AUTHOR TITLE	Suydam, Marilyn N.
	Evaluation in Mathematics Instruction. ERIC/SMEAC Information Bulletin, No. 2, 1986.
INSTITUTION	ERIC Clearinghouse for Science, Mathematics, and
	Environmental Education, Columbus, Ohio.
SPONS AGENCY	Office of Educational Research and Improvement (ED),
	Washington, DC.
PUB DATE	86
CONTRACT	400-86-0016
NOTE	6p.; "Evaluation in the Mathematics Classroom," by Marilyn N. Suydam, is available from ERIC/SMEAC
	Marilyn N. Suydam, is available from ERIC/SMEAC (\$8.50).
AVAILABLE FROM	SMEAC Information Reference Center, The Ohio state
	Univ., 1200 Chambers Rd., 3rd Floor, Columbus, OH
	43212 (\$1.00).
PUB TYPE	Information Analyses - ERIC Information Analysis
EDRS PRICE DESCRIPTORS	MFO1/PCO1 Plus postage
	*Educational Planning; Elementary Secondary
	Education; EEvaluation; Evaluation Methods;
	*Mathematics Education; *Mathematics Instruction;
	*Problem Solving; *Testing
IDENTIFIERS	*Mathematical Sciences Education Board

ABSTRACT
This bulletin focuses on three developments related to evaluation. First, the plans and initial work of the Mathematical Sciences Education Board, formed in 1985, are described. The Board's goals, its view of the major challenges in mathematics education Eacing the nation's schools, and its plans are discussed. The development of a dosign for studying the impact of testing on mathematics education is then described. The second section of the bulletin provides an overview of a revised publication on evaluation in the mathematics classroom, available from ERIC/SMEAC ("Evaluation in the Mathematics Classroom," published eixst in 1974). What is included in the publication is noted, with several illustrative oxamples. A second publication with similar goals ("Mathematics Assessment for the Classroom Teacher," developed by the virginia Council of Teachers of Mathematics) is also described. In the third gection of the bulletin, the need to evaluate mathematical problem solving more effectively is considered. Procedures that can be used in addition to paper-and-pencil masures are listed. Finally, several tests that nttempt to assess mathematical problem solving processes are cited, with examplea. Sixteen references are listed. (MNS)

[^0]
Evaluation In Mathematics Instruction

In 1985, an overview of data from state assessments in mathematics was developed (Suydam, 1984). Such assessments have focused attention on evaluation across classrooms, as have the three sats of reports from the Na tional Assessment of Education Progress (NAEP). Data from the fourth natlonal mathematics assessment will appear in the near future, and these data will surely be reviewed as carefully as the previous assessments have been. Information both on status - how well are students achieving currently on the various mathematical ideas they need to know - and on change - what, if any, progress has been made since previous assessments - is vital information that has been and will be used to improve instruction.

Moreover, data from the Second International Study of Wlathematics (SIMS) attained headlines, as did data from the First International Study, when the ranking of the United States placed it well below almost every other country on most of the achievement scales. Concern for what is going on in classrooms has led to many studies in the past decade, and evaluation is one facet that has been investigated.
Aside from state, national, and international assessments, evaluation goes on, day after day, In each of our classrooms. Such evaluation is addressed by the revision of Evaluation in the Mathematics Classroom: From What and Why to How and Where (Suydam, 1938). It attempts to provide useful guidelines and techniques for classroom teachers.
This bulletin will provide an overview of the sypes of information available from that pilblication. Then recent work on one aspect of evaluatlon will be considered - how problem solving can be evaluated. But flrst, conalderation will De given to the plane and Initial work of a new agency in mathematice oducatlon, with partlcular note of its planned work pertaining to evaluation and testing, In particular.

Mathematical Sclences Education Board

The Maithematical Sciences Education Board (MSEB) was established in October 1985, at the urging of the mathematics community, as a major unit of the National Research Councii (which in turn is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering). The Board is designed to grow into the most comprehensive and far-reaching national leadership effort in mathematics education ever to be undertaken in the United States. Much of the material which follows is drawn from the informational materials distributed by the MSEB.

