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Ohlsson 1 Tutoring Principles

ABSTRACT

Research on intelligent tutoring systems is discussed from the point of view of providing
moment-by-moment adaptation of both content and form of instruction to the changing cognitive
needs of the individual learner. The Implications of this goal for cognitive diagnosis,
subject-matter analysis, teaching tactics, and teaching otratégiea are analyzed. The results of
the analyses are stated in the form of principles about intelligent tutoring. A major coﬂcluslon is
that a computer tutor, in order to provide adaptive instruction, must have a strategy which
translates its tutorial goals into teaching actions, and that, as a consequence, research on teaching

strategies is central to the construction of intelligent tuioring systems.
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Introduction

Proponents of individualized instruction, or, as it Is sometimes calied, adaptive education
(Glaszz, 1976, Wang & Walberg, 1685), have sought to tallor instruction to such characteristics of
the student as initial competence, educational goal, learning style, and, most often, learning rate,
in recognition of the fact that interindividual differences in cognition implies that different
learners need different instruction. Neither the history (Grinder & Nelsen, 1985) nor the current

state (Bangert, Kulik, & Kulik, 1983) of such efforts are encouraging.

The birth of the computer tutor alters this situation drastically. The computer offers the
potential for adapting instruction to the student at a finer-grain level than the one which
conccrned earlier generations of educational researchers. First, instead of adapting to global
traits such as learning styie, the computer tutor can, in principle, be prograrnmed to adapt to the
student dynamically, during ongoirg instruction, at each moment in time providing the kind of
instruction that will be most beneficial to the student at that time. Said differently, the
computer tutor takes a longitudinal, rather than cross-sectional, perspective, focussing on the
fiuctuating cognitive needs of a single learner over time, rather than on stable interindividual
differences. Second, and even more important, instead of adapting to content-free characterlstics
of the learner such as learning ratt'a, the computer can, in principle, be programmed to adapt both
the content and the form of Instruction to the student’s understanding of the subject matter.
The computer can be programmed, or so we hope, to generate exactiy that question, explanation,
example, counter-example, practice problem, illustration, activity, or demonstration which will be

most helpful to the learner. It is the task of providing dynamic ad#ptatlon of content and form

- which Is the challange and the promise of computerized instruction.!

l!n this article, the terms ®teaching,® ®tutoring,® and ®instruction® will be used s synonyms.
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Ohlsson 3 Tutoring Principles

When we envisage computer tutors helping out in the classroom, it is easy to be trapped into
thinking in terms of particular tutors. If we want good tutoring in, say, arithmetic, what more is
needed, we might ask, than a good arithmetic tutor? Th‘is perspective forgets, in the concretion
of the vision, that the task of tutoring is forever ch_anglng. School systems undergo reforms,
student populations follow the rhythms of the surrounding society, topics are added to, or deleted
from, the curriculum, courses are moved from one age-level to another, and course contents vary
from textbook to textbook, from classroom to classroom. What we need, then, are not particular,
quickly outdated, computer tutors but the know-how of tutor construction. As everyone knows
who Lave written a large computer program, it is possible to prcceed by accumulating tricks and
patches, ending up with a system that is so irregular that, in a sense, one cannot say why it
works. But even a pedagogically successful tutor has limited interest if it leaves system designers
without any information about how to design the mezt system. The output of research into
computer tutoring should consist, not of particular systems, but of principles which allow
specifications in terms of course content atd student characteristics to be turned into effective
tutors. The main points of the present article will be formulated as informal principles of
intelligent tutoring; some of these principles summarize beliets which are commonly held in the

field, others indicate new directions.

In summary, the malﬁ promise of computer tutors, I claim, lies in their potential for moment-
by-moment adéptatlon of instructional content and form to the changing cognitive needs of the
individual learner, and our task, as I see it, is to find principles which can guide the construction
of tutors which fulfill that promise. My main goal in the following is to clarify the implications of
this view for intelligent tutoring research. I break the discussion into four sections, dealing with
cognitive diagnosis, subject matter analysis, teaching tactics, and teaching strategies,
respectively. In each section, I propose one or more principles which, I argue, constitute minimal

criteria of adequacy for a tutor which is to provide dynamically adaptive instruction. My
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secondary goal Is to polnt out some often overlooked relatlons between different strands of
research relevant to the construction of tutoring systems. I end with a summary of the main

argument.

Cognitive Diagnosis

If the purpose of intelligent tutoring systems, their rasson etre, Is to provide adaptive
instruction, then such a system must know something about the cognitive state of the student,
what he knows and how he thinks, and preferably how he learns. I will call the process of
inferring a person’s cognitive state from his performance for cognitive diagnosis.?2 To the extent
that the major failure of current educational practices is the fallure to provide adaptive
instruction, then the limits on the sensitivity and resolving power of our diagnostic procedures are
also the limits on the amount of pedagogical progress attainable through intelligent tutoring

syst.ems.‘ Therefore, we should look carefully at current methods for cognitive diagnosis.

Research on cognitive dlagnosis has been conducted from several viewpoints. Educators have
developed tests for what they call assessment or normatlve diagnosis (Ginsburg, 1983; Nitko, in
press), and there are materials avallable for diagnostic teaching, materials which emphasize the
diagnosis of particular kinds of errors (e. g., Hill, 1980). The problem of describing the mental
state of single individuals has also been addressed by psychologists, most notably developmental
psychologists (e. g., Smedslund, 1969), even though the malnstream of academic psychology has
been more interested in finding regularitles across individuals. Information-processing psychology

has contributed new methods for inferring the mental states and processes of single individuals, as

2ln research on tutoring systems, the term *student modelling® is often used, but 1 will avoid it, since it is unnecessarily
restrictive. Students are pot the only humao beings who can be diagnosed, and a model is not the only possible kind of
disgnosie.

3An immediate corollary i that commercially available educational software which, as & rule, do not have any disgoostic
capabilities, will not, in fact, produce more learning than traditionsl teaching materials.

8
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well as a new formal rigor (Newell .& Simon, 1972; Willlams & Hollan, 1981). Research on
cognitive diagnosis from the point of view of intelligent tutoring systems goes one step further in
that it aims for computer implemented diagnostic methods (e. g., Burton, 1982). This exciting
development, originating, somewhat paradoxically, from within computer science, adds potential

to this methodological tradition, which so far has not held center stage in psychological research.

What kind of diagnostics do we need in a computer tutor which Is to provide adaptlve'
education? In order to approach this question, vw: need a framework within which various types of
diagnosis can be comnpared. Ia the next section, I review some types of diagnostic methods. i
propose to discuss them in terms of (a) the kinds of empirical observations they operate upon, as
well as the kinds of Anowledge structures they need to carry out the diagnosis (I. e., their
"inputs"), (b) the procedures by which they infer the cognitive state of the student, and (¢) the
types of descriptions they generate (i. e., their "outputs”). In addition, we ought to consider (d)
the theoretical commitments of the various methods, and (e) the teaching actions they are
intended to support. Of these four categories, the type of description generated by the diagnostic
system is thg more fundamental. There are characteristic ways of deriving each type of
description, as well as typical ways of using it in instruction. Also, the theoretical commitments
of a diagnostic method usually reside in the type of description it generates (rather than, say, in
the procedure by which it is.generated). The review in the next section has four parts,
corresponding to four types of diagnostic descriptions: performance measures, overlays, error
descriptions, and simulations. In a later section, 1 describe a new perspective on diagnosis which,

I believe, is more relevant for instruction.

Before getting started, we need to be clear about terminology. In the following, "error” is
used as a generic term for misconceptions, false beliefs, procedural bugs, etc. An error resides in
the head, as it were. The observable expression of the error is referred to as an "incorrect

answer,” or “incorrect performance."

." A 9
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VARIETIES OF COGNITIVE DIAGNOSIS

Per formance measures

The simplest way to describe a psison in relation to an area of knowledge Is to measure
how successfully he solves problems in that area. Performance measures appear in educational
contexts under a variety of labels, such as "test scores," “examination results," "assessment

levels," etc. Computation of such a measure requires nothing but the student’s answers - a type

. of data which is readily available in most contexts - and some statistical aggregation procedure.

