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'Editoris_foreward

The proceedings for the 1985 CMESG/GCEDM meeting have been
delayed for a long time. It was necessary to wait until a major
contribution was received, otherwise the proceedings would have
been mest inadequate.

The proceedings, following the format of previous years, include
the major lectures presented by Heinrich Bauersfeld and Henry
Pollak followed by working group and topic group contributions
in reduced format. This meeting represented our first effort to
plan a Jjoint speaker with the CMS - a group wit" whom we have
many interests in common.

This represents our second meeting at Laval. The University in
particular as well as Quebec City in general provide pleasant
surroundings for such a gathering. We are especially
appreciative to Claude Gaulin and Bernard Hodgson for making the
local arrangements. :

Charles Verhille
Editor




ii

Canadian Mathematics Education Study Group,
Groupe canadien 4'étude en d:.dact:.que des naﬂ‘xérat:.ques

1985 Meet:x.ng

The ninth annual meeting of the Study Group was held at Laval University,

June 7 to 11, 1985. Fifty mathematics educators and mathematicans met

ifi plenary sessions and working groups. This year the conference was

deliberately arranged to follow immediately on the QMS Summer Meeting

and the first of the two guest lectures, by Henry Pollak (Bell Cammmications

Research, was planned in collaboration with the CMS Education Committee.

Dr. Pollak spoke "On the relations between the application of mathematics

and the teaching of mathematics". He identified four different meanings

cammonly attached to the words "applied mathematics", and considered

the implications of each for curriculum and for pedagogy. Also co-sponsored

by C‘.MS Education Comnittee was a session, led by Peter Taylor (Queen's),
"Exploratory problem solving in the mathematics classroam”.

The second guest speaker was Heinrich Baversfeld (IIM, Bielefeld) who made
"Cantributions to a fundamental theory of mathematics learning and teach-
ing". Setting out to answer the guestion: How do we manage to retrieve
what we require and adapt it to a new situation?, Professor Bauversfeld
wove an mtr:.gmng account of constructivist theories.

Other lectures were given by Fernand Iemay (Laval), who presented a master—
ly swesp through the historical developments of analytic and synthetic
gecetry, and by Jacques DEsautels (Laval), who applied the epistemological
theories of Gaston Bachelard to the leaming of science. Three accounts
of specific researches on teaching, gender and mathematics were given by-
Roberta Mura (Laval), Gila Hamna (OISE) and Erika Kuendiger (Windsor).

The working groups at this conference focused an a positive view of students!
errors, a group led by Stanley Erlwanger (Concordia) and Dieter Lunkenbein
(Sherbrooke), cn more advanced activities with LOGO, a group led by Joel -
Hillel (Concordia). A third group investigated the possibilities of symbolic
manipulation software, led by Bermard Hodgson (Ilaval) and Eric Muller
(Brock); the fourth tackied feelings and mathematics, led by Fran Rosa—

mond (San DJ.EQO) and John Poland (Carletenm).

Thisbald summary may indicate the scope of the conference but may not make
clear the special characteristics of its style. Most conferences of
camparable length offer participants many more lectures and paper pre-
sentations. The result, as everyone knows, is that participants at con-
ventional conferences are selective in their attendance at sessions; no
cane can sit through continuous periods of being talked at. Participants
at Study Group meetings, where ample time is allowed for cooperative wark
and discussion, tend to follow the wihole programme. This generates more
of a sense of camen interest, a bridging of differences rather than an
accentuation of them.

David wWheeler
Concordia University
Montreal
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IN MEMORIAM DIETER LUNKENBEIN

The mathematics education community has been deeply shocked
- to hear bout the sudden death of our colleague Dieter Lunkenbein,
on September 11, 1985, at 48 years of age.

Born and educated in Germany, he had come to Canada in 1968
to work as a research assistant for Dr. Zoltan P. Dienes at
the Centre de Recherche en Psycho-mathematique in Sherbrooke.
He subsequently got a Ph.D. in mathematics education at
Laval University and he bacame a regular faculty member of
Université de Sherbrooke, where he has displayed strong
leadership in teacher education as well as in research and
development in mathematics education.

In 1982 he was awarded the "Abel Gauthier Prize' by the
Association Mathématique du Québec in recognition for his
significant and exceptional contribution to mathematics
education in Québec. At the Canadian level, he has been
very active in the annual meetings of the Canadian
Mathematics Education Study Group, particularly in working
groups about teacher education and about the field of
mathematics education, and as a leader of many groups on
geometry education -- an area for which he was a recognized
expert.

Dieter is the author of more than 70 scientific lectures or
papers, including articles in Educational Studies in Mathematics,
For the Learning of Mathematics, Bulletin de 1'A.M.Q., etc.

At the international Ievel, he has been involved 1in many
conferences and for about ten years he has been very active

as a coopted member of the Commission Internationale pour

1'Etude et l'Am€lioration de 1'Enseignement des Mathématiques
(CIEAEM)? of which he was the President from 1982 to 1984.

For the mathematics education community, the death of Dieter
Lunkenbein constitutes .a‘'great loss. Everyone will long
Temember his work and dedication to our field as well as his
impressive human qualities. .
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: 2
Contrlbutlons to a fundamental theory of ‘-mathematics learnlng

and teaching

HEINRICH BAUERSFELD

IDM (Institute for Mathematics EdquthD), Universitat

Bielefeld, FRG
"Perhaps the greatest of all
pedagogical fallacieés is the notion
that a person learns only the
particular thing he is studying at the
time.’ Collateral learning in the way
of formation of enduring attitudes, of
likes and dislikes, may be and often
is much more important than the-
spelling lesson or lesson in geography
that is learned. For these attitudes
are what fundamentally count in the
future." JOHN DEWEY (1938)

1. A theorv gap in school practice

A few years ago the report of an outstanding piece of research
appeared: it is D.HOPF's investigation on the teachlng of
mathematics in grade 7 of the Gymnasium!) (p.HOPF 1980). The
study analyses data from 14 000 students, their teachers and
parents, at 417 Gymnasien in the area of West Germany including
West Berlin, and it is a representative sample.. Detailed
queStionnaires were used in order to find out about: the
"social, cognitive, and motivational conditions under which
learning outcomes and credits" are produced in mathematics
lessons. In our view the most interesting results are:

* There is an overwhelming dominance of direct instruction, in
particular the well-known game of teacher's questioning and
student ‘s response as well as teacher ‘s monologues
(lecturing) and similar types of instruction; and

* it is not possible to identify "any more general structure"
in the extremely rich data base "which would indicate the
exi stence of overall concepts for the orientation of method
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and teachingd. Clearly, this'came out quite contrary to the

" researcher’s expectation, that "at least some of the concepts
which were under discussion in mathematics education for methods
‘and teaching would appear more often than in single épecific
phases of the lessons only." (D.HOPF 1980, p. 192)

The laek of explicit theory in everyday school practice could
prove to be a surface phenomenon: Perhaps teachers do not talk
about theoretical backgrounds, but they may follow recipes for
action rather consistently, which are based upon certain
theoretical concepts. One might expect, therefore, that careful
analyses could lead to reconstructions of a hidden though
theory-based grammar of teacher ‘s decisions.

Reviewing various wel l-known concepts of mathematics education,
the researcher thought about such analyses,but "found no reason
fqr establishing a search for interpretations which could be
traced back to more general concepts." (D.HOPF 1980, p.l91).
That is to say, the researchers found continuities and
regularities in the prqcesses of the mathematics classroom -
e.g. the preference for direct instruction - but they could not
- find any relation with the concepts that appear in the
theoretical debates of the mathematics education community. .

Now we can ask more generally: If not through theoretical
reflection, how then do the often documented and criticized
patterns of teaching and learning in mathematics classrooms come
into being (see the "recitation game", HOETKER and AHLBRAND
1969)? On the one hand the available theories obviously do. not
cover the practitioner’s needs; the theories do not have
sufficient explanatory power. The hidden regularities of
everyday classroom practice on the other hand function as if
they arose from the subjective thecries of the participants
(teachers and students). So probably these hidden regularities
are the outcomes of covert processes of optimization, that is,
they may represent a bearable balance between the given actual,
societal, institutional, and micro-sociological forces in the

1o



4 ] N

classroom (where bearable means: bearable for the
participants). Provided this is an adequate description, then
the hidden gensis of the regularities would explain the
product'é tenacity and resistance against every reform.

The following remarks are grouped into three chapters. The main
part, chapter 3, presents theoretical considerations from the
many micro-analyses of teachihg-learning situations in ,
mathematics conducted by a research group at the IDM Bielefeld
(BAUERSFELD, KRUMMHEUER, VOIGT). The thesis of the
domain-specific orientation of a peron’s action leads to new
views on (and descriptions of) abstraction/generalization,
representation/embodiment of concepts, and learning.

The preceding chapter 2 can just as well be read after chapter
3, since the remarks on deficiencies and paradigms in .theories
of mathematics education may then be more understandable. It is
meant as an introduction as presented here. The concluding
chapter 4 relates the theoretical discussion to certain recent
issues in problem solving. The application gives support to the
thesis of the preceding chapter.

2. The paradigms of theories of mathematics education

The usual set of didactical questions: What is the nature of the
subject? How is it learned? and How should we teach it?
reproduces in itself disciplinary boundaries. Theories of
mathematics education tend therefore to stress the relation
either to the acting persons or to the subject matter of
mathematics. Thus we receive psychological or
mathematical-philosophical answers, such as student-centered
"theories of learniing" and teachér—centered "theories of
instruction" or as subject-matter-centered theories of
knowledge, of curriculum, of task analysis, of
Al-simulations2) etc. Until very recently, linguistics,
sociology, etc., were not disciplines to which the math ed
community referred.

11



Both theoretical mainstreams use the stages metaphor when
characterizing developmental aspects. Psychological approaches
arrive at stages based on classes - or more‘precisely at
progressive class—inclusions - of abilities (e.g. KRUTETSKII
1976), or of operations (e.g. PIAGET 1971), at levels of
learning (e.g. VAN HIELE 1959) etc. Since mathematical
abilities as well as the success of learning mathematics are
described or measured through the quality of solving certain
mathematical tasks, it becomes inevitable that the hierafchies
of psychological constructs map subject-matter structures. They
duplicate mathematical hierarchies, but do not create génuine
psychological déscriptions of the related actions. The
subject-matter-centered theories on the other hand use
mathematical structures.directly for the modeling of stages. We
can state thefefore, that in both theoretical mainstreams the
description of the field is dominated by mathematical means.3

But math educators will have to extend their fundamental
theoretical questions, if at least a reasonable subset of
classroom processes follows hidden regulations. The more since
the regulations develop interactively rather than directly
through the participant s intentions, and with effects often
inconsistent if not conflicting with the official aims. Then we
will have to take into account not only thaﬁ teachers and
students enter and leave the classroom with certain individual
dispositions, intentions, and expectations - which we do in
order to draw inferences fion the difference between the two
cross-sections, but we will also have to ask what they make of
it in a concrete situation, how they actually employ available
states of knowledge, and when they activate and ggg_they use
schemata (and not only which ones, as is usually done). Cross-
section analyses of input and output states with inferences
about the process in between are no longer sufficient for an
adequate unders&anding. If, as becomes evident, knowledge
develops together with and as part of the knowledge, then this
calls in question the process-product metaphor.

12



Furthermore the ongoing vivid interation in the classroom
indeed leads to very personai (subjective) interpretations and
constructions. of meaning. But socially shared meanings and norms
of content-processing are produced as well. BAnd these are not
just taken over like ready-made rﬁles, rather they are
constituted through the interaction, they become reality via the
mutual processes of construction and negotiation. That is to
say, we have to discriminate individual structures of
potentially available knowledge from the interacticnal
structuring of the actual actionz. And on a social level we
have to discriminate (so-called) objective subject-matter
structures from the related meanings, norms, and claims for
validity, as they are constituted in the course of the
interaction in the classroom. This of course makes cause-effect
analyses haphazard, because attributing cause to a single
person’s action may become difficult.

There is a remarkable convergence in recent developments in
mathematics and in cognitive science as well as psychology that
supports. the scepticism advocated here. 1In the view of
cognitive psychologists the When and the -How, as mentioned
above, are mainly organized on metacognitive levels. The
classical problem solving strategy from AI-developments -
building up a hierarchy of operations or organizing control on a
superordinate level - recurs here and has been the subject of
intensive discussion in cognitive psychology recently (see

ANN L. BROWN, J.C. CAMPIONE, and M.T.H.CHI in WEINERT 1984)
under the name "metacognition". Investigations begin to focus
on "dynamic learning situations" and on "interactive processes"
(J.V. WERTSCH 1978, 1984; and A.L. BROWN in WEINERT 1984,
P.101/102. One of the "many largely unsolved problems" in
developing advanced intelligent computer systems for educational
purposes that TIM O°SHEA has named is that "not enough thought
has been given to represent inexpert reasoning". He has also
pointed at the crucial role of "using natural language" (1984,

o 13
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P.266). Interestingly the attack comes from non~human
information processing research, human understanding, learning,
and reasoning in general and of mathematics in particular.4)

Even mathematics itself has been challenged from within the
community, as by LAKATOS  concept of "informal, quasi-empirical
mathematics", an image of the discipline which he holds out
against the counterpart of "authoritative, infallible,
irrefutable mathematics"S5) (1976, p.5). FREUDENTHAL has long
since argued against the same enemy: "True mathematics is a
meaningful activity in an open domain." (1983, p.39).

"Why, come to think of it, do we have
so few good ideas and theories about
the mind? I propose the following
answer to this question:

1. It may be the most difficult
question Science ever asked.

2. It is made even harder because
our first theories have led us
in the wrong direction."

MARVIN MINSKY (1982, p.35)

3. "Domains of Subijective Experience" apd "Society of Mind"

In.our research process the adoption of sociological methods and
concepts has turned into a process of adapting the means to the
end. Since we are interested in learning and teaching
mathematics rather than in general social structures, as
identified by'Sociologists across subject-matter, our analyses
are focussed on the relations between the subject-matter
aspects, as thematized by the participants, and the
predominantly social nature of classroom processes and their
conditions. This, we think, describes an important weakness in
the dominating psychological and subject-matter-oriented
theories.

Our micro-analyses of video-taped teaching-learningAsiﬁuations
at different schools and with different ages have led to three

14
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related theoretical elements. GOTZ KRUMMHEUER has adapted
GOFFMAN ‘S "frame analysis" in order to describe the

participants ‘(teacher and students) definitions of situations -
"frames" - and their stratified changes - "keyiags" - in the
flow of interactions. Complementary %o these actual activities,
my d;;cept of "domains of subjeztive experience (DSE)" aims at
the description of the sources and the organization of'mémory
and of the related long-term effects called learhing. These
respresentations function as relatively stable dispositions and
as the.potential from which the individual’s actual orientation
and action is coined and formed. JORG VOIGT has investigated
the hidden regulations of classroom procedure as they are
constituted among the participants. He describes "patterns of
social interaction" and their relation to "moves under duress"
and to (DSE-rooted) individual "routines". (See KRUMMHEUER 1983
and 1984, BAUERSFELD 1980, 1983 and 1985, and VOIGT 1984 and
1985.) ’

In the following I shall restrict myself to discussing the ma:.~
aspects of the DSE-metaphor. It should be noticed that we ofi..:
alternative interpretations but do not claim to describe "the"
reality. The theoretical elements offer a well-founded
perspective on classroom processes among other theoretical
perspectives, with which it competes. The theses and their
substained connections are the products of "abductions" (C.S.
PEIRCE 1965, J.VOIGT 1984a). Thus a specific understanding of
the genesis of theories as well as of theory itself is
functional in our approach.

l. Thesis All subjective experience is domain-specific.
Therefore all experiences of a person (subject)
are organized in Domains of Subijective
Experiences (DSE).5)

Whenever I.have experiences, that is: I learn, actively and/or

passively, this occurs in a concrete situation, something which
I realize as context. Thus learning is situation specific, is

15



9

learniné—in-context. Learning is not limited to cognitive
dimensions. Since I cannot switch off one or the other of my
senses deliberately, all of my senses are involved, particularly
the genetically older organs like the mid-brain (emotions) .and
the cerebellum (motor functioning). The stronger the
accompanying emotions, the more distinct and richer are certain
details and circumstances in the recollection. We therefore
speak of the totality of experiences and learning.

Learning is also multidimensional: I learn how to do things,
and along with that, though mostly indirectly, I learn about the
when and the why. At all times I learn about myself and about
others.

The specificity to situation, the totality, and the
multidimensionality, give good reasons for the conjecture that
" all experiences of a person are stored in memory in d;sparate
domains according to the related situations. Each DSE encloses
all of the aspects and ascribed meanings which appeared to be
relevant for the person who was acting within the situation.
Encountering the same situation repeatedly contributes to the
consolidation of the related DSE, but as well to its isolation
from other DSE°s. When entering a specific known situation a
person immediavely ‘knows' very much, due to the activated DSE.

An example: More than 25 years ago during teaching practice
with student teachers in the country, I visited a little
‘nongraded school of some twenty Pupils ranging in age from 7
to l4. The teacher opened the first lesson with a series of
Sspectacular actions. He called on the attention of the few
11 and 12 year olds and made the others work silently. Then
he ostentatiously dropped a plate which burst into pieces.

A defective teapot followed, and finally he broke a few wood
sticks into pieces. ‘His hand waved over the scene
accompanied by the key question: "What is this?!" And a
.nice little girl answered: "It is the introduction to
fractions!"

16
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Apparently she had experienced this happening repeatedly in
her earlier schcol years and she knew it would end up with
naming and calculating with fractions. From that she gave a
clear definition of the situation.
Under a phylogenetic perspective the immediate availability of
an adequate DSE gqguarantees survival. The complex nature of the
DSE’s enables the activation of a specific one just through a
smell, a touch, a word, a picture, an action etc., and in such a
way provides for the instantaneocus identification of a dangerous
situation for quick and appropriate (re-)actions, and for a
certain coping with possible‘consequences. Obviously many of
the students reactions in mathematics lessons are examples of
such direct and prompt concatenation, ensuring survival in the
classroom and saving unpleasant effort and reasoning.

The ideals of maﬁhematizing, on the other hand, are clearly
related to.critical distance, to analytic decomposition and
reflected construction, and to operations with symbols and
models. These arts do not develop along the
elicitation-reaction line. .In order to overcome the troublesome
phy logenetic conditions (which we cannot change nor deny),
instructional situations should therefore give more attention to
indirect learning on higher levels rather than to behavioral
responses/evoking through invitations on the bottom level of
direct action and reaction only.

2. Thesis The domains of subjective experiences (DSE) are

stored in memory in a non-hierarchically ordered
accumulation, following M.MINSKY ‘s idea of a
"society of mind" (1982). 1In a given situation the
DSE’s function in competition for activation, '
independently from each other, and this the more
intensively they have been built up initially.

The model represents a powerful description for a functioning
organisation of the isolated DSE’s. According to the flow of

ah 17
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personal impiessions and activities the "society of mind" is
under continuous change and development. Permanent and lifelong
new DSE’s are formed?), older DSE’s are changing. The gradual
fading away of DSE’s, not activated for a long time, diminishes
the growing burden, the more, the lower, the emotional status
and the frequency of activation of the DSE are.

Every activation produces change: Often activated DSE’s pass
through many transformations: the meaning, the relationé, and
the importance of their elements may shift, the characteristics
of the situations become less specific (they allow more
variance, i.e. they generalize), and a hard core of routines, of
easy meanings, and of preferred verbal or pictorial
presentations is shaped. 1In an actual situation these
well-developed DSE s obtrude themselves through their smooth.
perspectives and therefore have the best chance to win the
competition for reactivation. Thus success has stablizing and
tracking effects, though not necessarily for optimal solutions,
as an observer may note rather than relative personal optima.
But since every situation is new in a certain sense, there is an
opportunity for younger and less elaborated DSE’s ("soft state")
as well as for easy and robust older DSE’s. There is no
preference in principle in the activation game as the phenomenon
of regression demonstrates: The relapse into certain pattern of
understanding and action under stress, which are older and less
adequate or less differentiated, but are functioning more
quickly and more reliably, receives a simple explanation from
within the "society of mind" model.

The model, by the way, leaves no room for an independent or
superordinate authority in the "society", a "demon" or samething
simiiar, who selects and decidedly activates DSE°’s. Clearly we
can exercise a limited influence on our internal retrieval
processes, but we are not in command of our memory as the many
failures of mnemonics show. An idea suggests itself - or not.

Through microethnographical analyses a surprisingiy high degree‘

t .lé
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of separatioﬂ between single DSE’s has been demonstrated (LAWLER
1979, Bauersfeld 1982). Outcomes from quantitative-experimental
research work gives support also. 'Recently E.FISCHBEIN et. al.
(1985) have investigated the solving of verbal problemé in
multiplication and division with 623 Italian pupils in grades 5,
7, and 9. They focussed their attention on the role of
"implicit, unconscious; and primitive intuitive models." Such
models, so goes their hypothesis, might mediate "the
identification of the operation needed to solve a problem"” and
thus "impose their own constraints on the search process."
(FISCHBEIN et.al. 1985, p.4). The authors arrive at the
unexpected profoundness of the expected effects, which they
describe as "a fundamental dilemma" for the teacher:

"The initial didactical modzsls seem to become so deeply'
rooted in the learner’s mind that tﬁey continue to exert an
unconscious control over mental behavior even after the
learner has acquired formal mathematical notions that are
solid and correct."(p.l6).

The authors identify two sources for the genesis of such
personal (subjective) models. One is the direct relation to the
concept and the operation as it was initially taught in school.
As the other, they found a natural tendancy to produce
subjective regularities and use them intuitively through
continuous activities "beyond any formal rules one has learned”
(p.lS) and though they hight be "formally meaningless and
algorithmically incorrect"” (p.l4). This represents an example
of the genesis of a DSE, pointing at the specifity of

situation as well as at the totality and multidimensional. -y of
subjective experience as stated above.

The rigid disparity of two DSE’s which ffom a teacher’s
perspective should be extensively interrelated (as e.g.
experiences with a special case and the general rule)
characterizes not only the phase of initial development in the
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sub ject. Agéinst the expectations of a natural growing together
of separately-gained pieces of knowledge through repeated
practice, the persistentlsubordination of knowledge to specific
DSE ‘s remains effective and dominates the subject s actions.
The supposition that cognitive networks develop
quasi-automatically through an adaptation to the- logics of
subject matters appears as an illusion. The "society of mind"
model with its independently competing DSE’s allows a simple
explanation for the persistence of disparate DSE’s for the
"same" situation. This can happen even in cases where a DSE’s
concepts and procedures are stored but not used though they are
superior or more general in an observer ‘s’ view, because they do
not cover the "same" problem under the subject’s perspectives.
Even so-called general concepts stored in memory are inevitably
related to the subject’s perception of the situation in which
the concepts were built. And therefore ascertaining the
"sameness" of two cases affords a comparing of elements from at
least two different DSE’s (see thesis 4). Each activation from
memory on the other side reinforces the activated DSE, but not
an abstract relation to other DSE’s. '

3. Thesis The activities of the subject and the related

subjective constructions of meaning and sense, as

these develop through social interaction, are the

descisive fundamentals for the formation of DSE.
In mathematics education, in particular, the subjectively
relevant activities are bound to the offered mediatization of
the matter'taught, to what is really done. Teacher and students
act in relation to some matter meant, usuélly a mathematical
structure_as embodied or modelled by concrete action with
physical means and signs. But neither the model, nor the
teaching aids, nor the action, nor the signs are the matter
meant by the teacher. What he/she tries to teach cannot be
mapped, is not just visible, or readable, or otherwise easily
decodable. There is access only via the subject’s active
internal construction mingled with these activities. This is
the beginning of a delicate process of negotiation about
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acceptance and rejection. That is why the production of meaning
is intimately and interactively related to the subjective
interpretation of both the subject’s own actions as well as the
teacher s and the peer’s perceived actions in specific
situations. 'Via these processes the (social) norms of
mathematical action are also constituted in the classroom,
covertly, regarding acceptability, validity, completeness,
relevance, and so on.

The doctoral thesis of G.FELLER 1984) gives an idea of how
important the activities with embodiments and physical means
(teaching aids) are for the formation of mathematical
experiences. She tested mathematical achievement at the end of
grade 2 in Berlin in order to find out the extent to which the
aims of the mathematics curriculum had been attained. As a by-
product the author was "startled by the strong impact of the
manner of representation". Her final assessment:
"The outcomes indicate that the acquisition of each
different type of representation requires the learner’s
explicit endeavour and connected rehearsal, an effort which
is not less than is usually required for the learning of
mathematical matter itself (like addition or subtraction)."
(G.FELLER 1984, p.67). '
In our terminology this would mean that, for many children,
experiences with a new representation of subject mattef, though
perhaps well-known from other situations, lead to a new DSE,
stored separately in memory and with weak if any relations to
the older experiences.

A new DSE can also develop through the explicit connecting of
elements from different older and available DSE’s. The "Aha"
insight, flashing up suddenly while acting within the horizon of
an activated DSE and producing the idea of essentially "doing

the same" as in another context (DSE), is the announcement of a -
'birth, for the person as well as an observer. But the "Aha"
alone does not produce by magic a fully developed network of



relatidns here and now. It takes time and continual activities
to elaborate the new DSE. An "aha" insight, not elaborated
after the first appearance, can fade away in the continuous flow
and only light up again much later accompanied by the feeling
that something like that was known already.

DSE ‘s disappear only (and slowly too) if they do not receive
reactivation. Growing interrelations and even integration are
not necessarily weakening effects. "The mind never subtracts"
(M.MINSKY, 198l). As is the case with regression very Jld DSE°’s
can prevail in the competition for activation under stress
against younger DSE’s where so-called "higher",
"super-ordinate”, "more sqphisticated" knowledge is stored.

In the mathematics classroom students are often asked to
identify common characteristics between two events or cases,
which in the view of the teacher appear to.be two models for the
very same mathematical structure. -This is the task of producing
a generalizing abstraction from different embodiments upon
request. 1In our view the student then has to compare elements
which are rooted in two different DSE’s; in other words: which
are incorporated in two different contexts. What can form the
basis of the required comparing activities?

Usually the perspectives of the separate DSE’s themselves do not
cover such operations, due to the specificity of actions,
language and meaning. So where do the aims come from? Which
kind of similarity or commonness do I have to search for? The
adecuate basis has to be a third DSE, the elements of which.are
the means for comparison and the possible aims. Comparing
common characteristics by abstracting and neglecting other ones
is a complex and highly constructive activity. Without an
orientation, at least a diffuse image of the potential results
and of the relevant characteristics, as well as an idea of the
adequate means, there is no reasonable chance for the student s
success. .
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An example may demonstrate the difficulties. What do the
following three situations have in common?

a) You plunge your hand into a paper bag three times and take
out two eggs each time.

b) You see three blocks of houses with two houses in .each
block. - '

c¢) Three boys and two girls dance. How many different pairs
are poSsible? (old-fashioned style} one girl one boy per
pair!)

The question can also be put this way: For which more
general issue can these three situations serve as models?
Is it enough to answer - like fourth graders perhaps would
do - "It’'s always six!" or "All are three times two" or "It
is multiplication!" or ...? What is the meaning of the.
concept "multiplication of natural number"? How may it be
explained?