Through a variety of efforts, the Mathematical Science Education Board is seeking to provide:

- leaderahlp of continuing efforts to improve mathematical sciences education nationally;
- coordination among on-going educa. tional projects;
- service to localities and states, through assistance in determining core competencies for all students and higher standards, and enhancing teacher preparedness;
- recommendations on how to strengthen weak parts of the infrastructure of mathematics education;
- Information to enhance public understanding of the rapidly changing character of the mathematical sciences;
- advice to federal, state, and local agencies on long-range goals and needs in mathematical sclence education. (MSEB, 1986a, p. 2)
The intent is to provide "for sustained attention over many years to the major issues affecting tha quality of instruction and learning in the mathematical sclences" (MSEE, 1988a, p. 2). National In scope, the MSEE is actionoriented, concerned not only with makIng recommenciatlons but also with im. plementing lojas.

The MSEE vlews the nation's schools as facing major challenges in terms of:

- Curricula and instruction in our schools are years behind the times. They have not been modified and updated to reflect the increased demand for employees and citizens who possess well-developed prob-lem-soiving and higher order thinking skills in mathematics. Nor do they reflect the greatly expanded uses of the mathematical sciences. The skills that are needed go well beyond the sort of facility with calculation and algebraic manlpulation most people identify as 'mathematics.'
- Calculators and computers have had virtually no impact on mathematics classrooms, in spite of their notential to greatly enrich, enlighten, and enlarge school mathematics. Furthermore, there is little prospect that they will, unless there is continued strong national leadership to do two things:
- Focus attention on the remarkable opportunitias computers offer: to displace some tedious drill; to teach more sophisticated concepts; to provide individualized instruction; to use mathematics to soive a plethcra of problems heretoíore unsolvable by students; and io put more of a sense of wonder and discovery into the learning of mathematics.
- Chart a course for the development of new curricula, instructional techniques, and tools for evaluation which will be sufficiently widely accepted 80 that textbook publishers and software companies, etc., will be willing to invest the necessary time and resources.
- Methods of evaluation - especially standardized, paper-and-pencil, multiple-cholce tests of 'basic skills'
- are belng uged across the country without sufficlent reflectlon and are themselves obstacles to the teaching of new methods and higher order thinking skllls, as well as to the use of calculators and computers. The nation is in the grip of a testing
mystlque which has led to the widespread use of such tests in spite of repeated warnings that several premises upon which their use is based are open to serious question.
- Finally, and most important, there is little awareness in the schools - and virtually none in the general pubilc of what lies just aherd: mathematics curricula, Instruction, and methods of evaluatlon must undergo dramatic change If we are to properiy educate tomorrow's employee and tomorrow's citizen. (MSEB, 1986a, pp. 2-3)

The Board is plannirig to move "through a succession of planned stages of change until learning levels in school mathematics have been brought much more into line with the reality of national needs and national potential" (MSEB, 1988a, p. 6). Working cooperatlvely with the Natlonal Council of Teachers of Mathematics (NCTivi), the Board plans to deveiop and publish, by the end of 1988, recommended standards or criteria for excellence in school mathematlcs, K-12. These standards will cover curriculum, instruction, and evaluation. One part of this maselve effort will irivolve the development of "guidelinas for redesigning test8 and other assessment mechanlsms 80 that they are properly aligned with the curriculum end provide meanIngful evaluation of student achlevement" (MSEB, 1988a, p. 7).

The MSEE is currently developing the design for studying the Impact of testing on mathematics education. The purpose of the proposed set of studies 18 to:
document Information about current tegts and testing practices, assess the impact of these practices on various groups, and direct future developments 80 that testing practices will be less disruptive, more helpful, and more effective. (MSEE, 1908b, p. 1)
The report notes that the specific cictivitles planned have embized from the following perspectlves:

- Valid information about student achievement In mathematics is needed by a variety of people (students, taachers, parents, administratore, pollcy makars) for a varlety of purposes (monitoring progress, selection for placement In courses, program evaluation, accountabilityl.
- Eoth the curriculum and teaching practice in mathematice need to be directed toward the learning of atrategles to solve problems, the appllcation of mathematice to practical oltuations, and the development of thinking akille. Consequer:ty, tests should reflect atudente' achievement In these directions.
- Serious questlons have arisen about the validity of existing tests for the uses to which they are being put. Standardized tests and statemandated tests may yield information that is invalid for certain pur. poses, and they provide little or no information on several important dimensions of achievement.
- Furthermore, the continued use of existing tests appears likely to impede the much-needed reforms in curriculum and instruction that the mathematics education community is developing. (MSEB, 1986b, pp. 1-2) Additional Information about the ongoing work of the Mathematical Sciences Education Board, and detalied plans for its varlous projects may be obtalned from:
Mathematical Sciences Educationityoard National Research Courioil
2101 Constltution Avenue, N.W. Washington, D.C. 20418 (202) 334-3294