It may seem as if a performance level, being an obsstvational construct, Is blessed with theoretical
innocence. However, use of the performance level as a basis for instruction assumes that we need
not know what knowledge a student has acquired in order to tutor him effectively, only how
much. Since such a measure is a global representation of the student, it can only support global
actions on the part of the tutor. For instance, a tutor can upgrade or downgrade the difficulty of
practice items, it can speed up or slow down a presentation, it can provide either terse or full
explanations, etc. But performance measures do not, as one authority agrees (Glaser, in press),
provide the level of det,ﬁll necessary to decide what this student needs right now in order to learn

that concept, procedure, fact, or principle.4

Overlays

To provide dynamic adaptation of the content of instruction, we must move from a concern
with how much knowledge a student has to a concern with what he knows. Given an analysis of
the subject matter to be acquired, we can represent a student by the set of subject-matter units

he has mastered, for instance, the geometric theorems which he knows how to apply. Such a

4Some educators are thinking hard about how to use recent research results from cognitive psychology to construct more
informative educational tests (Glaser, in press; Nitko, in press), but such tests still belong to the future.

10



Ohlsson 7 Tut_orlng Principles

description is called an overlay model in the literature on intelligent tutoring systems (Carr &
Goldstein, 1977). The student Is represented as a network of tick-marks vhich, as it were, is laid
over the representation of the subject matter to show which parts of it he already knows. From
the overlay point of view, the student knows a subset of what a domain expert knows. Learning
Is the process of acquiring a progressively more complzt= subset of the expert’s knowledge units,
but different learners can acquire those urits in different oirders, so that two learners who have

roughly the same amount of knowledge can nevertheless know very different things.

Overlays are particularly natural models of students when the subject matter to be learned is
represented as a prerequiasite hicrarchy. In such hierarchies, which have great intuitive appeal in
mathematics and other problem-solving domains, each knowledge unit is broken down into its
components or prerequisites, e. g., addition and subtraction are prerequisites for iong division.
Prerequisite hierarchies have been investigated by educators and psychologists (e. g., Gagne, 1962;
Resnick, 1973; Resnick, Wang, & Kaplan, 1973) and have been re-invented by computer
scientists. They are used quite frequently in intelligent tutoring systems, without the kind of

empirical verification which educational researchers regard as necessary (Resnick & Wang, 1969).

The typicai procedure for inferring an overlay works by relating the student’s performance to
the prerequisite structure of the subject matter. If a student reliably succeeds on a particuiar
type of task, zhen he can be inferred to have acquired whatever knowledge items are prerequisites
for succeeding on that task. If he fails reliably, at least one of the prerequisites can be assumed to
be missing from his competence. Since the various knowledge items are needed in different
combinations for different problem types, one can puzzle out which items a student has mastered
by a judicial choice of problems. Sandra Marshall (1980; 1981) has worked out a precise theory
for how to compute an overlay model for a prerequisite hierarchy. The essence of her diagnostic
procedure Is to compute a probability distribution over the set of possible diagnoses, to revise

that distribution after each response from the student on the basis of Baysian decision theory,

11
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and to use statistical information theory for choosing maxitnally informatlve problems to present.
This kind of diagnosis is widely used In intelligent tutorlng systems, usually without the

mathematical sophistication introduced by Marshall.

Like the performance level, the overlay at first seems to be innocent of theoretical
cominitments. In fact, overlays make two assumptions whlch limit their usefulness for
instruction. A prerequisite hierarchy - or any other type of analysis - views the subject matter in
a particular way, from a particular vantage point. Since the overlay representation of the student
is parasitic on the representation of the subject matter, the overlay shows how far the student has
progressed in acquiring a particular vizw of the subject matter. However, rarely, If ever, is there
only one possible view, and, unfortunately, if the vlew used by the tutor Is not the vlew which the

student Is trying to attain, as it wére, then the overiay might be useless 8s a basis for instruction.

The second detrimental property of an overlay Iis that it assumes that a student is a subset of
an expert. The learner is seen as knowing the same things as an expert, only fewer of them. This
perspective Ignores the possibility of distorted knowledge. However, recent research into
arithmetic, algebra, and physics has revealed that different learners do not just differ in which
subset of the subject matter they have acquired, but also in how they misunderstand that part of
the subject-matter which they have not yet mastered (see below). There are no resources within

the overlay to represent this fact.

An overlay model, particularly when coupled with a prerequisite analysis of the knowledge
domalin, ¢an guide the decision of what topic to tﬁtor next: In general, the next topic should be
chosen from those subject-matter units which are not yet mastered, but which have all their
prerequisites ticked off as known. Thus, an overlay allows a tutor to solve the traditional
pedagogical problem of sequencing the subject matter, and, moreover, to solve it adaptively, for

each student, and dynamically, while instruction is happening.

12
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Error Deascriptions

The empirical evidence Is now overwhelming that learners do not only faii to acquire the
content presented to them during instruction, they aiso misrepresent it. Students acquire
erroneous procedures, false principles, and incorrect facts, both inside and outside school (e. g.,
Gentner & Stevens, 1983; VanLehn, 1983). The most spectacular progress in cognitive diagnosis
in the past years is the appearance of computerized diagnostic methods for identifying the errors
of individual learners. Such methods have so far been successful in a small number of knowledge
domains, most notably arithmetic (e. g., Burton, 1982), algebra (e. g., Sleeman, 1982), and

elementary programming (Johnson & Soloway, 1983; 1984; Soloway, Rubin, Wooif, Bonar, &

Johnson, 1982).

These diagnostic systems usually work with performance data, 1. &., the pattern of correct and
incorrect answers on a set of problems, or, in the case of programming, a singie answer. The
inferential procedure which is used in this type of diagnosis Is based on. an error library, i. e., a
list of possible errors. Given a particular student, it Is possible to compute which error (or
combination of errors) best account for the incorrect answers of that student. The basic
difficulties in constructing such systems are (a) to establish the error library, which is a labour-
intensive empirical undertaking, and (b) to invent methods which can compute the best-fitting

error combination efficiently enough to deliver a diagnosis in a reasonable time.

The basic idea of error identification through an error library has been significantly extended
in the PROUST system by Johnsqn and Soloway (1983; 1984), which takes a programming
problem, i. e., a specification of a program, an¢ a (typically incorrect) program as inputs, and
tries to understand the incorrect program. PROUST has several different knowledge structures

to draw upon, including an error library, a library of programming plans, knowledge of

13
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programmers’ goals, etc. Its inferential procedure attempts to develop a goal structure for the
problem which accounts for all the parts of the code in the observed program, using both correct,
and, If necessary, Incorrect programming plans as bridges between a particular goal
decomposition and the faulty code. PROUST delivers a hypothesis about the programmer’s
intentions, and about how he tried to realize them, i. e., it generates an account of how the faulty
program was created. Besides the programmer’s intentions in writing the program (the goal
hierarchy), the account also includes the domain-specific knowledge the programmer used (the
correct programming plans), and the mistakes he did (the errors that must be posited to make
the account complete). PROUST has been successful in diagnosing incorrect programs by novice

programiners.

The theoretical commitments of error identification systems hide in their descriptions of
errors. An error library reifies the errors, as it were, by making a decision as to what is a
primitive error and what Is a compound error. Furthermore, since errors are unavoidably
described as deviations from correct knowledge, error descriptions presuppose a particular
representation of the subject matter. Different analyses of the subject matter may result in

different error iibraries, and so in different diagnoses of particular students.

Thé pedagogical promise of an error descriptior is that it might enable remedsal snatruction.
Given knowledge of which particular error a student is suffering from, we should be able to help
him overcome it. However, deciding on the best remedy for a particular error is not a trivial
matter, and, in fact, error descriptions have not been used in many tutoring systems. The
approach taken by .At,t,lsha and Yazdani (1983; 1984) is to have the tutoring system type out a
prestored natural language description of an error. The same idea has been used in the tutors
constructed by John Anderson and his co-workers (Anderson, Boyle, & Reiser, 1985; Anderson,
Boyle, & Yost, 1985; Reiser, Anderson, & Farrell, 1985), with the extension that they link specific

errors with natural language templates containing variables which are filled with situation-

14
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specific information at the time they are output to the student. Reaching for the next level of
flexibility, Woolf and McDonald (1984) are designing a system to do remedial teaching through a
didactic dialogue. As we shall see in the section on teaching tactics, talklng to a student about

his error is not the only kind of remedial teaching.

Simulationas

A description of a student’s cognitive state can consist of a simulation model which performs
like him in the relevant knowledge domain. The main characteristic of such a representation is
that it is runnable, i. e., that it will generate behavior when applied to a task. The behavior is a
prediction of what the simulated person would do, If he solved the same task. With thlS kind of
representation, we can explain the student’s steps towards his answer to a problem, as well as the

answer itself.

