AUTHOR
TITLE

Varhille, Charles, Ed.
Canadian Mathematics Education Study Group. Proceedings of the 1985 Annual Meeting (Universite Laval, Quebec, Quebec, June 7-11, 1985).
INSTITUTION
PUB DATE
NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

These proceedings include two lectures followed by working group and topic group contributions in reduced format. The two lectures were by Heinrich. Bauersfeld, speaking on contributions to a fundamental theory of mathematics learning and teaching, and Henry Pollak, speaking on the relationship between applications of mathematics and the teaching of mathematics. Working groups concerned lessons from research about student errors, Logo activities for the high school, the impact of symbolic manipulation software on the teaching of calculus, and the role of feelings in learning mathematics. Topic groups considered exploratory problem solving in the mathematics classroom, epistemological fallacies, and recent Ganadian research concerning teaching, gender, and mathematics. (MNS)

[^0]
groupe caladien a'etude en didactique DES MATHEMATIQUES

CANADIAN MATHEMATICS EDUCATION sTUDY GROUP

PROCEEDINGS OF THE 1985 ANHUAL MEETING UNIUERSITE LAUAL QUEBEC, QUEBEC JUNE 7-11,1985

EDITED by CHARLES UERHILLE

CMESG/GCEDM
1985 Meeting
PROCEEDINGS
Editor's Foreward i
Preface ii
In Memoriam - Dieter Lunkenbein iii
Lecture 1: Contributions to a Fundamental
Theory of Mathematics Learning and
Teaching. Heinrich Bauersfeld 1
Lecture 2: Un the Relationship betweenApplications of Mathematics andthe Teaching of Mathematics.
H. O. Pollak 28
Working Groups -
A - Lessons from Research about students' errors, Stanley Erlwanger and Dieter Lunkenbein 44
B - Logo Activities for the High School Joel Hillel 52
C - Impact of Symbolic Manipulation.
Software on the Teaching of Calculus Bernard Hodgson and Eric Muller 69
D - The Role of Feelings in Learning
Mathematics - John Poland and Fran Rosamond 107
Topic Groups -
A - Exploratory Problem Solving in the
Mathematics Classroom. Peter Taylor 123
C - Epistemological Fallacies Will Lead You No Where! Jacques Desautels 130
D - Recent Canadian Research Concerning Teaching, Gender and Mathematics Gila Hanna, Erika Kuendiger, Roberta Mura 158
List of Participants 166

Edito. foreward

The proceedings for the 1985 CMESG/GCEDM meeting have been delayed for a long time. It was necessary to wait until. a major contribution was received, otherwise the proceedings would have been most inadequate.

The proceedings, following the format of previous years, include the major lectures presented by Heinrich Bauersfeld and Henry Pollak followed by working group and topic groue contributions in reduced format. This meeting represented our first effort to plan a joint speaker with the CMS - a group with whom we have many interests in common.

This represents our second meeting at Laval. The University in particular as well as Quebec City in general provide pleasant surroundings for such a gathering. We are especially appreciative to Claude Gaulin and Bernard Hodgson for making the local arrangements.

Charles Verhille Editor

Canadian Mathematics Education Study Group Groupe canadien d'etude en didactique des mathématiques

1985 Meeting

The ninth annual meeting of the Study Group was held at Laval University, Jume 7 to 11, 1985. Fifty mathematics educators and mathematicans met in plenary sessions and working groups. This year the conference was deliberately arranged to follow immediately on the CMS Summer meeting and the first of the two guest lectures, by Henry Pollak (Bell Commuications Research, was planned in Collaboration with the CMS Education Committee. Dr. Pollak spoke "On the relations between the application of mathematics and the teaching of mathematics". He identified four different meanings commonly attached to the words "applied mathematics", and considered the implications of each for curriculum and for pedagogy. Also co-sponsored by CMS Eaucation Camittee was a session, led by Peter Taylor (Queen's), on "Exploratory problen solving in the mathematies classroan".

The secand guest speaker was Heinrich Bauersfeld (IIM, Bielefeld) who made "Contributions to a fundamental theory of mathematics learning and teaching". Setting out to answer the question: How do we manage to retrieve what we require and adapt it to a new situation?, Professor Bauersfeld wove an intriguing account of constructivist theories.

Other lectures were given by Fernani Iemay (Iaval), who presented a masterly sweep through the historical developments of analytic and synthetic geometry, and by Jacques Désautels (Laval), who applied the epistemological theories of Gaston Bachelard to the laarning of science. Three accounts of specific researches; on teaching, gender and mathematics were given by Foberta Mura (Laval), Gila Hanna (OISE) and Erika Kuendiger (Windsor).

The working groups at this conference focused on a positive view of students' errors, a group led by Stanley Erlwanger (Concordia) and Dieter Linkenbein (Sherbrooke); on more advanced activities with LOGO, a group led by Joel. Hillel (Concordia). A third group investigated the possibilities of symblic manipulation software, led by Bernard Hodgson (Iaval) and Eric Mulier (Brock); the fourth tackied feelings and mathematics, led by Fran Rosamond (San Diego) and John Foland (Carleton).

Thisbald sumary may indicate the scope of the conference but may not make clear the special characteristics of its style. Most conferences of comparable length offer participants many more lectures and paper presentations. The result, as everyone knows, is that participants at conventional conferences are selective in their attendance at sessions; no one can sit through continuous periods of. being talked at. Participants at Study Group meetings, where ample time is allowed for comperative work and discussion, tend to follow the whole programme. This generates more of a sense of common interest, a bridging of differences rather than an accentuation of them.

IN MEMORIAM DIETER LUNKENBEIN

The mathematics education community has been deeply shocked to hear bout the sudden death of our colleague Dieter Lunkenbein, on September 1l, 1985, at 48 years of age.

Born and educated in Germany, he had come to Canada in 1968 to work as a research assistant for Dr. Zoltan P. Dienes at the Centre de Recherche en Psycho-mathématique in Sherbrooke. He subsequently got a Ph.D. in mathematics education at Laval University and he bacame a regular faculty member of Universite de Sherbrooke, where he has displayed strong leadership in teacher education as well as in research and development in mathematics education.

In 1982 he was awarded the "Abel Gauthier Prize" by the Association Mathématique du Québec in recognition for his significant and exceptional contribution to mathematics education in Québec. At the Canadian level, he has been very active in the annual meetings of the Canadian Mathematics Education Study Group, particularly in working groups about teacher education and about the field of mathematics education, and as a leader of many groups on geometry education - - an area for which he was a recognized expert.

Dieter is the author of more than 70 scientific lectures or papers, including articles in Educational Studies in Mathematics, For the Learning of Mathematics, Bulletin de l'A.M.Q., etc.
At the international level, he has been involved in many conferences and for about ten years he has been very active as a coopted member of the Commission Internationale pour l'Etude et I'Amélioration de l'Enseignement des Mathématiques (CIEAEM), of which he was the President from 1982 to 1984.

For the mathematics education community, the death of Dieter Lunkenbein constitutes a great loss. Everyone will long remember his work and dedication to our field as well as his impressive human qualities.

CONTRIBUTIONS TO A FUNDAMENTAL THEORY OF MATHEMATICS LEARNING
 AND TEACHING

BY HEINRICH BAUERSFELD
 UNIUERSITAT BIELEFELD

Contributions to a fundamental theory of mathematics learning and teaching
HEINRICH BAOERSFELD
IDM (Institute for Mathematics Education), Universitat Bielefeld, FRG

> "Perhaps the greatest of all pedagogical fallaciës is the notion that a person learns only the particular thing he is studying at the time. Collateral learning in the way of formation of enduring attitudes, of likes and dislikes, may be and often is much more important than the. spelling lesson or lesson in geography that is learned. For these attitudes are what fundamentally count in the future." JOHN DEWEY (l938)

1. A theory gap in school practice

A few years ago the report of an outstanding piece of research appeared: it is D.HOPF's investigation on the teaching. of mathematics in grade 7 of the Gymnasiuml) (D.HOPF 1980). The study analyses data from 14000 students, their teachers and parents, at 417 Gymnasien in the area of West Germany including West Berlin, and it is a representative sample. Detailed questionnaires were used in order to find out about the "social, cognitive, and motivational conditions under which learning outcomes and credits" are produced in mathematics lessons. In our view the most interesting results are:

* There is an overwhelming dominance of direct instruction, in particular the well-known game of teacher's questioning and student's response as well as teacher's monologues (lecturing) and similar types of instruction; and * it is not possible to identify "any more general structure" in the extremely rich data base "which would indicate the existence of overall concepts for the orientation of method
and teaching". Clearly, this came out quite contrary to the researcher's expectation, that "at least some of the concepts which were under discussion in mathematics education for methods and teaching would appear more often than in single specific phases of the lessons only." (D.HOPF 1980, p. 192)
The laek of explicit theory in everyday school practice could prove to be a surface phenomenon: Perhaps teachers do not talk about theoretical backgrounds, but they may follow recipes for action rather consistently, which are based upon certain theoretical concepts. One might expect, therefore, that careful analyses could lead to reconstructions of a hidden though theory-based grammar of teacher's decisions.

Reviewing various well-known concepts of mathematics education, the researcher thought about such analyses,but "found no reason for establishing a search for interpretations which could be traced back to more general concepts." (D.HOPF 1980, p.191). That is to say, the researchers found continuities and regularities in the pracesses of the mathematics classroom e.g. the preference for direct instruction - but they could not find any relation with the concepts that appear in the theoretical debates of the mathematics education community..

Now we can ask more generally: If not through theoretical reflection, how then do the often documented and criticized patterns of teaching and learning in mathematics classrooms come into being (see the "recitation game", HOETKER and AHLBRAND 1969)? On the one hand the available theories obviously do, not cover the practitioner's needs; the theories do not have sufficient explanatory power. The hidden regularities of everyday classroom practice on the other hand function as if they arose from the subjective thecries of the participants (teachers and students). So probably these hidden regularities are the outcomes of covert processes of optimization, that is, they may represent a bearable balance between the given actual, societal, institutional, and micro-sociological forces in the
classroom (where bearable means: bearable for the participants). Provided this is an adequate description, then the hidden gensis of the regularities would explain the product's tenacity and resistance against every reform.

The following remarks are grouped into three chapters. The main part, chapter 3, presents theoretical considerations from the many micro-analyses of teaching-learning situations in mathematics conducted by a research group at the IDM Bielefeld (BAUERSFELD, KRUMMHEUER, VOI.GT). The thesis of the domain-specific orientation of a peron's action leads to new views on (and descriptions of) abstraction/generalization, representation/embodiment of concepts, and learning.

The preceding chapter 2 can just as well be read after chapter 3, since the remarks on deficiencies and paradigms in theories of mathematics education may then be more understandable. It is meant as an introduction as presented here. The concluding chapter 4 relates the theoretical discussion to certain recent issues in problem solving. The application gives support to the thesis of the preceding chapter.

2. The paradigms of theories of mathematics education

The usual set of didactical questions: What is the nature of the subject? How is it learned? and How should we teach it? reproduces in itself disciplinary boundaries. Theories of mathematics education tend therefore to stress the relation either to the acting persons or to the subject matter of mathematics. Thus we receive psychological or mathematical-philosophical answers, such as student-centered "theories of learning" and teacher-centered "theories of instruction" or as subject-matter-centered theories of knowledge, of curriculum, of task analysis, of AI-simulations ${ }^{2)}$ etc. Until very recently, linguistics, sociology, etc., were not disciplines to which the math ed community referred.

Both theoretical mainstreams use the stages metaphor when characterizing developmental aspects. .Psychological approaches arrive at stages based on classes - or more precisely at progressive class-inclusions - of abilities (e.g. KRUTETSKII 1976), or of operations (e.g. PIAGET 1971), at levels of learning (e.g. VAN HIELE 1959) etc. Since mathematical abilities as well as the success of learning mathematics are described or measured through the quality of solving certain mathematical tasks, it becomes inevitable that the hierarchies of psychological constructs map subject-matter structures. They duplicate mathematical hierarchies, but do not create genuine psychological descriptions of the related actions. The subject-matter-centered theories on the other hand use mathematical structures directly for the modeling of stages. We can state therefore, that in both theoretical mainstreams the description of the field is dominated by mathematical means. 3

But math educators will have to extend thelr fundamental theoretical questions, if at least a reasonable subset of. classroom processes follows hidden regulations. The more since the regulations develop interactively rather than directiy. through the participant's intentions, and with effects often inconsistent if not conflicting with the official aims. Then we will have to take into account not only that teachers and students enter and leave the classroom with certain individual dispositions, intentions, and expectations - which we do in order to draw inferences from the difference between the two cross-sections, but we will also have to ask what they make of it in a concrete situation, how they actually employ available states of knowledge, and when they activate and how they use schemata (and not only which ones, as is usually done). Crosssection analyses of input and output states with inferences about the process in between are no longer sufficient for an adequate understiznding. If, as becomes evident, knowledge develops together with and as part of the knowledge, then this calls in question the process-product metaphor.

Furthermore the ongoing vivid interation in the classroom indeed leads to very personal (subjective) interpretations and constructions of meaning. But socially shared meanings and norms of content-processing are produced as well. And these are not just taken over like ready-made rules, rather they are constituted through the interaction, they become reality via the mutual processes of construction and negotiation. That is to say, we have to discriminate individual structures of potentially available knowledge from the interactional structuring of the actual action. And on a social level we have to diiscriminate (so-called) objective subject-matter structures from the related meanings, norms, and claims for validity, as they are constituted in the course of the interaction in the classroom. This of course makes cause-effect analyses haphazard, because attributing cause to a single person's action may become difficult.

There is a remarkable convergence in recent developments in mathematics and in cognitiye science as well as psychology that supports the scepticism advocated here. In the view of . cognitive psychologists the When and the How, as mentioned above, are mainly organized on metacognitive levels. The classical problem solving strategy from AI-developments building up a hierarchy of operations or organizing control on a superordinate level - returs here and has been the subject of intensive discussion in cognitive psychology recently (see ANN L. BROWN, J.C. CAMPIONE, and M.T.H.CHI in WEINERT 1984) under the name "metacognition". Investigations begin to focus on "dynamic learning situations" and on "interactive processes" (J.V. WERTSCH 1978, 1984; and A.L. BROWN in WEINERT 1984, p.l01/102. One of the "many largely unsolved problems" in developing advanced intelligent computer systems for educational purposes that TIM ' O'SHEA has named is that "not enough thought has been given to represent inexpert reasoning". He has also pointed at the crucial role of "using natural language" (1984,
p.266). Interestingly the attack comes from non-human information processing research, human understanding, learning, and reasoning in general and of mathematics in particular.4)

Even mathematics itself has been challenged from within the community, as by LAKATOS" concept of "informal, quasi-empirical mathematics", an image of the discipline which he holds out against the counterpart of "authoritative, infallible, irrefutable mathematics"5) (1976, p.5). FREUDENTHAL has long since argued against the same enemy: "True mathematics is a meaningful activity in an open domain." (1983, p.39).
"Why, come to think of it, do we have so few good ideas and theories about the mind? I propose the following answer to this question:

1. It may be the most difficult question Sc.ience ever asked.
2. It is made even harder because our first theories have led us in the wrong direction."
MARVIN MINSKY (1982, p.35)
3. "Domains of Subjective Experience" and "Society of Mind"

In.our research process the adoption of sociological methods and concepts has turned into a process of adapting the means to the end. Since we are interested in learning and teaching mathematics rather than in general social structures, as identified by sociologists across subject-matter, our analyses are focussed on the relations between the subject-matter aspects, as thematized by the participants, and the predominantly social nature of classroom processes and their conditions. This, we think, describes an important weakness in the dominating psychological and subject-matter-oriented theories.

Our micro-analyses of video-taped teaching-learning situations at different schools and with different ages have led to three
related theoretical elements. GOTZ KRUMMHEUER has adapted GOFFMAN's "frame analysis" in order to descri.be the participants'(teacher and students) definitions of situations "frames" - and their stratified changes - "keyi:ags" - in the flow of interactions. Complementary to these actual activities, my concept of "domains of subjective experience (DSE)" aims at the description of the sources and the organization of memory and of the related long-term effects called learning. These respresentations function as relatively stable dispositions and as the.potential from which the individual's actual orientation and action is coined and formed. JORG VOIGT has investigated the hidden regulations of classroom procedure as they are constituted among the participants. He describes "patterns of social interaction" and their relation to "moves under duress" and to (DSE-rooted) individual "routines". (See KRUMMHEUER 1983 and 1984, BAUERSFELD 1980, 1983 and 1985, and VOIGT 1984 and 1985.).

In the following I shall restrict myself to discussing the mas aspects of the DSE-metaphor. It should be noticed that we ofics alternative interpretations but do not claim to describe "the" reality. The theoretical elements offer a well-founded perspecti.ve on classroom processes among other theoretical perspectives, with which it competes. The theses and their substained connections are the products of "abductions" (C.S. PEIRCE 1965, J.VOIGT 1984a). Thus a specific understanding of the genesis of theories as well as of theory itself is functional in our approach.

1. Thesis All subjective experience is Comain-specific. Therefore all experiences of a person (subject) are organized in Domains of Subjective Experiences (DSE).6)
Whenever I have experiences, that is: I learn, actively and/or passively, this occurs in a concrete situation, something which I realize as context. Thus learning is situation specific, is
learning-in-context. Learning is not limited to cognitive dimensions. Since I cannot switch off one or the other of my senses deliberately, all of my senses are involved, particularly the genetically older organs like the mid-brain (emotions) and the cerebellum (motor functioning). The stronger the accompanying emotions, the more distinct and richer are certain details and circumstances in the recollection. We therefore speak of the totality of experiences and learning.

Learning is also multidimensional: I learn how to do things, and along with that, though mostly indirectly, I learn about the when and the why. At all times I learn about myself and about others.

The specificity to situation, the totality, and the multidimensionality, give good reasons for the conjecture that all experiences of a person are stored in memory in disparate domains according to the related situations. Each DSE encloses all of the aspects and ascribed meanings which appeared to be relevant for the person who was acting within the situation. Encountering the same situation repeatedly contributes to the consolidation of the related DSE, but as well to its isolation from other DSE's. When entering a specific known situation a person immediat:ely 'knows' very much, due to the activated DSE.

An example: More than 25 years ago during teaching practice with student teachers in the country, I visited a little nongraded school of some twenty pupils ranging in age from 7 to 14. The teacher opened the first lesson with a series of spectacular actions. He called on the attention of the few 11 and 12 year olds and made the others work silently. Then he ostentatiously dropped a plate which burst into pieces. A defective teapot followed, and finaliy he broke a few wood sticks into pieces. His hand waved over the scene accompanied by the key question: "What is this?!" And a nice little girl answered: "It is the introduction to fractions!"

Apparently she had experienced this happening repeatedly in her earlier school years and she knew it would end up with naming and calculating with fractions. From that she gave a clear definition of the situation.
Under a phylogenetic perspective the immediate availability of an adequate DSE guarantees survival. The complex nature of the DSE's enables the activation of a specific one just through a smell, a touch, a word, a picture, an action etc., and in such a way provides for the instantaneous identification of a dangerous situation for quick and appropriate (re-)actions, and for a certain coping with possible consequences. Obviously many of the students reactions in mathematics lessons are examples of such direct and prompt concatenation, ensuring survival in the classroom and saving unpleasant effort and reasoning.

The ideals of mathematizing, on the other hand, are clearly related to critical distance, to analytic decomposition and reflected construction, and to operations with symbols and models. These arts do not develop along the elicitation-reaction line. .In order to overcome the troublesome phylogenetic conditions (which we cannot change nor deny), instructional situations should therefore give more attention to indirect learning on higher levels rather than to behavioral responses/evoking through invitations on the bottom level of direct action and reaction only.
2. Thesis The domains of subjective experiences (DSE) are stored in memory in a non-hierarchically ordered accumulation, following M.MINSKY's idea of a "society of mind" (1982). In a given situation the DSE's function in competition for activation, independently from each other, and this the more intensively they have been built up initially.

The model represents a powerful description for a functioning organisation of the isolated DSE's. According to the flow of
personal impressions and activities the "society of mind" is under continuous change and development. Permanent and lifelong new DSE's are formed7), older DSE's are changing. The gradual fading away of DSE's, not activated for a long time, diminishes the growing burden, the more, the lower, the emotional status and the frequency of activation of the DSE are.

Every activation produces change: Often activated DSE's pass through many transformations: the meaning, the relations, and the importance of their elements may shift, the characteristics of the situations become less specific (they allow more variance, i.e. they generalize), and a hard core of routines, of easy meanings, and of preferred verbal or pictorial presentations is shaped. In an actual situation these well-developed DSE's obtrude themselves through their smooth perspectives and therefore have the best chance to win the competition for reactivation. Thus success has stablizing and tracking effects, though not necessarily for optimal solutions, as an observer may note rather than relative personal optima. But since every situation is new in a certain sense, there is an opportunity for younger and less elaborated DSE's ("soft state") as well as for easy and robust older DSE's. There is no preference in principle in the activation game as the phenomenon of regression demonstrates: The relapse into certain pattern of understanding and action under stress, which are older and less adequate or less differentiated, but are functioning more quickly and more reliably, receives a simple explanation from within the "society of mind" model.

The model, by the way, leaves no room for an independent or superordinate authority in the "society", a "demon" or something similar, who selects and decidedly activates DSE's. Clearly we can exercise a limited influence on our internal retrieval processes, but we are not in command of our memory as the many failures of mnemonics show. An idea suggests itself - or not.

Through microethnographical analyses a surprisixy high degree
of separation between single DSE's has been demonstrated (LAWLER 1979, Bauersfeld 1982). Outcomes from quantitative-experimental research work gives support also. Recently E.FISCHBEIN et. al. (1985) have investigated the solving of verbal problems in multiplication and division with 623 Italian pupils in grades 5, 7, and 9. They focussed their attention on the role of "implicit, unconscious; and primitive intuitive models." Such models, so goes their hypothesis, might mediate "the identification of the operation needed to solve a problem" and thus "impose their own constraints on the search process." (FISCHBEIN et.al. 1985, p.4). The authors arrive at the unexpected profoundness of the expected effects, which they describe as "a fundamental dilemma" for the teacher:
> "The initial didactical models seem to become so deeply rooted in the learner's mind that they continue to exert an unconscious control over mental behavior even after the learner has acquired formal mathematical notions that are solid and correct."(p.16).

The authors identify two sources for the genesis of such personal (subjective) models. One is the direct relation to the concept and the operation as it was initially taught in school. As the other, they found a natural tendancy to produce subjective regularities and use them intuitively through continuous activities "beyond any formal rules one has learned" (p.15) and though they might be "formally meaningless and algorithmically incorrect" (p.14). This represents an example of the genesis of a DSE, pointing at the specifity of situation as well as at the totality and multidimensional. y of subjective experience as.stated above.

The rigid disparity of two DSE's which from a teacher's perspective should be extensively interrelated (as e.g. experiences with a special case and the general rule) characterizes not only the phase of initial development in the
subject. Against the expectations of a natural growing together of separately-gained pieces of knowledge through repeated practice, the persistent subordination of knowledge to specific DSE's remains effective and dominates the subject's actions. The supposition that cognitive networks develop quasi-automatically through an adaptation to the logics of subject matters appears as an illusion. The "society of mind" model with its independently competing DSE's allows a simple explanation for the persistence of disparate DSE's for the "same" situation. This can happen even in cases where a DSE's concepts and procedures are stored but not used though they are superior or more general in an observer's'view, because they do not cover the "same" problem under the subject's perspectives. Even so-called general concepts stored in memory are inevitably related to the subject's perception of the situation in which the concepts were built. And therefore ascertaining the "sameness" of two cases affords a comparing of elements from at least two different DSE's (see thesis 4). Each activation from memory on the other side reinforces the activated DSE, but not an abstract relation to other DSE's.
3. Thesis The activities of the subject and the related subjective constructions of meaning and sense, as these develop through social interaction, are the descisive fundamentals for the formation of DSE.
In mathematics education, in particular, the subjectively relevant activities are bound to the offered mediatization of the matter taught, to what is really done. Teacher and students act in relation to some matter meant, usually a mathematical structure as embodied or modelled by concrete action with physical means and signs. But neither the model, nor the teaching aids, nor the action, nor the signs are the matter meant by the teacher. What he/she tries to teach cannot be mapped, is not just visible, or readable, or otherwise easily decodable. There is access only via the subject's active internal construction mingled with these activities. This is the beginning of a delicate process of negotiation about
acceptance and rejection. That is why the production of meaning is intimately and interactively related to the subjective interpretation of both the subject's own actions as well as the teacher's and the peer's perceived actions in specific situations. Via these processes the (social) norms of mathematical action are also constituted in the classroom, covertly, regarding acceptability, validity, completeness, relevance, and so on.

The doctoral thesis of G.FELLER 1984) gives an idea of how important the activities with embodiments and physical means (teaching aids) are for the formation of mathematical experiences. She tested mathematical achievement at the end of grade 2 in Berlin in order to find out the extent to which the aims of the mathematics curriculum had been attained. As a byproduct the author was "startled by the strong impact of the manner of representation". Her final assessment:
"The outcomes indicate that the acquisition of each different type of representation requires the learner's explicit endeavour and connected rehearsal, an effort which is not less than is usually required for the learning of mathematical matter itself (like addition or subtraction)." (G.FELLER 1984, p.67).

In our terminology this would mean that, for many children, experiences with a new representation of subject matter, though perhaps well-known from other situations, lead to a new DSE, stored separately in memory and with weak if any relations to the older experiences.

A new DSE can also develop through the explicit connecting of elements from different older and available DSE's. The "Aha" insight, flashing up suddenly while acting within the horizon of an activated DSE and producing the idea of essentially "doing the same" as in another context (DSE), is the announcement of a^{-} birth, for the person as well as an observer. But the "Aha" alone does not produce by magic a fully developed network of
relations here and now. It takes time and continual activities to elaborate the new DSE. An "Aha" insight, not elaborated after the first appearance, can fade away in the continuous flow and only light up again much later accompanied by the feeling that something like that was known already.

DSE's disappear only (and slowly too) if they do not receive reactivation. Growing interrelations and even integration are not necessarily weakening effects. "The mind never subtracts" (M.MINSKY, 1981). As is the case with regression very Jld DSE's can prevail in the competition for activation under stress against younger DSE's where so-called "higher", "super-ordinate", "more sophisticated" knowledge is stored.

In the mathematics classroom students are often asked to identify common characteristics between two events or cases, which in the view of the teacher appear to be two models for the very same mathematical structure. This is the task of producing a generalizing abstraction from different embodiments upon request. In our view the student then has to compare elements which are rooted in two different DSE's; in other words: which are incorporated in two different contexts. What can form the basis of the required comparing activities? Usually the perspectives of the separate DSE's themselves do not cover such operations, due to the specificity of actions, language and meaning. So where do the aims come from? Which kind of similarity or commonness do I have to search for? The adecruate basis has to be a third DSE, the elements of which.are the means for comparison and the possible aims. Comparing common characteristics by abstracting and neglecting other ones is a complex and highly constructive activity. Without an orientation, at least a diffuse image of the potential results and of the relevant characteristics, as well as an idea of the adequate means, there is no reasonable chance for the student's sucsess.

An example may demonstrate the difficulties. What do the following three situations have in common?
a) You plunge your hand into a paper bag three times and take out two eggs each time.
b) You see three blocks of houses with two houses in each block.
c) Three boys and two girls dance. How many different pairs are possible? (old-fashioned style: one girl one boy per pair!)

The question can also be put this way: For which more general issue can these three situations serve as models? Is it enough to answer - like fourth graders perhaps would do - "It's always six!" or "All are three times two" or "It is multiplication!" or ...? what is the meaning of the. concept "multiplication of natural number"? How may it be explained?

The critical step is the crossing of the borderlines of the three related DSE's. The interesting commonness is not with the same twos, threes, and sixes in each situation. What are the conditions for seeing the well-known elements differently, to dissociate them from naryow concreteness, to attach another meaning, another relation, a more general relation, to them? Obviously, we can get hold of what we call a common structure only by means of a model, of a certain description; no matter how concrete or illustrative this model might be, provided that it can work for us as the more general model, which we can identify in (map onto) each of the three situations given. For the above example a possible fourth model can be d) Three parallel lines are cut by two other parallel lines. The first three lines can then represent the $1 ., 2 .$, and 3. selection or house-per-block or boy. The second two lines represent the 1. and 2. egg per selection or block or girl. And the intersections (modes) stand for the six eggs or houses or pairs in total.

Clearly the learner either has to reconstruct from related help and hints or he/she has to construct such a model on his/her own. It should be clear, too, that this construction is not by nature an integrated part of any one of the three situations. It is not part of the experiences within the three related DSE's it is a new perspective.

From another point of view the geometrical configuration d) is nothing else than just another (specific) model for the multiplication of natural numbers. Under this view there are many more adequate models or descriptions, e.g. e) A table with three columns and two rows, including the three initial ones (more in H.RADATZ/W.SCHIPPER 1983, p.73). From a developed understanding of the concept, each of the models can serve as description of "the" general structure of multiplication of natural number, at least potentially, and realizable through one-to-one coordination. Thinking about the available modes and possibilities for the representation and any structures at all, we might find that we cannot overcome the force of the use of models in communication. In principle there is no transgression. This brings us nearer to the relativity. of so-called general concepts (see T.B.SEILER 1973). At this point, on the other hand, the common statement about "the best learning is learning by example" sounds somewhat tautological.
4. Thesis. In terms of memory there are no general or abstract - i.e. context-free - concepts, strategies, or procedures. The person can think (produce) relative generality in a given situation. But the products are not retrievable from memory in the same generality or abstractness, that is, they are not activatable independently of the related DSE's. With advancing years the development of the "society of mind" leads to an accumulation of DSE's and also to a growing network. of relations among their elements through even the relations are realized and retrievable only in specific domains. Their genesis is bound to the considerable constructive activities of the person as well.as to the situations of practice and to the
qualities of social interaction. The perspective of a certain DSE may become integrated into a new DSE, together with elements from other DSE's. In the perspectives of the new DSE tho integrated older experiences may appear as subordinat, and hierarchically lower elements. But in spite of that the older DSE still can compete for activation with the new DSE. R.TAMLER therefore speaks of a "structure of a mixed form, basically competitive but hierarchical at need" (1981, p.20), more precisely perhaps: hierarchically through special activation. General knowledge is available through special activation only, this is the meaning of thesis 4.

The disparity of the'DSE's marks not only the phase of their initial formation but also the later phases when detailed or more general knowledge has been required, which of course is stored in different DSE's because of the differences in situation, as the investigations of FISCHBEIN et al. (1985) show. Microethnographical studies at preschool and early school ages substantiate the extent to which the ability for identifying two events as being "the same case" depends upon previous learning experiences and upon the subjective perception and definition of the actual situation. In several long-term studies R.LAWLER has documented and analyzed the encounters of his children with computers, arithmetic and geometry (1979, 1981, 1985). His early concept of "microworlas" is the cognitive shadow of the domains of subjective experience (DSE) as defined here (and elsewhere, BAUERSFELD 1982, 1983).

LAWLER's daughter Miriam e.g. has solved tasks of the type $75+26=$? according to the specificities of presentation in at least three different and for long incompatible microworlds.

If. the task appears as " 75 cents plus 26 cents" Miriam calculates the solution via her activated "Money world", like: "That's three quarters, four and a penny, one-oh-one!" The presentation of "seventy-five plus twenty-six equals..." she solves in her "Serial world" like: "seven plus two,
nine, ninety-six, ninety-sëven, ninety-eight, ninety-aine, hundred, one-oh-one!"
And if it is written as a vertical sum, Miriam adds up the columns and carries the tens (R.W.LAWLER 1981, H.BAUERSFELD 1983).

The "identical" arithmetical task, as a teacher would name it, is thus solved according to the activated special DSE using related but completely different procedures. For the child, obviously, the different presentations are perceived as different and independent tasks. The rigid disparity remains in effect even when all three representation are given consecutively. It is much later that through spectacular "Aha" events certain relations are produced.
The studies support the supposition that, in particular, the use of langiare is specific to the situation and hence to the activater DSE. In LAWLER's protocols Miriam uses the phonetic lly same words "six", "seventy", "plus", etc. across the di: ? ?nt situations, whilst her concrete actions indicate differer , ,ocific meanings in correspondence with the different activated microworlds. For an observer therefore it is impossible to interpret an utterance without adequate reconstruction of the related subjective definition of the situation (DSE). Likewise it is impossible for Miriam to take a distancing and critical perspective against her specific procedures and interpretations from within the activated DSE. Evidently this is impossible in general - without having developed the distancing and critical perspective as an integrated habitual activity within the DSE. That is why a teacher's urging for comparing, for controlling, for looking closer etc. has no effect when these activities are not developed in relation to the activated narrow DSE. There is by the way good reason for the development of disparate DSE's because of the strikingly different sensual characteristics of the concrete activities. Miriam's "Money world" is built upon her intensive experiences with her pocket money, with buying and change. What mathematicians call the operations of addition and
subtraciion is here embedded in a world with its own specific sensuality: colour, and coinage etc. and with specific non-number names like penny, nickel, dime etc. (see H.RUMPF 1981).

In contrast to tiat her "Counting worid" is ruled mainly by word sequences which obey certain rules of construction ("twenty, twenty-one,...") and which are produced through one-to-one. procedures of speaking and touching the objects to be counted.
The paper-sums world" is a medium of quite another type of sensuality: Writing symbols on paper using a pencil (with. the typical fine-motoric muscle tensions), reading, and operating with the symbols (see H.BROGELMANN 1983).

So we can state that meaning is attached to a word through certain activities in a certain situation but a word has no definite meaning per se. This is true with speaking, hearing, reading, and writing. Likewise we interpret a word heard in a concrete situation within the range of the actually activated DSE. There is no other chance for understanding without additional effort, e.g. the activation of other DSE's. In this sense evén the so-called universal language of mathematics is not universally available (retrievable) for a person. Theories become helpful models for realities when and insofar as they generate constructive orientation. So more interesting than the disparity of DSE's and the unthinkable purity of context-free concepts, perhaps, are both the totality and the principle of multidimensionality of learning in social interaction :
5. Thesis Whenever we learn, all of the channels of human perception are involved; i.e. we learn with all senses, learning is total. And: simultaneously we learn on all dimensions and levels of human activities, at least potentially; i.e. learning is multidimensional.

A smell therefore can activate a certain DSE later on, as can a pattern of motion or a sophisticated metaphor. In a given situation we not only learn about the subject matter, directly and attentively, the what-to-do - e.g. the theme, facts and procedure (declarative and procedural knowledge) - we also learn, more covertly, about the how and the when to do it - e.g orientations of action, strategies, the fit and the adequacy of situations - we also learn about the why to do it - e.g. sense, reasons, attached values - we learn about ourselves - e.g. anxiety and motivation, personal identity - and we learn about the others and how they see us - e.g. social norms, the person's social identify. The listing is far from complete. We also develop routines and pattern of habitual activities in all dimensions.

JOHN DEWEY already formulated this idea in 19387): "Perhaps the greatest of all pedagogical fallacies is the notion that a person learns only the particular thing he is studying at the time. Collateral learning in the way of formation of enduring attitudes, of likes and dislikes, may be and often is much more important than the spelling lesson or lesson in geography that is learned. For these attitudes are what fundamentally count in the future."
The continuous flow of conscious production only marks the surface of a much deeper stream of experiences which form the orientation of a person's future actions. As DEWEY stated, the most important things are learned collaterally, across many activities and preconsciously, in a FREUDian sense. So what is learned beyond the official theme, this major and more powerful portion of learning appears as a core problem of classroom teaching. AUSUBEL's classical and often quoted words may now be read with a.somewhat more differentiated understanding:
"If I had to reduce all of educational psychology to just one principle, I would say this: The most important single factor influencing learning is what the learner already knows. Assertain this and teach him accordingly" (1968)

Notes

1) In West Germany (FRG) after four years in primary school about $25-40 \%$ of the $10-11$ years ola students enter a Gymnasium, where they normally pass grades $5-13$ and end up with tne Abitur, at age 19. The Abitur exam is the general pre-requisite for university entrance. The majority of the scudents enter grade 5 of Hauptschule, Realschule or Gesammtschule, the other types in the secondary school system. 2) These include not only direct simulations of mathematical content on the computer screen, but also simulations of the learning process, of the learner's previous knowledge and strategies, because all this information is processed in the form of mathematical or logical rules and with unambiguous ascriptions (meaning).
2) This, clearly, requires more detazled discussion, which cannot be done here. My interest is to point out the limitations which are carried by the unreflective use of my categories or descriptors. They seem to be "at hand" (like metonymies) for what we think we see. But we usually do not reflect upon their origin or their context, which leads to covert, narrow pursuit, and not to novel ideas. As operations in context, describing and interpreting are dependent on the qualities of these bases of the teaching-learning processes. 4) T.O'SHEA. stated that often "the attempt to automate an activity forces a better understanding of the activity itself" (0^{\prime} SHEA/SELF /1983, p.267). And he ends his diagnosis by saying: "...it is easier to let children try to learn BASIC than to develop learning environments which facilitate intellectual discoreries; it is easier to write programs which treat students uniformly than to write programs which try to take account of an individual student's interests, errors and aptitudes" (ibid., p.268).
3) Analysing the role of example and counterexample in "proofs and refutations" LAKATOS said: "...we may have two statements that are consistent in (a given lasguage $)_{l_{1}}$, but we switch to (a new language) L_{2} in which they are inconsistent. Or we may
have two statements that are inconsistent in L_{1}, but we switch to L_{2} in which they are consistent. As knowledge grows, languages change.
'Every period of creation is at the same time a period in which tne language changes. (FELIX) The growth of language cannot be modelled in any given language." (I.LAKATOS 1976, p.93; brackets added from context, H.B.). LAKATOS ideritifies the change of language as "concept-stretching" (p. 93 i.). But "concept-stretching will refute any statement, and will leave no true statement whatsoever." (p.99) Indeed he denies the existence of "inelastic, exact concepts" as bases for rationality (p.102). There is no eternal truth, there is only "guessing" (p.76 f.) and "the incessant improvement of guesses" (p.5). D.SPALT (1985) discusses in detail the failure of LAKATOS' solution to this fundamental problem: "mitigation" of concept-stretching (LAKATOS 1976, p. 102 f.).
4) The notion of "subjective" experiences rather than "personal" experiences (which might be nearer to colloquial English) follows etymological considerations. The Latin origin, the verb "subjicere", means in the transitive sense that the . person (the subject) actively subjugates something, makes it the person's own through action. This of course describes the functioning of "subjective experiences." The active parts are at least the continuous constructions of meaning and the selecting and focussing in our changing definitions of the actual situation.
5) For this quotation I am indepted to HARRIET K. CUFFARO's article in the Columbia Teachers College Reccrd, summer 1984, p. 567, which interestingly critizes the present use of computers in schools.

The vigilant reader will find that chapter 4 as promised at the bottom of page 2 is missing here. The chapter will have to be

References

ADELMAN, C. (ed.) Uttering, Muttering - Collecting: using the reporting talk for social and educational research. London: Grant McIntyre 1981.
ANDERSON, J.R.: The Architecture of Cognition. Cambridge, Mass.: Harvard Univeṛity Press 1983.
BAUERSFELD, H. (ed.): Fallstudien und Analysen zum Mathematikunterricht. Hannover: Schroedel 1978. BAU̇ERSFELD, H.: Kommunikationsmuster im Mathematikunterricht. In: H. BAUERSFELD: Fallstudien Hannover, Schroedel 1978, p.158-170.
BAUERSFELD, H.: Subjektive Erfahrungsbereiche als Grundlage einer Interaktions-theorie des Mathematiklernens und -lehrens. In: H.BAUERSFELD, H.BUSSMANN et al. (eds.):Lernen und Lehren von Mathematik. Koln: Aulis Deubner 1983, p.1-56. BROGELMANN, H.: Kinder auf dem Weg zur Schrift. Konstanz: Faude 1983.

CUFFARO, H.K.: ticrocomputers in education: Why earlier better? In: Teachers College Record 85., 1984, p.559-568.
DEWEY, J.: Experience and Education. New York: Collier Books 1963, p. 48 (the original appeared in: KAPPA DELTA PI 1938) FELLER, G.: Lernfelder in des Grundschule. In: Zentralblatt fur Didaktik der Mathematik 16., 1984, Heft 2, p. 63-67. FISCHBEIN, E./DERI, M./NELLO, M.S./MARINO, M.S.: The role of implicit models in solving verbal problems in multiplication and division. Ir: Journal for Research in Mathematics Education 16., 1985, no. 1, p. 3-17. FREUDENTHAL, H.: Didactical Phenomenology of Mathematical Structures. Dordrecht (Netherlands): Reidel 1983 GILMORE, P./GLATTHORN, A.A. (ed.): Children in and out of School. Washington: Center for Applied Linguistics 1982 HEYMANN, H.-W.: Mathematikunterricht zwischen Tradition und neuen Impulsen. Koln: Aulis Deubner 1984

HOETGER, J./AHLBRAND, W.P.: The persistence of the recitation. In: American Educational Research Journal 6., 1969, no.2, p.145-167

HOPF,D. : Mathematikunterricht. Stuttgart: Klett-Cotta 1980 JAHNKE, H.N.: Historische Bemerkungen zur indirekten Anwendung der Wissenschaften. In: H.G.STEINER, H.WINTER (eds.): Mathematikdidaktik - Bildungsgeschichte Wissenschaftsgeschichte. Koln: Aulis Deubner 1985
KOKEMOHR, R./MAROTZKI, W. (eds.): Interaktionsanalysen in padagogischer Absicht. Frankfurt/Main: Peter Lang 1985 KRUMMHEUER, G.: Das Arbeitsinterim im Mathematikunterricht. In: H. BAUERSFELD, H. BUSSMANN et al. (eds.): Lerner und Lenren von Mathematik. Koln: Aulis Deubner 1983, p.57-106 KRUMMHEUER, G.: Algebraische Termumformungen in der Sekundarstufe I - Abschlubbericht eines Forschungsprojektes. Materialien und Studien Band 31, Bielefeld: IBM der Universitat 1983
KRUMMHEUER, G.: Zur unterrichtsmethodischen Dimension von Rahmungsprozessen. In:.Journal fur Mathematikdidaktik 5., 1984, p. 285-306.
KRUTETSKI, V.A.: The Psychology of Mathematical Abilities, Chicago: The University of Chicago Press 1976
LAKATOS, I.: Proofs and Refutations. London: Cambridge Univerity Press 1976, deutsch: Beweise und Widerlegungen. Braunschweig: Vieweg 1979
LANCY, D.F.: Cross-Cultural Studies in Cognition ans Mathematics New York: Academic Press 1983
LAWLER, R.W.: One child's learning. Unpublished doctoral dissertation, Cambridge, Mass: M.I.T. 1979
LAWLER, R.W.: Computer Experience and Cognitive Development. Chichester (England): Ellis Horwood 1985
LORENZ, J.-H.: Lernschwierigkeiten: Forschung und Praxis. Koln: Aulis Deubner 1984
LORENZ, J.-H./SEEGER, F. (eds.): Arbeiten zur Psychologie und Didaktik aus der UDSSR. Materialien und Studien Band 32, Bielefeld: IDM der Universitat 1983
MEHAN, H.: Institutional decision-making. In: B.ROGOFF, J.LAVE
(eds.): Everyday Cognition. Cambridge, Mass.: Harvard Univerity Press 1984, p.41-66
MEHAN, H.: Learning Lessons, Cambridge, Mass.: Harvard University Press 1979
MEHAN, H./WOOD, H.: The Reality of Ethnomethodology. New York: Wiley 1975

MINSKY, M.: K-Lines: A theory of memory. In: D.NORMAN (ed.): Perspectives on Cognitive Science. Norwood, N.J.: Ablex 1981, p.87-103
MINSKY, M.: Learning Meaning. Cambridge, Mass.: M.I.T., Artificial Intelligence Laboratory 11/1982
O'SHEA, T./SELF, J.: Learning and Teaching with Computers. Brighton, Sussex: Harvester Pres 1983
OTTE, M.: Zum Problem des Letirplans und der Lehrplanentwicklung in der Sekundarstufe I. In: Informationen uber Bildungsmedien in der Bundesrepublik Deutschland IX, Frankfurt/Main: Institut fur Mildungsmedien 1982, p.87-103
PIAGET, J.: Biology and Knowledge. Edinburgh: Edinburgh Univerity Press 1971
RADATZ, H./SCHIPPER, W.: Handbuch fur den Mathematikunterricht an Grundschulen. • Hannover: Schroedel 1983
ROSLER, W.: Alltagsstrukturen - kognitive Strukturen Lehrstoffstrukturen. In: Zeitschrift fur Padagogik 29., 1983, Heft 6, p.947-960
RUMPF, H.: Die ubergangene Sinnlichkeit. Munchen: Juventa 1981 SCHOTZ, A./LUCKMANN, T.: Strukturen der Lebenswelt, Band I. Frankfurt/Main: Suhrkamp 1979, stw 284
SEILER, T.B.: Die Bereichsspezifitat formaler DenkstrukturenKonsequenzen fur den padagogischen ProzeB. In: K. FREY, M.LAND (eds.): Kognitionspsychologie und naturwissenschaftlicher Unterricht. Bern: Huber 1973, p.249-285

SPALT, D.: Der induktive Diskurs - Lakatos zum Induktionsproblem in der Mathematik. Darmstadt: Technische Hochschule, FB Mathematik, preprint no. 903, Mai 1985
STREECK, j.: Sandwich. Good for you. Zur pragmatischen und
konversationellen Analyse von Bewertungen im
institutionellen Diskurs der Schule. In: J.DITtMANN (ed.):
Arbeiten zur Konversationasanalyse. Tubingen: Niemeyer 1979, p. <25-257
TERHART, E.: Unterrichtsmethode als Problem. Weinheim: Beltz 1983
Van HIELE, P.M.: Development and Learning Process. Groningen: J.B. Wolters 1959, Acta Paedagogica Ultrajectina XVII.

VOIGT, J.: Routinen und Interaktionsmuster im Mathematikunterricht - Theoretische Grundlagen und Mikroethnographische Falluntersuchungen. Weinheim: Beltz 1984
VOIGT, J.: Der kurztaktige fragend-entwickelnde Mathematikunterricht. In: Mathematica Didactica 7., 1984, Heft 3/4, p.161-186
.VOIGT, J.: Pattern and routines in classroom interaction. In: Recherche en Didactique des Mathematiques, vol.VI, 1985, p.69-118, no.1

WATZLAWIK, P. (ed.): Die erfundene Wirklichkeit. Munchen: Piper 1981
WALSH, W. (ed.): Mathematische Aufgaben fur die Klassen 6-10. Berlin (DDR): Volk und Wisṣen 1983
WEINERT, F.E./KLUWE, R.H. (eds.): Metakognition, Motivation und Lernen. Stuttgart: Kohlhammer 1984
WERTSCH, J.V.: Adult-children interaction and the roots of metacognition. In: Quarterly Newsletter of the Institute for Comparative Human Development 1., 1978, p.15-18 (The following issues of the LCHC-newsletter of UCSD have published many more contributions sharing the same fundamental paradigm, through these do $\%$ it specialize on mathematics).
WERTSCH, J.V./MINICK, N./ARNS, F.J.: The creation of context in joint problem solving. In: ROGOFF/LAVE 1984, p.151-171
multiplicatin

LECTURE 2

ON THE RELATION BETNEEN THE

APPLICATION DF MATHEMATICS

AND THE TEACHING DF

MATHEMATICS

BY HENRY D: POLLAK

BELL COMMUNICATIONS
RESEARCH INC.

ON THE RELATIONSHIP BETWEEN APPLICATIONS OF MATHEMATICS AND THE TEACHING OF MATHEMATICS

INTRODUCTION

Most mathematics educators believe in the importance of applications, but it is nevertheless very difficult to get applications into the curriculum. Why? One possible reason appears to be that there is no agreement on what is meant by applied mathematics. In the following we shall explore four different definitions, and their consequences both for the mathematics subject matter and for pedagogy.

1 THE DEFINITION OF APPLIED MATHEMATICS AND ITS VISUALIZATION

In discussions of applied mathematics, a large amount of unnecessary difficulty is sometimes created by differences in perception of the appropriate definition. These differences have come about quite naturally in recent years, since the variety of mathematics which has significant practical applications, the number of fields to which mathematics is applied, and the modes of applications have all undergone very rapid change. It is useful to think in terms of four different definitions.

[^1](1) Applied mathematics means classical applied mathematics; that is, the classical branches of analysis, including calculus, ordinary and partial differential equations, integral equations, the theory of functions as well as a number of related areas. It is sometimes.convenient to annex those aspects of secondary mathematics which are essential prerequisites to calculus,

- in particular algebra, trigonometry and various versic 's of geometry. The fact that these branches of mathematics are the ones most applicable to classical physics is usually under-
(2) Applied mathematics means all mathematics that has sith physical problems is implied. greatly enlarges the collection of mathematical disciplines included under (1). All the topics that have been considered world-wide for inclusion in the elementary and secondary school have significant practical applications - including sets and logic, functions inequalities, linear algebra, modem algebra, probability, statistics and computing. Almost all the mathematics taught at the tertiary level (the undergraduate level at many uniryersities) as well as much graduate mathematics are also included. In the views of many people, the most important areas of mathematics that are included in (2) but not in (1) are statistics, probability, linear algebra and computer science. There are many who feel that these topics are as important as classical analysis. Fields of potential applicability include more than physics, but, once again, only the mathematics itself is being considered.
(3) Applied mathematics means beginning with a situation in some other field or in real life, making a mathematical interpretation or model, doing mathematical work within that model, and applying the results to tho original situation. Note that the other field is by no means restricted to lie in the physical sujences. In particular, applications in the biological sciences, the social sciences, and the managernent sciences have become extremely active. Many other areas of applications will al?s:- considered.
(4) Applied mathematics means what peo $\therefore \cdots$ apply mathematics in their livelihood actuaily do. This is like (3) but usually involves irreg around the loop between the rest of the world and the mathematics many times. An excellent example of the process involved in this definition of applied mathematics may be found in a report of the workings of the Oxford Seminar in the United Kingdom (Oxford, 1972).
A convenient aid in visualizing these four definitions is seen below:

In this picture the left-hand side shows mathematics as a whole, which contaiis two intersecting subsets we have called classical applied mathematics and applicable mathematics. Classical applied
mathematics represents definition (1) and applicable mathematics, definition (2). Why doesn't (2) contain all of (1)? The overlap between these is great, but it is not true that all of classical applied mathematics is currently applicable mathematics. There is much work in the theory of ordinary and partial differential equations, for example, which is of great theoretical interest but has no applications which are visible at the moment. Such work is included in definition (1) as classical applied mathematics, since this contains all work in differential equations; on the other hand, if it is not currently applicable, it does not belong in definition (2).

The rest of the world includes all other disciplines of human endeavour as well as everyday life. An effort beginning in the rest of the world, going into mathematics and coming back again to the outside discipline belongs in definition (3). Definition (4) involves, as will be seen, going around the loop many times.