Some readers of thls bulletin may be wondering why so much attention was directed toward the MSEB. Clearly, it promises to exert a force, operating from the national level, that we have not had in mathematics education. And if the planned efforts succeed, then evaluation processes, and testing in particular, will change. All of us need to keep aware of the work of the MSEB and provlde both advice and aid from our varying perspectives in schools at one level or another. The process of

EDITOR'S NOTES

ERIC users interested in mathematics education may be interested in knowing that, in addition to the focus on testing and evaluation described in inis information bulletin, the Mathematical Sciences Education Board is also initiating work in four additional strands: national needs and potential, curricular frameworks and instruction, the teaching profession, and collegiate mathematics. Projects will vary both in duration and type, froin one-year research programs to three-year comprehensive studies, series oí topical conferences, and one-shot con-sciousness-raising symposi.g. The Mathematical Sciences Education Board is committed to the idea that the changes which must take place in mathematics education over the next $20-30$ years can be accomplished amoothly only by means of a coordinated effort involving all of the principal actors: state and 'ocal educational units, professional sociatles, colleges and unlversitios, parent groups, publishers, testmakers, etc.
education can benefit from collective collaboration and strong, responsive leadership.

Overview of Evaluation in the Mathematics Classroom

Evalustion in the Mathematics Classroom was first published in 1974: after 12 years, it was clearly time to revise it.
In the introductory section, evaluation is illustrated by some classroom vignettes, and the purposes of the booklet are presented:
(1) to help readers develop better paper-and-pencil measures for evaluation, and
(2) to review with readers other approaches to evaluation.
The idea that evaluation is much more than paper-and-pencil tests is emphasized.
The second section continues with this idea b: considering the scope of evaluatiori. Subsections deal with the scope of mathematics objectives to be evaluated, the scope of evaluation purposes, and the scope of evaluation procedures. Observations, Intervlews, inventories and checklists, attitude scales, criterion-referenced tests, normreferenced tests, standardized tests, and diagnostic tests are among the types of evaluation procedures discussed.
The third section of the publication concerns developing tests. How to plan a test is discussed first, with sugges: tions on listing the objecilves to be assessed, the types of items to be constructed, and deciding on the number of items to be written for each objective. Twenty-one general suggestions for writing test items are then presented. Such points as the following are made:

- Use clear, simple statements. Use language that students understand. Choose concise vocabulary, and sentence construction that is appropriate to the level of your students. Break a compiex sentence into two or more separate sentences.
- Design each item so that it provides evidence that an objective has been achieved. Avoid testing for unimportant details, unrelated bits of infor. mation, or irrelevant material.
- Begin a test with easy Iterns. Placing difficult items at the beginning of a test is likely to discourage average and below-average achievers. You can then arrange items so that the test gets increasingly more difficult, or you can mix easy and difficult items.
- Analyze student responses to each item, for diagnostic use.
If such suggestions seem familiar, it may be because they have become famlllar in a variety of publications on developitig good tests, such as Gronlund (1984).

Following these general points are specific suggestions for developing each type of test that might be usod in mathematics ciassrooms:

- short-answer questions or completion items
- multiple-choice items
- true-false litems
- matching iteins
- essay items

Finally, some related points about testing are considered: item poo!s, item analysis as it can be done with teachermade tests, and test bias. Some illus. trative examples are included through. out.

The brief concluding comment notes that the goal of evaluation is that of improving instruction. Measuring or assessing or testing only Indicates: the teacher then has to do something as a result of what has been indicated. Evaluation is one stage in the on-going process of teaching.

Lists of references, with annotations, are provided in the final section of the publication. While a few of these references provide general background information, most were selected because they were written to heip classroom teachers do a better job of evaluating and making use of that evaluation.

Another publication with some similar intentions and information was developed by the Virginia Council of Teachers of Mathematics (VCTM, 1983). Titled Mathematics Assessment for the Classroom Teacher, it was written by a number of persons, each contributing one of the following chapters:

- Legal Ramifications of Evaluation (William Hefty - a city attorney in: Richmond, Virgina)
- Construction and Interpretation of Teacher-Made Tests (James Impara)
- Classroom Assessment of Conceptual Understanding (John VandeWalle and Marold Mick)
- Diagnosis In the Mathematics Classroom (John McGregor)
- Affective Evaluation (Stuart Flanagan)
- Assessing Problem Solving Skills (Ena Gross)
- Grading and Reporting (Josephine Baker)
- Mathematics Achievement: Assessment Strategies and Applications (Anne Polselli Sweet)