The first systematic method for constructing simulation models was proposed by Newell and
Simon (1972). Their method takes think-aloud protocols as input, and the inferrence from data
to simulation model proceeds in three steps. First, the protocol is scanned for evidence
concerning the student’s® mental encoding of the task, as well as for the cognitive operations he s
applying to it. An encoding of a task and a set of operators together define a problem apace;
coﬁsequently. we call this the problem space approach to diagnosis (Ohisson & Langley, in press;
1985). Second, the sequential information in the protocol is used to construct the student's path
to solution. Third, problem-solving rules are invented which can generate the solution path. The
rule set is a model for the student’s performance on the relevant task. This is a very labour-
intensive diagnostic method. Early efforts to computerize it were not successful (Waterman &
Newell, 1972), because, one might guess, of the need for such a system to understand the

utterances in the think-aloud protocol, a task that was beyond the natural language capabilities

5'l‘he method was conceived in the context of basic researeh on buman problem-solving, but in keeping with the
terminology in the rest of this article, 1 will write about *students® rather than fsubjects.®

15
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of computers at the time.

Pat Langley and I have recently collaborated on a different effort to computerize the problem
space approach to cognitive diagnosis Langley, Ohlsson, & Sage, 1984; Ohlsson & Langley, in
press; 1985). We constructed a computer program which takes an answer as input, rather than a
think-aloud protocol, plus a problem space. The system searches the given problem space for a
path which leads to the observed (possibly Incorrect) answer, chosing between alternative paths
on the basis of psychological criterla. Like the PROUST systern discussed in the prevléus
subsectlon, our program creates an account of how the Incorrect answer was created. However,
our type of account - a solution path - is much simpler than the type of generated by account
used by PROUST. Once a path has been found, so-called machine learning methods can be
applied to it in order to generate problem-solving rules which will reproduce the observed answer.

Our program has successfully diagnosed a small set of subtraction errors.

The output from the problem space approach to diagnosis does not, in a sense, deseribe the
errors of the dlagnosed student. Rather, the method generates a procedure which performs the
relevant tasks in the same way as the student. Whether that procedure is to be classified as
correct,. or incorrect cannot be determined with reference to the way in which it was generated.-
The diagnostic method does not make use of the concept of "correctness,” nor of an error library.
Errors are smplicitly described in the way In which the rules are stated, rather than explicitly

described, as in the error identification methods described prevlously.°

It is interesting to contrast our diagnostic method, with the model-tracing method used by

John Anderson and his co-workers (Anderson, Boyle, & Yoost, 1985; Reiser, Anderson, & Farrell,

°The explicit description of the error can be recovered by comparing the rules generated by the disgnostic procedure with
the rules for correct performance. However, this would introduce a difficulty which is now familiar: wAicA representation of
correct performance should the student’s rules be compared to? Different representations of the correet procedure will lead
to different characterizations of the differences. 1
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1985). The model-tracing method operates in the context of intelligent tutoring systems which
monitor students’ problem- solving activity. In tkat context, the diagnostic component need not
compute the student’s solution path, because it can observe what the student does, step by step.
Also, the diagnostic system has a knowledge base consisting of sevcral hundred problem-sblvlng
rules which encode both correct knowiedge about the_doma!n and typical errors. The system
builds a model of the student by locating, for each problem-solving step he takes, which rule (or
rules) corresponds to that step. By operating in a context where the solution path Is observable
and by having a largé rule library, model-tracing diagnosis essentially side-steps the diagnostic
problem that the problem space approach tries to soive. There is a lesson to be learned here with

respect to intelligent tutoring which wiil be spelied out in detail in the next section.

The product of a model-tracing diagnosis Is similar to an overlay in that it consists of a
selection of knowiedge units from a pre-established set. However, since the rule base can include
incorrect as well as correct rules, the model-tracing diagnosis can represent both the student's
knowledge and his errors. Also, since the rule base can contain alternative versions of the correct
problem-solving ruies, model-tracing diagnosis can model a learner with respect to several
aiternative versions of the correct problem-solving skill. Finally, since the knowledge units are

executable ruies, the rule set which represents the student is, in prlnclple’, a runnabie modeli.

The theoretical commitments of simulations are more visible than the commitments of the
other types of descriptions discussed. A simulation presupposes a performance theory. It must
specify the mental representation of both declarative and procedurai knowiedge, it must assume
something about memory stores and their propertles, it must take a stand on whether human
.cosnlt.lon is goal driven or not, and, if so, how goa!s are managed, it must run under some

particular cognitive architecture, etc. The problem space approach to disgnosis Is based on the

-

1Andemn snd co-workers do not make any strong clsims about the runnability of their student models.

PR 3



Ohlsson 14 Tutoring Principles

theory that thinking consists of heuristic search through a problem space (Neweil & Simon, 1972).
The model-tracing methodology Is strongly influenced by the general idea of heuristic search, but
builds in its specifics on the ACT* theory (Anderson, 1983). Other performance theories might

lead «0 yet other diagnostic methods.

A simuiation model is a powerful description. Intuitiveiy, we would expect such a description
to buy us dramatic advantages in Iinstruction, particularly with respect to Iindividualized
instruction. It is therefore suprising to realize that it is not clear what one can do with a
simulation of the student that one cannot do without it. Planning and designing instruction
which is maximaliy useful for a student is not e simpie task, even with the help of a powerful

description of that student.

IMPROVING COGNITIVE DIAGNOSIS

The different types of cognitive diagnosis dlscussed in the previous section form a regular
progression towards more and more powerful descriptions of the student. A performance measure
indicates the proportion of the subject matter which the student has mastered; an overiay model
specmgs which portion, and thereby, indirectly, whkich knowledge units the student still needs to
learn. Error descriptions add information about what we might call negative subject matter, i. e.,
the distorted and twisted knowledge units which the student needs to umlearn. Finally,
simulations enable us to run the representation of the student, and thereby to make detailed

predictions about his performance.

Although they differ with respect to completeness of description, all the diagnostic systems
reviewed in the last section, with the exception of the model-tracing method, share 3 common
perspective. They are based on a view of diagnosis as "research in miniature,” to use Ginsburg's

(1983) happy phrase. The task of diagnosis is, according to this perspective, to explain, or

18
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account for, a set of observations (performances). These methods (again, with the exception of
inodel tracing) do not take into account how the diagnosis they produce is going to be used. But
we need to know what the purpose of diagnosis Is in order to decide how powerful a diagnostic

method we shouid incorporate into our tutoring systems.

Let us consider the decision situation of a tutor, and what roie the diagnostic component can
play in it. A computer tutor is usuaily able to present practice problems and to provide feed-
back; it might be abie to demonstrate correct soiutions, to provide explanations, give hints, ask
questions, etc. But no matter now sophisticated and versatiie the tutoring system is, it wiil only
have a finite number of actions to choose from, and its only task, one might ciaim, Is to seiect one
of those actions as the next thing to do. (This is a fair description of how some tutoring systems
work.) The tutor’s oniy use of the diagnosis, it seems, is to help select that next action. This
perspective tempts us to view the diagnostic component of the tutor as a mechanism for mapping
tutorial situations onto instructional actlons, 1. e., as imposing an equlvalence-classlflcathn on the
set of tutorial situations, one class containing all situations in which action A (e. 8., explaining) is
Pedagogically superior, another class containing ali situations in which action B (e g.,
demonstrating), is superior, etc. This kind of diagnosis seems ripe and ready to be attacked with

the well-estabiished methodology of expert systems (e. g., Waterman, 1986).

Before failing for the temptation to develop this perspective further, we shouid remember that
inteiligent teaching does not consist of sequences of unrelated actions. A tutoring effort is
structured; it coordinates the individuai teaching actions, subsumes them under a plan for how to
transmit the relevant knowledge. The moment-to-moment behavior of the tutor originate in the
execution of that plan, rather than in successive decisions about what to do next. If the student
model is to be usefui, it has to contribute in some way to the construction and execution of
instructional plans. This perspective is sufficiently different from the idea of “research in

mlnlature"' to be stated as a principle:

‘ 19
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The Principle of Pragmatic Diagnosis. The purpose of the diasgnostic component
of an intelligent tutoring system is to support the execution of its instructional plan.

Considering diagnosis from this point of view, we are lead to ask what function cognitive
diagnosis could have in the construction and execution of instructional plans. The crucial link
between an instructional plan and a student model Is, I propose, that instructional plans contain
(implicit) ezpectaisons about what the student will do in response to the tutor's actions. For

instance, consider the following simple, two-step plan for teaching the solution to problem Y:

“first review problem X (e. g., addition of proper fractions), then introduce problem Y (e. g.,

addition of mixed fractions), and then show how the solution to X can be applied to Y as well."

. This plan implicitly presupposes that the student knows how to solve problem X correctly, so

that X can be used as a pedagogical resource or lever in the teaching of Y. If this expectation is
viojated - the student fails to solve X - then the plan becomes irrelevant and has to be revised.

Every instructional plan, I believe, contains implicit expectations about the student, expectations

which, if violated, render the plan irrelevant.

This observation suggests that one function of cognitive diagnosis in tutoring is to test the

viability of the expectations underlying the tutcr’s instructional plan.

The Principle of Expectation Testing. The function of the diagnostic component
of an intelligent tutoring system is to test whether the expectations presupposed by the
tutor’s current plan are consistent with its current model of the student.

One procedure for making such a test is to predict, from the current model of the student, how
he will respond to the tutor’s “actlons, and then compare the predictions with the expectations. It
they diverge, then the plan is not viable vis-a-vie current knowledge of the student. The plan
should then be revised, and the expectations of the new plan tested, etc., until a viable plan is
found. If it turns out that the actual (as opposed to the predicted) behavior of the student does

not conform to the expectations/predictions, then, of course, both the instructional plan and the

st Aent model have to be revised. This argument speaks strongly in favor of runnable student ..
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models.

In summary, a number of diagnostic methods exist which generate more or less powerful
representations of the cognitive state of the student. They typically perform the task of diagnosis
independently of the pragmatics of teaching. By changing the diagnostic question from "What
goes on in the head of the student?™ to "What does the tutor need to know in order to teach?"
we turn our attention to the nature of teaching strategies. A cruclal property of such strategles is
that they contain implicit expectations about student behavior, which, in turn, suggests that one
important function for cognitive diagnosis in fnstruction is to help decide whether those

expectations are viable or not.

Subject-Matter Analysis

Teaching, as Wenger (1985) reminds us, is an act of knowledge communication, even when it
is carried out by an artifact. Its goal is to transmit a particular subject matter to the student.
We need to ask what the implications of computer tutoring and adaptive instruction are for
representations of subject-matter. 1 will argue (a) that subject-matter analysis is important
because an adaptive computer tutor needs to make a distinction between the subject matter itself
and its surface manifestations, and (b) that a central obstacle to intelligent tutoring is the fact

that different learners may acquire different representations of the target knowledge.

In our discussion of coghitlve dliagnosis, we noticed that three different communities of
scholars have been involved in research on diagaosls, namely educators, psychologlsts, and
computer scientists. With respect to subject-matter analysis, we would have to mention those
three, and t_hen.a._cllq that domain experts often engage in such analyses as well, particularly in

areas like mathematics and physics. But commonalities in goals, methods, and results are often
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obscured by differences in terminology. What is known as "subject-matter analysis" among
educators often goes under the name "task analysis" among pSychologlsts (e. g., Gardner, 1985); a
mathematician might prefer the term “didactic analysis" (e. g., Steiner, 1969), while a computer
scientist is certain to use “knowledge representation" (e. g., Brachman & Levesque, 1985). The
term "subject-matter analysis® is used here without any ulterior motive; either term could have

served equally well.

WHY IS SUBJECT-MATTER ANALYSIS IMPORTANT?

The traditional educational task of finding the right representation of the subject matter has
been taken up with a vengeance by the community of scholars involved in inteliigent tutoring
systems research. A glance at recent research (e. g., Sleeman & Brown, 1982) shows cognitive
scientists hard at work giving their artificial tutors explicit representations of the relevant subject
matter. Indeed, Wenger (1985), in his comprehensive review, argues that the major research
questions addressed in inteiligent tutoring research are issues of knowledge representation, and
even draws the line between the prehistory and the history of inteiligent tutoring systems at the

moment when the tutors began to acquire an internal representation of the subject matter.

From the point of view of individualized instruction, the lmi:ortance of subject-matter analysis
Is not immediately obvious. The knowledge to be taught is that which remains the same across
students. Like gasoline, a substance which can drive many different kinds of vehicies without
adapting itself to them, the content of a course may drive the learning of many different
students, while remaining the same course content. If so, how does subject-matter analysis

contribute to individualized instruction, if at ail?

We can approach this question through a distinction between a knowledge item, a piece of

subject matter, and the form in which it is presented to the student. For instance, consider a
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mathematical theorem, such as the familiar Cancellation Law for fractions:

This plece of kncwledge can be presented in at least the following formats: (a) as a principle (e.
8., "A fraction in which the pnumerator and the denomlnator share a factor ... "), (b) as a
mathematlcal formula (e. g., the one above), (¢) as an algorithm (e. g., "First find the factors of
the numerator, then ... ."), (d) as a demonstration of how to execute the algorithm on a
particular problem, (¢) as a deinonstration of the algorithm with respect to some illustrative
materials (e. g., Dienes blocks), (f) as a collection of solved examples in which the algorithm has
been applied, and (g) as a proof that the theorem Is correct. The range of possible presentation

formats is no more restricted for other types of knowledge units.

A student struggling to learn the Cancellation Law may benefit most from one or the other of
these presentations, depending upon the nature of the obstacle to hls learning. A justification
may enhance memory for the theorem; a demonstration might facilitate its application. It follows
that a tutor, to be maximally helpful, must generate .t.he presentation of the theorem on the spur
of the moment, in response to the cognitive needs of the student at that moment. This implies, In

turn, that the tutor must possess a core representation of the theorem, a deep structure, as it

~ were, which Is independent of the different preseptation formats, but from which the specific

presentations, the surface structures, can be derived. There is thus a strong connection between
indlvidualized Instructlon, on the one hand, and the separation between content and form,

between subject matter and its tutorlal shape, on the other.

The Principle of Generative Interfaces. In order to provide adaptive instruction,
a tutor must distinguish between the subject matter and the formats in which it can be
presented, and be able to generate different presentations of each subject-matter unit
as needed, at each moment in time choosing the form which is most beneficial for the
learner at that moment.
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The above principle spells out the essential difference between intelligent tutoring systems and
other types of teaching materials. The printed page, the audiotape, and the movie are all equally
incapable, in principle, of separating content from form. Older, so-called frame-based CAI
systems also failed to separate the two, and so constituted a very limited advance upon
traditional teaching materials, if any at all.® However, the computer has the potential to teach
the way a good human tutor would teach, adapting the form of his presentation to the individual
student by applying generative procedures, guided by diagnostic information, to a deep

representation of the subject matter.

We can now understand why designers of intelligent tutoring systems pay so much attention
to subjcct-matter analysis. Implementing a presentation-neutral representation of domain
knowledge, plus the generative mechanism which is to produce the surface presentations of it,
usually requires considerable clarification and extension of existing representations of the subject
matter. The reader is referred to the retrospective report by Brown, Burton, and DeKleer, 1882;
(particularly pp. 244-279) on the SOPHIE trouble-shooting tutor for an illustration of just how
much thinking may be needed to implement a so-called domain expert. In short, the Principle of
Generative Interfaces is not 8 hew insight; instead, it explains why the field of intelligent tutoring
concerns itself almost exclusively with intelligence, but hardly at all with tutoring: The need for
a deep representation of the subject. matter puts the issue of knowledge representation at the top

of the tutoring agenda, and the difficulty of that issue ensures that it stays there.

THE PROBLEM OF ALTERNATIVE LEARNING TARGETS

A computer tutor typically embodies a representation of the subject matter, a domain expert.

" The target knowledge has only one representation inside the ‘tutoring system. Considering the

81\ is worsh noticing that most commercial educational software is of the frame-based variety.
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effort required to implement even a single domain expert, this is not surprising.

But there are ro canonical representations of knowledge. Any knowledge domain can be seen
from several different points of view, each view showing a different structure, a different set of
parts, differently related. This claim, however broad and blunt - almost impolite - it may appear
when laid out in print, is, I believe, uncontroversial. In fact, the evidence for it is so plentiful
that we do not notice it, like the fish in the sea who never thinks about water. For instance,
empirical studies of expertise regularly show that human experts differ in their problem solutions
(e. g., Prietula & Marchak, 1985); at the other end of the scale, studies of young children tend to
show that they invent a variety of strategies even for simple tasks, (e.g., Svenson & Hedenborg,
1980; Young, 1976). As a second instance, consider rational analyses of thoroughly codified
knowledge domains such as the arithmetic of rational numbers. The traditional mathematical
treatment by Thurstone (1958) is hard to relate to the didactic analysis by Steiner (1969), which,
in turn, does not seem to have much in common with the informal, but probing, analyses by
Kleren (1976; 1980) - and yet, they are all experts trying to express the meaning of, for instance,
“two-thirds." In short, the process of acquiring a particular subject matter does not converge on
a particular representation of that subject matter. This fact has such important implications for

instruction that it should be stated as a principle.

The Principle of Non-Equifinality of Learning. The state of knowing ‘the
subject matter does not correspond to a single, well-defined cognitive state. The target
knowledge can always be represented In different ways, from different perspectives;

hence, the process of acquiring the subject matter have many different, equally valid,
end states,

The non-equifinality of learning causes severe difficulties for intelligent tutoring, some of
which have been discussed by Burton, 1982; (see in particular pp. 84-95) in connection with the
WEST tutor. As discussed in the section on diagnosis, iIf the representation of the student Is

parasitic on the representation of the subject matter, as in the case of overlay models, then the
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diagnosis interprets the student in terms of how far he has developed toward acquiring a
particular view of the subject matter, which may or may not be a useful representation of him.
The corresponding problem occurs on the output side of the tutor: Which analysis of the subject
matter should be used in deciding which topic to tutor next? Which breakdown of the subject

matter into topics is relevant for the particular student?

One partial solution to the non-equifinality problem Is to implement more than one
representation of the subject matter, and allow the tutor to use é,ll of them both when trying to
understand the student and when making instructional decisions. This solution might work in
domains where a small number of different representations of the target knowledge cover a large
proportion of students. For instance, in the domain of subtraction, there might be only a small
number of psychologically plausible encodings of the correct skill, and a computer tutor could try
to judge which of these encodings a particular student is en route toward, and base its instruction
on that hypothesis. The solution to implement more than one represenation of the domain
knowledge might also work well in domains where the knowledge can be expressed in very
modular units, e. g., production rules. The representation of the domain could in this case consist
of a highly redundant rule set, with several different versions of each correct rule. A particular
representation of the subject matter can then be created on-line, as it were, by selecting a subset
of rules. This is the solution used in the tutoring systems by John Anderson and his co-workers
(Anderson, Boyle, & Yost, 1985; Reiser, Anderson, & Farrell, 1085). Its success depends upon the

procedure used for selecting the right subset of rules.

An entirely different approach to the obstacles caused by non-equifinaity in learning is to try
to minlmize the effects of the subject- matter representation on the tutcring effort, an idea which
goes at right angles to the current direction ¢f the field of computer tutoring, where most
researchers seem intent on getting as much out of their domain experts as possible, once

implemented. It is unclear to what extent a tutor can be made Independent of Its representation
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of the subject matter. It seems possible to design a diagnostic method which is not parasitic on
the subject matter by using data-driven techniques. But it does not seem possible to design a
tutoring strategy which can choose which topic to teach next without accessing a representation

of the subject matter; indeed, such an idea seems self-contradictory.

However, one might imagine that we could program a general notion of tmprovement of
knowledge. Such 2 notion would make it possible to construct a tutor which dispenses with a
representation of the target knowledge, but bases its tutoring on a represenation of t,l_xe student’s
snitial knowledge instead. Such a tutor would try to mal;e the student improve his knowledge, in
any direction, applying its general criterion of improvement to guide the student's iearning, not
caring, as it were, where the student is going, as long as he Is going somewhere. Whether it is

possible to define a notion of knowiedge improvement which is content-free enough to support

such tutoring we do not know.

In short, the non-equifinality of learning poses serious problems in the construction of

intelligent t,u't,orlng systems. It affects central aspects like diagnosis of the student and

pedagogicai decision making. No principled solution to this problem has been proposed yet.

Teaching Tactica

Consider a pianist playing a complicated piece, score spread out in from of him. In a senée,
the player s trying to follow the score. He has a number of actions to choose from - all the
key-presses, with the appropriate variations - and for each symbol in the score, each note, there is
one actlon, one key-press, which is ths right one; that single note is played in the context of the
key, the tempo, and the adjacent mote-. :‘onsider how much more difficult it would be to play
the piano, if the player were guided by a screcr, on which the notes were projected one at a time,

at the rate at which the plece should be pleyed. The situatlon of the one-on-one tutor is similar.
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The tutor is foliowing the learner, trying to respond to each action or performance or utterance

with the right tutoriai action.

Pushing the analogy one step further, consider what wouid happen if we deprived the plano
piayer of the lower and the upper octaves, and perhaps of every other key in between as well.
With such a narrow range of keys the piayer could not aiways folicw the score. There would be
many pieces of music that he couid not piay on such a mutiiated instrument. As with playing the
piano, so with one-on-one tutoring. If the tutor has a itmited range of actions to choose from, it
cannot adapt its teaching to the cognitive needs of the student. Where one student needs a
definition, another needs an expianation, whiie a third student might learn better from a practice

problem. This idea is simple but important, and so Is expressed in the following principie.

The Principle of Versatile Output. In order to provide adaptive Instruction, a
tutor must have a wide range of instructional actions to choose from.

An obvious source of information about useful instructional actions is the performance of
teachers, in particular, expert teachers. (The computer tutor Is not limited to the actions used by
human teachers, but neither is there any reason to beiieve that it can make do with a narrower
range of actions.) Inspired by Leinhardt and Greeno's (in press) careful analysis of the skiil of

teaching, let us think through the major types of teaching tactics needed for adaptive instruction.

In order to keep the following remarks within reasonable bounds, I wiii only consider tactics _
for teaching cognitive skiiis, iike those involved in elementary mathematics.® The procedure to be
taught wiii be referred to as the target procedure. 1 wiil define six classes of tactics and give
some examplies of each ciass. For the teaching of facts and principles, we have to imagine yet

other tactics.

°No stand is implied on the old issue of whether mathematics should be taught through understanding or through drill.
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Category 1: Tactics for Presenting the Target

Tke actions in this category have to do with ways of presenting the target procedure.
Obvious actions of this sort are to define terms needed to talk about the procedure, to deacribe
the procedure, and to prompt recall of the procedure. A procedure can aiso be demonastrated, .
e., executed. In fact, there are several different kinds of demonstrations, such as annotated
demonstrations, where the tutor explains and justifies each step as it is being executed, and
snteractsve demonstrations, where the the student specifies the steps to be taken, but the tutor
executes them. A procedure can aiso be applied, i. e., executed on a concrete exampie (e. g., the
standard procedure for subtraction can be applied to, say, Dienes blocks). A procedure can aiso
be practiced, of course, and there are many dlrrex"ent, types of practice: gusded practice, in which
the tutor specifies the steps one at a time, but the student executes them; annotated practice, in
which either the tutor or the student justifies the Steps as they are being executed; corrected
practice, in which the tutor immediately corrects any incorrect step on the part of the student;

practice in which the tutor hsnts at the correct steps; and sheer drsll, in which the tutor does not

intervene uniess the student asks for-help. -~ - T

Category 2: Tactics for Presenting Precursors

A precursor to a target procedure is a skiil that the iearner is expected to have mastered before
he attempts to learn the procedure. A precursor is usually, but not aiways, a prerequisite, I. e., a
skill which constitutes a component of the target skiii. The muitipiication of integers is a
precursor to the muitipiication of fractions; it is also a prerequisite. But the muitiplication of
fractions is, in most schools, a precursor to the muitipiication of decimais, but it is not a
prerequisite. Actions in this category inciude the foilowing: priming, in which the tutor reminds
the student of the precursor by naming it or by locating it (e. g, "remember the theorem we
learned last time"), reviewsng tie precursor; and marking those steps in a presentation which
should be famiiiar, and distinguish them from those steps which are expected to be unfamiliar.
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Category 3: Tactics for Presenting Purposes

The actions in this category serve to explain what the target procedure is for, what it is supposed
to achieve. The tutor can describe the purpose of a new procedure by giving a goal, 1. .,
describing a desired result, and then introducing the target procedure as a method for achieving
that result. Other tactics include to critsesze the precursors by showing a problem for which they
are Insufficient, but which the target procedure can solve; to describe the target as a
generalization, or, more generally, replacement, of the precursor (e. g., the arithmetic of decimals

Is, in a sense, a replacement for the arithmetic of fractions).

Category 4: Tactics for Presenting Justs fications

The tutor can justify a procedure by annotatsing it, i. e., by relating each step in its execution to
some principle. Another way s to give tranaparent cases, i. e., the tutor executes the target
proceflure on p_rob!ems in which the steps taken are intuitively obvious (e. g., using unit fractions
to show how multiplication of a fraction with an integer works). Yet another way Is to relate the
target procedure to some equsvalent procedure, which already is justified; the target procedure
then Inherits the justification. The various ways of versfying the results of executing the target
procedure constitute a useful subcategory. One can verify the outcome of a procedure by

computing it with an alternative procedure, in some cases by applying the snverse procedure, or

by making an empsrical test of it.

Category 5: Tactics Related to Errors
The programming term "bug" is often used in the literature on Intelligent tutoring systems to
refer to systematic procedural errors. A tutor can reveal a bug in a procedure by applying the

procedure on a problem where it will generate an obviously incorrect, absurd, or impossible
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resuit, or he can explicitly mark the buggy step as it is generated in execution. The tutor can

also choose to ezplain a bug, I. e., to show which principle is being violated by the bug.
L 4

Category 6: Tactics Related to Student’s Solutions

The most common tactics in this category are to give feedback and to locate the error. But a
tutor can also prompt a self-check on the part of the student, prompt a self-review in which the
student tries to describe a sequence of steps he has taken, or prompt self-annotation, i. e., exhort

the student to justify his own steps.

The six categories of teaching tactics presented above is only an initial attempt to list the
various actions an intelligent tutor needs in its behavioral repertoire in order to provide adaptive
instruction in the acquisition of procedural knowledge. Further reflections and more detailed
observations of expert teachers will no doubt lead to extensions of the iist. Even as it sténds,
however, the above list is an order of magnitude richer than the behavioral repertoire of any

_existing Intelligent tutoring system.

There are several reasons why current computer tutors tend to have limited output
repertoires. First, many computer tutors are restricted in their pedagogical scope. For instance,
some tutors do not teach or tutor in the ordinary sense of the word. Instead, they monitor
practice, . e., they generate practice problems and give feedback. Second, the richness of tutorial
actions derives to a large extent from the variety of ways in which a particular knowledge unit
can be presented. Unless the tutor can present its subject matter in more than one way, this
richness wili not be reflected in its action repertoire. Third, many tutorial systems have a narrow
behavioral repertoire because they have a primitive diagnostic component. Unless the tutor can
distinguish between many different cognitive states of the learner, it does not need a rich output
repertoire. Fourth, many tutoring systems have a narrow behavioral repertoire because they

have a simplistic teaching strategy. Unless the system designer knows how to make use of a
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particuiar teaching tactic - when, under what circumstances, to evoke it - then there is little

" purpose in implementing it.

The Principle of Strategic Repertoires. The range of teaching tactics in a
tutoring system is ultimateiy limited by the conditionality of the teaching strategy of
the system; unless the strategy can identify circumstances under which & particular
tactic is to be evoked, the tactic will not increase the power of the system.

Like the diagnostic component, the behavioral repertoire of an inteliigent tutoring system is

logically secondary to its teaching strategy.

- Strategies for Teaching

Cognitive diagnosis and subject-matter analysis generate the "inputs™ to a tutoring system,
the information which forms the basis for its tutorial decisions. The teacking tactics dlscussed in
the previous section, on the other hand, represent its “output,” i. e. its behavior vis-g-vis the
student. However, so far I have said nothing about how to teach, about how to generate a

sequence of teaching tactics which will successfully transmit the subject matter to a particular

student.

In spite of the fact that millions of teachers spend millions of hours every year teaching
millions of students, nobody seems to know how to teach. There is no Handbook of Pedagogical
Methods which we can take down from the shelf and from which we can.read off the correct
teaching strategy for some important part of the curriculum, such as arithmetic. Eduzators often
invent interesting strategies for specific topics (e. g., Beede, 1985), but they have not made it part
of their professional commltment,g either to empirically validate their proposais, or to explain,

through theoretical analyses, why we should expect those proposais to be effective.

Psychologists are, of course, concerned with empirical verification, but, as a recent review

reminds us (Bell, Costelio, & Kuchemann, 1983, chap. 7), they have chosen to work with global

32



Ohisson 29 Tutoring Principles

ideologies of teaching, rather than with specific teaching strategies. The section headings of Beli,
Costello, and Kuchmeann (1983, chap. 7) reads like so many old friends: exposition vs. discovery,
meaningful vs. rote learning, learning hierarchies, advance organizers, etc., until, at the end, we
reach the Grand Daddy of ail topics in experimental educationa! research, the spacing of

repetitions. Even if this research was in the habit of generating strong conclusions, such high-

' level ideas would oniy go pari of the way towards the const,ruc"tlon of specific teaching strateg:ss.

Cognitive scientists could have made it their business to anaiyze teaching, but, as we have seen,
they believe that the greatest profits are to be found in the area of knowledge representation. In
short, none of the three communities of scholars who are involved In research on education have

made it their primary task to study teaching strategies.

The question to be asked here is how the goal of provldlng‘dynamlcally adaptlvg instruction
constrains the method of teaching. What teaching strategies are compatible with this goal and
which are not? | I approach this question, first, by presenting an example of teaching methods
invented by teachers, and, second, by analyzing the teaching strategies used in the most successful
;urrent_cér;lputéi tut,ox"s: pﬂmarlly the tutors deslgned by John Anderson szd his co-workers. >I>n
a third section, I outline a view of teaching which, I claim, is powerful enough to support adaptive

instruction.

PLANS IN THE CLASSROOM

The classroom Is an obvious source of inspiration when thinking about strategies for
instruction. The methods being employed in classrooms have passed a stringent field test of
sufficiency, since most school chiidren do learn what they are supposed to learn. Leinhardt (1985)

observed one expert tcacher using the following plan for teaching multicolumn subtraction with
regrouping:

1. Mix subtraction problems for which borrowing IS necessary with the nonborrowing
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problems, and make the student observe and recognize them before he knows how to
solve them, indeed, even before he has compietely mastered nonborrowing subtraction.

2. Once subtraction without borrowing is understood, I. e., set the goal of learninr i .
to solve the borrowing problems.

3. Leave the subtraction context, and teach the regrouping procedure in isolation. Prove
its validity by presenting cases in which the learner can check that it works, i. e., that
the value of the regrouped number is not changed by the procedure. Use concrete
illustrations as well as numerical examples. Provide a large number of cases.

4. Move back to the context of subtraction, and show how the regrouping procedure can
be applied to borrowing problems, i. e., to the class of problems that was set aside
previously. - -
This plan emphasizes tﬁe fact that intelligent Instruction does not consist of Sequences of
unrelated actions, but, on the contrary, coordinates several actions in the service of a particular
pedagogical goal, iz this case the goal of overcoming the common difficuities with the borrowing
operation. The justification for a plan consists of means-ends relations, e. g., the plan above
seems to be based on the idea that distinguishing between borrowing and nonborrowing problems
from the beginning of instruction in subtraction helps the child learn the correct conditions for

when to apply the regrouping operation. Such relations are not explicitly stated in the pian, but

implicitly expressed in the way It orders the teaching tactics.

The means-ends structure of the plan is important, because some of the actions the teacher
performs while executing the plan would serve no purpose, have no meaning, in isolation from the
other actions. For instance, making the learner recognize and acknowledge borrowing problems .
before they can solve them has no meaning within the task of mastering nonborrowing
subtraction. It is purposeful within the plan because it prepares the learner for the following step
of learning how to borrow. As a second instance, the action of proving that the regrouping
operation does not change the value of the regrouped number serves a purpose in the sbove plan
only because the regrouping operation is later to be executed within the context of subtraction;

outside that context, who cares whether the value of the number remains constant or not? In
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short, the teaching tactics in a pian are meaningfui because of their means-ends reiations to other

parts of the pian.

The above pian has a number of other noteworthy properties. First, it extends over several
lessons, coordinating a large number of what is known as actsvity segments (Leinhardt & Greeno,
in press). Second, in ali likelihood, the teacher proceeds according to the above plan every time
she teaches subtraction with regrouping. The plan can be stored and used over and over again.
Third, the plan presupposes a particular view of the subject matter, invoiving a cut between
nonborrowing subtraction and borrowing subtraction and the identification of the regrouping
operation as an educationaily crucial subskiil. This view Is likely to be based on experience,
rather than on rational analysis of the domain. Fourth, the plan seems to be based on some
hypothesis about learning, aithough it is unciear how to state it. By way o? ifiustration, we might
conjecture that the teacher's hypothesis is that integrating a subskill into its superskill is

facilitated if both the subsiill and the superolssll are mastered be fore the integration occurs.

As 3 second exampie, iet us consider ihe following low-level pian, which applies when the
teacher has discovered $aat 2 learner wi» has been taught the arithmetic of fractions nevertheless
does not know how to muitiply them correctly. The pian is taken from the teaching materials by

(Hiit, 19807,

1. Give the student graph paper that is twelve squares wide, and have him cut a strip
that Is tweive squares long and one square wide.

2. Review the definition of muitipiication of whole numbers, expia!n the meaning of
muitipiication of fractions, and point out the simiiarities.