The critical step is the crossing of the borderlines of the
three related DSE’s. The interesting commonness is not with the
same twos, threes, and sixes in each situation. What are the
conditions for seeing the well-known elements differently, to
dissociate them from narrow concreteness, to attach another
meaning, another relation, a more general relation, .to them?
Obvidusly, we can get hold of what we call a common structure
only by means of a model, of a certain description:; no matter
how concrete or 'illustrative this model might be, provided that
it can work for us as the more general model, which we can
identify in (map onto) each of the three situations given.
For the above example a possible fourth model can be
d) Three parallel lines are cut by two other parallel lines.
The first three lines can then represent the 1., 2., and 3.
selection or house-per-block or boy. The second two lines
represent the 1. and 2. egg per selection or block or girl.
And the intersections (modes) stand for the six eggs or
houses or pairs in total.
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Clearly the learner either has to reconstruct from related help
and hints or he/she has to construct such a model on his/her
own. It should be clear, too, that this construction is not by
nature an integrated part of any one of the three situations.
It is not part of the experiences within the three related DSE’s
it is a new perspective.
From another point of view the geometrical configuration 4)
is nothing else than just another (specific) model for the
multiplication of natural numbers. Under this view there
are many more adequate models or descriptions, e.g. e) A
table‘with three columns and two rows, including the three
initial ones (more in H.RADATZ/W.SCHIPPER 1983, p.73).
From a developed understanding of the concept, each of the
models can serve as description of "the" general structure of
multiplication of natural number, at least potentially, and
realizable through one-to-one coordination. Thinking about
the available modes and possibilities for the representation and
any structures at 'all, we might find that we cannot overcome the
force of the use of models in communication. In principle there
is no transgression. This brings us nearer to the relativity. of
so-called general concepts (see T.B.SEILER 1973). At this
point, on the other hand, the common statement about "the best
learning is learning by example" sounds somewhat tautological.

4. Thesis. In terms of memory there are no general or abstract

- i.e. context-free - concepts, strategies, or
procedures. The person can think (produce)
relative generality in a given situation. But the
products are not retrievable from memory in the
same generality or abstractness, that is, they are
not activatable independently of the related DSE’s.
With advancing years the development of the "society of mind"
leads to an accumulation of DSE’s and also to a growing network .
of relations among their elements through even the relations are
realized and retrievable only in specific domains. Their
genesis is bound to the considerable constructive activities of
the person as well.as to the situations of practice and to the
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qualities of social interaction. The perspective of a certain
DSE may become integrated into a new DSE, together with wlements
from other DSE°s. 1In the perspectives of the new DSI iha
integrated older experiences may appear as subordinat:s &
hierarchically lower elements. But in spite of that thz older
DSE still can compete for activation with the new DSE. R.LAWLER
therefore speaks of a "structure of a mixed form, basically
competitive but hierarchical at need" (1981, p.20), more
precisely perhaps: hierarchically through special activation.
General knowledge is available through special activation only,
this is the meaning of thesis 4.

The disparity of thé'DSE‘s marks not only the phase of their
initial formation but also the later phases when detailed or
more general knowledge has been required, which of course is
stored in different DSE’s because of the differences in
situation, as the ‘investigations of FISCHBEIN et al. (1985)
show. Microethnographical studies at preschool and early school
ages substantiate the extent to which the ability for
identifying two events as being "the same case" depends upon
previous learning experiences and upon the subjective perception
and definition of the actual situation. In several long-term
studies R.LAWLER has documented and analyzed the encounters of
his children with computers, arithmetic and geometry (1979,
1981, 1985). His early concept of "microworlds" is the
cognitive shadow of the domains of subjective experience (DSE)
as defined here (and elsewhere, BAUERSFELD 1982, 1983).
LAWLER ‘s daughter Miriam e.g. has solved tasks of the type
75 + 26 = ? according to the specificities of pfesentation
in at least three different and for long incompatible
microworlds.

If the task appears as "75 cents plus 26 cents" Miriam
calculates the solution via her activated "Money world",
like: "That s three quarters, four and a penny, one-oh-one!"
The presentation of "seventy-five plus twenty-six equals..."
she solves in her "§eria1 world" like: "seven plus two,
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nine, niﬂety-six, ninety-séven, ninety-eight, ninety-nine,

hundred, one=oh=-one!"

And if it is written as a vertical sum, Miriam adds up the

columns and carries the tens (R.W.LAWLER 1981, H.BAUERSFELD

1983).
The "identical" arithmetical task, as a teacher would name it,
is thus solved according to the activated special DSE using
related but completely different procedures. For the child,
obviously, the different presentations are perceived as
different and independent tasks. The rigid disparity remains in
effect even when all three representation are given
consecutively. It is much later that through spectacular "Aha"
events certain relations are produced.
The studies support the supposition that, in particular, the use
of languaqe is specific to the situation and hence to the
activated DSE. In LAWLER s protocols Miriam uses the
phonetic Lly same words "six", "seventy", "plus", etc. across
the di’ *nt situations, whilst her concrete actions indicate
differer” :-ecific meanings in correspohdence with the different
activated microworlds. For an observer therefore it is
impossible to interpret an utterance without adeguate
reconstruction of the related subjective definition of the
situation (DSE). Likewise it .is impossible for Miriam to take a
distancing and critical perspective against her specific
procedures and intérpretations from within the activated DSE.
Evidently this is impossible in general - without having
developed the distancing and critical perspective as an
integrated habitual activity within tlLe DSE. That is why a

2acher ‘s urging for comparing, for controlling, for looking

closer etc. has no effect when these activities are not
developed in relation to the activated narrow DSE.

There is by the way good reason for the development of

disparate DSE’s because of the strikingly different sensual

characteristics of the concrete activities.

Miriam’s "Money world" is built upon her intensive

experiences with her pocket money, with buying and change.

What mathematicians call the operations of addition and
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subtraction is here embedded in a world with its own
specific senéuality: colour, and coinage etc. and with
specific non~number names like penny, nickel, dime etc. (see
H.RUMPF 1981).
In contrast to éﬁat her "Counting world" is ruled mainly by
word sequencés which obey certain rules of construction
("twenty, twenty-one,...") and which are produced througﬁﬂ
one-td-one,procedures of speaking and touching the objects
to be counted.
The Paper-sums world" is a medium of quite another type of
sensuality: Writing symbols on paper using a pencil (with .
the typical firne-motoric muscle tensions), reading, and
operating with the symbols (see H.BROGELMANN 1983).
So we can state that meaning is attached to a word through
certain activities in a certain situation but a word has no
definite meaning per se. This is true with speaking, hearing,
reading, and writing. Likewise we interpret a word heard in a
concrete situation within the -range of the actually activated
DSE. There is no other chance for understanding without
additional effort, e.g. the activation of other DSE’s. In this
sense evén the so-called universal language of mathematics is
not universally available (retrievable) for a person. )
Theories become helpful models for realities when and insofar as
they generate constructive orientation. So more interesting
than the disparity of DSE’s and the unthinkable purity of
context-free concepts, perhaps, are both the totality and the
principle of multidimensionality of learning in social
interactions

5. Thesis Whenever we learn, all of the channels of human

perception are involved; i.e. we learn with all
senses, learning is total. And: simultaneously we
learn on all dimensions and levels of human
activities, at leasp potentially; i.e. learning is
multidimensional.
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A smell therefore can activate a certain DSE later on, as can a
pattern of motion or a sophisticated metaphor. 1In a given
situation we not only learn about the subject matter, directly
and attentively, the what-to-~do - e.g. the theme, facts and
procedure (declarative and procedural knowledge) - we also
learn, more covertly, about the how and the when to do it - e.g.
orientations of action, strategies, the fit and the adequacy of
situations - we also learn about the why to do it - e.g. sense,
reasons, attached values -~ we learn about ourselves - e.g.
anxiety and motivation, personal identity - and we learn about
the others and how they see us = e.g. social norms, the person’s
social identify. The listing is far from complete. We also
develop routines and pattern of habitual activities in all
dimensions. :

JOHN DEWEY already formulated this idea in 19387):

"Perhaps the greatest of all pedagogical fallacies is the

notion that a person learns only the particulaf thing he is

studying at the time. Collateral learning in the way of

formation of enduring attitudes, of likes and dislikes, may

be and often is much more important than the spelling lesson

or lesson in geography that is learned. For these attitudes

are what fundamentally count in-the future."
The continuous flow of conscious production only marks the
surface of a much deeper stream of experiences which form the
orientation of a person’s future actions. As DEWEY stated, the
most important things are learned collaterally, across many
activities and preconsciously, in a FREUDian sense. So what is
learned beyond the official theme, this major and more powerful
portion of learning appears as a core problem of classroom
teaching. AUSUBEL’s classical and often quoted Qords may now be
read with a .somewhat more differentiated understanding:

"If I had to reduce all of educational psychology to just

one principle, I would say this: The most important single

factor influencing learning is what the learner already

knows. Assertain this and teach him accordingly" (1968)
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Notes

1) 1In West Germany (FRG) after four years in primary school
about 25~40% of the 10~1l years old students enter a GymnaSLum,
where they normally pass grades 5-13 and end up

with the Abitur, at age 19. The Abitur exam is the general
pre-requisite for university entrance. The majority of the
students enter grade 5 of Hauptschule, Realschule or
Gesammtschule, the other types in the secondary school system.
2) These include not only direct simulations of mathematical
content on the computer screen, but also simulations of the
learning process, of the learner’s previous knowledge and
strategies, because all this information is processed in the
form of mathematical or logical rules and with unambiguous
ascriptions (meaning).

3) This, clearly, requires more detailed discussion, which
cannot be done here. My interest is to point out the
limitations which are carried by the unreflective use of my
categories or descriptors. They seem to be "at hand” (like
metonymies) for what we think we see. But we usually do not
reflect upon their origin or their context, which leads to
covert, narrow pursuif, and not to novel ideas. As operations
in context, describing and interpreting are dependent on the
qualities of these bases of the teaching-learning processes.
4) T.O’SHEA.stated that often "the attempt to automate an
activity forces a better understandlng of the activity

itself" (0°SHEA/SELF /1983, P.267). And he ends his diagnosis
by saying: "...it is easier to let children try to learn BASIC
than to develop learning environments which facilitate
intellectual discoveries; it is easier to write programs which
treat students uniformly than to write programs which try to
take account of an individual student’s interests, errors and
aptitudes" (ibid., p.268).

5) Analysing the role of example and counterexample in "proofs
and refutations" LAKATOS said: "...we may have two statements
that are consistent in (a given language )Lj, but we switch to
(a new language) Ly in which they are inconsistent. Or we may
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have two statements .that are inconsistent in Lj, but we switch
to Ly in which they are consistent. as knowledge grows,
languages change.

‘Every period' of creation is at the same time a period in which
tne language changes.’ (FELIX) The growth of language cannot be
modelled in any given language." (I .LAKATOS 1376, p.93;
brackets added from context, H.B.). LAKATOS idertifies the
change of language as "concept-stretching" (p. 93 f£.). But
"concept-stretching wiil refute any statement, and will leave no
true statement whatsoever." (p.99) 1Indeed he denies the
existence of "inelastic, exact concepts" as bases for
rationality (p.102). There is no eternal truth, there is only
"guessing” (p.76 £.) and "the incessant improvement of guesses"
(p.5). D.SPALT (1985) discusses in detail the failure of
LAKATOS ° solution to this fundamental problem: "mitigation" of
concept-stretching (LAKATOS 1976, p.102 f.).

6) The notion of "subjective" experiences rather than
"personal"” experiences (which might be nearer to colloquial
English) follows etymological considerations. The Latin origin,
the verb "subjicere", means in the transitive sense that the
-person (the subject) actively subjugates something, makes it the
person’s own through action. This of course describes the
functioning of "subjective experiencés”. The active parts are
at least the continuous constructions of meaning and the
selecting and focussing in our changing definitions of the
actual situation.

7) For this quotation I am indepted to HARRIET K. CUFFARO’s
article in the Columbia Teachers College Reccrd, summer
1984, p. 567, which interestingly critizes the present use
of computers in schools.

The vigilant reader will find that chapter 4 as promised at the

bottom of page 2 is missing here. The chapter will have to be
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added later on.
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ON THE RELATIONSHIP BETWEEN APPLICATIONS OF
MATHEMATICS AND THE TEACHING OF MATHEMATICS

INTRODUCTION

Most mathematics educators believe in the importance of
applications, but it is nevertheless very difficult to
get applications into the curriculum. Why? One
possible reason appears to be that there is no agreement
on what .is meant by applied mathematics. In the
following we shall explore four different definitions,
and their consequences both for the mathematics subject
matter and for pedagogy. : : '

1 THE DEFINITION OF APPLIED MATHEMATICS AND ITS VISUALIZATION

In discussions of applied mathematics, a large amount of unnecessary difficulty is sometimes
created by differences in perception of the appropriate definition. These differences have come
about quite naturally in recent years, since the variety of mathematics which has significant
practical applications, the number of fields to which mathematics is applied, and the modes of
applications have all undergone very rapid change. It is useful to think in terms of four different
definitions.

* Dr. Pollak's lecture followed closely parts of the text
of his paper '"The interaction between mathematics and
other school subjects",.Volume 4, UNESCO. The appropriate
parts of the text are reprinted here by permission of
the author and UNESCO.
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Mathematics and other subjocts

(1) Applied mathematics means classical applied mathematics; that is, the classical branches of
analysis, including calculus, ordinary and partial differential equations, integral equations,
the theory of functions as well as a number of related areas. It is sometimes.convenient to
annex those aspects.of secondary mathematics which are essential prerequisites to calculus,

- in particular algebra, trigonometry and various versic 's of geometry. The fact that these
branches of mathematics are the ones most applicable to classical physics is usually under-
stood as part of this definition, but no actual connection with physical problems is implied.

. (2) Applied mathematics means all mathematics that has significant practical applicatior. This

o greatly enlarges the collection of mathematical disciplines included under (1). All the topics
that have been considered world-wide for inclusion in the elementary and secondary school
have significant practical applications — including sets and logic, functions, inequalities,
linear algebra, modern algebra, probability, statistics and computing. Almost all the mathe-
matics taught at the tertiary level (the undergraduate level at many universities) as well as
much graduate mathematics are also included. In the views of many people, the most
important areas of mathematics that are included in (2) but not in (1) are statistics,
probability, linear algebra and computer science. There are many who feel that these topics
are as important as classical analysis. Fields of potential applicability include more than
physics, but, once again, only the mathematics jtself is being considered.

(3) Applied mathematics means beginning with a situation in some other field or in real life,
making a mathematical interpretation or model, doing mathematical work within that -
model, and applying the results to the original situation. Note that the other field is by no
means restricted to lie in the physical s.iences. In particular, applications in the biological
sciences, the social sciences, and the managerrient sciences have become extremely active.
Many other areas of applications will 2*2¢: : ~ consicered.

(4) Applied mathematics means what pev: ' = ) apply mathematics in their livelihood actuaily
do. This is like (3) but usually involves gr“zy around the loop between the rest of the world
and the mathematics many times. An excellent example of the process involved in this
definition of applied mathematics may be found in a report of the workings of the Oxford
Seminar in the United Kingdom (Oxford, 1972). ,

A convenient aid in visualizing these four definitions is seen below:

In this picture the left-hand side shows mathematics asa whole, which contaiiis two intersecting
subsets we have cailed classical applied mathematics and applicable mathematics. Classical applied
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mathematics represents definition (1) and applicable mathematics, definition (2). Why doesn’t
(2) contain all of (l)” The .overlap between these is great, but it is not true that all of classical
applied mathematics is currently applicable mathematics. There is much work in the theory of
ordinary and partial differential equations, for example, which is of great theoretical interest but
has no applications which are visible at the moment. Such work is included in definition (1) as
classical applied mathematics, since this contains all work in differential equations; on the other
hand, if it is not currently applicable, it does not belong in definition (2).

The rest of the world includes all other disciplines of human endeavour as well as everyday life.
An effort beginning in the rest of the world, going into mathematics and coming back again to
.the outside discipline belongs in definition (3). Definition (4) mvolvw, as will be seen, going
around the loop many times.

Other categorizations of applied mathematics have also been considered and can be examined
in terms of the diagram. Typically, they involve a more detailed study of the process within
mathematics itself than we shall undertake here. For example, apphcatxons of mathematics may
consist of routine uses of mathematics, of mathematical reasoning as opposed to direct
calculation, and of the building of models of various sizes going from small models through full
mathematization of real situations to truly large-scale theories. Another very interesting way of
slicing the pie may be found in Felix Browder (1976) “The relevance of mathematics”. His
categories consist of: (a) practical mathematics, that is mathematical practice in the common life
of mankind in civilized societies; (b) technical mathematics, that is the use of mathematical
techniques and concepts to formulate and solve problems in other intellectual disciplines; (c)
mathematical research, that is the investigation of concepts, methods and problems of various:
mathematical disciplines including applied ones; and (d) mathematics as a2 universal pattern of
knowledge, which means the science of significant form. His cssay is highly recommended. .

2 - ADETAILED STUDY OF THE VARIOUS DEFINITIONS

2.1 The mathematics side of the diagram .

The mathematical content of classical applied mathematics (definition (1)) and of applicable
mathematics (definition (2)) have already been discussed. One recent trend has been the pub-
lication of books and articles showing the applicability of many of the mathematical disciplines
which are not included in definition (1). To name just a few examples, Hans Freudenthal (1973)
as well as M. Glaymann and Tamas Varga (1973) have written recent books on the applicability
of probability; Tanur, Mosteller, Kruskal, Link, Pieters and Rising (1972) have edited a volume
showing the great diversity of applications of statistics; R. H. Atkin (1974) in his book has
included applications of topology, and Fred Roberts (1976) has devoted much space to appli-
cations of graphs and Markov chains. Journal articles are even more numerous; a few samples of
particular interest follow — without the slightest pretence of coverage. Thus F. W. Sinden (1965)
and Uwe Beck (1974) have shown some applications of topology; M. Dumont (1973) has
discussed some uses of Boolean functions and J. H. Durran (1973) some applications of Markov _
chains. Recent applications of combinatorics and graph -theory are examined, for example, by
John Niman (1975), J. N. Kapur (1970) and W. F. Lunnon (1969).

A significant featurs of applications of mathematics is that mathematical concepts ind
structures have important usefulness, not just mathematical technique. An interesting discussion
of this point is given by H. G. Flegg (1974). Furthermore, since the relationship between mathe-
matics and its applications is forever changing, there is a dynamic effect on mathematics itself.
It has happened many times that areas of mathematics which were originally considered quite
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pure, and were developed with no thought of applications whatever, have tumned out to be
significantly useful. On the other hand, areas of mathematics which ware invented only for
4,widcation, with no thought of their possible contribution to core mathematics, have turned
out to have an impact on pure mathematical disciplines. As an example of the former, the theory
of_entire functions has given notable insights in electrical communicatiors; ideas of information
theory, on the other hand, have been useful in such diverse fields as measure-preserving trans-
formations and the theory of finite groups.

2.2 The rest of the world

Perhaps the outstanding feature of applications of mathematics in recent years is that the areas to
which mathematics is applied have been increasing in number so tapidly. It is fair to say that no
area of human endeavour is currently immune from quantitative reasoning or mathematical
modelling. Besides the traditional physical sciences and engineering, tha biological sciences, the
social sciences, the management sciences, the humanities and everyda3 e are all arenas for inter-
action with mathematics. This is not meant to imply that mathematics is taking over all these
other fields, but there are many interesting applications.

Perhaps the most extensive literature in recent years on applied miathernatics from the point of
view of the other disciplines has come in the biological sciences. An excellent overall survey
appears in the book by J. Maynard Smith (1968). Books dealing with specific areas within_the
biological sciences include Victor Twersky (1967) on growth, decay and competition and R. M.
-May (1973) on“the stability of ecosystems. -Among the articles too numerous to summarize we
note S. Karlin (1972a,b, the former jointly with M. Feldman) on genetics, S. P. Hastings (1975}
on neurobiology, Arthur Engel (1971, 1975) and Beck (1975) on population models, . D.
Hamilton (1971) on the geometry of group behaviour, and several articles in “Computers in
Higher Education” (1974) on the use of computers in biology. Not that new books and articles
on mathematics in science have been lacking: We note particularly a little known volume by .
George Polya Mathematical Methods in Science (1963) as well as another portion of Victor
Twersky (1967). Recent articles on mathematics in science include J. B. Griffiths (1976) on
model building and mechanics, the conference report on “Modern Mathematics and the Teaching
of Science” (1975), and the previously mentioned computer survey “Computers in Higher
Education” (1974).

Another field which has recently flourished is the interaction of mathematics with the social
sciences. Information on computers and statistics in the social sciences generally may be found
in (Computers ..., 1974) and (Teaching of statistics . .., 1973); a fascinating and somewhat
different viewpoint is reprecented in the article by H. R. Alker, Jr., “Computer simulations:
Inelegant mathematics and worse social science?” (1974). The Source book on Applications of
Undergraduate Mathematics to the Social Sciences (1977) contains descriptions of detailed
mathematizations in many fields of the social sciences. To 80 on with specific fields, economics is
extremely active for interactions with mathematics, although good expositions of the problems
of model building in economics are not common. One nice example is “On the theory of
interest” by David Gale (1973). Mathematical work in geography has also been quite popular in
recent years, particularly in the United Kingdom. Again there are significant contributions in
(Computets.‘. . » 1974) and (Source Book ..., 1977), and an elementary treatment of weather
forecasting in Durran (1973); see also King (1970). Mathematical psychology is represented by
two recent survey articles by Anatol Rapoport (1976); Source Book . . . (1977) also contains
extensive references to recent work. Besides their appearance in overall summaries, anthropology
is represented by example in the book by L. Pospisil (1963) and the traditional mathematical
theory of warfare by Arthur Engel in (197 1). A magnificent example of mathematics applied to
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political science may be found in M. L. Balinski and H. P. Young (1975) “The quota method of
apportionment™. Mayer (1971) and Coxon (1970), for example, represent mathematical
sociology. :

The very large field of mathematical models in the management sciences including the entire
area of operations research hardly needs description here. Sample articles of particular interest in
recent years include those by F. J. Fay (1972), J. C. Herz (1973) and the delightful piece on
mathematics applied to college presidency by J. G. Kemeny (1973). Mathematical models in
medicine has been an increasingly active field; there is an excellent survey by J. S. Rustagi
“Mathematical models in medicine” (1971). Mathematical linguistics has similarly become a
major accepted field. Interesting particular articles appear, for example, as parts af Engel (1971)
and Source Book . .. (1977), with Sankoff (1973) as another good source.

The penetr:mon of mathematics into the humanities, including staiistical and computer
models, is a fairly recent event. Perhaps furthest advanced are mathematical analyses of art. We
note, for example, A. V. Subnikov and V. A. Koptsik (1974) and a very valuable British summary
of mathematical ideas and concepts in art by Beryl Fletcher (1976a). Mathematics applied to
architecture is discussed by R. Fischler (1976) as well as in the summary work “Computers in
Higher Education” (1974). Some examples of mathematical ideas in hobbies and handicrafts are
given in Beryl Fletcher (1976b). Mathematical strategies for certain games such as NIM and the
towers of Hanoi have long been familiar to, and enjoyed by, mathematicians. In recent years,
there has been a great upswing in the discovery of optimal strategies for much more intricate
games, and this has even provided one of the early applications of ideas from nonstandard
analysis. We parncularly note the work of E. R. Berlekamp and J. H. Conway, partly reported in
Conway (1976). A nice example of optimal strategy for poker is given by W. H. (.utler(l975)
%'ypt%xl:;lys;s has often been treated — see e.g. Sinkov (1968); for mathematics in sports see

ein (1972

Besides the above-mentioned books and articles more or less devoted: to specific areas of
applications, there has been a trend in recent years towards the publication of excellent
~ collections of articles and symposium reports which cover a broader spectrum. One of the earliest

but still of great interest is the Utrecht colloquium “How to Teach Mathematics so as to be
Useful” (Freudenthal, 1968). This was followed ty the Echternach symposium “New Aspects of
Mathematical Applications to School Level” (Echtemach, 1973) and the Lyon seminar “Goals
and Means Regarding Applied Mathematics in School Teaching’’ (Goals and Means ..., 1974)
Other noteworthy volumes of this kind include Notes of Lectures on Mathematics in the
Behavorial Sciences edited by H. A. Selby (1973), Topics in Behavorial Mathematics by T. L.
Saaty (1973), A Source Book for Teachers and Students on Some Uses of Mathematics, Max Bell
(1967), 4 Conference on the Applications of Undergraduate Mathematics . . . (Knopp and Meyer,
1973) and La Mathématique et ses Applications by E. Galion (1972).

The preceding list well illustrates the current diversity of applications of mathematics in
contrast with the historical monolith of applications to physics. It should not be assumed,
however, that the arguments between thoss who stress the great variety of applications in recent:
years and thoss who feel that their total impact cannot compare to the 2000-year accumulation
of success in mathematical physics have died down. In fact, this diffurence of instinctive value
judgement underlies many of the arguments about mathematiss aducation to which we will
retum later.

2.3 The model building process
When mathematics is actually applied to a situation in some other field, there are typically a
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number of distinguishable steps in the process. These consist of a recognition that a situation
needs understanding, an attempt to formulate the situation in precise mathematical terms.
mathematical work on the derived model, (frequently) numerical work to gain further insigt.s
into the results, and an evaluation of what has been leamned in terms of the origina] extuy. ..
situation. This picture of thé model building process has been widely accepted and there are
many papers which elucidate the details from various points of view. Overall descriptions appear,
for example, in the papers by M. S. Klamkin (1971), H.. O. Pollak (1970) and P. L. Bhatnagar
(1974). The same pattern, but applied specifically to operations research, appears in the paper by
- Gordon Raisbeck (1975) “Mathematicians in the practice of operations research”; its application
to engineering may be found in A.C. Bajpai, L. R. Mustoe and D. Walker (1975), and again in the
" paper by H.G. Flegg (1974). M. E. Rayner (1973) in her paper “Mathematical applications in
science” in the Echternach report describes in detail some of the difficulties in problem form-
ulation. A quotation she gives from Eddington is particularly worth repeating, “The initial
formulation of the problem is the most difficult part, as it is necessary to use one’s brains all the
time; afterwards, you can use mathematics instead”. A proposal for better model building in
mechanics is also given by J. B. Griffiths (1976). Ses also Wilder (1973).

The model building process has a number of interesting properties as well as pitfalls which
we shall examine. A good model is one which is to some extent successful in explaining, or
even predicting, external reality. If it fails to have this explanatory power than, no matter how
satisfactory the mathematics itself, the model is not good applied mathematics and must be
changed. This process can be quit® painful for the mathematician but real progress in inter-
disciplinary efforts is often made through successive changes in the model. This is one of the

reasons why definition (4) of applitd mathematics involves going around the lcop many times.
Another phenomenon which sometimes happens is that a mathematical model predicts too mu:zh
rather than too little. It may happen-that phenomena observed in the other field are indeed
explained satisfactorily, but that farther logical implications of the model are not acceptable.
For example, in the mathematicy, of communication a model of a signal which is of finite
duration in time is very realistic. Similarly, a model of a comm.unication ¢’gnal using finite band-
width comes up in many situations and gives quite satisfactory engineering resuits. Unfortunately,
‘:he two are contradictory ‘and cannot be useG at the same time in the same problem; models
which do so unwittingly will lead to nonsense. On the other hand, attempts to und=rstand this
difficult situation fully have led to very interesting acvauces, see e.g. D. Slepian (1976).