Among the noteworthy features of this pubilication is that it is filled with specific exampies of classroom practices and with specific items that IIlustrate varlous polnts. In the preface is the note that it was developed in order to help teachers implement one of the recommendations made by the Na tlonal Councll of Teachers of Mathomatics in An Agenda for Actlon:

Recommendations for School Mathematics of the 1980s so that the success of mathematics programs and student learning be evaluated by a wider range of measures than converitional testing. (NCTM, 1980)
The Council underlines this recommendation with the following commenis: Evaluation is not limited to testing. It includes gathering data and interpreting the data. Testing is one source of data. There are many others. Today, many per:ple use test scores as the sole index of the quality of mathematics programs or of the success of student achievement. Test scores alone should not be considered synonymous with achievement or piogram quality. (p. 13)

It is imperative that the goals of the mathematics program dictate the nature of the evaluations needed to assess program effectiveness, student learning, teacher performance, or the quality of materials. Too often the reverse is true: the tests dictate the program, or assumptions of the evaluationplan are Inconsistent with the program's goals. (p. 14)
When one considers that the flrst of the Councll's recommendations is that "problem solving be the focus of school mathematics in the 1980s," there is realization that tests often fall to assess this focus effectively.

Evaluating Problem Solving

In An Agenda for Action, cited above, it is noted that
an emphasis on problem solving demands more flexibility and creativity in assessment than is possible within the restrictions of most current test formats. (NCTM, 1980, p. 15)
Moreover, it is recommended that Longitudinal evaiuation of individual problem-solving ability should be developed. The acquisition of problem-solving skills is a long-term process and should not be evaluated solely with short-term measures. (p. 15)
Such comments promoted awareness of the limitations of many prob-lem-solving programs, as well as of the evaluation of problem solving. The Mathematical Sciences Education Board has reaffirmed that focusing the surriculum on problem sulving means that we must do something different so that problem solving is appropripteiy assessed.

Your goals need to be considered as you plan how to evaluate. If you want children to solve both routine and nonroutine problems, then you must include both types of problems in your
evaluation. If you are emphasizing the teaching of problem-solving strategies, then you must 'plan to assess students' ability to use strategies.

In addition to paper-and-pencil measures, such procedures as the following should be considered:

- Face students with a problem-solving situation and observe how they meet it. Such points as these might be considered:
- Is there evidence of careful reading of the problem?
- Do individual childiren seem to have some means of beginning to attack a problem?
- Do they apply a strategy, or do they try to use the last procedure they were taught?
- Do they have another strategy to try if the first one fails?
- How consistent and persistent are they in applying a strategy?
- Are careless errors being made, and if so, when and why?
- How long are they willing to keep trying to solve a problem?
- How well are they concentrating on the task?
- How quickly do tiey ask for help?
- What strategles does each child use most frequently?
- Do they use manipulative materials?
- What do their behaviors and such factors as the expressions on their faces indicate about their interest anci Involvement? (Reys et al., 1984, p. 32)
- Interview students. Interviews let you delve into how a student goes about solving a problem, and why he or she does it that way.
- Basically, you need to (1) present the student with a problem; (2) let the student find a solution, descrieing what he or she is doing; and (?) challenge the student, elici'ing specific details on what hes or she is doing and why. (Reys et al., 1984, p. 33)
It is helpful to have an exact record of what is said, so notes should be taken or a tape-recorder used. This maties it easier to analyze the studisnt's thinking later, perhaps morts carefully and from a different persperictive than when involved in the interview.
- Have students describe to a group how they solved a problem. Again, taking notes will be helpful.
Have one student teach another how to solve a problem. Observing this process not only can provide information on the students' thinking, but also on the teaching strategles they've absorbed!
- Make an Inventory or checklist. An inventory can be used to cheai on whether a student can solve a problem with a specifled strategy, or solve a problem using two or three
strategles. The goal is merely the answer: the emphasis is on finding out whether or not students can use the strategies.

Paper-and-pencil tests can also be used to assess the ability to solve problems. In recent years, several tests have been developed that attempt to assess various aspects of Polya's four-step model of problem solving:

- First, understand the problem.
- Second, devise a plan for solving it.
- Third, carry out your plan.
- Fourth, look back to examine the solution obtained. (Polya, 1973)

One test of this type whicin is widely used was developed by Wearne and Romberg (Wearne, 1977). It provides information about the child's mastery of the prerequisites of the problem-solving questions posed. To provide this additlonal inforination, each problemsolving question is preceded by two nther questions. One question assesses the child's understanding of the information contained in the item stem of the problem-solving question; a second quesition assesses the child's knowledge of an underlying concept of the problem-solving question.