3. Demonstrate the meaning of 1/3 times 3/4 with the help of the strips. This is done as
follows:

8. Take a tweive-squares long strip, and apply 3/4 to it, I. e., cut it to make a strip
nine squares iong.

b. Appiy 1/3 to the nine-squares long strip, making a strip three squares long.

¢. Count the number of squares in the remaining strip, thus estabiishing that 1/3
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times 3/4 is 3/12.

4. Next, let the student solve the problems 5/6 times 1/2 and 1 /4 times 1/3 in the same
way.

5. Let the student generate verbal descriptions of these three problems and their
solutions.

6. Help the student induce the following rule for multiplying fractions from their own
descriptions: "To multiply two fractions, multiply the numerators and then multiply
the denominators.”
The basic properties of the previous plan &re exemplified here as well: the means-ends +tructu::»
and the existence of steps which would not be meaningful in isolation. But in contrast to the first

example, this plan should only take a few minutes to execute. It is worth noticing that the

actions in it are specified in detall, including the exact digits used in the examples.

Could we construct an intelligent tutoring system by storing teaching plans in the machine?
We can readily imagine a library of such plans culled from observations of what teachers do, from
recommendations of what they ought to be doing, and from our own imagination. For each

teaching situation, the vutor couid retrieve the appropriate plan and execute it.

From the point of view of individualized instruction, the disadvantage of a teaching plan is
obvious. Because it consists of a pre-assembled list of actions, the plan has no capacity to adapt
itself to the learner. Perhaps some learners acquire the regrouping procedure easier and with
more understanding if it is taught in the context of solving subtraction problems. Clearly, what
we want to do is to teach regrouping either withln the context of subtraction or in isolation,
depending upon our beliefs about the student. What is the teacher who uses the second of the
above plans supposed to do with the student who, at step 3b in the plan, produces a strip 6
squares long? Clearly, the rest of the plan then becomes irrelevant with respect to that student,
but there Is no information in the plan about what to do Instead. There are no resources within a

plan for accommodating changes.
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The linear nature of the plan is both its beauty and its flaw. The sequential relations between
the actions can encode complicated means-ends relations and so free the tutor from the need of
computing those reiations at run-time, as it were; but, exactly because they are not computed at
run-time, those relations cannot be adapted to the changing cognitive needs of a particular
learner. But the idea of a teaching plan should not be abandoned. The advantages of having a
coordinating sﬁucture which maps out what tactics should be used in the service of a tutoriai
goal is very powerful. The idea of a plan is not fauity, only incomplete. Teachers do not execute
their plans slavishly or withowt fiexibility; they do not need to go on blindiy to the plan’s bitter
end, if there Is evidence thst the student(s* sre not benefiting from it. The ldea of a teaching
pian should be augmented with the knowledge teachers bring ¢, the execution of thelir plans, so

that the computer tutor can use its plans with the same flexibiiity.

The question of what is needed in order to use plans flexibly will be taken up again in a later

section. The next section deals with the teaching strategies in current computer tutors.

RULES IN THE MACHINE

A second obvious source of inspiration with respect to teaching is the strategies which have
been impiemented in existing tutoring systems. For Instance, the tutors constructed by John
Anderson and his co-workers (Anderson, Boyie, & Reiser, 1985; Anderson, Boyle, & Yoost, 1985;
Reiser, Anderson, & Farrell, 1985) are successfuily impiemented, state-of-the-art designs for
teaching complicated subject matters like mathematics and programming; they are based on a
theory of learning, empirically tested and - it is almost overwhelming - found to produce learning

in ecologicaliy valid settings. How do these tutors go about the task of teaching?

In brief, the strategy of the Anderson tutors is to watch the student closely and intervene

when he makes an error. Let us see in some detail how this Is done in, for instance, the Lisp
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tutor (Relser, Anderson, & Farrell, 1985). The activity of the student while interacting with the
Lisp tutor is to build a Lisp program (function), I. e., to wrlte and combine calls to other
programs (functions) according to the rules of Lisp. At the top level, the interaction between the
tutor and the student consists of two parts: The tutor poses a programming task, and the
student responds by typing in his solution, i. e., his code. The Lisp tutor has a knowledge base
consisting of several hundred problem-solving rules which can solve the Lisp programming task,
and several hundred more incorrect rules, representing typical novice programming errors. Every
time the student takes a step towards completing his Lisp function, I. e., every time he types in a
new part of his code, the tutor tries to map that step onto one of its rules. If the mat?hlng rule is
a correct rule, the tutor does not intervene; if the matching rule is incorrect, the tutor explains
the error. If the student nevertheless cannot continue on the correct solution, the tutor can show
what the correct step is, or invoke a planning mode, in which the tutor demonstrates the

algorithm to be programmed.

The geometry tutor (Anderson. Boyle, & Yoost, 1985) is built on the same basic design as the
Lisp tutor. The student’s activity in that case is to construct a geometry proof by successively
applying geomet,r'lc theorems, and the tutor compares his steps to a large knowledge base
consisting of both correct and incorrect problem-solving rules. The tutor intervenes when the

student applies an incorrect rule, i. e., makes illegal or useless moves in the space of possible

inferences.

The teaching task performed by the Anderson tutors might be characterized as the sntelligent
monitoring of student activity. The student s struggling with an intellectuai construction, and
the tutor helps him complete it. To what extent Is the help provided by the tutor adapted to the
individual student, and how is this adaptability achieved? With respect to moment-by-moment
flexibility, these tutors are hard to beat. The grain-size of the fubor’s behavior is determined by

the graia-size of the student’s activity. For instanze, the Lisp tutor can react to each Lisp atom
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as it is typed in; the geometry tutor can react to the selection of a theorem, or the application of
it. Since the tutor decides whether to intervene, and, if so, how to intervene, after each action on
the part of a the student, the fiexibility of the tutor couid not be greater without becoming

irrelevant, as their designers point out (Reiser, Anderson, & Farrell, 1985, p. 12).

The question of whether the content of instruction is adapted to the cognitive needs df the
learner Is more compiicated to answer. Recall that the tutor responds to each action on the part
of the learner by mapping his action onto a problem-soiving ruie, and then retrieving the
appropriate tutoriai action connected with that ruie. (For the sake of uniformity, I regard "doing
nothing® as a kind of action.) This means that the student draws out of the tutor, as it were, 2
particular sequence of tutorial messages by generating a particular sequence of ruje applications.
Since the' tutor knows several hundred different rules, the number of distiact iessons it is capablie
of delivering is astronomical. At the level of the lesson, then, the adaptation to the student is

impressive.

However, this adaptivity is achieved with the hglp of predefined units. Each incorrect
problem-solving rule is paired with a particular tutoriai action, typicaily a stored message.“’ Any
student who takes a step which matches a particular incorrect rule receives the message
asscclated with that rule. For instance, a geometry student who applies a congruence theorem
incorrectly for the first time receives the same instruction as a student who makes the same error,
but who have aiso made a large number of other errors in applying congruency theorems. There
is no on-line design of a tutorial message on the basis of the entire modei of that student, i. e., on
the entire set of rules he has used, rather than on a singie rule. At the level of the single
tutorsal action, then, there is no adaptation to the currert cognitive state of the learner other

than the ciassification of his last, step as an instance of a particular type of error.

w'l‘ho messages contain variahles which can be bound to the objects in the particular situation in which they spply.
Strictl_y speaking, then, what is prestored is not the surface form of the message, but its tutorial gist.
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It is Instructive to consider how the Anderson architecture could be extended to allow tutors
to base their tutorial decisions on more Information about the student than his last step. The
obvious solution is to write tutorial rules which test for a sequence of steps on the part of the
student, e. g., *if the stude.nt. has applied rules x, y, and z, then given him message A," "if X, Y,
w, then message B," etc. The fallacy in this solution becomes apparent when we consider the fact
that the tutor knows many hundreds of rules. A set of, say, 400 rules implies ‘1600 two-rule
sequences, 640,000 three-rule sequences, etc. The number of tutorial rules quickly grows beyond
practical limits. The more radical solution is to dissolve the prestored links between the step-
classifications, the rules, and the tutorial actions, the messages, and replace them with intelligent
agents which compute what the appropriate tutorial message Is, given a particular error by a
particular student in a particular problem-solving situation. However, this solution is equally
fallacious, because the term "intelligent agents® hides within it all the problems of intelligent
tutoring. If we knew how to design such agents, we would construct one to replace the tutors
John Anderson and his co-workers have constructed. These two fallacious extensions illustrate, 1

think, the boundaries of the Anderson tutoring architecture.