Another feature of the model building process is that the purposes for which a mathematical
model is created are also quite varied. In the physical sciences and ¢ngineering, the purpose is
frequently very precise understanding which will in turn lead to action. In the social sciences,
on the other hand, the purpose is often one of insiglit; you want t9 know whether a certain se:,
of hypotheses could account for a particular observed phenomenon. 1t is often assumed, clthough
not necessarily true, that these associations are in fact one-to-one correspondences. Fhysical
models of why rivers meander, or why a rapidly slurped pice of spaghetti comes up and hits your
nose, are not necessarily used for scientific decisions. On the other hand, mathematical models of
shortest connecting networks and optimal pricing are often used for management action.

The overall picture of applications of .. lienzatics would not be complete without a discussion
of truly interdisciplinary activity. Muc.: o’ the most exciting current work is in fact on the
borderline between several fields, one of which being in the mathematical sciences. The above
references will lead the reader to many examples of current interdisciplinary work.
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3  EFFECTS OF APPLIED MATHEMATICS ON MATHEMATICS EDUCATION

3.1 Problems.and problem solving in the schools

A framework for understanding the meaning of applied mathematics has now beer established,
and a number of ramifications of the various definitions have been examined. A look at effects
of applied mathematics on education follows. It must be emphasized that many of the topics in
this chapter represent ideas and experiments in various countries which cannot claim to be
adopted on any large scale. Discussions at the Karlsruhe Congress did not bring forth any data
which would substantiate broad use of applied mathematics in the schools.

Traditionally most of what was considered applied mathematics in the schools has been found
under headings such as “word problems”, “problem solving”, etc. (This does not mean the
“word problem” in the sense of modern algebra.) The meaning of such problem solving has been
examined in a number of projects and articles in recent years. For example, the work of IOWO in
the Netherlands is of particular importance. IOWO has also paid special attention to the
differences “in abstraction and precision between mathematical language and everyday language.
The detailed meaning of problem solving is examined in papers by H. G. Flegg (1974), Beryl
Fletcher (1976¢) and H. O. Pollak (1969). Genuine applications of mathematics to other fields
and to everyday life should ideally be in the character of definitions (3) and (4). It is often
argued that a full presentation in the spirit of even definition (3) represents too large a project
and takes too much time. In that case, the actual situation and numbers used in the word
problem should at least be genuine extractions from an honest problem formulation. For
example, estimates of crop yields and of times to complete a task should not be made to five
significant figures, for this will never happen in real life. Too many plumbers in one room get in
each other’s way, and jobs are not alwzys divisible. A current joint project of the National
Council of Teachers of Mathematics and the Mathem: -al Association of America in the United
States is producing a Source Book (1978) of hundred. { simple problems which are intended to
be genuine in the above sense.

The opposite phenomenon is that the facts alleged in the statement of a problem are some-
times totally unreal. Problems which use wrong linguistics or impossible engineering or incorrect
meteorology just to have some words from another discipline should be avoided. In this case,
intent can nevartheless be important. Sometimes problems are clothed in a mantle of external
vocabulary only for amusement, and the pretended application is not meant to be taken seriously.
We shall call such problems whimsical problems. A strong argument in favor of such problems is
made for example by Arthur Engel (1969) “Some examples are artificial, like fabies. But just
like fables, they have a moral, ie., they facilitate insights into things that appear in the real
world”. For example, it can be quite effective to begin with an unsatisfactory oversimplification
of a real situation, and to approach a genuine application in the sense of definition (4) through a
series of increasingly realistic problems. Thus whimsical and unreal problems are not necessarily
devoid of pedagogic value. However, if they are perceived as stupid, they may well be counter-
productive. Similar discussions of real and unreal problems may be found in two particularly
interesting papers by Margaret Brown (1972, 1973) and Mary Williams (1971). In particular, Mary
Williams points out that the same difficulty of unreal models happens at a very advanced level as
well as at the school level. See also section 1.1.5 of Chapter IV.

The increased awareness in many countries of the importance of teaching the applicability of
mathematics has led to a number of very interesting attempts to collect real problems at various
levels, and from various disciplines, and to make them available for teaching purposes. One
collection at the school level (Source Book ...Secondary School, 1978) has already been
mentioned. Other general collections have been made by Max Beil (1972), Ben Noble (1967,
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D. A. Quadling (1975), and C. W. Sloyer (1974). Collections devoted to particular disciplines,
mainly at the university level, include the series on statistics by example (Mosteller et al., 1973),
the social sciences problem book (Source Book. . . Social Sciences, 1977) and the collection of
mathematical models in biology (Thrall et al., 1967), although the realism of problems in the
lattér, collection varies. Another text in the same.spirit, although it is organized 3s an actual
course in engineering concepts, is The Man Made World (1971). It can be expected that very
interesting collections of real problems in the above spirit will also be appearing in China. One
such example of which we are aware contains, among other things, a number of excellent
geometric problems from industry and agriculture (Applications ..., 1975).

3.2 Mathematical subject matter in the schools

The diversity of applicable mathematics (definition. (2)) which has emerged in recent years has
greatly complicated the task of designing curricula for elementary and secondary schools. The

* traditional goals of preparing students for either shopkeeping or calculus (associated with
definition (1)) cease to be uniquely valid when so many more areas in the mathematical sciences
are of undeniable importance to so many of the world’s people. As the number of reasonable
choices increases, so does the difficuity of designing a curriculum. It has been argued by many
.that, for example, probability, statistics and computer science are as important for applications
as the calculus. School materials for applications to many different disciplines have become
available in recent years. Collections of materials involving applications to many different.fields
may be found, for example, in Crossing Subject Boundaries (Schools Council, 1970) and the
materials from the Minnesota School Mathematics Center (Rosenbloom, 1963). The Chelsea
Centre for Science Education project, ““Science Uses Mathematics™ (Chelsea) contains interesting
applications to science which can be used in an interdisciplinary way, although this is not always
done. Applied Mathematics in the High School by Max Schiffer (1963) also gives excellent

. examples of the relationship of mathematics and scientific applications from the point of view of
the schools. A collection of examples which turn the tables and use physics to do mathematus.
has been made by Uspensxkii (1961).

A major work examining curricular goals and pedagogy in the framework of an application to
economics may be found in Damerow, Elwitz, Keitel, and Zimmer (1974). Biclogical applications
may be found in Gibbons and Blofield (1971), and applications to geography in the materials by
IOWO, in New Ways in Geography by J. P. Cole and N. J. Beynon (1968) and also in B. Fletcher
(1976c) Applications to geography are also featured in the Travaux d’Oriéans (Les
Mathématiques dans I'Emeignement . 1975), which in fact contains many other fascinating
applications to a variety of fields thmughout the curriculum, including economics, technology
and medicine. This work also features. references to recent work on applications in France and
interesting philosophy on the usefulness of mathematics. An interesting application to political
science may be found in Steiner (1966); environmental applications occur in the work of IOWQ
and in the book by Fred Robests (1976). As we look at applications organized from the
mathematical point of view, a superb collection of applications of linear algebra may be found in
T. J. Fletcher (1972), and of statistics and probability in the work of Arthur Engel, e.g. (1970,
1973) and in The Teaching of Probability and Statistics edited by Ride (1970). Mathematics
Applicable by the Schools Council (1975) also motivates much secondary mathematics through
examples; the volume entitled Logarithmic/Exponential is a particularly interesting sample,

This great diversity of possible applications of mathematics, and of elementary branches of
mathematics with significant applicability, has made the curriculum design problem very difficult.

- For example, topic A deserves to precede topic B in the curmriculum if topic A is socially more
important at this particular time, or if topic A is a prerequisite to topic B at this particular time.
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As technology and social goals change, so should the ordering of importance. As available tools
for teaching change, so will the order of prerequisites. These orderings will differ also from
country to country. These facts make it even more difficult than it has been in the past to export
curricula from one part of the world to another. Since an imported curriculum incorporates
problems, situations and values which make no sense in a new country, this was probably never
desirable, but is is even more questionable now.

3.3 The possible effect of applications on pedagogy

An appreciation for the different forms of applications of mathematics should affact not only the
curriculum materials of the schools but also the pedagogy. If you examine even relatively simple
uses of mathematics, you find that it is necessary to understand when and how and why the
mathematics works in order to apply it correctly. There are several reasons for this. One is that
mathematics which has been understood will be remembered better. Another more fundamental
reason is the danger that mathematics which has been memorized without understanding will be
misapplied. It i3 necessary to know where a particular method or formula comes from, exactly
what kind of problem it will handle, and when and how it works in order to be sure that it will
apply to a new situation. Curriculum reform in many countries has emphasized the “why’’ of
mathematics in recent years on the grounds that it is essential for. proper teaching of
mathematics. What we see is that “‘why”’ is just as important for interactions of mathematics
with other disciplines as it is for mathematics itself. The natural desire of mathematics teachers
to emphasize understanding as well as technique is reinforced, not contradicted, by applications.

The model building process as developed through definitions (3) and (4) of applied
mathematics interacts with mathematical pedagogy in a still deeper sense. Model building requires
an understanding of the situation outside mathematics and of the process of mathematization as
well as of the mathematics itself. You cannot hope to mathematize a situation without under-
standing it. Here we have yet another way in which ‘“‘applied” problems which do nothing more
than mouth words from another discipline are likely to mislead the student. A great weakness
of some courses with titles like “Methods of Applied Mathematics” is that no attempt is made to
provide an opportunity for the student to understand the situation and the mathematization
process. This point has been particularly emphasized by H. G. Flegg (1974) and is further
substantiated, especially from the point of view of future employment, in R. R. McLone (1973).
Some of the college-level collections of real problems mentioned previously, for example Noble
(1967) and Source Book ...Social Sciences (1977), taks particular pains towards the under-
standing of the situation in the real world. -

Another pedagogic. implication of the interaction betwesn mathematics and other disciplines as
it is described in definition (4) is that such interactions are clearly openrended. Open-ended
teaching of mathematicr ‘¢+.if has long been recommended by mathematics educators in many
countries, although adop!i:-: 3 rare. What does “open-ended’ mean in this context? Besides the
usual activities of solving ;.vblems and proving theorems, students should have the experience
of finding their own problems to solve and their own theorems to prove. Such experiencs is an
important factor in the mathematical development of the student. But exactly the same
argument holds in the context of applications. It is very valuable for the student to have open-
ended modelling experience, which besides its great pedagogic valus is an accurats foretaste of
mathematical applications in the real world. Experiments in open-ended discovery teaching of
mathematical applications, many in the form of truly interdisciplinary materials, are under way
in surprisingly many countries. An outstanding example is certainly China, where a major
practical problem will be used for reference and inspiration throughout a course in calculus or
linear algebra. There are many other examples of open-ended and truly interdisciplinary activities
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at the tertiary level, represented, for example, by the Case Studies in Applied Mathematics
(1976), the books by T. I. Fletcher (1972), Maki and Thompson (1973) and Roberts (1976).
- At the elementary level, an outstanding example is provided by the USMES project 1ﬁ the United
States (Lomon et al.,, 1975) in which students attack a series of action-oriented challenges by
appropriate combinations of mathematics, science and social science. Truly -open-ended
applications are particularly difficult to introducé at the secondary level, and corresponding
materials are very scarce.

3.4 Applications and teacher training

As mathematics teaching changes in the light of the increasing applicability of the subject, so
should teacher training. Teachers should become familiar with the new fields of applicable
mathematics, with the process of model building, and with the associated pedagogic emphases
on understanding and open-endedness. There is a general tendency world-wide to reverse certain
recent trends and to include more experiences involving applications in the training of
prospective teachers. Perhaps the most exciting development in this direction is the pattern
pioneered in the United Kingdom and now also spreading, for example, to Australia (Fensham
and Davison, 1972), i.e. to make an internship in industry part of the training of a mathematics.
teacher. In this way, it is possible for the teacher to learn something of how the mathematical
. sciences are really applied. Practising teachers also sometimes help with the preparation of new
interdisciplinary, open-ended materials (ses e.g. Case Studies..., 1976). Especially in those
countries in which there is currently an ample suppiy of teachers, those prepared in the broader
mathematical sciences and familiar with applications of mathematics enjoy a stronger position in
looking for employment. In other countries, applied mathematics in the sense of definition (1)
has always been a strong component in teacher training, but experience with applications in the
sense of definitions (3) and (4) has been missing. Once again, major industrial or agricultural
experience has become part of taacher training in China. : :

3.5 Vocational education

A further educational effect of applications of mathematics is in vocational education. As the
importance of the mathematical sciences increases for many disciplines, so does the need the
workers and technicians in these disciplines to learn the most appropriate mathematical
techniques. Noteworthy vocational materials in a variety of technical fields have been developed
in a number of countries. For example, of the order of a dozen volumes of applications of
mathematics in different technologies (clothing, carpentry, metal work, etc.) have been produced
in Hungary. A different development in the same spirit is the increasing popularity of special
curricula for technicians in computer science and data analysis. These have become particularly
prevalent, for example, in the United States.’

3.6 The implications of truly interdisciplinary teaching

Teaching which is truly multidisciplinary is very difficuit to achieve at any level, but perhaps
nearest to reality in the elementary school, where — in many countries — a single teacher
normally handles most if not all subjects. The evidence for this may be found in the many multi-
disciplinary materials for the elementary school which have been mentioned. Such activities,
when actually carried out in the schools, are especially satisfactory for students because they
strengthen the relationship between school and real life. Students are not always satisfied with
the promise of future gratification inherent in such statements as “you will find out why this is
useful later on”, and are pleased with the applicability of mathematics to problems in which they

e
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are interested. This is particularly stressed, for example, by IOWO and USMES (Education
Development Center, 1974, 1975). However, if the time during the school day is apportioned
according to disciplines, it is necessary that the time for multidisciplinary activities be
contributed by the various disciplines involved. This implies, at a minimum, that multi-
disciplinary projects must state what responsibility they will take for specific topics in the several
disciplines. Appropriate teacher training at the elenmiéntary level is very necessary. On the

.secondary level, the implications for the structure of the educational system are much more

severe. If a single unit involves mathematics, science, social science and language arts all in a
significant way, who is going to teach the material, who will contribute the time, how should the
school be organized? These problems have not been solved, although team teaching is one possi-
bility; see also Rao (1975). They are discussed particularly in section 3.7 of Chapter Iil and in the
Report of the Memphis Conference (Education Development Center, 1974). At the university
level, multidisciplinary educational activities may take the form, for example, of genuine model
building courses discussed previously, or of team teaching by faculty from mathematics and from
a field of application of sections in basic courses such as calculus, linear algebra, and statistics.
An exampiz of a master’s programme with multidisciplinary experience is Hunter College (1974).
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LESSONS FROM RESEARCH ABOUT STUDENTS' ERRORS
by S.H. Erlwanger

PARTICIPANTS OF WORKING GROUP A

H. Bauversfeld, H. Bouazzaoui, V. Byers, B. Bumouna, H. Gerber,
Hoffman, R. Kayler, D. Kirshner, A. Kramti, E. Kuendiger, D. I
O. Mohammed, A. Powell, J. Verwoort, S. Erlwanger.

"Students' errors in mathematics learning have often been

approached from a pathological point of view. In such an

approach, the study of errors or error patterns is conceiv
as tha study of the synptoms of some disease for which a ¢
has to be found or discovered. -In other relatively recent
studies, the phenomenon of errors in mathematics

been approached from a nore developmental, cognitive point
view. In this latter approach, students' errors are seen

more ag signs of progress in leaming, vhich may indicata .
inconpleted process, a daviation fram an expected developm
or even a misconception but which egsentially is a phencme:
of a cognitive process called learning. 1In this perspecti
students® errars in mathematics are inmportant indicators £

the description of the learning process and its gradual de
ment. :

It is the intention of this working group to study and to «
the phenamena of error in mathematics learning from the lat
Perspective.

1. by looking at same récent publicaticns or research in
this field; .

2. by indicating'the impact of particular yesults on the
conception and description of models of the learning
process;

3. by identifying same areas of research, where the descri
approach could be of particular interest,*

The Working Group consisted of a diverse set of individuals wit
ests ranging fram the elementary school to the university leve

1, Publications and Research

Several publications were on display for the group. Samg ©
are listed in the Appendix. In addition, saveral copies of
reports and examples of students work were made available t
_ menbers.  There was unfortunately, not a wide enough range
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ag of resecarch identjficd as of interest were in the articles

lisplay, especially two by Ginsberg which are discussed be-
., Tha following points of intorest emerged from the discussions.

or Mnalysis for Cognitive Purposes

a8 sane discussion as well as general agreement on the idea of
rrors and eryor analysis to study cognitive processes. The

, "Cognitive Diagnosis of Children’s Arithmetic" by G!.n;b«mi
cussed as a good exanple of ona application of erxor analysis.
falt that Ginsburg'sclassificationof cognitive purpose and
tive purposa was a usaful way of considering error anslysis.

the members here felt that such analysis could be useful for
whilo others were more intexested in using such

g for remediation. Thesa differences raflected individual

interest and oxpariences in the area of diagnosis. -

the participants, H. Gerber, has aptly cbserved that “"the
ot off to a ponderously slow beginning, Perhaps it was due
haterogenious nature of the groups, or the variety of biases,
tions, and concemns, that tha first three hours were, to me at
a waste of time. The meating came alive at the start of the
ession with your (Erlwanger) examples, canfiming the theory
ghould introduce a topic with a problem that interests the
8." ' The point being mada is an inportant ona in that it re-
tha state of the art regarding error analysis in mathematics.
icle by Ginsburg was a beginning attenpt towards soma sort of
Howaver, it becama clearer over the three days that we were
{1y motivated by anecdotal exanples and t discussions
d at tha descriptive level and led to different interpretations

viduals.

a remaining two days wa attenpted to follow a plan to discuss
ral Errors, Conceptual Errors and finally errora in Problem’

cedural and Conceptual Exrors

hctimwaamadebaweenuwsetmtypesofenorabyv. Byers.
mer were erxors in the steps of an algorithmand the latter were
od with concepts. The discussion on procedural errors led to

lowing pointss

g8 article, "Cognitive Analysis of Children’s Mathematics Diffi-
* by Russallahd Ginsberg was introduced by Byers as an exanple
strata procedural errors as specific defective procedures when
ng a written algoritim. Members did pct have encugh time

st the article. It was also feltthat tlw paper sumarized re—
ather than described individual children. However, the results
icate that fourth graders with learning difficulties mads a
 number of errors than their peers.
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(ii) Two exanples of children's work shown
woere Exlwan

glxgmlgoWabymumwduu eml;gwithnge
o exanple mentally in hias head. Morcover, th
° handle fracticns which were used in plans for his r:nde
t'.mctil ong, but he mads exrors with fractions at school. Th
mewasofaboyunmablemusealgoritmm correctl:
ormil mathoda of working with percents for exanple. i

were used to suggest that

the so-called informal methods

by both good and poor students, bu
s but it is only the latter
often unable to usa standard algorithm that are tauglaxt at g

.(111) Two exa.nplea of conceptual

errors were given.' V.
schoo m?ngtl:udme byta'.,msed‘da on tha zaro product principle M‘:idaly?c
x-8°3. 3 used incorrectly to solva (x-7) (x~8) = 3ias »

A sot of exanples by Ehr.lwanger of children' tervi

i S o enad i oo LR AT oo
gave their own (different

of the equal sign in exarples such ag 2+3=5, 3«3 ar)\digit-‘;:g?;t

memwasmtemmhtimtooonsidertheseexanplesoranyc

C.

Exrors in Problem Solving

'merebasmtimtadiscussthj.sareaata.ll.

D.
1.

2.

3.

4.

5.

6.

oumeraspectsﬂmthemtauchedtmthmtdiscussedat

Articles by Byers a\ﬁ Erlwanger. One arti
in Mathematics® raised the question w\euxef-lgrg;r;m

spurious genralizations,
Tha agytiglg by Russell and G
mads group y: children

are not deficient in key informl matham i or cawetic;tgifrfu

but they have troub g
" va t le recauing addition number facts and :

'mepmble.mofrmtommimisetheoccxmenoe errors

of

mu:;agsigsermrsasﬂmyocmmmassistsuﬁents!n ).:::
was proposed by M. Hoffiman,

Locking at errors from a hroad €rro
context in which
only one aspect of tha totality of that student, (H.m

The no that errors are subject m spec
tion matter
content as well ag its fonm, (B;jrers and E:clwangg}c and xef)

The developwent approach in Geame where erro, ocong:
g:i:e ind.l_ Se;atars of tha level of dravatry lopment o.‘.’mcl1.:i..‘l.dx:vanm:e %
ti—cu_ the question that we speak of children's ex:zn'
quenin suby in subjects taught at school vhile we seldom think
jects that are taught informally such as geanetry, |
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discussions on ecrors remained at the dascriptive level
1id not lead to any theory. (D. Kirshner)

ize, the working group demonstrated ot again that our know-
arding the leaming of mathematics and the causes and nature
i3 still incanplets, fragmentary and far from a .theory.
 tha group net initially a great deal =i time was spent in

) evaluate each others views. "It would probably have been ad-
to have focussed on introducing each zspect by means of

. But it tums out that findino exanples to cover different
g. elexentary, secondari’, colleye and miversity is quite

e

1 camrents by participants:

endiger

ated very mxh, that during discussicss a variety of differ-
| came up, as to how an exror can bs d=fined and what role
in tha learning process. Depending ot the chosen conceptual
. different aspects come to the forii

r threa different approaches, i:a% partly nre overlapping,
iclusive,

1oy gave wanples of a student, whd (oul solve an addition
mentally in a ron-school enviromment &7 -ould not & it

chool, neither mentally nor by using e standard algorithm.
ack, I think Heinrich's damains of learning are very suitable

ba these difficultiess A cognitive structure is built up

main and by this is related to this domain and is not necessarily
x as a successful strategy into another domain.

jituation the tasks of the teacher would be to recognise suit-
tegies a studeat posseses already, to enable tha student to
this strateqy into another damain and to demonstrate the
hip between strategieg (standard algorithm - others).

another reason why I like the abova mentioned exanple given
y: it demonstrates the relevance of the affectiwa part of the
process. This affective aspect is - as to my opinion - cne
st Important characteristica of a domain, e.g. if a learning
nt is supportive in a way that a student ventures to think,
of cognitive structures from another damain is more likely.

her aspect cama in to the fore in Dieker's approach, that
walopaental one. Taking gecmetrical concepts as an exanple
opment of a cognitive structure could be described. In this
11 framework an error can be locked upan as indicator of tha
development. By choosing appropriate tasks the teacher is
upport the developrent of the cognitive structure.

abow, stortly described approaches canplement ono another, -
1 ong, imirodnced by David Kirshner is - as to my opinion -
tibic with tha others. Frankly, I do not agree with David,
e his framawork as too statics an error is defined as
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deviation of a well defined norm system. Moreover the occurre
errors has to be awided. If this is not possible, the teaclhs
by intervening - has or will lead to the right way more or le:
immediately.

'misapptoachn;akesiteasytoidentifyemrsaxﬂtochssif}
hxtlﬂdxﬁtitisfarfmsdmlleammgorleamingingem

(b) D. Kirshner

*In this report Ifocusonwmnprincipalintewentiminﬂ
morAnalysis'mrking Grouwp, concerning the relationship of
tence models to eryor analysis. The thesis consists of the £

oarponentss

1. Data availsble on students® errors are (usualy 2. apprd
analysed throuch carparisan to, or as deviatio.s ....om, €O
behaviours. '

2. Ermrpat:temsmlesamxifomaxﬂ'stabla'mancmpete
pattexrns, both within and between subjects, because the ¢
of deviations fram a procedure is (in principle and pract

the itself. Also, errors may pres
internediate stage in the acquinition of capetence. The
is therefors an 'end point' of a developmental process.

3. 'megteat.ex:stabuityofcmpetmcedatapemits, in prir
rore systematic and rigorous analysis of canpetence patte
is possible, independently, of error or acquision pat:tafr.
dcnﬂnantparadigmsinﬂnpsydnlogyofmaﬂmaticalakd
Informtion Processing) & not exploit this potential, In
carpetencaardermrusmg'ﬂasamtoolsuﬂascribmge
status to theories of error and theories of competence.
sult is that “in most (IP) analyses there has been consic
obscurityinmebmmdarybemmtismxtmbem
subjects,uﬂvhatisueantbobetmufapartimhrm
(Vanlehn, Brown, & Greeno, 1984, p.236)

4. More productive error analysis (i.2. more genralizable a:
may have to attend the more modelling competence
that case, arror analysis may serve 2 new, subservient x
to the evaluation and verification of campetence modals.’

(¢) H. Gerber

conference was an excellent one, well-organized and witl
?ptakers. lowever, the session got off to a ponderously sl
perhaps ‘it was dus to tha heterogenecus pature of the g
the variety of biases, expectations, and concemns, ¢hat the
three hours were, to me at least, a waste of time.

14
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ating cama alive at the start of tha second session with your
38, tha theory that we should introduce a topic
Problem that interests the audience. Fram that mament, and

@ when the francophones began to speak, our session was first- 1.

, tha sessions opened a whole new aspect of teaching. I began
rstand the problems, the terminology, and the present limita-
n our wderstanding of errors. Moreover, I now have a biblio-
an vhich to begin. The next time I ses you, I intend to
pats in such a meating in a more intelligent fashion.

ited an exanple. Ist me remind you of the one I gave. The

} of the examination scores 22/30, 15/20, and 5/8, on tests
calculated as {22+15+5)/(30+20+8)=42/7%. My son thought that
3 tha sama as the old percentage averiga. In that case the
» of 608, 708, and 80% is (60+70+80)/(L09+100+100)=210/300=
708. This confusion led him to beliewa that if his cum-
average after 3 months was 608, and ha got 708 on his next
tion his new average would be 65%. He was bright enough to
 exrxor as soon as I pointed it out to him.”

Erlwanger

8 the second working group in five years that I have attended
subject of errors. The first one in 1980 focussed on results
n tests and exanples of remediation. This time we tried to
an the value of errors in cognitive analysis. I note that in
58 tha groups got offto a very slow start. This is probably
ction of tha different biases and interests of individuals.

h tha discussions did not go very far, I think they did reflect
velopment in this area that ought to be pursued by furture
' groups ~ I hope in less than five years time,

suggest though that in future an attenpt should be made to
bera to contact each other before tha conference. I think

absolut&lyessmtialsoﬂutﬂngzwpleademcangetsare
the interests of the participants and perhaps arrange that
pants bring one or more examples of errors for discussion.®

2.

(b)

K
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WORKING GROUP B

LOGO BCTIVITIES FOR THE

I-'?'GH SCHOOL

ZROUP LEADER:

JOEL HILLEL
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Appendix

This apgendix contains three examples of LOGO-
activities for the math classroom. The first
relates to the topic of Pattern and can be use
varying levels of sophistication through the
(elementary and secondary). The second activ:
to the topic of Least Common Multiple and can
in late junior and intermediate level math cl
The third activity, relates to teaching about
and the circumference of a circle (intermedia

60
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Report of Warking Growp 'B’': oGO

'nnGmtpspentmatofitatiminexamhmxgandevaluating
several I0GQ inspied jnvestigative situations which had strong
lz-l.rdcstothemaﬂxamrmulun. miamafollwuptolastyea'r's
group (Warking Group A:s  L0OGO and the math-curriculun) in which the
msammate:qedﬂmtﬁnavailabiutyotsuchexpucit ‘microworlds’
epresents the best strategy for having 1020 accepted and used by
st teachers. It i3 an approach taking tha path of 'minimal re-
xistame'sincaitcallammspeci&lpmgrmhpgmcpertiseby&a
:eadxar,m:doesittequlmamjorperturbatin.notmeexistmg
lassroam satup or the existing curriculun. "mia:lsmtanaxgment
gainst other possible implementations of LOGD in'the school, includ-
ngammimlusivaPapettianvisimotafullyinplatentedmm
wrriculun. Rathar, it is based on tha pragmatic realisation that
Mwwptzmutyotmmmstteadmawiubebased, rightly or
:m?ly,mtheirpemeptimot its relevance to what is currently
aught.,

Asida fraom an enphasis on specific math content, last year's
:ompexployadoﬂnrcriterhwmmmeintendedtoreﬂectunad-
ntages of LOGO-based environments. These included: modifiability,
tenaibility, the possibility of usars writing their own procedures’
q following several lines of inquiry, etc. (sea last year's report).
. the risk ~7 'moverainpliﬁcatim,wacansayﬂlatmm
pes of situaumsme)mmeddurmgunthmedays. The first
pa canprised thosa situations created specifically to enhance a topic
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within the existing math: curriculun. The second type coupr:
uations whose underlying math- concepts are not traditionalls
but yet seem accessible to students becausa of the graphical
ties afforded by the ocanputer. -

Gary Flewelling of the Wellington County Board of Educat
duced many examples in which LOGO was used to generate “inve:
situations connected to topics in the math ,curriculum. i
included investigations involving fractions, vectors, moticn
acceleration, trig functions and statistics (see the appendis
sam exanples). Thesa were viewed by the group, which discu:

they could be modified, or extended to allow the user more

Denis Therrien of Universits Laval also demonstrated sc
packages which dealt with nurber concepts such as divisors, |
a:npos.ite, odd/even nunbers, etc.

A. Senteni of U.Q.A.M. demonstrated a non~turtle LOGO mi
that of variations on Conway's Game of LIfe (designed by B. ¢
of L.C.S.I.). Here members of tha group discussed briefly w
this kind of situation is only for 'buffs’ or whether such ar
gation could be used to lanch into some inportant math. cong
such as 'state!, 'action on states’, 'stability’, finite and
‘orbits’, etc. '

Finally, the possibility of using LOGO to investigate 1i
processes was discussed. liemt:hegmptlmxghtouﬁseveral
limiting behaviour which could be exhihited geametrically: 1
shapes (e.g. circle as a limit of'n-gms), limiting points ar

of inspirals, numerical limits (e.g. ratio of perimeter to df

n-gon) and fractals using recursive procedures.
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S8
DESIGNS FROM LETTER PATTERNS

MATH

Letter Patterns
—— Properties of 2D
Designs

.4

START UP_ INSTRUCTIONS

. Load LOGO into your cémputar (see pin up card #1)
. With Flewelling disk in drive, type
READ “"LETTERS [RETURN]
« When the LETTERS file has been read in, type
LETTERS [RETURN .
OU WILL BE ASKED TO RESPOND TO ONE OR TWO INSTRUCTIONS,

you have responded to the instructions on the screen,
lphabaet keys you asked for will be activated.

h letter is typed in, it will appear in the upper
ortion of the screen.

lition, a larger version of the letter will appear at
‘ean. (see below)

LIS FTA
LI UTFHIRS TN
79 &

dditional letter begins to be drawn where the previous

- atops being drawn. This gives rise to a large number
ter designs.

ery simple single-latter patterns will generate designs.
elow)

AAAY BBB

O

ERIC

Aruitoxt provided by Eic:
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+ More complicated designs result from using two or

ABABABABABABAB

« If a key is hit in error and youiwish to remove tha
from your design, just hit the [=] key. If you wan
sevaral letters, hit the [Z] key several times,

- If for any reason you want to blow up or shrink a d
* hit the key. ‘

You will be asked, *yhat scale factor?® If you wan
its dimension, for example, respond by typing IZ]E
Had you wardted to shrink it to half size you would
by typing [[8] |RETURN]

To get back to original design size you must hit th
respond with a scale factor tﬂ

Below is the 'ABABAB’® dasign blown up using a scale

ABABABABABABABA

- MHit the [¥] key to erase the screen and start over ;
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Egg

R
£

5

e.g. 2

e
RED

FrEIE I HENENE

E

H
H
ter patterns need not be set out on Jjust one line as above.
dimensional array of letter pattarns can also be created. PIZZA
[d] xey at the end of eaah g %%2
4 PLlZin

a in achiaved by pressing tha
e of letters in the array.
ing ARTIARTIARTIAR®] for example, would giva the letter f[_ /
| {f >
' —~—hr®

tern and design shown below.

* See the supplement ‘WHAT CAN 1
igns can be printed onto paper following the instructions for id se WIT@ ne. T
.gin e catdp.g.. pap g eag on how to utilize these designs.
cw aample print wuts are shows on the next page. NOTE: jgx?ﬁ: sﬁ?eﬁring go wrong, for whatever rea
O start over again, hold tk C
down, together, and type‘in LETTégs gg#uﬁﬁd

87 68

ERIC

Aruitoxt provided by Eic:



62 63

LEAST COMMON MULTIPLE

LOGO ' MATH
NONE Multiples
Least Common Multiple
Lowest Common Denomin:
Common Factors
Coprime #'s
Composite §'s
Properties of 2D desic
as gear ratios

LCM
(Using LOGO procedures)

START- UP INSTRUCTIONS
1. Load LOGO (see pin up card 1)
2. With Flewelling disk in disk drive, type,
READ “LCM [RETURR]
3. when LCM file is loaded, type,
BEGIN |RETURN

+ You are first asked to type in the coordinates of the cen
and radius for each of two circles.
I would suggest, in the beginning, typing,

0 0 {RETURN) and
125 [RETURN ' 125

for the first circle, and
0 0 [RETURN]

-150 : (n,0)
60 |RBTURN| :
for the secund circle. 2s
Developed by
‘?ary Plewelling (Keep the circles within the screen dimension shown above.
Mathematics Consultant
Wellington County Board oflzduca:ion - You are then asked to input two natural numbers. Initiall

should consider using one digie numbers. Had you typed, |
example, 8 IRETURN! and then & !RETURN! you would see, on
screen, eight points on a largs out circle and six points
an inner circle. (fig 1)

fig 1

ERIC

Aruitoxt provided by Eic:
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ocedures will cause the first peint of circic one (C1)
joined to the first point on circle two {C2), then the
| point on Cl to be joined to the second point on C2,
Two coloured disks will appear on the points heing

. (fig 2 & Eig 3)

L - \
. _f
8 z » /
. . o
o % fi g 3 »
L : G \» ? t ° /
° S 3 '\\
Y . '\\‘
¢ 2 - °
> R
L]

.,

n control the action on the screen (type [S}[RETURN])
. the procedure run continuously(type ff] [RETURN] ),
_[S) and [RETGR®] will activate the key. Each time

] 1s pressed another pair of points will be joined.
- shows result of pressing five times)

 above s:xample, it will be noticed that the design

be complete (fig 1) until 24 pairs of points have been
'+ In this time, the disk on C1 will have made 3 trips
' C1 and the disk on C2 will have made 4 trips around
+8. 1 sets of 8 points were_ joined to 4 sets of 6

e

Eig 4

e action been run continuously, you would see the two

run around their circular tracks, with the disk on C1 com-

g 3 laps in the time that the disk on C2 completed four.
touching 24 points) '

intg loudly of the following

1 ? 4x1 Ixi 4 3
678 "axe *3x8 = 3y * 34 = etc.

a gear with 8 teeth turning a gear with 6 teeth

4 is the “least common multiple” of 6 and 8.
ncepts can be introduced with this package.

ERIC
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Students should hp able to
comes given any two inputs.
e.g. 1
e.g. 2

predict sirown behaviors an

Cl: 8 points and c2: 5 ﬁoints (Eig 6)
Cl: 8 points and c2: 4 paints (fig 7)

e.g. 3 Cl: 8 points and C2: 8 points (fig 8)
fig 6

fig 7

. / N\
\ )
‘ /
\‘~ \‘“ . // P P
SO e -
. 1 ‘~.,/
AN Pl
a// \-\ ’

Natural numbers up to 100 c»n be entered (too large a n
will result in an “out of n.-mory* error),

To print completed designs (fig 9-13) from to screen to
follow these instructions.

1. Have Flewelling disk in disk drive and printer 'ON',

2. Stop LCM procedures with and [G] keys held do
together,

3. Press [B] key and the key.

(Figures 9-13 had both circles centred at (0,0),

of the screen.) the ce
f£ig 9 C1: 4 fig 10 cC1; 67 i 1 H
c2: 50 f2: 2 RS
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fig 12 C1: &8
C2: 11

fig 14

Cl: (0,50) r=60
C2;: (0,-60) r=50
#'s 90 and 3

fig 16
Cl: (0,50) r=50
c2: (0,-50) r=50
#'s 80 and 40

ERIC
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fig 13 C1:40
€2:30

J

A X
PSS

AR

5

fig 15

Ct: (0,50) r=7%

c2: (0,-50) r=75
1's872% and 72

*hin
Ql.

Q2.

Q3.

Q4.

Q5.

NOTE 1:

NOTE 23

67

gs other than LCM's and gear ratios can be inves

ltow do successive segments vary in length? (coul
measure each off screen and plot a graph, pair §
v.s. length in mu)

Ccan you predict design characteristics given val
inputs? (e.g. Cl:16 and C2:12)

Given design, can you determine input values?

Arc there characteristic differences in designs
inputs:

a) are a multiple of the other (e.g. C1:24 and C
b) share a common factor {(e.g. Cl1:24 and C2:8)
c) coprime (no common factors) (e.g. CH:7 and C-

are: thoere characteristic differences between des
Cl:a, C2:b and Cl:b, C2:a?

prolonged use of the [*] key to step out a des
result in an "out of memory" error. At this
design can be completed by typing DESIGN [RET

The procedure is pot self-stopping. You must
@T_L%] and [G] keys down to stop the drawing :

NOTE 3: To enter two new numbers without changing the

position of the two circles; type,

LCH !RBTURN'

NOTE 4: To start with two new circles, type,

INFO

NOTE 5: Should an gowrong, for whatever reason

down the and [G] key then type, BEGIN

Make sure the Flewelling disk is in the disk



CIRCLE ACTIVITIES

T HATI
TU, " UWEAT,. Accivicy | cicclen
en, o, LT Activity 2 clecle dosigns
diiacacionsa
« & Activity 3 circular arca
et LU designs
Acclivicy 4

aircinlaranca

t T AND THE CIRCUHPERCKCE FORMULA)
ry doez thrae things.,

aning to‘® ,

; approximating A ,end
i: ::::: : ::thfi !gg working out a circle’s circumfecrenca.

PI Lile that draws reguiar

) is a procedure from the o used in Activity i, The

fike the POLY) procedur
:I‘lcn hero is that onca the polygon ia drawn, :I‘w e
,s to tha centre of the lasc side drawn, turns lnwar

i pulsos tho diraccion it is pointing in.
. 5 atc.) and hic
wow enter a command like pD 2 lor V or ic
* d til you gat to the oppo@ita
RETURN] kave “p.:ﬂ rl;!v:n-ouznd the polyqon's widch

on, you w ‘
:33..‘:’:}'.3 n:mlur of atepa taken x2 lor 1 or aece. )

gate how the width of a apacific regular polygon
s to its periacter.

N S
»,‘] ra p /'
L/

|
s >, o \\_____/ _ \\

:qular Polygon (ragardlese of eize) hae its own peculiarc
¢ (arrived at be dividing ite parimator by lce widch).

Constant
 yqon Pecrimater Wideh p/w

17} 4

le

pmputer to do arithmactic ¢alculation, just enter
tar/width ) .

ns that the perimater of e raguler polygon can be
aimply by working out the anawar to

widch of polygon x polygon constent

s o weird way of celculeting a perimater. Normally,
uld juet take the length of one eide and multiply by
mber of sides. And yat, it e a wey of working out
taer thets worth getting ueed tol

he regular polygon becomae e circle, you have no
but to uee

width x circle conetant i1

e sore familier with the usuel way of writing this formuia.

circupference of a circle = dizmeter x pi

ERIC
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;ymbolic Manipulation Software on the teaching of Calculus

les Logiciels a Calculs Symboliques sur L‘'Enseignement du’
ferentiel et Integral .

Working Group C

ticipants and Acknowledgements
rt - Eric Muller
ytated Bibliography - Bernard-Hodgson

2ndix 1 - Gilﬁert Morin - A useful introduction to
muMATH.
andix 2 - Charles Latour - Part A - an excellent
. description on how muMATH was used to

solve the curvature of light problen in
general relativity ~ Part B - discusses
the inportance “du calcul® or “general
computational skills* in mathematics.

andix 3

Noelange Boisclair -~ raises some general
questions regarding the use of computers
in calculus courses.

andix §

Edgar ¥illiams =~ provides an extensive
1ist of potential benefits which one
can gain by using asymbolic manipulation
software in teachinjy mathematics.

andix 5 . = Dave Alexander - raises a number of
questions and suggests a sequence for
teaching differentiation with Symbolic
Manipulation Software. .
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(Université Laval)
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Gila Hanna (0ISE)

Charles Latour (Cégep F.-X. Garneau)
Fernand Lemay (Université Laval)
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ductory Linear Algebra course. The warm welcome to the Unive
Waterloo znd generous contribution of their time is much appr
ahe group expresses {ts thanks to Gilbert Morin, an undergrad
niversite Laval, for preparing documentation on the use of m



72

Report

this report the terms Symbolic Manipulation Software (SMS)
Computer Algebra Software (CAS) are assumed equivalent.
y refer to software which manipulates algebraic systems,

s rational arithmetic and can perform calculus operations.)

group started by spending three hours obtaining first hand
ca of the muMATH software in the Laval Mathematics Department's
puter laboratory. The group followed a set of instructions
d by Gilbert Morin - a mathematics undergraduate at the
te Laval (see Appendix 1).

arge number of shortcomings were found during this three hour

the most serious of these being that wrong and incomplete
were produced on the screen without comment. The general concerns
roup s that this particular software is not yet in a form
ntly consistent and correct to be used in or with a first year
The group is aware that such software as MAPLE and MACSYMA have
more widely used and tested ani that they do not contain some
hortcomings of the muMATH. At present both MACSYMA and MAPLE
larger compyter systems to operate. MHNevertheless it is the opinion
rs §n the field that both MAPLE and MACSYMA will be available on
'micros very soon. The group therefore was looking ahead to times
ted and powerful (computer algebra) symbolic manipulation systems
readily available. Part A of Appendix 2, by Charles Latour, is a
arly good description of the experiences of an individual using
or the first time to solve a specific problem.

the end of the first session participants were asked to think
¢ Impact of such systems on mathematics and to prepare a list of
concerns, etc., which could be studied and developed by the group.

following list was drawn up at the begihning of the second session:
ot ia order of importance) :

Develop problems (examples) particularly suited to solution using
symbolic manipulaticn software.

Develop guidelines for the use of SHS systems as a check to one's
work.

Determine whether an SMS system permits the introduction of more
advanced jdeas at an earlier stage, i.e. order within curriculum
when SMS system is used .

Discuss the use of such systems for non-university bound students.‘

ERIC
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Identify either

a) ‘“routine* parts of the curriculum which can be yn
by the SMS system and which have in themselves no
towards achieving the aims of the course

or

b) isolate the important parts of the curriculum whi
enhanced by, but not replaced by, the use of an S

Guidelines on how to use the SMS systems as a means f
exploratory development of mathematics

Isolate those skills which are necessary for using th
sensibly:-

(a) Estimation

(b) Sense of reasonableness

(c) Knowledge of concepts

(d) Are the procedures ysed in testing algorithms us
testing solutions from an SMS package?

(e) Use of graphical techniques as a check of reason

How much should one know about the algorithms and the
language used in such packages? Do these algorithms
languages give any insight into the the mathematics?

What properties should an SMS system have in order fo
useful in education (as opposed to a pure research to
capability to show intermediate steps etc.

The group then decided to isolate one topic within the differe
and integral calculus and to discuss the use of SMS systems in
of that concept. - Without making any statement as to when or wi
a calculus curriculum “1imits" should be taught the group deci
at the possible impact of SHS systems on the teaching and lear

80
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S systews oird thy Saaching of Limits

S systems do not provide a rich environment fur tha teaching of
cept of limits. These systems can ba usad o siwpiify complicated
ic expressions but generally numerical procedures provide a
medium to motiaate intuitive ideas of limit concepts in calculus,
s of the type 2. . A useful numerical software packags would have

- screen displaying graphical values on one side and algebraic
ntations on the other. The plotting of function values should be
50 that subsequent values appear one at a time. It should be
to enlarge any interval of values so that intervals which initially
y small could be enlarged to fi11 the whole graphical portion of the
Such software would be used to present simple cases in class and
1low students to explore many different functions which are normally
essible because either the student lacks the algebraic techniques,
computations are extremely tedious.

ce the concept of 1imit is understood SMS systems should ba used

vate the laws of differentiation. Every effort should be made to
the derivative as a dynamic concept and not a numerical one. SMS

e allows quick access to more meaningful applications and to the:

ction of differential equations which provide 1ife to the derivative.

S systems and the teaching of Integration

en discussing integration techniques -- algebraic integration
res -- two disparate points of view are expressed:

) Too much time is spent on integration techniques both in class
and student assignments. These techniques tend to dominate the
use of the student's time and mastery of these techniques does
not translate into a better understanding of integration. Some
argue that «¢ 2an now dispense completely with integration
techniques as they are largely algebraic manipulations which
shed no new light or insight on the concept of integration.

) Integration techniques are a necessary part of any calculus course.
A student faced with a particular integral is forced to consider
alternative procedures for solving it. There is therefore a
certain openess or trial and error situation. It is one of the few
areas where students apply the algebraic skills they have acquired
in school mathematics.

up believes that the following points are sufficiently significant
2y can form the basis of further thought and study in the use of
tware in calculus courses.
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Hhen technology is availsiie, course content, lecture pre
and student activities ciiould shift to higher mental acti
Can calculus courses learn {rem the siatistics experience
statistics courses spent many haurs on simplification of
tnvolving sums of squares and cross product expressions.
“good" for the students as they obtained experience using
notation and manipulation of indices to change the concep
definition to the effictently calculable form. This is r.
now and more time is spent on the statistical concept and
when and how to apply it. s the calculus curriculum $o
established that it no longer has any flexibility for chai
way to review the Calculus curriculum is to firstly isola
concepty which are essential to calculus and secondly to :
curriculum with supporting activities restricted to those
the concepts and give a deeper understanding of calculus.
that SHS software will play a major role in such supporti
Many students presently complete a calculus course and are
{integral tables. They have a very limited experience of -
techniques and many are unaware that the integral of the »
functions do not have closed analytical forms. Hopeful ly
ware will change this situation and will place students ir
experimental sityation.

A reduced emphasis on algebraic manipulation in calculus c
have a major impact on school mathematics courses as much
algebra is directed towards preparation for calculus cours

It is clear that unviersity mathematics professors involve
year calculus and linear algebra courses have a lot to learn re
use of SMS softwire in these courses. It is imperative that tt
are experimenting with the use of such software in their course
their findings. It is important that experimental use of such
well documented so that others can repeat these experiments in
settings. Either one of the leaders of this working group woul
receiving such information and to circulate it to interested in
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ANNOTATED B3IBLIOGRAPHY

B.F. &ramus, Jr., "Pi." pmor. Hath. Honthly 92
(1985) '13-214.

An axze¥%ple of a “corcoptumal problea" (the
existecid ©of v ) showing tho importeace of
change of wnriebleas arid integration by parts

in studying Llategration-

Cuvllins 2nd R. Loos,
Covyuker 2lgobrai .. drabolic _ and sbraic
Compatatimp. Springwi~warleg, 1983. (2nd ed.)
Pirut o¢ibion isssad ss a Supplementun to the
Journgl Comgwutiri (1982). A bamic book
containing eitioon  survey arficles (with
extensflve rofmiances) abuvt the theory end
implewsantation of symbolic mathematical
systei:i (the su-vuilad "computar algebra®).

J.2. ¥oy, ed., Qoypuking napd Hathewuticn;
The Impact on nggngggx gcﬁgol Curricylg.
NCTH, 1984.

Report of a confararae® wsydnsored by 'ASKF.  Of
particulor intereat are the cheptura "Inpact
of cawpuing on algedbre” aund ™Iagact of.
comput ing on calcufllus™.

B.W. Ardea, ed., fihat can Qo.ggimgggggz MIT
Press, 18%7, ' :
The Vawmpuiar 8cisnce sad ZSrgineering Research
Study. & hugs 'aport (nearly 1808 piges!) on
sll sapiuyl of Cosputeor sclence. Pages 6123-526
give a shorg introduction to algebraic
manipulati;a.

4. Coxtvrel, “School algeshrs: what is still
fundamenti]l end whet is not." In [NCTM.YB 85]
pp. 83-G4.

*The pusi to incorpeorate aymbolic mathematical
s¥8tezsm in wlgebra is questionable beceuse we
tre not aure of the relationships between
procedural  knowledge end  skill and -the
uedaratanding of algebra. (...) I predict that
nore procedural knowledga will be needed to
loaru algsbrs then many would believe."

J.Hd. Davenport, "Bffective mathomatics - the
computer olgabra viewpoint."™ In Constructive
Maothesatics, P. Richman, ed. Springer-Verleg,
1981, pp. 31-43. (Lect. Notaes in Maths, no.

An introduction to the theory underlying
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symbolic methemetical syastoms'.

R.J. Fateman, "Symbolic and algebrei
programming eystens." Proc. ICHE-
Birkhaliser, 1983. pp. 606-612.

A mini-course on symbolic end

ccaputer programming syatens.

J.T. Fey wwad R.A. Good, "“Rethi
© uvance and priorities of hi
.atbezetica curricula.™ In [NCTM.
-62.

s3all numbor of familiar end

wultlometical ideas ere at the hear
coamon applicationr (...) A etuden
by (s symbolic methematical aystems
erndure a long skill-building appr
in order to become an effective
sclver - if the key oﬁganizing co
woll understuod.” i

M.K. Heid, "Cslculus
tions for curriculum
Toacher” 11 (1883) 46-49.
A condensed version of
in [CAMP & MATH 84]).

with wuNATH
reforn.”

some iassues
B.R. Hodgson, B. Muller, J. Poland a

Taylor, "Introductory calculus ign
[STRASBOURG 85) pp. 213-216.

"We propose weys in which the in
Calculus curriculuas might respon
recent and rapidly changing compute
ces." Discussion atresses the

contextual approach, the qualitativ
of functions in mathematical modell
interactive modo of claasroom teachi

B.R. Hodgson and J. Poland, "Revampi
mathenatice curriculunm: the int
conputers.” CNS8 Notes 16(8) (1983)17
Outcome of working groups nt

mastings of 19232 and 1983. Raises th

of the relevance, in the contex
actual computer revolution, of =
coursea taught in the treditio

Proposes scenarios of reasonable go
the changes needed in undergraduat
tics education.

J.N. Hosack, "The asffect of comput
systoms on the curriculum.” Prepr
Collage (Waterville, MB), 1985. (5 p
A goneral discussion regarding t

84
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symbolic mathonatical systems in early courses
(sce also [LANE 856]] for a presentation of the
Colby Curriculum Project).

J.M. Houeck, "A guide to computer algebra
systens.* Preprint, Colby College (Water~-
villae, MR), 1%:36. (M5 pages)

A comperison of the capecities of MACSYMA,
Maple, muMATH, REDUCE and SMP.

J.H. Hubbard aund B.H. West, "Computer graphics
revolutionizes the teeching of differentiecl
equations.” In [{STRASBOURG 85] pp. 29-36
(Supplement).

Illustrate the uss of interective high-resolu-
tion graphics for the (early!) teaching of
difforential equations. -

"The influence of computers eud inforamatics on
mathomatics and its teeching.” .(An ICMI
discussion document). L'ensejgnement nmathémg—
tique 30 (1984) 169-172.

Ths discussion document prepered for the ICMI
Synposium held im Stresbourg in March 1986

. (ses [STRASBOURG 85]). An expanded version of

this paper, as well as a selection of papers
submitted to Strasbourg or written by invita-
tion following ths meoting, will appear in the
Proceedinge of the Symposium, to be published
by the Combridge University Press.

J. Eenelly, P. Henry and C.0. Jones, “"The
advanced placement program in calculus." In
[NCTM .YB 86] pp. 186-176.

Some of the topics of the matha curriculum
should pot be troated with the computer. The
authors make a perallel with machine transla-
tion of natural iengeges: "Here, the computer
is very capable with mechanicel substitutions
but ths rich subtleties are lost.”

D. Eunkle and C.I. Burch, "Symbolic computer
algaebre: the cleasroom computer teckes =a
quentum jump.” Mathematics Teacher 77 (1984)
209-214.

Illustrates the uae of muMATH for finding the
sum of j®(J4=1,...,N) for different velues of

K.U0. Lene, "Symbolic manipulators and the
toaching of college mathematics: some possible
consequences vnd opportunities." Preprint,
Colby College (Waterville, MB), 1985. (13
pagea)
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NCTM.CONF 84

NCTM.YB 84

79

Description of the Colby Curric:
integrating symbolic nathematical
the college curriculum. A condet
eppears in [(MAA. PANEL 84).

M.J. Siegal. ed., Panel on Discre
tics i the irgst Two Years |

Report). MAA, Nov. 1984.

Included is a gshort “Report «c¢n
aymbolic mathematics aystem in wu:
instruction"” by J. Hosack, K. |
Small.

B.W. Cher, K.O0. G@eddes and 4.H.
introduction to Maple: senmple

-sasalon.” Research Report CS-84-04,

of Computer Scienze. University o
(16 pages)

An introduction to what can be «
aymbolic mathemetical system, usin;
Meple currently under developne:
University of Weterloo.

J. Moses, "Algebraic simplificet:
for. the perplexed.” Comm C
527-637. "“Symbolic integration:
decede.” Comm. ACM 14 (1971) 548-5¢
Two papers from the Second 8
Symbolic end Algebraic Menipulal
excellent expositions, elthougl
deted, give e lot of informetio:
way cowmputers can manipulate aymb.
sions and° find antiderivative
preparation for the reading 0!
technical [BUCHBRRGER B83].

M. K, Corbitt and J.T. Fey, Ti

computipg techpnology on _school
(Beport of an NCTM conference).
(6 peges)

A brief roport from a conference h«
1984. Includes recommandations re!
impact of computing technology on
instruction end teacher education.

J.Fey and M.K. Heid, "Imperatives
lities for new curricula in secol

mathonatics.” In Computers gp
(1984 Yearbook), V.P. Hensen and

"ed. NCTM, 1984. pp. 20-29.

Similer imn spirit to (HEID 83
MATH 84}. Stresges “"topics o:
importence” and “"topica of continu
ce”. (The whole 1984 Yearbo
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30

27 papay - i:sided in five parts: Issuea; The
computer s toaching aid; Tcaching pmathema-
tics tb. “ programming; Dingncstic uses of

the wo=piw ,*; Libliography.)

c.8 '+ ub snd M.J. Zwong, ed.,
Schuny  irthematice Currjculun
becok}, HOYH, 1985. .
O0f sp-iiul intarest to oymbolic computations
are the gpepers [COUFORD 85), (FBY & Gooo 85],
(EBNBLLY BT AL. 85) and (RALSTON B5].

a Seconda
(1985 Year-

A.C. Norman, "Algsbraic wmanipulation."” In
Bncyclopedja of Coppu clence a Bngipee-
ring, A. Relaton et al., eds. Van Noatrand,
1983. pp. 41-50.