Schoen and Oehmke (1980) reported on the development of the lowa Problem Solving Test. The goal was to "produce an easily administered tes: that provides information abost the problem-solving subskills that is highly correlated with data from individual interview settings" (p. 218). Three scores are provided for each studer:t, dealing with understanding problems, applying the solution strategies chosen, and looking back at the solution.

Sample Items are Included for each subtest; for Instance, this is the sampie Item for "looking back", which requires the student to identlfy provlems that can be solved in the same way as a glven problem, to determine the effect of varying the conditions in a given problem, or to evaluate a given solution 8 strategy.

Shelley has 75 marbles, which is 11 more than twice as many as Karen has. To find how many marbles Karen has, Shelley added $75+11$ and got 88. She then sald Karen has 43 marbles. Is Shelley right?

1) Ye8.
2) No. She ehould have multiplled 88×2 and got 172.
3) iso. She should have subtracted 75-11 = 64. Then 32 ls the right answer.
4) No. She should have multiplled $11 \times 2=22$. Then $75-22=53$ 18 the right answer.

A somewhat similar test has recently been developed by Hofmann (1966). In. stead of developing three subtests which cluster items of a particular type, she clustered items assessing foui stages of the problem.solving process read, select a stritegy, solve, and review and extend - with each problem. An liem from her pool of 200 items being verified is:

A pirate frund a treasure chest containing silver coins. Hie buried half of them and gave halif of the remaining coins to his mother. If he was left with 4500 coins, which he put in a black sack, how many were in the treasure chest that he found?

1) To solve this problem, you need to know that the:
a) treasure chest had no gold coins.
b) black sack had half of the original coins.
c) pirate buried more coins than he gave his mother
d) number of coins the pirate found was less than 5000.
2) To solve this problem, you would most likely:
a) start with the number of coins in the pirate's black sack and then work backwards.
b) draw a picture of a treasure chest.
c) pretend the pirate had fewer coins.
d) guess a number and then check to see if it is correct.
3) The number of coins in the treasure chest when the pirate found it was:
a) less than 5000 .
b) more than 5000 but less than 9000.
c) exactly 9000 .
d) more than 9000 .
4) After solving the problem, you know that the pirate gave his mother:
a) $1 / 2$ of the coins in the chest.
b) $1 / 3$ of the coins in the chest.
c) $1 / 4$ of the coins in the chest.
d) $1 / 5$ of the coins in the chest.

Perhaps it is"apparent that the type of problems used by Schoen and Oehmke and by Hofmann differ. The problem with the marbles is somewhat similar to Items found In many textbooks, while the problem of the pirate and the coins is nonroutine. The type of problem must be consldered when selecting a test, for the test must assess what has been taught. Results of Mofmann's iest would probably not be comparable for students who had had experlence with nonroutine problems and those who lacked such experience:

The need to match test and curriculum has been emphaslzed by several
analyses. Knifong (1980), for instance, found considerable variation in computational procedures and in difficulty level among the word problem sections of eight standiard achievement tests for grade 6. Some problem-solving objecives on the North Carolina Minimuril Competency Test had little coverage in the two textbook series which were analyzed (and widely used in North Carolina schools), according to Rogers (1981). And in a detailed analysis of the content of four textbooks and five tiosts for grade 4, Freeman et al. (1983) reported that:

- 6 topics were in all textbooks and tests;
- 3 topics were in books but not tests;
- 3 topics were on tests, with limited attention in books;
- 10 topics were in a!! jooks, some tests; and
- 385 topics were 'covered' by a single textbook or a single test!
Thus, it is clearly both important and necessary to assure that what is tested is being taught.

One further comment about the development of muitiple-choice tests should be made. In addition to developing tests which assess the problemsolving steps or the use of strategies, it is also possible to develop tests to assess particular understanding about she mathematical concepts involved in

ERIC CLEARINGHOUSE FOR SCIENCE, MATHEMATICS AND ENVIRONMENTAL EDUCATION
1200 Chambers Raoad
Columbus, Onio 43212
A JOINT PROJECT OF THE OFFICE OF EDUCATIONAL RESEARCH AND IMPROVEMENT and THE OHIO STATE UNIVERSITY

This newsletter was prepared pursuant to a contract with the Office of Educational Research and Improvement, U.S. Department of Education. Contractors undertaking such projects under government sponsorship are encouraged to express freely their judgment in professional and technical matters. Points of view or opinions, however, do not necessarily represent the official views or opinions of the Office of Educational Research and Improvement.