In summary, the Anderson tutoring architecture is geared towards the intelligent monitoring
of practice, and it is build around performance-instruction pairs, wherebthe performance part
consists of 8 mechanism for classifying a student’s problem-soiving steps as instances of particular
errors and the instruction part consists of prestored tutorial messages relevant to those errors.
Given a large data base of such performance-instruction pairs, a tutor delivers a lesson by
responding to each error on the part of the student as it occurs in the problem-solving cont.éxt..
The question of how well these tutors adapt to the student receives different answers, depending
upon the level at which the question is asked. At the level of a particular (incorrect) problem-
solving step, each student recieves the same tutorial message; at the level of an entire problem-

solving attempt, each student recieves a unique ssquence of tutorial messages, as a function of his
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own activity.

Other projects in the field of intelligent tutoring research- have proposed strategic rules for
instruction as well. For example, the tutoring rules of the GUIDON system (Clancey, 1982; 1983)
are different in character from performance-instructlon pairs, because many of them, rather than
recommend specific tutorial actions, revise the quantitative parameters of the system, which,
presumably, has global effects on how GUIDON carries out its tutorial dialogue. The author’s
statement of the “set of tutoring principles that appear implicitly in the tutoring rules” (Clancey,
1983, p. 6) does not explicitly treat the question of how to adapt the content of the instruction to
the individual. His prlncjples deal with global aspects - attitudes, as it were - of the tutor. As an
example, consider the principle, "provide orientation to new tasks by top-down refinement.”
Such a principle does not tell us what to do with students who do not benefit from top-down
refinement. In short, the adaptability of the GUIDON system seems to be of the same nature as
the adaptability of the Anderson tutors: Each student gets a unique lesson by drawing out a
unique sequence of locally determined responses from the tutor. As a second example, consider
the eleven pedagogic principles which Burton (1982, pp. 90-92) propose In connection with the
WEST tutoring system. They, too deal with global aspects, attitudes, on the part of the tutor, e.
g., "Do not Intervene on two consequetive problem-solving steps, no matter what® (Principle 5).
The rule which comes closest to have something Interesting to say about how 10 shape the
instruction is Principle 2: "If the student made a bad problem-solving step, the tutor should
present an alternative step only if there exists an alternative step which Is dramatically superior
to the step the student took." In general, these rules seem rather far removed from the teaching

plans we discussed in the previous subsection.

TEACHING AS PROBLEM SOLVING

The notion of a teaching plan and the notion of a local performance-instruction unit are
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equally unsatisfactory as a basis for teaching. The reason for this is that neither notion helps us
understand how a teaching goal (e. g.. "explain borrowing") becomes translated into a sequence of
teaching tactics designed to satisfy that goal. (e.g., "mark borrowing probiems,® “prove

lavaliance under regrouping,” etc. Neither construct makes explicit the means-ends reiations

"~ which connect what a teacher does with what he wants to achieve.

But understanding the connection between goals and actions I: a prerequisite for the
construction of artificial teachers capable of dellver'lng adaptive instruction. As a coniscture, 1
propose that an inteiligent t,ut,pr must f1ave the following capabilities. First, it must ke abie to
decompose Its goals into subgoals. Second, It must be able to access descriptions of the student
and of the subject matter and on their basis generate a plan for how to satisfy the tutoring goal.
Third, it must be able to execute such a plan. Fourth, It must be able to detect mismatches
between a student and a plan. As mentioned in the discussion of diagnosis, a teaching plan
contains implicit expectations about what the student willi do. When these expectations are
violated, the plan is not quite right for that student. Finally, a tutor must be abie to revise a
plan, or generate a completely new plan for a particular tutoring goal. In summary, we should
think of tutoring, I suggest, as proceeding through cycles, each cycle consisting of plan generation,
plan execution, and plan revision. According to this view, the coordination of tutoring stems

from a tutor's ability to foliow a plan; the fiexibility of tutoring stems from its ability to revise a

plan.

The Principle of Teaching Plans. A tutor needs to be able to generate a teaching
pian on the basis of its representation of the student, its knowiedge of the subject
matter, and its current tutorial goal; furthermore, it should be abie revise its plan it it
discovers that the plan does not fit the student.

Tbis principle i3 not a teaching strategy, but it describes the kind of strategles 1 suggest we
should be trying to incorporate into computer tutors. Whether tutors with such capabilities

produce more learning than other kinds of tutors Is not known. The above principle is only a
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design hypothesss.

Of course, the kind of system I have outlined in the above design hypothesis is entirely
familiar: it is a problem solver. The topics of subgoaling, of plan generation, and plan revision
are all familiar items in the discussion of problem solving. Thus, my suggestion couid be restated
by saying that a teacher needs a strategy for how to solve the problem of bringing the student
from a state of ignorance to a state where he has acquired the subject matter. What research is

relevant to the construction of such strategies?

The literature on formal analyses of problem-solving strateg]es in general is of course extersive
(e. g., Peari, 1984). But with respect to teaching strategies, in particular, the pioreering work of
Gaea Leinhardt is the only available analysis. Leinhardt and Greeno (in press) present a general
analysis at the skill of teaching. Leinhardt and Smith (1985) have applied the notion of a
planning net (VanLehn & Brown, 1980) to the phenomenon of teaching, showing how one can
generate a particular teaching plan from a structure of goals and a set of teaching tactics. This is

the kind of generative mechanism that an Intelligent tutoring system needs.

The theoretical analysis of teaching strategies presuppose detailed empirical studies of the
strategles used by teachers. The studies by Leinhardt (1985), Leinhardt and Smith (1985), and
Leinhardt and Greeno (in press) have already been mentioned. As & second instance of the kind
of emplrical work we need, let me mention the study by Collins and Stevens (1982) of rules for
gulding Socratic dialogues in geography. These rules make recommendations about what kind of
case the tutor should present and what kind of question to ask In response to particular
propertles of the current dialogue situation, e. g., "if one or more factors (such as heavy rainfalls)
have been identified with respect to a partlcﬁlar value of the dependent variable (such as amount
of rice grown), then ask if those factors are necessary conditions for that value or 'not.." These

strategles wen identified in detailed studles of expert teachers.
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In summary, I suggest that we view a one-on-one tutor as a probiem soiver who is trying to
execute a teaching pian which wiii heip the student to progress in his learning, constantiy
updating the pian on the basis of the student’s performance. The theoretical research needed to
implement this view of tutoring systems Is to invent and formaiize probiem-soiving strategies
which can connect tuvoring goals with teaching tactics. Such’ analyses, in turn, wouid be much
heiped if we had avaliable, as a source of inspiration, a large collection of fieid-tested teaching

pians. The empirical research needed to progress towards inteiligent tutoring systems consists o?

detaiied studies of expert teachers.

Conclusion

The present discussion opened with the ciaim that the promise and the chailenge of computer
. tutors iie in their potential for providing instruction which is dynamicaily adapted to the learner.
‘What kind of tutor is capable of delivering such instruction? Let us recapituiate the main course

of the argument.

A tutoring system must have an internal representation of the student, in order to adapt its
teaching to him. However, a student can be described in many ways. The only way to decide
what kind of description is needed is to conslder the function of the description within the
tutoring system. The idea was advanced that the function of dlagnosis Is to test the viability of
expectations implicit in teachilng pians, which Implies that the deslgn of a diagnostic component -

depends upon the teaching strategy of the system.

A tutoring system must also have an Internal representation of the subject matter, because in
order to adapt its teachlng to the Indlvidual learner, It must be able to generate the particuiar
presentation of the subject matter which sults the learner best. The main difficulty In the

representatlon of subject matter is that the learner can acquire many different internal
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representations of the subject matter, all equally satisfactory from an educational point of view.
This ambiguity in where the learner is going causes difficulties for both the diagnosis of the
student and the representation of the subject matter. There is no principled solution to this

problem yet.

A tutoring system must, In order to be able to adapt its teaching to the individual learner
have a large number of teaching tactics avallable, so that it can choose, at any one moment, that
tactic which will benefit the learner most. Thus, in principle, the richer the behavioral repertoire

of the tutoring system, the more adaptive it becomes.

Finally, in order to adapt its instruction to the individuai learner, a tutor must be able to
compute means-ends relations between its goals and its actions, and to make those relatlons
dependent upon its representation of the student. From this perspective, a tutor is a problem
solver, a point of view which has been most clearly expressed by Leinhardt and Greeno (in press).
Like other artificial problem soivers, a tutoring system should be build around its strategy.
Precise teaching strategies can be defined by applying formal analyses to detalled observations of
expert teachers. The uitimate conclusion of the present analysis is that in order to construct

artificial teachers, we must first discover how to teach.
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