A quick overview of different aymbolic
manipulation systexs.
J. Poland, "Computers and the impending

rovolution in mathomatica education.”
Hath, Gag,, 23(2) (1984) 26-29.

A frosb discussicn of some of
raised by the presence of
syabolic manipulation syatems.

Ont,

the issues
computers and

A. Ralaton, "The roally uew college mathema-
tics and its impact on the high achool
curriculum.” In [NCTM.YB 85] pp. 29-42,

Hhat changos should occur in the high school
curriculum as a raesult of changes in the
college curriculum (vg thke role of discrote
nathomatice) and the direct impact of compu-
ters techoology (vg symbolic wmathematical
systems) on the high school curriculux.

R.%: Rand. = Cogputer Algebya _iL_ .pplied
Me-raatice: An Introduction _to MAZTSYMA.

Pituan, 1984.

An introduction to the uge o?f
manipulation systems (viz. MACSYMA)

naths. ("This book is aimad at
has had at leust three years
calculus and differential

syntax of MACSYMA is leerund wkile working
sone examples. Contains o 5aw exercisea with
detailed solutions. "It is oxnectad that it
will not be long before computer algebra is as

symLolic
in higher
a reader who
of college leveal
equationa.") The

common to an engineering student as the now
obsiate slide rule once was.”™
R. Pevaelles, M. Rothstein end J. Fitch,

"Computar Algebrs:® Scjent, Amer., Dec. 1981,
pp. 136-162 (Versien frangaise: "L'zlgabre
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informatique.” Pour la science
pp.90-98.)
A most influencial paper in mal
manipulation aystems Xnown to

(acientific) public.

SIASAM Bulletin 18(4) and 19(1) (.
A opecial isgue of the Bull
"Special Interest Qroup on Symb
braic MHManipulation" (SIGSAM)
Contains papors from the nmession
mathenatical systems and their e
curriculum” held at ICME-5, Ad
Sixty-two pages of interesting
of the papers report on experin
high achool or university.

W. Squire, "muMATH syatem effec
algebra."” SIAM News, Nov. 1984, p
"The situation may be described
tial revolution waiting for a tex

L.A. Steen, "Computer c&lculus."”
119 (1981) 250-251.

A short presentation of
systoms.

symbolic

I. Stewart, Review of [BUCHBER
Intell., 6(1) (1984) 72-74.

Some comments on the general g
the computer, with its symbolic
capability, put all mathematic
businesa 7

D.R. Stoutemeye:r, "Computer symb
aducation: a radical proposal.”
13(2) (1979) 8-24.

An interesting discuasionr of
synbolic manipulation systams in
of mathematica. A reviaed a
version of this papesr has appoare
85}, pp. 40-53, under the titl
proposal for computer algebra in

D.R. Stouteayer, "Nonnuweric comp
tions to algebra, trigonometry a
Two—-Year Coll. Matb, J., 14 (1983
A general introduction to syxbo
tion ayatens. Mentions sommc ap
abe st algebra.

D.K., Stoutemeyer, "Using compu
meth for learning by diacovery
BOURG B85]), pp. 165-160.
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Sone nice suggestions of projects uaing
conputer algebra for math diacovery.

The snc of Com ormetics o
ethen cs te sec . Supporting

papers for tho symposium organised by ICMI.
Strasbourg, March 19856. (256 pages plua a
Supplenent of 62 pages). )
Tha rapers prosented by the participantas to
ths ICMI asymposiun. A new edition of thase
ripporting papers is to be published by the
IEEM of Straabourg. Copies can be ordered
from ¥F. Pluvinage, Départemert de methémati-
ques, 7 rue BRoné-Descartes, /7G84 Strasbourg
Cédex, FPrance. The price is FFilDd.

p. Tall, "Undarstanding tho calculus.” Math
Teachip No. 110 (March 1985) 49-53.

How to use the graphical capabilitias of the
conputer to illustrate basic concepta of the
calculus. See also, by the same author,
"Continuous mathewatics and discrete computing
ara complenmentary, not altornativea", Coll.
Math, J. 156 (1984) 389~-391 and "Visualizing
calculus concepts using a computer”, in
{STRASBOURG 86] pp. 203-211.

Z. Usiskin, "Mathomatics is getting easier."
Math. Teacher 77 (1984) 82-83.

"Some skills are clearly necessary, but (...)
too much elsa should' be learned about nathema-
tics to waste time in practicing obaolete
skills. Mathematico in getting easier [with
RuMATE]. We will oot be able to keep thin
secret from our gtudents forever."

H.S. Wilf, "The disk with the college educa-
tion:." Amer, Math, Montkly, 89 (1982) 4-8.
auMATH is coming! auMATH {z comingi: A peper
intendey as a "distant early-warning eignal"”
for tho nathematical cosmmunity.

H.S. V¥3ly, "Symbolic manipulation and algo-
ritkss {n the curriculun of the first two
years.” In The Futyre of College Nethemetics,
A, Re.-tm aad G.3. Young, =»d., Springer-Ver-
lag, 1233, pp. 27-40.

Expands on the isrues raised in [WILF 82]. "It
can ba very unsettling to reclize that what we
proviously thought was a very human ability
(..») can actually be botter done by "ma-
chines”.” (Also contxins a description of a
socond semester acvhoscire course introducing
algorithnms.)
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B. Winkelmann, "%ha impact of the ¢
the teaching of amalycie.” Int, J. @
Sci, Techp. 15 (1984) 675-689.

A basic discussion of tho ways tl
capabilitiocs (among others, the
capabilitiea) will influence the |
calculus.

B. Winkelmann, "“Some remarks on t!
of elementary calculus in the com]
In [STRASBOURQ 86] pp. 1-7 (Suppleme
“So if it scems posaible to mester
tial equations] at o more elemeo:
than hitherto was possible, the)
regarded 8s the most appropriate |
and goal even for the teaching of
calculus at schools and colleges.”

D.Y. Yun and D.R. Stoutemeyer,
mathematical computation."” 1In Bncys
Conputer Science end Technology. J.
al., eds. M. Dekker, 1980. vol.
236-310.

A goneral discussion of aymbolic =i
systems. Includes a8 guide to ao:
asyastems and a discussion of basic
alternatives {for building up aucl
Tho last 30 pages are devoted to apj
algebra, nonacalar analysis,
analysis, celeatial mechanics
relativity, high~energy physics.
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Appendix 1

AN INTRODUCTION TO muMATH

)olic mathematics package for.nicro-couputérn)

presented to the CMBESG meeting

by
G. Morin

Université Laval

91
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BASIC INSTRUCTIONS FOR THR USE OF nmuMATH SYMBOLIC |
1- Insert the DOS 2.10 diskette in the left diak

2~ Put the power on the video screen and on ti
(right~ side of the machine).

3- On the screen will appear: "ENTRR NEW DATE:"
ths "return" key ( ) in response; same th
“"ENTER NEW TIME:"pronpt.

4- Renmove DOS 2.10 diskette from disk driv
“nuMATH 1" disket in that drive and place
diskette in the right diask drive.

5~ Type the word: MUSIMP on the keyboard, fo
"return” key ( ).

6- Press the key: Eggﬁ (for t ; use of capit
it's important), then press: um .
IH!H
T- Following the queatior mark, type: LOAD (MU

press the "return® key.

You are now in muMATH.

N.B. In_muMATH, always end a sentence by _a
followed by a "retupn".

A BRIEF SURVEY OF WHAT muMATHE CAN DO

Name of file . tthat i't does

ARITH.MUS. cvceeeesocssssses.rational arithmetic
ALGEBRA.ARI..ccveseeesesses.clomentary algebra
EQN.ALG:.vesesocssescssesssssaquation simplificatic
SOLVE.EQN.:eeeeeocecsssssss.aquation solver
ARRAY.ARI.:veccvesseesscsacsarray operations
MATRIX.ARR.:ceetecsvesessss .matrix operations
LINEQN.MAT ..o ceeseeseeress.8inultaneous linear

equations

ABSVAL.ALG...css0ss0essss0s.absolute-value s i:
TOG.ALG: v ctscotosesescsne Otlogarithmic Simplifict
TRG.ALG. ¢ s oev oo ...-.....-..trixonometric Bimplifi
ATRG.TRG: .o ssosessssssessinverss trigonometri

cation
HYPER.ALG:¢o oo toceoosnceecs .b}';h'.‘i'bolic tl‘igonome'

ficotion
DIF.ALG.:cssesosssssesssssss.aynbolic different

. Taylor series

INT.DIF.:eeeooesosessoresss.aynbolic integration

- 52
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INT. evveeeesessnsss axteanded symbolic intogration

tesssssssasessssssaslimits of functions

F. eeesssnsssesssesssclosed-fornm sunnation and
products

sceassaceascasencsasTirst-order ordinary differential
equations

JDB.ccccsecaceasansesshigher order ordinery differen—
tial equations

, ODB.vececassacaceacsaxXtend . first-order ODE: methods

L eessssssacsaasssssssvactor _gabra

VEC.ceveesaasanansasvactor calculrs

want to see a demonstration of oc £ the above itens,
DS (<items's 1st namad,<item’s 2nd named,B);

nple 1f you want to know hoWw to differentiate with

type: RD5s (DIF,ALG,BY; and waift for a few saconds.
conds at aoat.) ‘

ter eoch denonstration the following will appear:

Broak, Continue, DOS?

onsider "Break" or "DOS", Jjust press "C" if you went
inue with a different example or "4A" if you want to
he demonstration and do some of you own material

the same Punctuetion and orthograph as in the demons-

of coursa).

he "system file" named MUMATH has been built to

all the so-called ‘“source files"” ebove. When you
pad LOAD (MUMATH); es indicated above, you thus have
~ the memory all the tools offered by muMATH. But if
t to see a demo, Yyou need to type th- RDS command

" DEMONSTRATION OF muMATH

does exect retional arithmetic. Try these examples on
board. ’

/3

*(1/4);
1/4) SE~(#I ¥PI/4) nueening: VT e §7/4

y assign an expression or a value to a "name", e.g.

O
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7 TOTO: Y+3%X;
@: Y+3X

Now to see that Y+3%X is really assigned to "TOTO"

.7 TOoTO+Y; N.B. "s" is the multiplication symbol w

often (but not in every case) be o

@: 2Y+3x replace by a “apace".

Remember, you can do symbolic mathematics so it
to handle variables who don’t have values assigned

Here's the trigonometric expansion function, "TRGE
7 TRGEXPD (SIN(2%¥X),-3);

these parameters tell th
how to do the expansion.

@:2 COs X SIN X
7 TRQEXPD (2%COS{X)*SIN(X),30);
a@: SIN(2 X)

If you want to kiow more about trigomometry on mnul
RDS (TRG,ALG,B);

SOMR USEFUL muMATH COMMANDS

To do: Type:

- Je#(x)dx (indefinite integral) INT (F(X)
b

- [ £(x)dx (definita integral) DEFINT (F

a .
N.B. b can be positive infinity "PINF"
and a can be minus infinity "MINF"

) .

- f flx) SIGMA (F(
Xx=a

where a and b can respectively be “MINF" and '

- £'(x) DIF (F(X
- daf(x) DIF (F(X
dx®
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. v) DIF (F(X),X,N,Y,M);

8

Taylor expansion of f(x) TAYLOR (F(X),X,A,N);
1t A

oly. equ. P(x) = q(x) SOLVE (P(X)==Q(X),X);
0ly. equ. P(x) = 0 SOLVE (P(X),X);

» aysten of n linear equations
sspact to Xi,X3,...,Xn

LINRQN((.qul.equz.....equN].[x{...;.xn]);

—

y difforential equation.
le if you want to molve:
(Y (x)+1)y* ' (x) = (y''(x))? ‘
s (Y(X)):
R: ‘X
((Y'+1l)%Y*'* '==Y""*"2,Y);

TMATH o=28E (e.g. LN&B=l)
=PI (e.g. SIN(#PI/2) = 1)
i=81 (e.g. 312 = 1)

1) is the 1at arbitrary constant of an expression
2) is the 2nd arbitrary conastant of an expression

X from being "DIFVAR" and the dependency of Y upon

DIFVAR: FALSE;

PUT ('Y,'X,FALSE);

95
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Appendix 2
acEDM 1985

Appendice nu rapport du groupe
de_travail G sur

e ofgicie symboliques

Charles LATOUR
Départenent de mathdu
GEGRP Frangois-Xavier

ARTIE

(Séance pratique tenua le 6 Jjuin 1985 sous la supe
Bernard R. Hodgson, Eric Muller et Gilbert Morin.)
Le document JAn Introduction to muMATH" |
Gilbert Morin s'cst révélé fort utile et tout a fai
Mentionnons cependunt un petit oubli A la page 4: |
y lire au nota bene
(e.g. # I"2 = ~1) au lion de (a.g. # I°2 = 1).
Au cours de cette gession nouaz avons choisi
les “démonstration:"” suivantes:
1- LOG. ALG. sur les simplifications logarithmiqt
n'y avona décelé rien d’inquicdtant.
2- SIGMA. DIF. sur 1les soumations et produits.
nous avons pu faire wune observat:
peu surprenante. Pour la sommati
nous avons obtenu une expression de

+ + + + A = A,

3¢




90

Les termes algébriques de 1la réponse se
ressemblant tous, les A n'dtant pas des
expressions simples et 3i on y° ajoute la
difficulté de 1live les réponses sous forame
linédaire, i1 aura fallu un bon sens de
l'obuervation pour sa rendre compte de la
possiblité de las soustreire. On a utilisé la
fonction EXPAND pour faire disparaltre les A
et récupérer 1la réponse 1la plus réduite. On
ne s'attendait pas A& ne pas obtenir. la
weilleure réponse & l’intérieur d’une "démons-
tration“. C’est ' d’ailleurs un probléme
constant dana 1'emploi de ce logiciel de
savoir 8i la réponse obtenue est 1la plus
réduite possible. C'est sans doute un
probldme de grande t;iIIP pour l'étudianf qui
appfcnd et qui ne posséde donc par lfexpérien-

ce requise pour évaluer la réponse.

ant les dénonstrations j’ai suggéré de résoud;e 1e

»léme suivent sur le mode autonome: de la formule

)
K. =

y = gxl +¥2
SxTeyE

trouver ¥'(x,y) et y"(x,y) puis calculer 1la

[T+ (y)21373

e se pose en relativité géndrale. La formule (1)

uation en epproximation du premier ordre de la

[E

O
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trajectoire d'un rayon lumineux rasant les bords
(e.g. soleil). Le contexte physique indique qu
(1) devrait avoir 1'allure guivante

Y e y = 2x2+y2

/'&?Ti‘z_‘
ST

Il s'agissait pour nous de confirmer l'allﬁre de
par l'étude usuelle des dérivées premidre ot ;
d'en calculer la courbure. Apras quelques taton:
avons procédé de la fagon suivante & 1'aide de Qub
DEPENDS (Y(X));
DIFVAR: 'X; - (ligne peut-2tre guperflue]
DIF (Y-(28X°2+4Y"2)/(X"2+¥~2)"(1/2),X);
[pfut—atre inutile] .
Cc: @8;
SOLVE (c==0,y');
Cl: (2#X"3+3%X3Y"2)/((X"2+Y"2)~(3/2)~Y"3);
(-ecte expreasion est Y'=Y'(X,Y): poser simp]
ne fonctionne pas pour la suite]
DIF(DIF(Y-(2¥X"2+Y"2)/(X"2+¥Y"2)"(1/2),X),X);
(je pense qué DIF(Cl,X); aurait &été plus sim
facile pour la suite]

c:e
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220, Y");

Lent
(X, Y,Y")

2¥2 (Y )3-6Y3 XY’ +3Y4

VS X3 (Y3 +X3 )1 /3-Y3X3+Y4 (Y2+X2)2 /34X (Y3 +X3)1/2 Y8
tenir Y" = Y"(X,Y), Je réécris la furmule précé-
n substituant Cl1 & Y' et utilise BXPAND]
( R
ient Y” = Y"(X,Y) en 18 lixnea}]
v réécris 1'expression pour Y"]

(€3/((€1~2+1)~(3/2)));

. procure-la courbure K = K(X,Y) en 3 1/4 pages!]

on de procéder dévoquée ci-deasus est sans doute

are mpais clle est Juste. Elle a 6té testée sur

y=x*, K= __6x
. (1+Sx4)3/2
x3/3 + y:/l = a2/ . . E =

N S
S(Bxy)ll:l
ant naJdﬁr résidq dans la fait de réécrire Cl et
1g. Je s8suis raisonnablement sfir (et satisfait)

enu les bonnes expressions pour Y', Y" et K,

yussi testé le calcul de dérivées plus complexes
s de la fonction y = x'/*. On n’'obtient pas la

plus-simple, comme c’est le cas pour y= x4 par
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exenple. Il faut utiliser EXPAND.

Au niveau de 1l'intégration wuMATH ne peut p
Iﬁi/ﬁ:{ dx directement mais i1l ef%ectue trés bien
qui eat évidemment une forme équivalente. Mais c’
ai transformé vx v1i-x en /x-x? ! Le logicie
d'obtenir /x-x? de /x /I-x 7 5i nom, 1'étudi
s’'appuyer aur le logiciel pour résoudre 1'intégr
alors s'entrainer de fagon traditionnelle & me
expressiona algébriques.. Cette aituntion améne
plus Eénéralé suivante: "Etant donné qﬁ'il est fré
doive transformer légérement les intégrales prc
utiliser 1les tables d'intézration.' dans quel]l
systame nuMATH permet-{l de 1le faire?" "Ouels I
ce logiciel pour écrire de fagon différente une
algébrique 7"

(A ce propos, on @ soulevé ad cours de |
lendemain 1la pertinence d'utiliser wun logici
symbolique dans 1"tude de 1’intégration pa:
rationnelles pour éviter la 1longue "digression"
algébriques. Mon opinion A ce sujet est que Jje
que muMATH puisse convertir, par exenple, 2x+3

X3 +x3 -

en - _3 + 5 - 1 Je n'ai pas eu le

2x - 3(x-1) 6(x+2).'

‘tester muMATH & ce sujet.)

100
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PARTIE B

ilisation de muMATH en classa ou en laboratoire)
atalier il fut surtout discutd de 1'emploi d’'un
symbolique dens 1°étude de la notion de limite.
opinion & ce sujat est que si 1l'on a’en tient & la

ure” du type 11; (x3+4) = )3 pasr exemple, alors le
x+ .

sysbolique est 3 toute fin pratique inutile. Seul
que east en jeu. Mais pour 1la définition de la

ar une limite, 1le logiciel peut ge révéler util..

le
f(xo+ax)~f (x0)
lim = £'(xo0)
Ax+0 ax . )
=x* & %o = 2, L®’étudiant peut demander le

ment deo (2+48x)4-2¢ puis le quotient par &x (puiscue
Ce aeraif 2 explorer en laboratoire.

yaut également penaer & 'utiliser ce logiciel pour
} indéterminations par la régle de I'Hospiyal.

i  généralement, 1'’emplci de tels logiciels pose la
fondanentale auivante: "Les étu#iants perdent.ils
ch;se (8i oui, quoi?) 3 ne plus s'entratner a
de fagon traditionnelle?"

>rois que oui parce quo 1'étude des wathématiqunus et
lisation comportera toujours du "calcul" sous une
une autre.

léve de 3* année qQui réusait une division s'exerce a

calcud., -

O

ERIC

Aruitoxt provided by Eic:

95

(b)- L"éléve de szeconduire III qui exécute N3 -
4 un calcul d'un cran plus abstrait.

(c) Plus tard celui ou czlle qui nmontre que
pour f et ¢ aatisfaiamant des conditic
s’exerce encore a un calcul plus abstrait.

(d) Lorsqu’on montre que dans  un groupe,
inverae & droite sst auaai élément invers
calcule encore a un niveau plus abstrait.

(e) Lorsqu’on démontre 1;0 trois théorames d'j
théorie des groupea, on calcule toujours
moins) A un niveau encore plua absatrait.

(f) Je soutiens que m@me en topologie, on "¢

4'une fagon particulidre A un riveau plus

Je suia d'avia qua les mathématiques reat
lement une étude des formes de calc;l (dana un
avouons-le vague!)- la géométrie élémentaire
exception qurnd elle n'est ?as modelée par 1l'al
ou la théorie des grdupea..

En . conséquence 1'étudiant chez qui 1’e
calcul sous forme traditionnelle aura fait deé
d’un effort accru ay niveau de 1. conceptual
mise en équation, dé la ‘“"mathématisation"

présentées pourra, selon moi, souffrir de

‘niveau supérieur, ot 1'on ne peut plus reléguer
P P

la machine. En résumé, si dans un cheminenen!

qui va de l'élémentaire a Muniversité, 1'ét
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res dtapes de son entralnement au calcul - étant
‘tout ®gpectateur” au plan “calculatoi;e” durant ces
étapas, qui peuvent a'stendre jusqu'au collégial -
: vraiaemblabie qu’ il nanlfeaiera uﬁe faibleaae dans
n de toutes manipulations symboliques (lesquelles,

'le, sont inévitables dans 1'étude des sciences

uteral que les démonstrations mathématiquaes (de
 les longues) offreant une occasion singulidre de

' longues chatnes de penades ou d'idécs en devant
d'un lien solide entre chacune. Je aoutiena que

loté 3 "formor des chalnes" est fondamentale & bien

. dans l'axercice de 1la science. . La nise en

t la conceptualisation, bien que tras importantea,

pas un tel intérét de ce Point Qe vue. Quant .é la
é d'acquérir ailleura cette habiletd (en jouant aux
' exemple), Jje réponds qu'il est préférable que le
cquidre la forme sur son vélo Plutdt qu’en nageant
. (D’ailleurs, aux échecs, le lien entre chaque

n'est paa toujours ausai étroit et solide que dana

tration mathématique).

sion, Je pourauivrai aQrement ma réflexion sur
de ce type de logiciel dans l'enseignement dea
uee. Je le ferai autant par goQlt que par néces-

eulement il gserait 'Qouhaitable que de tels logi-

na
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cielé soient jumelds & des logiciels graphiques mais
des logiciels de traitement de textes mathématiques,
permettraient peut-8tre 1l'écriture "normale" des exp
algébriques dont le déchiffroment devient trés

lorsqu'elles dépassent en longueur plus de deux ligne

104
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Appendix 3

n su groups de travail CMESG/GCEDM 1985
'NCE DES LOGICIELS A CALCULS S5YMBO-

3 SUR L'ENSEIGNEMENT DU CALCUL DIF-

'IEL ET INTEGRAL®

Noélange Boiseclair
Cégep Montmorercy

SOMMENTAIRES

'angeignemant actuel des premiers cours de calcul: yniver-
3 8t cégeps :

nche axiumat§que st rormelle
livres de référence des étudiants)

prépondérance pour le calcul numérique 3 terdance acroba-
tique ’

i académique tfﬁa vif mais, carence dens l'enseignement
risur oo ’

a mathématiques du secondaire et le développement de la
nséa formeile s'harmonisent sur de courtes durées; ex-

ption psut-&tra pour la 128 année du Hign Scnool) '
entisgage confié 3 1'4tudiant responsable de sa formation

université légue cette préoccupation au college ou au Cégey;

colleqge ou le cégep légue au Hign School ou 3 la poly-
alante; : :
13, 1'instance responsable devient muetta!)

MERVEILLEMENT: efficacité st reudement .s'approprient le
nouneurs du cours :

tout &tudiant &coute une certaine musique; tout étudiant

découvre les séries harmoniques; qui fait u. lien?)
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COMMENTAIRES SUR L*ATELIER

Aucun participant n'édtant spécialiste de l'incidence des .
calculs numériques dens l'enseignement du calcul diftéren:
tégral, i1 en ressort que les nomoreux thdmes soumis par :
nants représentent une dbaucne intéressants qui nécessitu
une classification suivant lsur caractdre pédagogiqua st :
té d'insertion dans une séquence d'apprentissags.

Toutefois, discuter du concept de LIMITE at/ou d'INTEGRAT:
nous l'avons fait, m'apparait une approche d'un dynamisme
a court terme car, elle perd de wue la structure globale
A mon sens, la LIMITE est comme un architecte, elle crée,
antre autras, la DERIVATION et 1'INTEGRATION et elle se v
posgnte inhérenta.

De ceci, ma réaction aux discussions est que l'on a su te
tégar sa vision personnells du calcul tout en manifaestant
rét dvouloir répondra sux nouvelles exigences scientifiqu
A mon avis, on 2 exploré des moyens de moderniser les cou
8 vue le rythme traditionnel des concepts tels qu'ensaign

Nonobstant cette remsrque, cette concertation a eu un asp
dans le sens qu'elle a répondu 3 une nécessité de poser u
cusaion qui se veut l'smorce d'une réflexion plus articul
congrés. Je partage 1'idéa qu'un tel -débat mérite une dém
te et réfléchie.

SUGGESTION

I1 me semblerait intéressant d'orienter le débat autour d
tincts qui rendraient: pertinente l'utilisation des logici
gisse ds WUMATH,da MACSYMA, de MAPLE ou d'autres.

Disons, en guise d'exemples, qu'un logiciel pourrait Etre
divers aspects, saient:

un outil pour alléger l'enseignement des notions reconnue
les cours préalables
v.g.: manipulation algébrique
domaine et image de fonctions élémentaire

un outil pour développer une représentation spacizle des
tiques . : '
veg.: graphiques statiques
graphiques dynamiques; mouvement des £ et
familles de courbes:
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nt pour soutenir aet/ou prolonger 1’enseignement
v.g.: esquisces d'analyse
proposition de synthése
interprétation des valeurs numériques

u’est-ce qu'on mat la-dedans?... un peu de génie et..
 créativité 3 1'&preuva.

“Pefange “Pesedlese
NOELANGE BOISCL:IR
collége Hontmorency

107
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Appendix 4

The Canadisa Mathematics Education Study Group
Laval 85 Mecting

A Personal Report from Working Group C

* The Impact of aymbollc manipulation software on the

teaching of calculus.

Edger R. Williams

Memorial University of Newfoundland

1 suspect that for some of us in Working Group C, our first two sessions cc

appropsiately labelled as Leux;ing Group C. We did try to come to some conclusior
last session and overall, I can honeatly :n‘y that, for me, the learning, the discuss
product of Working Group C made it one of the most [ruitful and interesting se

have attended.

Without going into a lot of detail, I would like to summarize some of the conc)

drew from this seasion. In what follows, the abbreviation CAS will refer to Symbol

 tion Software Programs or simply Computer Algebra Software {CAS).

1. CAS bas che potential to provide Professors with the opportunity to spend less

classroom illustrating routine but time consuming computations and more tin

108

and more exciting Mathematical concepls,
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lso has the potcatial to provide studeats with the cppartunity to spend less time oo
y aod time consuming paper and peacil computations, a3 is normally required oo
ments, and to apend more time doing real mathematics.

y put, CAS can be used a3 a tool to alleviate computational deudgery and ailew mare
ex exawples to be introduced and scudied.

:an be used by both students and professors to check answers to assigned or cow-
homework.

can be used to automate part of a task, for example, the computaticn of Taylor
when the task is to examine questions of con.iergeace, cte. .

sxamples can be done and done successfully when the computer takes over the chore
tine com putation.

ceptional students, CAS may p.emil. the introduction of Calculus and other areas of
much earlier than is possible at the momeant.

the poassibility of incorporating graphics capabilities into a CAS system, it ‘may ke
le to illustrate many concepts geometrically right before the studeats eyes in a very
ic and interactive way.

bas the potential to improve student attitudes toward mathematics especially for
of average ability or below.

as the potential to permit us to re-establish the importance of creative thoughbt and
m solving in the. mathematics curriculum.

resent geoeration of CAS Systems were developed for the use of Scientists and
ers. However, with potential .developmenu fo Artificial lotelligence, the future
ial for improvement in CAS designed for educational purposes, seems enormous.

as the poténtial to provide opportunities for more individual attention to those stu-

O

ERIC

Aruitoxt provided by Eic:

13.

4.

15,

18.

17.

103

deots who need it.

Successful mathematics students today appear to learn by being "pr
ple”, i.c. after observing enough examples, 3 methodological techniqu
tunately, many (unsuccessful) Mathematics students gever infer such
them correetly, or in some cases, nevel eved realize such rules exist. C
to convince weaker students that such rules exist and that even a du,

programmed o carry them out.
CAS can ba used to provide enrichment and motivation io the mathema:

CAS baa the potential to permit students o do exploratory mathemat;
before poasible.

CAS can be extended to include automatic drill, testing, aod record *
advantage to those ;:f us who bave better ways to spend our time.
What are we going to do when maay, or most, or perbaps all of our st

to come to class with & relatively ivexpensive hand beld computer with

We must answer that question pow. Otherwise, our students il answer

11
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Appendix 5

Some thoughts on the "Impact of symbolic
manipulation software on the teaching of calculus

D.W. Alexander

at routines are unnecessary for understanding?
at routines are necessary for understanding?

w can the graphic capabilities and symbolic
nipulation potential of computers be best used to
hance learning (of calculus)?

w might the availability of symbolic manipulation
ftware (and.graphics) effect priorities, order?

n these be used to promote understandings,

en-endedness a la Pollack?

w does this relate the Whitehead's cycle: romance,
ecision, and generalization?

1lggested sequencet

Graphical introduction to derivqtive:
chords to tangent; "window™ on screen;
associate slope of tangent at a point;

exploration - generalization for gpecific function,
®derivative" (i.e. slope of tangent at any point) .

Symbolic manipulation code fox derivative
Maximum/minimum problems

- approximation (graphically)

- precision (using derivative code)
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Should problems be limited to polynominals or
students "understand” derivatives of other func

Should equation solving capacity of symbolic me
be used?

Is there need to explore sécond derivatives or
graphical capacity remove that need?

Could second derivative tests be introduced as
confirming computer graphs? (reasonableness of

What other aspects of “curve sketching" technig
still appropriate assuming availability of graf
packages? .

Should inverse differentiation (differential ec
problems be introduced?

3. Generalization: Explorations of derivativ
given by symbolic manipulation to give y°
~ivivative of sinx = cosx; derivative of c

sinx; derivative of sinax, etc. 1Is this
time to introduce limit ideas as a basis f

4. Other "Rules of Derivatives®
- Derivative of a Sum
- Product Rule for Derivatives
- Derivative of Quotient
- Chain Rule

Given the symbolic manipulator, how much of thi
needed?

Could it be motivated by "need" to know how to
results without the "black box"? By a desire t
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tand" how the derivatives are obtained?
his be “optional® and only done with some students?

nental issue: Do we desire to teach calculus as a
ug " development with the need for "proofs® or.is
1 to uge calculus in solving problems?

the latter, then 4. and perhaps 3. are
sary. (Is it only my conditioning that makes me
ous of this conclusion?)

GROUP LEADERS:

JOHN POLAND
FRAN ROSAMOND
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MATHZNATICS AND FEELINGS

ctlolpants: Dorothy Buaerk, Rense Caron, Claude Gaulin,
son, Bill Higginson, John Poland, Pat Rogers, Fran
talph Staal, Peter Taylor.

sgan thie working group by explalning that although

lot ot litecratucre touching on the role ot fLealings in
sathemat los, thece is almost nothing diceotly on it
impocrtant area to undecstand and we must crely strongly
| examples shared in the group.

eaoh partiocipant introduced him or herselt to 3the
2laining his or her conneotion to this woctkshaop. This
going around the group to share wae a kay component of
s ol our working group. The tollowing axoecpts fcom
he introduotlions indicate the wondecful colleotion of
1xpeclenoes in this group.

fathomatios is oonneoted with feeling the power of
looking at new and signifioant ideas. Thare is the

heill of invention, ot being able to nanme, ot making
1P new wocrds,

‘hece i3 the teeling ot exploration and of unoovecing
lew and exoiting things. There is the eucreka expecrien-
e, the teeling ot ouriosity, ot ochallenge, of aesthe-
4o, and the philoeophloal side ot unoovering real
asto truths. ’ :

would like to see how the enthusiasium of ths teacher
an influence students in the olassroon.

h,va tean taught a math olass with a pock Halt the
lass was spent in analyxing a plece of “poetry. The
ther halt was spent analysing a math problem. .1 would

Lke to explore the (aalings that ace oommon to poetry,
usio, math.

see that the beginner‘'s view of math Is far diffecent

tom tha mathematloian's vision and | would [ike to explore

ow to open up the latter vislon to the beginnaers. ,

am lntl:lltcd in how the envictonment intlusnoes us.
1sc 1 would like to tcy to be speolfio about whioh
eselings we pay attention to.

here acre not many peaple at ay sohool with whom I oan
isouss these ideas. I teel tsolated and would like
his wockshop to be the beginning of a support group.

hecte is no suoh thing as non-emotional motives. Peop-
e seenm less inhibited to express fealings about musio.
85ge groups of mathematioians love musio. Is thecre a

omplimentacity here?
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As 3. possible (ramework for out topio we (i
disoussed the Pecrcy davelopmsnt sohens. Ssvecal h
sohsmae that ace attached to this papsc were kindly
Doctothy HBueck. As theee indioate, it seems that
lavsl we tsnd to teaoch to rsinfore Isvs! L pscoeptit
students to evolve to [evel 4. Eacly lavels aollu
of the world that what Is correot is rsstcrioted to
tanily, psscs, sohool and is ceflected in statsment
teacher last year didn't do it that way *

In thie regacd, Lars Jansson drsw our attentt
disoussing tho problems of beginning teaohscs (see |
Ve discussed but left uncesolved whether emotions
are more important at lower Percy levels than at h.
Does 4 changs in pedagogy equate to a ohangs in thq
of students pecrceptions? Thae especience of many in
that 4 tsoling of community and cacring in the olas:
lmpocrtant <cole in Peccy developuant. The cole
ocoontinued to be a theme on sucoessive days.

Pacrtiolpants were asked to attend the Tao|
Problem-Solving by Peter Taylor that aftecrnoon. k
keep oarsful traok of their feelings ducing thi;
Whsn we met on the second day, the shacring of these
a great stinulus. Pat Rogers dasocribed how
teslings and the need to be aware of them, 1
experisnos of having then. This valitdation helpad
situations when negative or confusing feslings aros

One fseling for example, was Pat's angec with
pesers who were model studsnts for the teacher during
Solving session. Thece also was an angetr with the
insisting on rceceiving his own answer fcom the s
teeling aof angerc tormed 3 blook that kept Pat X
involvaed partioipant in the Problem-Solving sassion.
the workshop desdribed feelings suoh as anger. oconf
of competition. The owners of these negative tael)
being turned ottt ot dissngaged ducing the Pi
session.

The souraes ot the negative teealings could, in
traced to specifio Ltnotdents. Hals-fsmale dit|
disoussed {n this oontext. It was noted that in
aoross all subjeots, ctesearoh has shown that teaol
attsntion to thu male students. Disoussion shift
press mathsmatios has in general. An aggument was 1
who were not pactioulacrily athletio ocould be dacoepts
they exoelled t{n math. Many quaestions gsuch as the |
ctaised. Does mathematlios always assume one's wor:
ctelated to an authocitative pecoeption of matl
gnusually strong in the feeling of self-wocth?
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suoh ae “ooo0l*, "oontrolied" have boen used to
themat los. Theee often oonvey a remoteness or
ess on the part of the learner. We dlsocuesed, "How
ad -ath-natlgo to guppress feelingo?™ In reeponse to
on the image of “oool" wae pleasant and pogitive.
d desorilbed his abllity to tooue attention on
and thue distraot himeelt during a paintul fllness .
nd nentlioned that she enjoyed nathematlioce ae an
beoause thoughte about mathematlios oould orowd out
ut ses. Qthers conmented that mathematloe Is a2 way
eeelt from interacotlon with peers.

© oonoluded with many of ue sagerly describing
los of. the best teachers we have known. Fran
It It lmperative that we aleo recognise and share our
5. To this end we began the third day by spending two

palrs, talking about “Why | am a good mathematlios
turning to the group, we spoks In turn about what we
Pur partner say that etruok ue as important to good
ome 0f the oonversation follows.

th our etudente:

muet make maxzlmum effort to involve all and avold
soocupation with just the bright studente.

in  students oome in to offioe houcrs I go over the
gt days lesslon with thenm. Then In olaes the nest
' they joln the disouselon becauee they have had a

vl ew. Tpl- also helps me find thelr, mlisconoeptione
advanoe. :

deal with dlsappearing students, I have the olass
it to emall groups and then report baok.

try. to Involve the etudents using modlified Moore
thod.., There are weekly aeeignments leading to big
ul ts. I play 1t by ear to give just the cight

:Tnt of ohallenge and hints eo the results pbeoones
alcse.

want the students to learn to think wilder in the
ure. We bralnstora in glass. When a person
jgests an Lldea, that pereon Is the idea. Releoting
) oplnion ls rejeoting the pereaon. In brainstorming,
ideas are evaluated until all have been listed and a
lee of community has developed In the group. ’

Q
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In the olassroonm:

Provide olosure. At the end of every hour polnt to
the positive acoomplishmsat, it it ls only the askl
a good question, f.ook forward and baokward in th

[ use two overhead projesotors. One ls used
prepared overheads and Is a way tor me to oonvsy
enthusiasm with the math and also look at the stude
The other is used to write spontanecusly on.

When dliscussing preasesigned ptoblenms, kesp pos
other Intereeting problems that come up. Let ¢t
become optinal homework problens.

I work with colleagues In team teaching. An Eng
teaoher jolntly teachee my math olass. Ve each
hailt of a thrae hour olase. The English prot disau
what makee 3 poem work. Then 1 disoues what aake
math problem work. Thece is oritlolsm of the wrl
esperience as well ae of the math protlem~esolving.

1 relate what we are studying in math to other area
math. Take a problem and approach It trom sSeve
areas in mathematlos. Students sometimee ra
dleocuesion of blographlcal, historical or oult
aspeots of the subjeot. They limit what thoy want
prots to talk about. Its as Il thoy  tsel we
ohanged the ground rules on them. :

1 glive marke (for attendance. h aseunme
progreseion or growth- -depende on attepdance. 1t
esam eeems hard, 1 look at the marks ot those
attend regulacily.

1 give tesdbaok perlodioally in the what looks 11}
quls but it le not ftor a grade,. The students write
what they teel is important. 1 give feedbaok,.

Ac A teacher:

There has to be harmony between being to
egoocentrio or totally out-going. The teacher mu;
in oharge of what le going on in the oclaesroom. Al
teacher muet lleten to what the students eay and
they say It In thie way the teaocher oan hear mnls
Ths teacher oan build on etudents' past esperience

The teacher muet hang on to a genulna egooentrl
Studente don't want a teacher who disappears lInto
baakground. Students want to hear what Yyou are s
beocaues You've got eomething. Be youreeltl; that
what. you have the moet of. Conocentrating on o
requicss a detaohment from yoursell. .
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m I go into a professocs offioe to ask adviae,
jally he or shs has a speoial pecvonal mataphoc with
lch to explaln ths oconospt. We should shars our
taphocre Iin the olasscoon. Talk about mathematios as
you are talking to a person while walking by a lake
while on & stroll through the woods.

1s lmportant to be uptront about what we ace doing.
y that ws sxpsot our studente to mava through the
rrloulum by ficet bslng able to do problems ot ons
two stepes. Eventually they should be ables to resad on
eit own and snjoy what mathematios has teo oafter.
ie oan bes wrcitten In a handout and said (n olase.

Is important to build on students past expec ienoces.

acoept with good graos my own milstakes. The idaal
urss Ie not ons whars tsachec never makes mlistakes.

ass mugt funotion as a support systen. This nust ba
eaf to ths student so thecse is no fear tc opsning-up.
begin ficrest olase with lots of weslt-disolosure and
ms In emall groups. This lays the groundwark foc
soussion of feslings.

s of oommunity was » ‘dominant theme nmond our

Community provides eafaty and belonging. This
udente . This allows them to be 1in oontact with
to know themsslves. Ve see ths olassgoon as 3

(as In the '60'a). WUe snvisionsd the superloc high,
high as ot passing the mathenatios.

ssed far too Qulokly and we have munh to dlisouss. We
1ly Interested In whioh smotione belaong stciotly to

and cannot bs avoidnd because of the natuce of the
st®@ or when do ws sea ths "Ah ha* expecienos in
our studente? Ws alio want to sxplocre strategles for
. saoching that bul’d ocommunity. Our maln goal Is tao
studente.
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Appendix to the Report of Working Group D

June, 1985
U. Laval

(R.A. Staal)

One of the by-products of working in this group was a hi
appreciation of the importance (and existence) of emotive as
learning in mathematics which have their source outside of tl
mathematics itself.

Within machematical activity,tthere are numerous examp
what we might call "emotive" factors - while not striccly pa
mathematics, they are inseparably connected with ic, and ref
essentlal nature of the total mathematical experience. A fe
are: "Eureka!"; various forms of aesthetic satisfaction (pl
the apparently cowplex and fnstructured to a simple, structu
of a beautiful and 1ngen16us proof...); che teeling of secu
dealing with a '"clean",well-defined structure with clear cri
success; the excitement and suspense of exploration; the sen
stimulacion of mystery; the "down side", of frustration ("wh
this work", "why couldn't [ have seen chat?" 1 just wasa't
be a mathematician") etc. These examples are all prectcy fam
and come to mind rather easily.

At a less purely pathematical level, there are emotive
arising from interactions of mathematics with other subjects
at the seashore). These are hard to list in a systematic wa

120

surface L{n our discussions.
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e to the main point of this nota: chere are emotive aspects
sroom experience which have nothing especially to do with

- per se - th?y apply to the classroom, rather than the subject
" influence on the learning of whatever the subject might

ways adequately kept in mind. They have to do essentially
al-interpersonal matters, and include such things as:

on i{n che development of material, participation as a

, member of a group, gectting approval versus being put down,
detved important aa a person.

to be emphaaized chat here we are concerned wich che role

pecta in the learning of mathematics, and have no intention

g the path in which concern for "the whole child”™ 18 expressed’
phaais on the learning of a subject.

la of the ceacher ia.btough; to cthe fore in this. Self-sctudy,
try wmateriala, and computer-asaisted-inscruction (both of
time-co-time are touted as in the forefront of educational
eave this aspect of learning virtually untouched, unless,

used as a supplemencary tool at the hands of a teacher. A

£ our thesis, then, in.:ha: the teacher is uniquely imporcanc.

llowing destripcion of four levels of teaching mathematics fits

ompents into a broader scheme.

bject matter is preaented, in logical form (Definition, Theorem,
wples are worked out, problems are assigned and solutions

and examinations are conducted.
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apuad 11
Jd2 ia Leval I, but enriched by the addition of backgrour
{bicgraphiical and historical material included) ymathemaci

and intszconnecticns wich ocher topics and subjects.

Level TII

As in level II, but in addition che students are broug
plcture as parcicipants in the machematical activicy. (The
fairly obvious - Socratic and similar approaches, the use of

exploratory assignments, etc.)

" Level IV

As in Level III, but, in addition, the students are con
fully as persons, and the emotive aspects of the classroom en

are taken into account as part of the process of learning ma
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The Dualistic View

Prepared For

roject MATCH Conference (Davidson College)
6/19/85

By Dorothy Buerk
Ithaca College

look more closely at the beliefs of those holding a Perry 2 view
'al knowledge. Students holding this view will have a number of
 beliefs: :

13Wera are knowa by an authority for all wathematical questions,
‘e 00 nsolved problems, and no multiple apswers. Right answers
led on, not created by the authority.

3 ona 'right method to attain the right ansvar and while students
asked to find it for themsslves, they knoy they are being asked
HE method to find THE answer.

ics i3 learned by wemorization and hard work and by doing avery
that 13 assigmad, while following literally each instruction

8 teacher (or the textbook) gives., We know how much practice
de*

either good at mathematics or bad at wmathematicas. If you are

it you will catch on very quiokly. Otherwise you will not.
3 1o contrast to the notion that ons can come to undarstand ovar

, not act on a problem and one does not bring ons's experience to
22, Ons brings the methods that have been taught for similar
» Even t.pe authorities learn this way.

jeat's role 13 to colleot faots, not aot on thems but to store
they ars recoived. One does not use ona's intuition.

8 no gradations of truth - no gray areas.

ority (teacher, textbooks eta.) 13 reaponsible when a student
ouladge,

education isa't acessary, since it ®won't do me any good on my

123

ERIC

Aruitoxt provided by Eic:

117

To appear: Journal of Education Fall 1985, 16

Strategies to Enhance Learning
By Dorothy Buerk'
[thaca College

Provide time to axperience and clarify a  problem (s
focusing on solution. Lat each person think about the
anyone spsaks., Respond to questions about interpret:
This would include providing background for application
student's field. Focus on resolution only after each |
problen (question) clearly.

Include the historical perspective to help students bec
person-mads Quality of mathematica, Concepts as "simp
negative mmbers were controversial and adopted with

and yet students are expected to accept them without que:

Acknowledge and emcourage alternative npethods &
approximation, guessing, estimation, partial solutions,
intuition,

dmwer questions with questions that both olarify
questions and that help the students realize their o
problem solvers and problem posers.

Encouraga students to ahare ideas, partial solutions,
interpretations of problems with each other. Establish
encourages collaboration and the pooling of ideas to
and/or naw questions. Sharing authority in the clasaroc
to the improvement of student learning,

Encourage the asking of psyw questions and create an ¢
both teacher and student are free to yonder out ioud.,

3ee thelr teachers asking, thinking, puzzling, und conj et
in class,

Hake concerted attempts to avoid absolute language.

Set as a goal the development of each student's {nternal
of rconfidence, and of oomtrol over the material., He

rixlize that mathematios can be learned by thinking
reaorizing,

Offer opportunities for atudents to reflect on paper ab
and feelings about mathematics. often after aoknowl
fealings and reaotions a student oan move on as if
burden. Writing out one'a thougts often brings a desper
a new insight and with thess come a new sense of confidanc

Don't rush closure. It ia important to oontinue to think
& problems an {deas a question, and even a poasible answe
leave resolution until the next or an even later class.

12
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Our Expectations of our Students
Prepared For

‘oject MATCH Conference (Davidson College)
6/19/85

By Dorothy Buerk
Ithaca College

ar in talking with oollege mathematioa faoulty about their
of thair studenta, I have concluded that mathematics students
to be:

al and able to think quantitatively and deduotively.

do ‘proofss 8 skill which requires bringing together disparate
knowlodge and sseing the situation from saveral perspeotives.
in both Stop down™ and Sbottom up® wodes 13 often nacessary to
& proof.

sao the relevanos of applioations uw theory and theory to
jons ands 1in additions to understand the oonmeotions betWeen

 use problem solving heurlati& to approaoh non-traditioaal
. and to have the patienos to try out sevoral approaohea - to
h a diffioult problem.

realize that ona's intuitions are luportant and need to be
d; that these intuitions ocan be mialeading and noed to be tasted
a theory or with evidenoa.

learn on their cua ard from eaoh other; have tha internal sense
asing meoessary to do that.

pake reasoned guesssss conjeotures, and to estimate results ia
Jea3 of imuiry.

ask good questions - easpeolally new ones (problem poaing).

'ul of the power of mathematios, but atill willing to experiments
ut idees that may oot work.

write good doefinitions and to use them - to pull out relevant
tion and to be coaplste.

ERIC

Aruitoxt provided by Eic:

119

Proposal for 1984 Working Group on Fesfings and !

The 1983 Working Group on fFeeslinge and Mathemal
oondoaspt analysis to identity the meaning, tolae.,
workings of atfeot in mathematice instruotion.
propose to further davseslop the anaiysis of how af £
are relatead to mathematicec learning and teaching anc
theotastical frameswork to guidse ressarch in this ars.

While most teesarch in mathematics education
solving has fooused on developing intormation-proc
of puraly ocognitive eystanme. there has besen oonsid
cteoognition that affeotive dimensions are intagral
gtinulate the cognitivae. Enotions and baliet systq
the twelve mator issues that Norman (1981) aseert:
addressaed in future tessactoh in cognitivae S501 @1
(1983) urgee careful attention to the language ai
instruotion and says we badly nesd compreahsnsive ai
studies of" affeot in mathematios clasasass. In d
implications ftom cecent rtessacrch on mathematios
future researoh and polioy, Good (1984) smphasise:
exanine systsmatiocally how teachasr beliat systens
baliat systems in smali-group and whoie-ciass sett
learnsing.

Thae immediate deeocriptors of atfact acs the
signs such ae flushed cheeks, muscies tension or rcaj
HoLeod (1v84) has cealatad to mathematios pro
Mandlec's theory that emotion tesults when an
plannad behavior is inteccuptad. Mandier's theory
may nead to be espanded to inoluds smotions suoh
telief and Ah! Ha! Eurekat! described by partioipan
Working Group. Emotion also is evoked by unconsoio
of present aotivity with past savents. Reocall of e
manmories i1s one way to raise lavel of awaresnasse.

A coagnitive interpretation ot affeotive b
inoluda the influenocs of belief and value systams.
the forms of intelleoctual and ethtoal development (¢
Pecty (1970) ae a first model of how student beltiet
leacrning are rolated. Work of Rosimond (1984), Bu
Copes (1982) will demonstrats the relesvanoe of Pecr
apeocifio mathematios ocoursas.
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ve intecrpretation also will itnglude elemants ot
ecision making during problem-solving as desoribed by
1983) Concecrns suoh as that voiced by Brown (1984)
nt ability to genecrate mathematical questions and by
81) about making meaning and fesling the signilicanoe
1o0al tdeas will be integrated 1ato the tranework.

dlscussed 13 the effeot of emotion on memaofy and

f 1mpetus to modlfiocation of leatning beshavior is the
avel of awarenese With a low lavel of awacreness a
feaot automatoally to oerftain emqtions while a higher
wafaness allows the leacrner to ohoose appropriate
The Perry daevelopment soheme, problem—~-solving ocucrsas
enfeld’s and tests suoh as that by Mason, Bucrton and
2) wlill be esamined to asoecrtain the pittalls and
eftocrts to influence level ot awatraness.

ognizse that we need one-on-one teseactoh 1n laboratocry
O help us desoribe and chatractecizs those agspaots ot

impact on student learning behaioc, Such “ideal"
ocan skew findings howaver, and tor olassroon
leactning to be improved, methodology must be

© examine afteot under conditions ot lacrge-group,
nstruotion. The observations of Taylocr(¢ . ) and

83) will ba usaed to gquide development at such

iz ol our proposed work then, would tnclude the

x SETTING - X PHYSIOLOGICAL X COGNITIVE
. STATES INTERPRETATION
specific or sensations belief and

general math
content

social content level of

1-1, small or awareness

large group .
hodology will be developed to test and elabocata the
nd thus leaad the way to tormulation of olasstoon
] scope of work outlined 1n these pasdagraphs 1s tar
0 be 23000omplished during the duration of one wofking
5 Indiocates our direotion howaver. and we expect to
fogress.
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EXPLORING PROBLEM 50LW
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BY: PETER TAYLOR
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fon Unique?

an exercise in cooperative theorem discovery, formulation
hat may not be clear from the following review of the session
considerable time was spent playing with the formulacion and
current result cto make it sactisfactory to me and to the

c was the uniqueness of factorization of natural numbers. I
viewing the nocion of prime number and ensuring everyone was
the proceaa by which a prime factorization is obtained. I

bout the amateur Canadian mathematician J.P. O°Reilly
hose hobby for many years was playing wicth large primes. In
vered by chance that 1f he mulciplied the primes

Po 2648552497
9 = 9133228103 .
resulcing number ng was divisible by 19. He realized

at 1f he factored the quotient n0/l9 he would get a second
of n . This he did, obtaining

) " o " 19.73.223.727.1481.2161.33613 .

) haa been written as a product of primes in two differen:

primes in common. This was a revelation to 0“Relilly because
L time generally supposed that prime factorizations were
order); indeed this was known to be true for reasonably

. 07Reilly”s discovery received some attencion from

3, and for many years, n0 was the only number of this type

i che following definition is now standard,,

An 0°Reilly number is a number with at least two disjoint (no

non) prime factorizations.

zhe class for another example of a number with two not
Lsjoint factorizations. After a moment they agreed cthat

3 of E had cthis property. They formulated: .
£ n is an 0"Rellly number, then for any k, kn has 2

ne factorizations.

one asked about the caonverse.

{ n has.two differenct prime factorizacions, then n 1s, or
of, an 0"Reilly number.

moments to find the simple proof of this, based on
mmon primes of the two factorizacions.

oint, one or two students declared some confusion; g it
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not the case cthat all numbers have only one factorization? I
that while this was indeed che case for che wumbers one met 1t
life, 1t can evidently(!) fail for large numbers. Indeed our
session was co discover just how widespread this failure' mighl
young man, lan by name, was not satisfied., WHe insiscted cthat |
divide eicher Pg oF 45 - That cannot be, I replied, they

prime. Som:one had a calculator which took 10 digits and ver:
indeed was not a divisor of Pg oFf 45 The youth became ¢

angry. (L knew him to be one of the brighter and more active
the group.) 0 Reilly must have made a mistake; 19 cannot di
ng e I paciencly explained cthat alchough I had not checked t

such an error would surely have been noiiced by now. e pers]
was sure that factorization was unique. How do you know, I a:
could not say. Iis fellows were embarrassed for him and -askec
down. He did buc he was upset.

Someone asked whether all 0”Reilly numbers were as big a:

there any smaller ones? I answered chat although ochers have
they are all bigger chan Ny o Indeed an American mathematici:

used a computer in 1952 to verify that all numbers less chan

unique factorizacion; "y i1s the smallest 0”Reilly nuamber.

Of course, I continued, it is not pleasant to have number
unique factorization fails, and it is important to try to unde
it 1s about these numbers which gives them this property. The
theorems tell us cthat to understand such numbers, it is enougl
underscand 0”Reilly numbers. The task I am proposing is o fi
theorems about 0°Reilly numbers, which elucidate cheir propert

To sctarc chem off, I suggested
Theorem 3. An 0°Reilly anumber cannot be even.

He spent some time finding and being careful about the pr
knew that cthis waa to serve as a model for other proofs to com
seemed natural to start by contradiccion, Suppose n 1s an e
number, Since n 1s even it has a factorization which contain
since it has two disjoinc factorizactions, it must have one tha
contain 2., Thus n = PpeeePy where the p, are odd. Buc Che

odd numbers 1s odde So n 1s odd. Contradiction. Actually,
carefully at chis proof, you will notice that it does not real
(should not?) prcceed by contradiction, but can be done more e
directly. 1 will urite subsequent proofs in this direct mode,
ones produced in class were always by contradiction.

I asked for another theorem of this nature, The one L go

Theorem 4. An 0°Reilly number cannot end in 5.

The proof proceeds as above. An 0”HReilly number n must
factorization cthat does not contain 5. The primes in chis fac

1
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in 5 (or they wouldn”t be prime). So n ig the product of
ch don”t end in 5, and 80 can”t end in S either.

oof hinges on the fact that the product of two numbers which

n 5 can”t end in 5, and I asked how they could be sure of chis.
d that one just had to theck the possibilities. The key point
tiplcation has the property that if you know the last digit of
» then you know the last digit of their product. So you draw
digit" multiplication table for numbers nut ending in 5,

. pointed out that, because a number ending in 5 is odd, the
only be constructed for the odd last digits 1, 3, 7 and 9.

last digit of
gecond number

1 3 7 9 . Table of last
digit of product

| 111 3 7 9 of two odd numbers
t 313 9 1 7 not ending In 5
{rat 7 }7 1 9 3

er 919 7 3 1

d for more theorems. Someone put forward that an 0”Reilly

d not be prime and I called this Theorem 5. I asked for a

onging to the same family as the previous two. It was remarked
tate that 0"Reilly numbers are not divisible by 2 or 5. What
small primes?

An 0”Reilly number is not a multiple of 3,

the class some time to think about this. Can they do for
they did for 2 and 5?7 It was realized that 2 and 5 worked out
y are the factors of 10 which is the base of our number scheme,
redients of our proof were little facts about endings of
this base. The requirad results were not available for 3.

t work in based 3?7 Let’s try. The proof should begin as
O"Reilly number n must have a factorization which does not
If we write the prires  * this factorization in base 3, then

m will end in zero. “u . :uess) their product cannot end in

is not divisible &+ ® - -9Y thuat seems to do it.

d the fact that in base I, the product of numbers not ending in

and in zero. Is this true? Everyone said it was. A&re you
ked, After a moment, it was decided that you simply had to
ast digit table,

last digit of
gecond number .
1 2 Base 3

Last digit table for
t digic 1 1 2 product of two numbers
firsc i not ending in zero
ber 2 2 1
Q
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Since no zeros appear, the product of two numbers not ending
3) cannot end in zero.

We appeaved to have an interesting "“wachine”. what”s ne:
It was suggested we should try 7 next. But the young wan, lal

sume trtouble with earlier, who had been sicciug scowling for
while, sald qutietly, let”s try 19.

Theorem 7. An 0"Reilly number is not a multiple ur 1y,

Of course, I hastily explained to the class, we know thi:
be false. But in trying che above approach on it, we may, in
find the proof, learn something about why 19 {5 different fro
5. So off we went,

An O”Reilly number must have at least one factorization
not contailn 19. Think of these prime factors in base 19, Nor
end in zero, so the possible endings are 1, 2, 3, a0y 17, 18,
treat the numbers 10, 11, ..., 18 as single "digits".) cCan t}
two such numbers end in zero? I asked the class,

Someone said no, of course not, but someone else argued
think of the base 19 representation of Py and 9, above. T

end in "digics" between | and 18. But their product n . must
zero. Make up the table, someone sald. I sketched out’an 18«
It”s a bly table, I said,

Lan had borrowed the 10 place calculator and was calculat
final “digits" base 19 of Po and a - He did this by divi

19 and taking the remainder. He got 17 and 18 respectively,
multiplied them together and filled in that square of the tabl
The class was silent for a moment. I wonder what that means,
means O“Reilly was wrong, sald Ian {mmediately, and there was
silence.

L think what it means, I said after a moment, {s that I°v
one or both of these numbers Pg ©oF 95 - I"m sorry, they o

In my notes. Ian shook his head i{n dismay. Having tasced blo
not about to be put off. Fill in the table, he said; you won
zero. It”s a big table, I replied again.

. Okay, I said,-after a moment, suppose we f£111 in the tabl
we get no zero. What have we got? We know 0"Reilly~s example
came the reply. No O°Reilly number is divisible by 19, Right
where do we go from there? Do we do the same thing for other
far can we get just by filling in larger and larger tables? C
any way of argulng directly that the table couldn’t have a zer
actually f1lling 1t i1n? Such an approach would be very powerf
ic might extend to a large family of primes. Suppose there’s
the table. Can you see anything wrong with that?

This was a large plece of direction I had given them, and
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)y for awhile. Happily it wus Ian who found the argument. It
.0 rsatore his equilibrium.

\ers 18 o zaro in the base 19 table, say in ths (h,k) pouition,
h,k £ 18 , then hk = 198 for some & . OSince h and k are
19, thia gives us two different factovizations for the sina

snce gives us a new 0”Reilly numbsr (possibly after cancelling
stors). This new number is certainly smaller than By and

ts the fact that n, a8 the smallest,

clags was respectfully silent. Notice what’s happened, I said.
111ing in the base 19 table, we argued that it couldn”t haovo 8
t we used a picce of -information we hadn”t used before: the

y of n, - How Zenerally can you maks this trick worky

yone felt game to try to tackle:
» There ars no 0”Reilly numbers.

ook a bit of trial and error to get the proof right. It turns
to generalize the 9 argument there are really two important

83 that % be the smallest 0°Reilly number and that 19 be the

prime factor of " -

Theorem 8. Supposing the theorem false, let n be tae swallest
number and let p be the smallest prime factor of n . HNow n
 a prime factorization that daesn”t contain Pp , say n = pl...pm

Py >p . Replace each Py by ite final "digit" x, 1in base
ES
8L € = Fieeel o Since n 1is divisible by p , the last

E ¢ (which is the same as the last "digit" of n) is zero (base
- = pk . This gives us two factorizations of t , which, after
€ common primes, gives us a new 0”Reilly number less than gy

ich r, <p 1) .- Contradiction.

he end, some of the class were s bit bewildsred by what had been
id. I pointed out that unique factorization was indeed a property
itegera, and that that was in fact what Theorem 8 stated. What we
iced, {n our explorations, was quite a reagonable proof of the
wetorization result. Had anyone, I asked, seen @ proof of the
yetorization theorem before? One or two thought they had, but
an”t sure.

I have given this exercise to four different groups: high school
, high school math teachers, university math seniors, and

ty math educators. In all groups there was some initial confusion
appearance of an example which appeared to contradict a firmly
{ef. But if the example was properly dressed up with the righr

al footnotes, I found my audience on the whole quite willing to
their disbelief" and enter actively into a search for theorems,

numbers Po and 9y are chosen with care. I don”t have any
o believe they are prima, but they have no factors < 61 . If you
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multiply chem out with a 10 digit hand calculator you get
which 18 also what you get 1f you muleciply out the "small"
of n Also 1f you do a "lasc 3 digic! analysis of the

factorizstions you get 391 for the product of both sides.
factorizations are the same mod 1000,

The uniqus factorization result is usually (casually)
high school, and is proved in a first or second algebra cc
university. (Navartheless I had no trouble selling my ex:
university students.] The usual proof uses the Euclidesn
There 1s a standard proof similar in spirit to our "discov
Theorem 8, which Nathan Jacobsen [Basic Algebra I, Freemar
attributes to Zermelo, [I am grateful to John Poland for
It goes as follows: 1let n be the smallest number with tw
factorizations

PyessBy =0 " g e0eq
and suppose Py > q - Then
(p)=q)(pyeep )= 4 (ayeeeq=pyeeep ) o

By completing the factorizativn of both sides we get two P
factorizations of a number smaller than n , one of whick

the other of which does not (since : t -
e Pl). 9, cannot divide Py-q,

Peter D. Taylor

Dept. of Mathematics &
Queen's University
Kingston, Ontario

K7L 3N6

136



T 130

300000570000100020800100001000005110001000000000000300001030800030

BTEMULDGIEF’!L FALLICIES
[LL LEAD "u"DLI NDHHERE

JACQUES DESAUTELS

EPISTEMILOGICAL FALLACIES WILL LEAD YOU NOHHERE!

litre arrogant pour Une conférence si,d'une part.on tradu
"fallacies" par "faussnles” et si g'autre part,on imagine que
invective ses auditeurs. 11 perg cependant son impertinence s
le sens q'illusion puisca’1 se transforme en lapalissade. Qu
oserait affirmer que 1'on peut alye, “quelque part" dans le do
tissage des mathématiques en se bergant d'illusions et d*illus
ques au syrplus. Mais cette lapalissade n'en est pas vraiment
3 Pas le caracttre premier, soit 1'gyidence lige 3 1'univocite
connote, poyrtant, pour ceux d'entre poys qui ont réfléchi a cer
de 1'apprentissage des sciences, eyye a acquis un sens €vident
graduellement au jour par des travayy qui forment un véritable
cherche que 1'on reconnaft dans 13 yitterature sous les 6tique
tions pre.scientifiques, conceptions oy représentations spontar
tre perd alors définitivement toute insolence ou prétention pu
1'apprentissage des sciences et ne s'adresse ‘donc pas, tout au
aux didacticiens des mathématiques. Mais nos travaux peuvent-i
certaine ¢i1ité?

C'est 1a question qui 3 Orients pa réflexion et je me prop
succinctement avec vous des sujets syjvants:

1) Quelques exemples de représeptations spontanées.
2) M, Bachelard, ses obstacles et son profil épistémologiq
3) La droite, le point, e hasarq,

D oueLques EXEPLES DE REPRESENTATIONS SPONTANCES:
La chaleur, 1e mouvement, etc,

Lorsqu'on demande 3 des enfants d*une dizaine d'années d'e
1'extrémitas A d'une tige de méta) devient chaude alors que la s
est situge 3 1'extrémité B de celle-ci, on ne les prend Pas au
fournisseny spontanément des explications. Celles-ci, bien que
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eci en commun: i1 y a quelque chgse qui se déplace du point B au

qui au demeurant est tout & fait jogique. Mais qu'elle est la nature

e chose qui se déplace ainsi? Eyidemment, c'est de 1a chaleur et

ne peut rien reprocher & 1'expljcation. Si on poursuit e question-

'3 leur demander ce que c'est 1a chaléur. on découvre que pour eux, il

substance plus ou moins volatile,qu'ils comparent d 1'air, a la

n fluide quelconque. Ces explications ne correspondent

qui forment le champ de €Onnaissance de la science moderne, bien que,

s cas,elles présentent des similarités dtonnantes avec des théories

par les scientifiques, notamment 1a théorie du calo-
Cependant, ces explications enfantines,

Nt reonnnues

e verrons ci-aprds, font obstacle a 1'apprentissage des sciences et, 3 ce

afent 3tre prises en considératjon dans 1'6laboration de stratégies

cation du mouvement fournie par des &laves d'une dizaine d'années
autre exemple de représentation spontanée. Ceux-ci, d 1'instar

e peuvent concevoir gy'un objet puisse se mouveir sans

on d'une force qui non seulement initie le mouvement mais le main-
tre part, si la vitesse d'un objet est constante, c'est que néces-
force agissante est constante, et pjus celle-ci est grande, plus la
proportionnellement grande. Daps cette optique, un obhjet qui se
ande vitesse doit nécessairement stre mu par une grande force,

d Driver (2) utilise 1'expression “children's science" pour désigner
es explications que les enfants’copstruisent spontanément pour ren-
s phénomdnes avec lesquels ilg interagissent, avant toute é&ducation
formelle, mais &galement pour sgy)igner que ces explications forment
2 conceptuelle dont on doit tenir compte en pédagogie des sciences,
parce qu'elle permet aux enfants de donner un sens d leurs ob-
sotidiennes. Or, jusqu'd tout racemment, on a négligé de le faire,
| suffisait de montrer 13 bonne sojution pour que les &l&ves changent
ations. Les résultats de 1a recherche sont clairs » les é&laves
L pas leurs explications premidres et les réutilisent trés volontiers
ntexte du probléme qui leur est pose diffare de celui des problames
pitre dans un livre; ce Qui d*aj)jeurs ne les empéclie pas de réussir
Mais que devient 1a connaissapce scolaire quelque temps aprds les
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€tudes? N'ayant pas 6té vraiment assimilée, elle est relégude
lentement mais sdrement se transforme en vague souvenir — Ah!
le principe d'Archimdde — 1'eau qui monte dans la baignoire...
vraiment compris,

Le spectre des raisons qui peuvent atre invoquées pour ex|
nos enseignements respectifs est varié: formation des maftr
tique, stratégies pedagogiques; nature des disciplines, dévelof
des €l@ves, Sont autant de facteurs A examiner afin d‘éclairer
toutes ses dimensions. Or, parmi ceux-ci, je m'attarderai a la
gique intrins2que du processus de la transformation de la conna
considere du point de vue historique ou du point de vue de 1‘af
viduel..ce qui me permettra de spécifier en quoi les représenta
des €12ves constituent des obstacles a leur apprentissage des s

Monsieur Bachelard, ses obstacles, son profil épistémologique

I1 est étonnant de constater

() que la publication du petit }

Kuhn **', La Stauctuwre des Révolutions Scientifiqued, ait provo
chez les intellectuels de toutes les disciplines, alors que 1'p
d'épistémologie historique de Gaston Bachelafd continue a &tre

Das ses Premi§res publications*™’, ce dernier, en interrogeant 1
de 1a relativite et de lathéorie quantique, posait les jalons d*
qui, a mon avis, est plus riche d'énseignement que 1‘oeuvre de

au regard de la compréhension de la nature du savoir scientifiq
formation, mais également du point de vue pédagogique, car s'{l
mologue, Gaston Bachelard a d‘abord sta professeur de sciences,
pas s'étonner de trouver tout au long de ]'ceuvre de Bachelard

pour 1'enseignement scientifique; n'écrivait-il pas d&s les ann

"les professeuns de sciences dmaginent que £'espait commen

une Lecon, qu'on peut toujours nefaine une culture nonchal
agdoublant une clasdse, qu'on peut faire comprendre une dém
tion en ta épétant point pour point." (6)

I1 ne saurait atre question d'épuiser en quelques pages uni
che; je me contenterai donc d'évoquer quelques-uns des concepts
cét auteur, qui permettent, & mon avis, de saisir en quoi les

spontanées constituent des obstacles 3 1'apprentissage.
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helard(7{ seule une philosophie dispersée des sciences peut rendre

transformation historique du savoir scientifique, et c'est_a partir
de masse qu'il {llustre cette idée. IV affirme que 1'on peut dis-

stades dans 1a transformation de cette notion correspondant 2

rants philosophiques, c'est-3-dire: le réalisme natf, le réalisme-

rationalisme, le rationalisme dialectique et le rationalisme complet.

ade, l1a masse est congue intuitivement comme une “appréciation
comme gourmande de la réalité" i au deuxigme stade, la masse est
iquement gar 1'opération de 1a balance et alors:
peser® . Ce n'est qu'au troisidme stade que 1a notion prendra
V'on peut parier ainsi, et sera rationnellement congue comme

s de notions et non plus seulement comme un &lément primitif d'une
médiate et directe.® (10). et définie comme le rapport de deux

s, 1a force et 1'accalération. Cette belle assurance rationaliste
u moment de la complexification de 1a notion de masse qui devient
vitesse de 1'objet en plus d'8tre transformable en énergie. Enfin,
re et 3 1a logique théorique et aux exigences empiriques.il a &té
accepter 1'idée d'une masse négative.

iption de ces stades ne nous informe cependant pas quant au méca-
able de cette transformation, et c'est pourquoi Bachelard a mis au
ept de rupture épistémologique. Par exémple. le passage de 1a masse
masse relative suppose 1'abandon de certaines prémisses épistémolo-
elles d'espace et de temps absolu, et d'en accepter d‘autres dont
itesse 1imite. I1 y a donc une rupture qui rend ces notions incom-
ce qui ne signifie pas pour autant que celles-ci ne sojent pas
ertains domaines spécifiques. D'une fagon similaire, 1a théorie
permet de définir en science 1a notion de chaleur exige

2 de considérer 1a chaleur comme une substance pour adopter le

énergerique. beaucoup pius abstrait, puisque la chaleur est alors congue

le cinétique moyenne des atomes ou moléculesstelle que donnde par
= i-mv‘. Or, i1 s'agit d'une véritable rupture dans 1a mesure ol
aire de nier les impressions sensorielies a.partir desquelles, tout
on construit une certaine représentation de la chaleur, sans

tre part, 1'élimination de 1a notion de froid, qui n'a-aucun sens
xte des théories scientifiques. De méme, 1'enfant doit nier les
ensorielles premizres, qui le conduisent logiquement 3 croire au
et 3 nier qu'un objet puisse se déplacer
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Aruitoxt provided by Eic:

“Peser c'est penser.

135

sans 1'action d'une force, pour accéder 3 la compréhension du pr
C'est dans ce sens qu'il faut saisir le mot de Bachelard Yorsqu'

“en fait, on comnalt contre une connaissance antérieune, eq
des comnaissances mal faites, en surmontant ce qui, dans L
méme, fait obstacle d £a spiritualisation.” (11),

d'oit 1a notion d'obstacle épistémoiogique qui mériterait a elle
commentaire. Je rappelle seulement que ces transformations de 1
intrinsgque 3 1'apprentissage des éldves §ont 1'équivalent d'une
reile. Le rdle du pédagogue doit alors s'articuler aux exigence
formations et on comprendra qu'il est alors nettement insuffisan
version officielle des sciences, mdme 51 la prasentation est 10

Le point, 1a droite

Les notions de 1'épistémologie bachelardienne nous ont aidé
en quoi les représentations spontanées des a)aves constituent de
leur apprentissage des sciences. En effet, alles nous révalent ¢
transformation de ces connaissances exige ja remise en question
ment implicites qui forment 1a structure de base de 1a vision du
laquelle les dl&ves r2glent, avec un certaipn bonheur, leurs inte
vers matériel. [l est dds lors {llusoire de‘penser que ces chan
s'opéreront au cours de quelques legons bien faites. L'appreati
matiques pose-t-il des probligmes similaires?

Je ne me risquerais pas & affirmer que 1'on retrouve exacte
probi2mes ‘au niveau de cet apprentissage, compte tenu de 1a Préc
ture mathématique et ce,tant au plan des potions elles-mémes QuE
épistémologique. Cependant, il me semble qu'un certain nombre d
géométrie euclédienne (la seule que je connaisse) présente  des
similaires 2 celles que j'ai évoquées ci-avapt, au plan de leur
des é&laves.

Pour ces derniers, comme pour l1a plupart des gens, i1 n'y 2
de distinction entre la ligne et la droite, celles-ci corréspor
physique observable qui.manifestement,a une longueur et une &pal
quant a Jui, s'i1] est minuscule, n'est quand méme pas infiniment
13 deva’t Teurs yeux et bien visible. Et i1 ast tout 3 fait com
eux, un point qui se déplace dans 1'espace engendre une 1igne,

.
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ace. Mais on sait que les définitions mathématiques du pdint et dp
correspondent pas 3 ces représentations sensuelles. Il est fort
¢ les €laves de s'en détacher et de concevoir un point sans dimension,

A 1'intersection de deux segments de droites qui n'ont qu'une lop- 1.
d*épaisseur. Or, la compréhension des concepts de 1a géométrie ey-
essite un détachement par rapport 3 ces représentations concrates
r & V'univers abstrait des constructions gdométriques. 11 s'agit 13
saut qualitatif sans lequel on imagine mal comment les individus accé- 2-
univers “@tranges" des géométries 3 p dimensions o 1a référence au
Litue un véritable obstacle &pistémologique.

it-i1 pas ainsi une kyrielle d'obstacles épistémologiques 3 jidenti-

't avec de nombreux concepts mathématiques au sujet desquels les

istruit spontanément des représentations? Je pense,par exemple, aux

ints: 1'infini, le hasard, la relation et,pourquoi pas,le nombre?

r des obstacles a 1'apprentissage ast une chose, créer les stratigics
our les .surmonter en est une autre. . 4,

S pas certain que mes propos aient gté parfaitement clairs, nj

tout A fait pertinents par rapport aux probl&mes rencontrés dans 5.
e des mathématiques. Intuitivement, Je pense que les concepts de

e bachelardienne ont un certain a-propos ey égard A vos préoccupa-
ticiens des mathématiques. La discussion qui suivra permettra, je 5.
profondir ces questions.

7.
%eqwl 4ipscndlil
rofessoens., 8.
9.
10.

1.
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SEX DIFFERENCES INTHE MATIHHEMATICS ACIHIEVE
OF EIGIITHGRADERS INONTARIO
Gila Hanna
The Ontario [nstitute for Studies in Education

In the pust two decudes researchers have shown considerable interest in tl
between the sex and the mathematics achievement of children in the upper grad
schools. Sume have examined sex differences by comparing total test scores (Bac
& Stanley, 1980, 1983; Maccoby & Jacklin, 1974), while others have focused on t
students who answered a particular item carrectly (Armstrong, 1980; Fennema,
Wahlstrom & McLean, 1984). In a recent study by S.P. Marshall (1983) the anal
comparison of the kinds of errors made by male and female students

Some ol the studiea done to date purport to have established thui by age 13
difference in mathematical ability between the sexes, and that 1t 13 espeially pr
high-scoring exceptionally gifted students, with boys outnumbering irls 1310 1
1983), while others have argued the opposite: that very little difference enista, if
difference is detected it favours boys only slightly (Fennema & Carpenter 1981)
[nternationul Review on Gender and Mathematics(Schildkamp-Kiindiger. 1982
research carried out in nine countries, gender-related differences in achievemen
vary considerubly both within and among countries.

The purpose of this study is to assess the scope of sex-related differences ir
achievement of Ontario Grade 8 students, making use of the pool of data collécte
International Mathematics Study (SIMS).

Test Instruments and Data
For the SIMS study, a random sample of 130 schools wus selected from a tc
schools after each school had been assigned to one of twenty-six strata based on ¢
categories: (a) school size, (b) type of school (private, French. English Catholic, s
rural or urban, and (d) geographical region of the province. (In Ontario, virtuall
olds are enrolled in either a private or a public school.)

The present analysis does not use data for private schaols (which are atten
Grade 8 students). Since previous analyses (McLean, Raphael & Wahlstrom, 19
students in private schools had much higherrates of success, and since there we
boys as girls in the private-school stratum, it was decided to delete these data-frc
sample retained for this study consisted of all the Grade 8 students not attendin
whom data were available for both the pretest and the posttest: 3523 in tatal, 17°
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Sex differences

o 8, administered In five forms: v Core form of 10
hnlcal roasons six items were not purt of the
d topics: Arlthmetic (58 items), Algebra (31
and Measurement (26 items).

had developed 180 items for Grad
Rotated forms of 36 [tams each; for tec
'he 174 Ontarlo ltems covered fivo broa
ry (42 Items), Probability and Statistics (17 items),

,nts were administered both a pretast and o posttest. Each student respunded to the

to oneof the Rotated forms A, B, C, or D on each occusion. Each student was glven the

n ot bath the pretest and the posttest, but not necessurily the same Rotuted form; the
ware ndministered randomly on both occasions, euch forin toone quurter of the class. As
of this mathod, there are varlations in number of respondents among the four Rotated
 betwaen the two occaslons for the same Rotated form. In additlon, the Core form yields
(slon of results. since it hus nbout four timas as many respondents us u Rotated form.

arlzes the pattarn of responses to each of these test forms.

Tabla 1
Number of Raspondents by Sex und Test Form

Pretest : . Posttest
Boys Girls Boys Girls
466 417 489 417
427 470 465 ‘ 444
4417 426 433 437
444 437 416 452
otal) 1713 1760 1773 1750

wumber of respondents 3623.

ma were flva-alternative multiple cholce (one corract responsa and four distractors).

se to each itam was coded into one of three categories: corract, wrong, or item omitted.

1, three percent values (correct, wrong and omitted) were calculated separately for boys
‘with the student as the unit of analysis. (The percent correct of an item, for axample, is .
go of students who answaered that item correctly.) Three mean parcent vilues wera then

each topic by averaging the percent values for the Individual items in thut topic; these ure

ale 2.
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Table 2
Meun Percent Values (und Standard Deviations) per Cutegory of Re
by Sex and by Toplc
Pretest

Correct Wrong Omit Correc

Arithmetic Boys: 49.5 48.0 2.5 54,
(58 items) (18.)  (17.0) 2.7 (16.¢€
Girls: 48.2 48.2 3.5 54.¢

(20.0)  (18.4) 3.9) (11.8

Algebra Boys: 34.68 59.1 6.2 4.
(31 items) (1590  (16.4) (3.6 (15."
* Girls: 33.5 57.8 8.5 44.

1722 1.7 4.7 1.

Geometry Boys: 36.4 56.9 8.7 45.1
(42items) (17.6) (15.1) (5.1) (17.¢
Girls: 33.4 57.6 8.9 424

. (17.2) (14.5) (6.5) (18.:
Probability & Boys: 53.5 43.7 2.8 57.1
Statlstics (19.6) (18.7) (1.9 (18.¢
(17 items) Glrls: 52.9 42.9 4.2 56.
(22.2) (20.1) (3.0 (18.¢

Measurement Boys: 45.9 51.1 3.1 §3.
(26 itams) (21.8)  (20.6) (2.6) ) (19.
Girls: 42.6 53.1 1.3 50..

(22.8) (21.2) (3.4) (21.4

Note. Due to rounding error the figures for Correct, Wrong und Omit may not adc

Results

For each topic the difference between boys and girls in the mean percent of

omitted respo

nsas was analysed using the paired t-test with the item as the unit

addition, s Wilcoxon matched-pairs test was performed to obtain the z-statlstic @
probabllity as well us information on the number ofitems with positive or negati

betwaen boys

and girls.
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n Correct llusponses

n In Table 3 no statisticully significunt diferances wora found between hoys and girls on
n for three of the topics tArithmatic, Algebra, und Probubility und Stutistics). In

| in Meusurement, howaver, more buys gave correct responses on both vceusions: In hoth
areas the dilference of ubout 3 percent is statistically significant ut the .01 level.

retest ns a whole, boys were more successful on 100 items and girls on 60: boys und girls
t in Geometry and in Measurement, boys did better than girls on more thun twice us
This puttorn of results was very much the sume for the posttest. '

Table 3
Differences Between Boys and Girls in Mean Percent Values
by Topic
Pretest Posttest
df Correct Wrong Omit " Correct Wrong Omit
51 1.3 -0.2 1.0° 0.1 0.4 L1
30 Ll 13 23 0.5 1.8 1.3
41 3.0° 0.7 2.2° 2.4° 06 LT
3 . .
18 0.8 0.8 -1.4 0.9 0.2 -i.0
t 25 33 20 12 3.2’ 48 .2

tive dilference represents a higher mean percent for boys; a negative dilference,
n for girls.

in Wrong Responses
were na statisticaily significant differences between boya and giris at the .01 level on any

the two sexes gave wrong responses with similar frequency.

pretest as a whole morebays gave wrang vesponses on 84 items while mare giris did soon
ns the percent of wrong response was the same for both sexes. In Arithmetic, Geometry

3 boys and girls gave wrong responses on approximately the same number of items. In
vever, the rate of wrong responses was higher for boys un 20 items, while for girls it was

; this pattern was reversed in Measurement. with the girls glving more wrong responses
1nd the boys on 9. The postteat results wera very similar to those of the pretest in terms of
fon of wrong responses. .
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Dilferencos in Omitted Rosponses

Asshown inTable 3, the differences batween the sexes were nogatlve, indl
percont of omitted responses fur giels waus greater than that for boys on all the sul
pretest and the posttest. Furtherinare, the t-test puired comparisons showed tha
between boys and girls were statisticully significant at the 01 lavel,

In both the protest and the pusttest more girls than boys omitted responses.
was higher for the boys only un 17 items (10% of the test), whils it was higher for |
(70% of the test). The Wilcaxon unulyses yielded z-statistics significant ut the U1
topics, Indicuting that this trend wus consistent fram toplc ta tapic.

A detailed examinution ol'the oinitted rosponses reveuled that the percenta
omitting items on the pretest runged fram 0 to 28 far girls and from 0 to 23 for boy
4.5and 3.0, respectively. Althoughthere wasa decrease in these 'vnlues for bath t
posttest (that is, fewer students omitted items), the gap between the sexes was ma

posttest the range was 0to 21 with a mediun of 3.0 for girls, while it was 0to 17 wi
boys,

Differencesin Gains

The galns are based on the difference between the mean percent of correct
topicon the posttest and on the pretest, for each group taken separately, and coul
taken to represent the growth in mathematics achlevement for the group. The re
4 would indicate that an average boys and girls improve at the same rate during:
no statistically significant differences (at the .01 level) between the two groups |
in mean percent of correct responses by topic.

Girls showed greater gnins on 93 items and boys on 63; giris and boys tied ¢
in Measurement giris had greater gains on approximately the same number of it
Arithmetic, Algebra and Georaetry, taken together, giris had greater gains than
many items. ’

Table 4
Gains in Mean Percent Values by Sex and Topic

Buys Giris

Arithmetic 5.4 8.0

Algebra 9.5 1.1

Geometry 8.8 9:1
Probabiiity &

Statistics 4.1 38

Measurement 7.5 7.8

Note. Dilferences between boys and girls not significant at the .01 lovel.
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Discussiou

s of this study may be summarized as follows:

percent of correct responses in two of the itve topics (Geometry and
ent) was slightly higher for boys than for girls. These differences. though not
e statistically significunt at the .01 level.

e differences between boys and girls in omitted responses. All the t-tests were
 at the .0V level Girls had much higher omission rates on ull topics. On average
on ratio of boys to girls was 2:3.

on of the gains indicated that instruciiis in Grade 8 hud about the same
in girls us on boys.

e findings as;ume educational s!zpificance w'en one bears in mind thut the boys and
the same randomly selected schoo?: in a;:proxiziately equal proportions and thus can
atche:d on socio-economic level, on ar-31:2t of ¥Grmal training in mathematics, and on
ng (ignoring possible differential treatme=to "the two sexes in the part of teachers).
hus be generalized to students attending public schools in Ontario. und any sex

I must be attributed to factors other than socio-economic level, formal training, or
ng.

vable that the boys had had & certain amount of informal training through out-of-class
‘mally pursued by girls (following instructions for building models, reading charts and
ike). Different informal training in mathematics could explain the differences in
jeometry and in Measurement in particular.

 to McLean, Raphael and Wahlstrom (1983), Ontario teachers reported that only about
etry items had been taught at all, either before or durlng Grade 8. This would lend
the idea that out-of-class activities contributed to the disparities inachievement

es. On the other hand, the other topic which showed differences between the sexes,

ras among four topics in which mosi teachers reported covering about S0% of the

13 on the basis of the information available it is not possible todetermine with any

her out-of-class activities had an effect on the differences between the sexes in
asurement.

x8s somctimes cited for sex differences in mathemstical achievement, such as the
nathemaotics as 8 male domain (Becker, 1982) or the presumed social conditioning and
1tions for boys and girls (Fennema, 1978), might explain why more girls omitted

lid boys. On the basis cf the Grade 8 SIMS data no attempt could be made to determine
f these factors, or indeed of info:<nal training.
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ith differences between the sexes of 10 percentage
or more - -

Girls > Boys

Boys 7 tirls

em A

em B to O

em D - difference between sexes largest 20%
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Which of the (olloving
s 18 equal to a quarter
of & aillion?

A 25 230

B 40 000

—t
C & 000 000
D 250 000

*E 2 300 000

The spsad of sound is 10 m/s.

the sound of 8 car horn vesches
your ears If the car 1y 714 n avay? E,

A 0.21 9

8 2.1a
. cC 21y

D 210

E  Hone of these

F Ia & school election vith thres

+ candidates, Joe received 120 G
votes. HMiry received 50 votes,
and George raceived 30 votes.

¥het perceat of tha total

nuaber of votes did Joe recaiva?

A oEs
B Loz
c 6os
D 8%
L 1208

There are 35 students in s
* L of thea come to schaol b;
snother ~§- come by bicycls.
many come to school by oth

A 1.
B AL
c 2
D 28
xr 3

20 is vhet percent of

801
A [¥3
B 202
c 252

D LOX

E Hone of thess

One betl rings avery &
ecinutes, s secsné dell
rirss every 12 mipies.
They toth ring a1 exassly
L2 o"clack. Aftes hov
zeay ainutas vill they
next £ing sogsshesr?

A B
3 12
[ ]
[ 1

Figure 8



ture et J
yuatain 0

p ol the'
xpereturs
puch verser
he foat of

148

The figurs sbove shovs &
vooden cube vith oas cormer

cut off aad sheded.

Which of

the folloviag drevings shovs
hov thie cube would look when

vieved from directly above it?

1, & boy

15ts & .
long. At

. nearby R 3
b5 units

adov the

1, in the
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Figure 9

A half-tura (180" ) about °
point O is epplied to

the figure ebove.

Wbich

of the figures belov &3
the result?

Dintance tn Kilome ex

L} v N
29 1 T D
(IR il
@ T Sir 2 1T
«C : el
| ! 1
.t P! T T
31 1] [N
. T |

Hov nuch longer dosg. §t take

Tice In Hours

for car 8 to go SO ka chan it
does for car A to go SO kilomstPes?

A L h 15atn
8 1h X0 ain
[ 1h
D 2h 30 min
. E 2h )5 ain
. .
I : N wnet it ihe cepacity of
« 8 cubiz zontalner 10 cm
‘e by 2D 2= by 0 cm?
I
1 A I L
I
\ b oL
| e e c 100L
lO
' o 1000t
E 1000 ca

.~

149

How many pleces of
« each 20 m long, W
required to const!
pipeline one kiles

lengeh?
A S
B 50
c 500
D 5000
E 50,000

T T 11
012 3 '-T 1
Centimetres

According to the scele 3
the length of eide BC of
rectangle ABCD (to the
NEAREST CENTIMETRE) is

A Scm
8 6 cm
C Icm
D 8co
E 9
Figure 10
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gar
¢ Windsor

PERCEPTIONS OF PRE-SERVICE STUDENT TEACHERS
ON MATHEMATICAL. ACHIEVEMENT AND ON TEACHING

MATHEMATICS. RESULTS OF A PILOT STUDY

ce of teachaers’ axpectations in the learning process
, has been wall racognized, since Rosaenthal and
blighaed their book °Pygmalion in the Classroom’ in
ttempts have baen made to trace the channals by which
xpactations and students’ achievement are linked
n particular, this quastion has become of interest in
ocusing on sex-ralated differaences in studants’
achiavament and coursa-taking bahavior.

@ far a moment a t@acher  hag the following attitudae:
)t as able as boys whaen it comes to mathamatics and,

| their future profession thay are not going to need
as boys do. According to this attitude the tadacher
ixpact the girls in his/her class to do vary wall
CHe . .

several possible ways in which thig teacher’s

} might be communicated to tha students. The teacher
» display them when commenting on the poor work of a
r ha/sha might consciously or unconsciously use more
\yoj}@.g., praising a girl very much for corraectly
 @asy quastion, asking mostly boys to solve really
ablams ,and attributing good mathematical achievament
& lat of affort and by boys to ability.

ia not only a subject that more or laess often gets
r teachers, parents and studaents themsaelves but it is
)y Ject that many peopla perceiva as very difficult to
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Lat us assume for a momaent a primary teacher who suc
passing high school math fairly wall. The teachar
famala becausa most primary teachers ara famala.
high school she did not take any math coursas at th
laeval.It was not until sha entarad the pra—ser
training program that she had to daeal with matham
Accarding to har personal experiancas with mathemati
that it is a difficult subject to learn and that s
good grades becausa she worked vary hard at it. Her
in relation to mathematics is low and sha might avan
that socmehcw. men are tha battar mathematicians
appearaed to haer during high school that those studen
to hava the laast difficulty with mathamatics and
the most self-confidant in doing it wara boys. Alth
not necassarily gaet tha best grades, the boys did
nead a lot of effort to grasp thae main concepts.

During har time in presarvice teacher training our

teacher pays particular attention to learn how to

mathematics, for, as she ages it, this is the mo
subject sha is going to teach. She likes to coll
teaching ideas ag possible. The more ready made t
better. Sha wants to be preparad for all possible s
she 1is going to usa har entire stock when tcaching
very hasitant about trying new things, in future y
not give her students much scopa to bring math ¢p
encounter outside gchool into the classroom. Ther
faar that she might not be able to solve unfamiliar

~ Of coursae the l@arning history of our teacher could

di fferant. Let us assume for a moment that she isg

teacher. She is ona of the few famale high school

hava mathematics «g & teachable subject. For har,
was always an enjoyable advanture. She is proud of
in this subject and found it easy to teach rig
beginning of haer career as a teachar.

Her self-confidence in har math ability being wall e
she 13 not afraid of challenging qQuesticns from har
thae contrary she appraciataes thaem as thay demonstr
students ara intaraested in math. Sha oftan usaes the
as starting points for math investigations, of whic
doas not know the raesults in advancae.
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examples ara hypothetical. In fact very little is

ut tha mathamatical learning history of teachers
\th at diffaerent gQrade levels, about the raelationship cf
wry to their parceptions on teaching mathaematics, and
r actual teaching. Moreovar, the same is true for
antaring a preservice program, that is for teachers to
smams to be ruasonablae to assume that the learning
-angly influences certain aspectc of teaching and that
v investigating these variables.

5 a pilot study was carried out at the University of

(hae study focused ~ among othar things - on answering
lng quastionss
the personal learning higtory in mathematics of pra-

idant taachars?
ant are they in teaching mathamatics?

ans do thay give when thae students they taught during
paching did not make much progress in mathematics?

Jars to the abova stated questions depend on the sex of
nt teachar and/or on the division he/she has chosen to

Procadura

@r training program of the Univarsity of Windsor is a
program and includaes threc divisions, these are the
nior (K - &), the junior/intermediata (4 - 8) and the

te/sanior (7 - 13) division. Students enrolled in the
nior program have to take the math education course
or thair division, while for students in tha other

math aducation ims an optional cow'sa .Students enrolled

the Jjunior/intarmadiate or the intermediatae/senior
are groupad together for the analysis of tha raesults
o as Jun/int/sanior division. .

159
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Ralavant information was gathered via a questionnai
The variable *laarning history in matham:;
oparationalized as followss students were asked to a
mathematical achtaevement during their schooldays and
reasons to thair achievement. The questionnaire ugar
the latter variable was daevalopaed by the authaor in |
another research study (s. Schildkamp-Kuendiger 1980

Moreover, the student teachers were asked to cor
achievemant 1in mathematics and their confidance in |
with that in othar subjects. Thay ware also asked t¢
related studants’achievament differencas they has
schools. Ta aevaluate thae reasons the student teache
the pupilas they taught not makind satisfacory
mathematics, a questionnaire developed for the Seconc
International Mathematics Study was used.

The quastionnaire was answerad by. ‘students C
aeducational classes after they had been out for thi
four practice taaching uessions. Students answared or
and anonymaous hasis.

Chi Square Tests waere used to compare the responsaes
groups of students; e.gQ. male and female stude
aenrolled in the primary/junior division.

In the graphs showing the rasults, arithmetic means
characteriase the distributions.

Results

Overall 111 student teachers, enrolled in the pr
division, answared the questionnaira; 9& female and
teachars.

The corresponding numbars for tha jun/int/senior di
overall &1 student teachaers; 3& famale and 235 mala te

160
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Will be diascussed for primary/junior student teachars
formation about their learning history in mathematics is
in graph 1. As a group primary/Junior teachers remembar
th achiaevament during their schooldays as average and
unt for it by a lot of reasons. Tha internal
tatad are: math ability and learning effort; relavant
reasons are 3 math is difficult, good or poor teacher’s
on and halp by othars.
nt saex~-diffarences ( p < 0.085 ) within the group are
ona variable only, that is lack of help of othaers. This
is not considered as vary relavant {m genaral, but
udent teachars Judge it as even less relevant than male

unior student teachars remember their math achievement
lass .good than thair achievement in other school
{ sae Qrahp 2 ). This goes togathar with their
n of baing comparatively laess good in teaching this

ncouraging that they only sometimes encountared sgex—

chiavaement diffaerencas in their pupils during practice
Moraeover, thae quastionnaire raevaeals that, if sex-

di ffarences had been observed, they did not show

icular subject like mathamatics.

d faemale primary/junior teachers do not diffar

ntly as to the variables considered in graph 2.

displays the reasons teachers perceive as relevant when
l1s thay taught during practice teaching did not make
ory progress in mathaematics. Primary/junior student
amention two reasons the mosti lack of ability of the
d lack of motivation. Lack of student ability is a
reason for tha teacherg this is not his/her
ility. Motivating to learn on tha other hand is
that falls in the duty of a teacher.
female teachars differ significantly in thaeir evaluation
ts” misbahavior and lack of motivationy female teachers
S@ reasons as more important as their male colleagues.

thare are very faw significant sax-related differencaes
ale. and faemale primary/junior student teachers. Thiag is
partly due to the fact that there are very few male
in this sample. It seems as if teaching in the
unior grades will stay mainly a female affair. Whether
le and female primary/Junior student teachers can really
d upon au having the same charcteristics as to the
considered herae has to be answered by subsequent
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GRAPH 1

MATH ACHIEVEMENT DURING SCHOOLDAYS |
ABOVE

AVERA

CAUSAL ATTRIBUTION OF STUDENT TEACHE

MATHEMATICAL ACHIEVEMENT

OWN MATH ABILITY
LACK OF MATH ABILITY

BIG LEARNING EFFORT

LACK OF EFFORT

G0abd LucK

BAG o

MAT:) 17 :IASY

MATH 15 NYFFICULT

GO0OD TEACHER’S
EXPLANATION

POOR TEACHER’S

EXPLANATION
HEL.P BY OTHERS

LACK OF HELP

FPPLICABLE NO°

O PRIMARY/JUNIOR STUDENT TEACHERS, N = 131

%X JUN/INT/SENIOR_STUPENT TEACHERS, N = &1
INDICATES SIGNIFICANT DIFFERENCES BETWEEN THESE THC
{ p < 0.05, CHI SQUARE TEST ).
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GRAPH 3

REASONS THAT STUDENT TEACHERS GIVE FOR FUPIL

MAKING SATISFACTORY PROGRESS IN MATHEMATIC

{IEVEMENT IN MATHEMATICS | X o | 4+
BETTER LESS GOOD
THAN IN OTHER SUBJECTS STUDENT’S LACK OF ABILITY
STUDENT’S MISBEHAVIOR
| TEACH MATHEMAT | X0 | + STUDENT'S LACK OF
BETTER . - LESS GOoD MOTIVATION

DEBILITATING FEAR OF MATH

THAN OTHER SUBJECTS
STUDENT'S ABSENTEEISM

INSUFFICIENT TIME FOR MATH

ICVEMENT DIFFERENCES
BETWEEN INSUFFICIENT PROFICIENCY 3
ALE_AND MALE STUDENTS an MY PART
xo 1 - LIMITED RESOURCES
ALKAYS
NEVER : TOO MANY STUDENTS e//

VERY
IMPORT

JUNIOR STUDENT TEACHERS, N = 111
SENIOR STUDENT TEAL IERS, N = &1
3 SIGNIFICANT DIFFERENCES BETWEEN THESE TWO GROUPS
5, CHI SQUARE TEST ). O PRIMARY/JUNIOR STUDENT TEACHERS, N = 111
X JUN/INT/SENTOR_STUDENT_TEACHERS, N = &1
+ INDICATES SIGNIFICANT DIFFERENCES BETWEEN THESE TwWO
" ( p < 0.05, CHI SQUARE TEST ).

163 ' | 164
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) history of jun/int/senior student teachers is quite
'rom that of the primary/junior group (s. graph 1).
lor student teachars ramsmbar their achievement during
iz abova averagae. It ig significantly higher than that
ary/junior group. HMoreover, the jun/int/senior group
" reasons for this achievemant. Lack of ability, good
luck, difficulty of math and poor teacher explanation
I to significantly less as causes of achievemsit. A%
h ig perceived as easier.

'sanior group remambers 1tz math achiavament as about

in other subjects and JudgQsz its ability in relation

)ject as avarage. For both variables the differencaes

¥ Jun/int/senior teachers and the primarysjunior

) significant. ’

do not differ as to the extent achievement differences
 and girls had been observed during practice teaching.

ims to indicate differances in the attribution pattern

n/int/senior student taeachers &nd primary/junior
tachers in the direction that the Jjun/int/senior
led fawar reasons to account for students not making

' progress in mathematics. Only for the reason
t time for math’ are thae differences significant on
s but thaere ig a trend ( p < 0.07 ) for the reasonss
ack of motivation, limited rasources, and too many
} two groups of student teachers seem to differ in
cts considared in this raseach.

differences between male and female primary/junior
achers ware rareg this is not thae case for thae
or group. Although the whole group ramambars its math
during schooldays as above average, this is aven mora
he female treachers ( p-'< 0.0t ). Moreovar  famale
valuate thair math ability and goori ¥ xoharg’
o8 more relevant a reascn for their ach;sresent than
achers ( p < 0.05) 3 whardsax lack of affort is
 lass a reason by famale teachers (p < 0.03 ).
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Finally tkera is another rather unexpectad significant
betwaen male and female Jjun/int/senior student teachars

comas to. :xplaining why their pupils did not make sa
progreaess famala teachars more often parceive in
proficilency on thair part to be the reason. This is

astonishing as
mathematics, thay
male teachers.

saccording to their 1learning hi
should be éven morae self-confident

Summary

The raesults of this pilot study reveal considerable d
t.ntwaeen student teachers in the primary/Jjunior division
in the Junior/intermediatae/senior division. Student t:
tha latter division have a much more positive learning
mathematics than the primary/junior group.

Of coursa, it can be arqued that the group of Jun/
student teachaers considered here would not have taken
coursa, if they had not felt rather confident in this
as thaey had a choice the primary/juniar student teache
hava. The situation bacomes more delicate , if this
history is looked upon as having important impact on t
of teaching. Aftaerall all these student teachars will ti
get, a tpaching postion after finishing the program. A
the primary/junics studant teachars will start teaching
lass confidence in thelr ability to teach this subject
teach other subjactz.

It can be expactad thiat ~ in doing the Jjob — they will
confident in teaching mathematics. But tha hypothesi
easily be turned down that they might gain this confi
following a rather rigid teaching method that mint
challenge of unexpected questions and problems.

Up to now the results of this pilot study indicates ~ a
a trend - that the primary/Jjunior student teacherw n~ve
upon morms reasons than the other group to explain
pupils fail to learn mathenmatics. Furthar information a
studant teachers think to be important to make math tea
@ffectiva is available and will bhe analysed in the near
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rd to sex-differancas tha results indicate soma
) diffeirances for jun/int/sanior students. It seems as

student teachers only chaosae to teach mathematics if
vaery confident about their compatance in the subjec%t.
.agathar with a readiness to axplain failures in thair
arning more often by personal insufficiaent proficiency
‘wir male colleaguas. The quaestion remains open what
;¢ .ga these future femalm teachers are going to deliver
arale students.

Jut ¢ ax—-rel atad achievement differencas -at schoal have
3d  titat girls tend to have lowar seaelf—-asteem in
to  trair math ability, even when they have the samm
r a3 boys. It is worth investigating if thera is a
at the teacher level in so far as tha perception of
raching proficiency comaes into play.

R., Jacobson, L.3s Pygmalion in the classroom. Naw York .

-Kuandiger, #.:1 Learnig tha concept of a function. In:
anhold at al. (ads.)? Cognitiva Davelopment in science
atics. lLeeds 1980, p. 181-190.
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O

ERIC

Aruitoxt provided by Eic:

| )

Roberta Murs

Université Laval

Mécanismes d'sctuglisation d¢ 13 ous-représentation des femmes en mothém
présentation d'un projet en cours

Un sondsge réalisé - 2 1981 sur 1'étet de 1a recherche concernant les différen
sexe en mathématiqus au Cap;,da, avait indiqué qu'd peu prés dans tout le pays, la
des filles aux cours do mathématique commence & décliner vers la fin du secc
qu'aucuns recherche n'avait été effectuée pour tenter d'expliquer ce phénomana (M

Cette constatation m's incitée & concevoir une premiére étuds eiploratoiro
Comms il ma semblait Important d'étudier 1e phénoméns dans 3a globaltté, §°
collaboralion de collégues avec des compétences en sociologie et en psychologie; F
et Meredith Kimball, ont sccopté do se joindre & moi ot natre projet a obtenu une
Conaeil de recherches en sciences humaines du Canada.

Au Québec, dans 1¢ secteur francophane, 1e phénoméns de 1a sous-représentati
en mathématique s'amorcs ey passage du secondaire 8u colléqitxl (Cegep) -- c'es
118me & 1a 128me annés. D'aprés les stetistiques fournies par le Ministére da
Québec, en Séme secondsire (derniére année de 1'école secondaire), meme 3
mathémalique ne sont pas abligatoires, depuis plusicurs années, 1¢3 filles repré:
ds 18 clientéle ches cours. Au collégial par contre, & 1'sutomne 1984, elles n'el

plus que 42%. Toujours d'aprés 1a Ministérz do I'Education, 18 réusaite des fillos

comme au Cegep, est aussi bonne quo celle des qgergons, sinon meilleure.
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Jut en étant conscientes qus les racines des choix que les éldves font en entrant au Cegep
 ramonter loin dans le passé, nous avons décids d'abordsr le probléme en étudiant ce
s moment da 38 for mulation, c'eat-&-dire vars 1a fin de 1a cinquiéma ennéa du secondaira.
promiére phase de 1a cusillatte de données a ou liau de févriar & mai 1983 dans trois de
ses de mathématique de cinquiéme secondaire. Pendantcetle piriods les élévas faisaient,
chéant, leur damands d'sdmission au Cegep. Las msmes éléves ont ansuita été contacts /e/s
au un an plus tard.

3 savions que le phénoméne de 1a différenciation des chaix scoleires selon le sexa éteit
mplexe ot nous avons cholsi d'en brosser un tableau global, plutdt que d' en étudier plus
1 quelques espects ssulemont. Dans cette parspective, nous avons opté pour 1'amploi
n8 d'uns veriétd de méthodes ds cusillatts dos données: questionneires aux éléves,
tlons en clm.a.s, entravuss avec 1as é1dves ot aver leurs ansaignant/a/s de mathématiqua.
3 avons retanu un grand nombre de variables. Parmi les principales, on retrouve les
H .
occupation ot 1a scolarité des parents,

fcart entre 1'imaga da sof et 11mage d*une pursonns de sclance,

velaur intrinséque ot 1a velaur utiliteire attribuées 4 1a mathimatique,

attitudo onvers la succés an mathématiqua at en frangais,

confiance an 3¢9 capacités an mthématiquo,

3 causss auxquslles las 81dves attribuent leurs succés et échecs en mathématique ot en
ancais,

s prévisions da réussita an mathdmatiqus,

s aspirations scoleires et professionnelles,
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- la présence da moddlesde roles sci.entlﬁques dans 1e milieu da 1'¢1éve,

- 133 cours suivis et las notas obtanues,

- les motivations du choix scolaire telles qu'exprimees par les éléves,

= 1'attitude du milleu de 1'618ve envers son choix scolaire,

- les interactions entre les é1éves et leur enseignant/e de mathématique,

- lo perception qus 1'snseignant/a & du potantial de ses éléves en mathématiqu

intérét pour cette matiéra et de leur niveau de confience,

- les prévisions ds 1'enseignant/a & 1'égard da 1a réussite de ses éléves,

- les causes auxquelles les enseignant/e/s attribuent les succés et 1es échecs d

Dans la chaix da ces varieblas, nous nous sammes an portie\| inspiréas du modl
Eccles {1985) ~- modéla qui éteit d2ja disponibla avant 1a début de notre projat.

Toutes les variables ont &té analysées en forctton du sexe ot du chotx scolatre
choix scolaire o &t8 défini & partir do 18 demands d'admission au Cegep faite par
p}lntemps 1984 ; nous avons ainsi- distingud les éldves qui ont choisi u
scientifique da caux at celles qui ont choisi une sutre orientation. Tel quo prév
groups comprenait proportionnsllement moins da fillas que de gargons. Catte défii
scolaire ale désavantage d'élargir le champs d'étudq de 1a mathématique aux scies
nous 8 sembié plus fisble qu'uns définition basés sur les intentions de suivre
methématiqus cuisimées par les eléves, cer dens la demande d'admission 1'61
programma auqu?l i1, ou elle, veut s'inscrire sans préciser les cours particuli
suivis, '

Je presente ici sasulament quelques résultats praliminaires & titre d'axemple

personnes intéresstes & se procurer 1a rapport final ala fin de 1985,
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1'snsemble, nous avons trouvé plus de différences reliées au choix scoleire que de
3 reliees au sexe. Ainsi, V'écart entre 1'image que lgs éléves ont d'eux-mémes, ou
§mes, et 1'image qu'ils, ou elles, se font d'une personnas de science est plus pelit chez
 qui s'orientent vers les sciences que chez les autres. De méms, le premier groupe
ine plus grande valeur intrinséqus et utilitaire & la mathématique et posséde plus de
en 365 capacités dans cette matiére. Parmi ces qualre variables, la derniére est la
a donné leu & uns différence entre filles et gargons, ces derniers manifestent un plus
ay de confiance.

ste toutefois quelques exceplions. Par exempls, & propos des causes auxquelles les
ribusnt lours succés et échecs en mathématiqus, nous avons irouvé des différences
oxe, mais non selon 18 choix scolaire: les filles a((ri'buent trés mejoriteirement leurs
eurs efforts, tandis qus les garons sont partagés entre leurs e"erl's et leur habilets.
ui eat des explications de 1'échec, la majoritd des filles comme des gargons fait appel au
‘affort, meis quelquas filies invoquant aussi laur manqus d*habiletd ou le difficulté de la
&5 mémes tendances se 3ont menifestées & propos des causes par lesquelles les
W/e/s expliquent les succds et échecs de leurs éléves. Nous n'avons pes trouve de

] anafoque entre filles et gargons dans leur perception des causes de succés el d’échec en

autre différence importants entre filles et garcons est‘apparue dans leurs propres
‘emplof et dahs ce qu'elles, ou ils, prévoient pour 18 conjoint, ou Ja conjointe, loraque
163 enfants: garcons et filles s'accordent mejoritairement pour dire que ce seront ces
y qui ‘assumeron( les responsabilités rn‘ajcures au niveat des tachss familiales et

1t leur emploi & Vextérieur au temps partiel ou méms le suspendront complétemant.
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L'influence de ce facteur sur le choix scolaire-est liée & 1'image des sciences cor

* particuli¢rement exigeant, ol i) est difficile de poursuivrs des études ou une carr

partiel, ou de les reprendra aprés une interruption.

Enfin, un dernier exemple de différence entre fill2s et gargons touche leur com
classe de mathémelique: nous avons observé que les gargons participaient be
vocalement que les filles, en répondant & 75% des questions do V'enseignant/e lors
n'éteient pes adressées & un/e éléve‘en particulier (les gergons constituaient 4
échantillon). Avantd'avancer des hypothése sur le role de ce facteur dans les choix
faudrait cependant effeclusr des observations pour savoir si ce comportement ne se
aussi dans des classes o V'on aborde des disciplines non scientifiques.
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