Patricia E. Blcsser

Bulletin Editor
the problem (acknowledging that some would tcrm this "understanciing"). Dne such liem is:

100 is multiplied by a number smaller than 1.
The answer has to be:
a) greater than 100
b) less than 100
c) a fraction
d) 0

Items can also be developed to assess such problem-solving skills as:

- identifying needed informatinn from extraneous information
- ostimating answers
- recognizing a reasonable answer
- making valid conclusions from tlie information given
- ... and so on through the list of skills students should know.
Once again, the emphasis is on matching what is evaluated with what needs to be evaluated.

Concluding Comment

In several different ways, this bulletin has attempted to promote awareness that there are many methods that should be used in inathematics class. rooms to evaluate the effectiveness of instruction. If we are to change percep. tions about mathematice, this may be imperative. The Mathematical Sciences Education Board believes that it is. The approach the Board is taking of con8ldering curriculum, instruction, and evaluation may be the key to changing all three. Both assessment data and observations in classrcoms indicate the necessity of this.

REFERENCES

Freeman, Donald J., Therese M. Kuhs, Andrew C. Porter, Robert E. Floden, William H. Schmidt, and John R. Schwille. "Do Textbooks and Tests Define a National Curriculuin ia Elementary School Mathematics?" Elementary School Journal 83: 501-513; May, 1983.
Gronlund, Norman E. Measurement and Evaluation in Teaching. New York: hlacmillan, 1984.
Mofmann, Roseanne. "Developtient of a Test on Problem Solving: itern Posi." Work in progress on doctora! dissertalion, Temple University, 1986.
Knifong, J. Dan. "Computätional Requirements of Standardized Word Problem Tests." Journal for Research in Mathematics Education 11: 3-9; January, 1980.
Mathematical Sciences Education Board. Washington: MSEB, October, 1986. (a)

Mathematical Sciences Education Board. Study Design: The Impact of Testing on Mathematics Education. Washington: MSEB, October, 1986. (b)

National Assessment of Educational Progress. The Third Natioizal Mathematics Assessment: Results, Tiends and Issues. Report No. 13-MA-01. Denver: National Ascessmeni of Educational Progress, fipril, 1983.
National Council of Teachers of Mathematics. An Agenda for Action: Recommendations for School Mathemiatics of the 1980s. Peston, VA: National Council of Teachers of Mathematics, 1980.
Reys, Robert E., Marilyn N. Suydam, and Mary M. Lindquist. Helping Children Learn Mathematics. Englewood Cliffs, NJ: Prentice-Hall, 1984.
Rogers, Barbara D. "North Caroling's Minimum Competency Testing Program and Mathematics Textbooks." (Unpubiished doctoral dissertation, Duke University, 1981.) Dissertation Abstracts International 42A: 2061; November, 1981.
Schoen, Marold L. and Theresa Oehmke. "A New Approach to the Measurement of Problem-Solvin's Skills." In Problem Solving in School Mathematics (edited by Stephen Krulik and Robert E. Reys). 1980 Yearbook. Reston, VA: National Council of 'Teachers of Mathematics, 1980. Pp. 21ड-227.
Second Inteinational Study of Mathematics. Second Study of Mathe matics: Summary Report, United States Champaign, 11.: Stipes Publishing Co., Junuary, 1885.
Suydam, Marllyn N. Assessing Achievement Across the States: Mathematical Strengths and Weaknesses. Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education, December 1984.

ERIC Document Repretuction No. ED 255356.
Suydam, Marilyn N. Evaluation in the Mathematics Classroom: From What and Why to How and Where (Revised ïdition). Columbus, OH: ERIC Clear. inghouse for Science, Mathematics, and Environmental Education, December, 1986. ERIC Document Reproduction No. SE 047593.
Virginia Council of Teachers of Mathematics. Mathematics Assessment for the Classroom Teacher. Charlottesville, VA: 1983. ERIC Document Reproduction No. SE 0.46813.
Wearne, Diana C. "Development of a Test of Mathematical Problem Solving Which Yields a Comprehension, Application, and Problem Solving Score." (Uripublished doctoral dissertation, The University of WisconsinMadison. 1976.) Dissertation Abstracts International 37A: 6328-6329; April, 1977.

Prepared by:
Marilyn N. Suydam Associate Director, Mathematics Education

[^0]:

