil year, 'they took natural childbith classes, which were quite unusual at the time, and on the last day of elasses, wen directly from MIT to the hospital to have the baby:

Lenore nused her new baby, whose name was Avim, He was". . so fantastic. We really had a lot of love for him right from the stath." She was vent happy.

Lenore, Manuel and laby Avrim were aluays on the go. The new parents eagedy lied out the newest in baby getar such as paper diapers, infant seats and potia-cribs.

Child care centers were very rare. Babjsitters were hard to come by. Fortumately, Manmel had an office in tie basement at MIT and they cared for the baby thefe.

Working on a Thesis: Logic and figebra

Lenore went on with her work. She did not wait for an advisor to set her to work 6 a topic. She found he own tupic wheh recame her thesis.

Some mathematicians hete suceesstully using new methods of lo-i- . o solve old problems in algebra. What an intriguing idea! Lenote taught herseflogic ard carefully studied these methods and how they were applied. She wanted to unterstand why they woiked. She thought and thought about this from many different angles.

But what to do with Avrim? He was now a toddler and needed s. .t of attention. Fortunately, during this period. Lenore's mether was able to come ro Boston to help eafe for him.

AIT had sel aside a goup of fooms eopectally bot momen studems. This is where Enore would work. The fooms wete located zight under the fimons Mit dome in the main building. Here she made hetselt at home. She mought fer papers and hooks and ael up her working space.

Lenore beeame engrossed in atudy and the ighi. Sometimes whe worked through the night. She boughi food from the vending machines in the basement mat step in the lounge. Day tumed into fight. She lositrack of time.

Slowly paltens atiried to energe, Lenore lyean fo sec conmonfeature in the poblems ahe was studying She realized that one simple but powe ful fule could solve them all. She undentood this rule so well that she could explain if to the logie group in the malhematios department and show them why if wotked.

This rule and its proof beeame her firs theorem, Later she tased this rute to discover new results in algebra hericif. This woik was to become her thesis, but firs st needed an advisor.

A logic professor, Gerald Sacks, had secenlly come to MIT and was s husiastic about Lenore's work. He was the natural choice. She becane part of the logie group and was included in all their discusions and in: Vow ahe teally belonged!
 defended her thesis. The work sie din ea. .jat her lle doctoral degree. She reecived at post-doctoral fellownhip and coul: . work asy plate she chose for one year.
 best in th-roun, a anowe logician, tulla Robinson, lived theic, and Manuel had a joh
 Berkeley A: athemates Deparmicnt, the first woman elected to the Natural Aezdemy of Sciences, and the first womin president of the American Mathematieal Society]

Berkeley, Callfornia

Polities was part of the Beskeley scenc. It was 1968. People matehed in tir aftects They demonstrated againat the war in Vietnam. They gathered to protest furnife a patk into a parking! : They talked and thcy organized. مיt of the Free Spech Mosentent csme a ncw spirit. It was an exeiling time.

Bright blue skies and spsnish tile rooks nesuling in green hills reminded her of Caratas. People wore colorful, free-howing clothige. Lenore felt she was coming home.
 People al Yate were eapef to work with hef and offered her a position as assistam profeson She had woters from AITT and from lleakey. Manuet had a lob al teakeley and
 lecturer in mathemaths.
 Although disctasions with her employedataled her hopes, no tenure af job eccurty went with the position. What was wore, she had no protestonal eonif at Betkeley be supput her careef gitouth.

A Turn of Events

Aner foy years milecture al Berbeley, Lenore was told ahe would nut be rehifed. People asoumed she urould conc another faculty wife, l.ctore": aten and mining prepared hef to work al the highent level. But there were no women in posithoris at that level at any of the top mathematies atepartments in the eountry. What to do?

About this time three concerned profearons in the Berkeley Nuthematici Department [Moc Ilitach, John Rhodes, and Siewe Sinale] sponsored a setics of alks on mathematics and social resp msibility. Lenore was asked so organize a pand on women and mathematies, Sthe ga:, -A together mholart [Ravenna Helson, Sheily Johannsen, and Elizabeth Scolti who spone about the history of women in mathematics and their present statur. Several hunded p. fe eacked the lecture hall; this was the fira such pancl any where in the country. All of a sudden, Lenore became known as the exper on wamen and mathematice on the West Coast.

On the East Cont, women mathe mesicans had also begun to organize. That wintef Mary Gray, of American University, led a potest al the mathenatios meetings in Alantic City. She wanted women to be part of the fectson making groups in the mathemalies societs. During the spring Mary iscued a Newtettef and entled for suppont. The Association for Women ia Mathematios (AWM) had begun.

At first, Lenote was reluctant to join. She wanted to be anown as a mathemplefize not ar a wort: an mathematician. But soon she became convinced: the rituation for Wances In mathemathe would not change without the AWY. [Mary Citay was the fat preciden of the AWM and Aliee Schafer or Wellestef College the second. Later, Lerore beeame
pestuch, Oher praidents have been fudy Doiman of the Untefsily of hansas, and

The AWM and Change

If was 1971 and fle beginning of a new exa fo: 1 - fore and whef women mathemalicians, They spote our. They wrote letter. They sponsured talks and panche
 imposible, for women mathematichats be ect good johs, Thcy anted fough ducotions and they wete not always popular. thut they eaned courape and suppert from one another.

For the firk time, Lenote nas is fiends with women whot undetomond and valued hea work, Tha of these women, Judy Roimsn, a logician and Ronnic Milles, an asmophticiss, were particulaty infotian tor Lenvit.
 -When I felt down and oul, they tovoted my tpitits. And umen thinge went well, they cheered ne on. Even today, we Eeep in ctone touch, though te now live in diffetent pats: of the countiy."

The situatian beean to change. Dy the middle of the 1970's, women mathematicians wefe beeoming mone visible. They wese invited to present their teseafeh resultis at impotant profeshional meeling. They wete deaed to bigh positions in the protemional ansociations. This hind of acivity is very importent for the cafcer growih of mathematicians.

Hy the end of the 1970's, women nathernaticians wete gettige betiet jots, wome in top deparments. Ifre-ed, by its fenth bithday, the AWM had trought about many infotian changes for women in mathematics.

A New Direction

It the fall :973. Lenote mas hired to reacha dam in college algebra at Mills Cotlege, a women's willege in Oakiand, Califoraia. She thought the course was dull. It iepeated high sehool work and didn't secm to lead anjwhete. In the midde of al ates gid. "I aingoung to fesch you sormething much more uneful-caleulun" Then and tere, whe fealized that a carcfully denigned "ure-ca culus" course could open doorn for matiy wonach.

 pain comidenee an they could really do in. She taughthem to towk for picture in
 problems in diffetent way, Sometimez, gucsoing is a good way,

She said, "You can learn these hings; yuu dont have to be boma matil whe."
Lenore alwas facw that whal she was saying was much biger lizs" "a one dass,

 would help wowen enter field that they did not even hink of the fasl. Some new felds

 change!

The Math/Sclence Network

 efede schod sludente. Nancy kitinkafe a diector of the piogram, noticed that vefy few
 for Guls. ${ }^{4}$
"Math for Gith" is a apocial dass for six to twetweryearolds, Herc, young gith get togethef fo wolve puzzles and play challenging game--actintie: whia help dovelop
 anathensilice science sind raginecung-
 they found out disy had a lan in common. Onc suturhet afir - 7975, they the with like minded wientisu and educaton to histe ideas. Quictly
-alized thoy wacte

 mestape as they allended Nefmom crents.

It was thilling to make imputant shitige happen. Huf there was the litue gin whe

Pulling in the Reins

 het watk an 5 teacatch mathematitian.

 Hequenty. She contaued tolectufe an mincesitien around the commy on women and mathematio.

Back to Research: Mathematics and Computer Sclence

 compurcte and why ame are caymand why some probloms cant even he colved al all!

Screcal ycan cantict, the and Manucl had witien a poper together. They uefe

 to sce thites fall into place, I view my woh an the begining of a knycar program."

"If's cxciting." ste byy, "to talk with othef peopte and see how mint we do fits soghte:-

The Math-Science Network Today

 meeting. Who is sillime there? Can you figure if our?

 sits tompack ta Rita.

MULTIPLES OF 3

What ha a deifal sum?

 (hiough 9.)

 conplete the piotute of Catscas on py it

[^0]:

 * Reproductions supplied by EDRS are the best that can be made