Other categorizations of applied mathematics have also been considered and can be examined in terms of the diagram. Typically, they involve a more detailed study of the process within mathematics itself than we shall undertake here. For example, applications of mathematics may consist of routine uses of mathematics, of mathematical reasoning as opposed to direct calculation, and of the building of modeis of various sizes going from small models through full mathematization of real situations to truly large-scale theories. Another very interesting way of slicing the pie may be found in Felix Browder (1976) "The relevance of mathematics". His categories consist of: (a) practical mathematics, that is mathematical practice in the common life of mankind in civilized societies; (b) technical mathematics, that is the use of mathematical techniques and concepts to formulate and solve problems in other intellectual disciplines; (c) mathematical research, that is the investigation of concepts, methods and problems of various mathematical disciplines including applied ones; and (d) mathematics as a universal pattern of knowledge, which means the science of significant form. His cssay is highly recommended.

$2 \cdot A$ DETAILED STUDY OF THE VARIOUS DEFINITIONS

2.1 The mathematics side of the diagram .

The mathematical content of classical applied mathematics (definition (1)) and of applicable mathematics (definition (2)) have already been discussed. One recent trend has been the publication of books and articles showing the applicability of many of the mathematical disciplines which are not included in definition (1). To name just a few examples, Hans Freudenthal (1973) as well as M. Glaymann and Tamas Varga (1973) have written recent books on the applicability of probability; Tanur, Mosteller, Kruskal, Link, Pieters and Rising (1972) have edited a volume showing the great diversity of applications of statistics; R. H. Atkin (1974) in his book has included applications of topology, and Fred Roberts (1976) has deyoted much space to applications of graphs and Markov chains. Journal articles are even more numerous; a few samples of particular interest follow - without the slightest pretence of coverage. Thus F. W. Sinden (1965) and Uwe Beck (1974) have shown some applications of topology; M. Dumont (1973) has discussed some uses of Boolean functions and J. H. Durran (1973) some applications of Markov chains. Recent applications of combinatorics and graph theory are examined, for example, by John Niman (1975), J. N. Kapur (1970) and W. F. Lunnon (1969).

A significant feature of applications of mathematics is that mathematical concepts and structures have important usefulness, not just mathematical technique. An interesting discussion of this point is given by H. G. Flegg (1974). Furthemmore, since the relationship between mathematics and its applications is forever changing, there is a dyriamic effect on mathematics itself. It has happened many times that areas of mathematics which were originally considered quite

Mathomatices and othor subjocts

pure, and were developed with no thought of applications whatever, have turned out to be significantly useful. On the other hand, areas of mathematics which were invented only for s_{i} incation, with no thought of their possible contribution to core mantinematics, have turned out to have an impact on pure mathematical disciplines. As an example of the former, the theory of_entire functions has given notable insights in electrical communications; ideas of information theory'; on the other hand, have been useful in such diverse fields as measurc-preserving transformations and the theory of finite groups.

2.2 The rest of the world

Perhaps the outstanding feature of applications of mathematics in recent years is that the areas to which mathematics is applied have been increasing in number so alapidly. It is fair to say that no area of human endeavour is currently immune from quantitative reasoning or mathematical modelling. Besides the traditional physical sciences and engineering, that biological sciences, the social sciences, the management sciences, the humanities and everydaj life are all arenas for interaction with mathematics. This is not meant to imply that mathematics is taking over all these other fields, but there are many interesting applications.

Perhaps the most extensive literature in recent years on applied natiornatics from the point of view of the other disciplines has come in the biological sciences. An excellent overall survey appears in the book by J. Maynard Smith (1968). Books dealing with specific areas within the biological sciences include Victor Twersky (1967) on growth, decay and competition and R. M. May (1973) on the stability of ecosystems. Among the articles too numerous to summarize we note S. Karlin (1972a,b, the former jointly with M. Feldman) on genetics, S. P. Hastings (1975; on neurobiology, Arthur Engel (1971, 1975) and Beck (1975) on population models, \mathbb{V}. D. Hamilton (1971) on the geometry of group behaviour, and several articles in "Computers in Higher Education" (1974) on the use of computers in biology. Not that new books and articles on mathematics in science have been lacking: We note particularly a little known volume by George Polya Mathematical Methods in Science (1963) as well as another portion of Victor Twersky (1967). Recent articles on mathematics in science include J. B. Griffiths (1976) on model building and mechanics, the conference report on "Modem Mathematics and the Teaching of Science" (1975), and the previously mentioned computer survey "Computers in Higher Education" (1974).

Another field which has recently flourished is the interaction of mathematics with the social sciences. Information on computers and statistics in the social sciences generally may be found in (Computers . .., 1974) and (Teaching of statistics . .., 1973); a fascinating and somewhat different viewpoint is represented in the article by H. R. Alker, Jr., "Computer simulations: Inelegant mathematics and worse social science?" (1974). The Source book on Applications of Undergraduate Mathematics to the Social Sciences (1977) contains descriptions of detailed mathematizations in many fields of the social sciences. To go on with specific fields, economics is extremely active for interactions with mathematics, although good expositions of the problems of model building in economics are not common. One nice example is "On the theory of interest" by David Gale (1973). Mathematical work in geography has also been quite popular in recent years, particularly in the United Kingdom. Again there are significant contributions in (Computers , 1974) and (Source Book . . . , 1977), and an elementary treatment of weather forecasting in Durran (1973); see also King (1970). Mathematical psychology is represented by two recent survey articles by Anatol Rapoport (1976); Source Book. . . (1977) also contains extensive references to recent work. Besides their appearance in overall summaries, anthropology is represented by example in the book by L. Pospisil (1963) and the traditional mathematical theory of warfare by Arthur Engel in (1971). A magnificent example of mathematics applied to
political science may be found in M. L. Balinski and H. P. Young (1975) "The quota method of apportionment". Mayer (1971) and Coxon (1970), for example, represent mathematical sociology.

The very large field of mathematical models in the management sciences including the entire area of operations research hardly needs description here. Sample articles of particular interest in recent years include those by F. J. Fay (1972), J. C. Herz (1973) and the delightful piece on mathematics applied to college presidency by J. G. Kemeny (1973). Mathematical models in medicine has been an increasingly active field; there is an excellent survey by J. S. Rustagi "Mathematical models in medicine" (1971). Mathematical linguistics has similarly become a major accepted field. Interesting particular articles appear, for example, as parts of Engel (1971) and Source Book . . . (1977), with Sankoff (1973) as another good source.

The penetration of mathematics into the humanities, including staustical and computer models, is a fairly recent event. Perhaps furthest advanced are mathematical analyses of art. We note, for example, A. V. Subnikov and V. A. Koptsik (1974) and a very valuable British summary of mathematical ideas and concepts in art by Beryl Fletcher (1976a). Mathematics applied to architecture is discussed by R. Fischler (1976) as well as in the summary work "Computers in Higher Education" (1974). Some examples of mathematical ideas in hobbies and handicrafts are given in Beryl Fletcher (1976b). Mathematical strategies for certain games such as NIM and the towers of Hanoi have long been familiar to, and enjoyed by, mathematicians. In recent years, there has been a great upswing in the discovery of optimal strategies for much more intricate games, and this has even provided one of the early applications of ideas from nonstandard analysis. We particularly note the work of E. R. Berlekamp and J. H. Conway, partly reported in Conway (1976). A nice example of optimal strategy for poker is given by W. EI. Cutler(1975). Cryptanalysis has often been treated - see e.g. Sinkov (1968); for mathematics in sports see Klein (1972).

Besides the above-mentioned books and articles more or less devoted to specific areas of applications, there has been a trend in recent years towards the publication of excellent collections of articles and symposium reports which cover a broader spectrum. One of the earliest but still of great interest is the Utrecht colloquium "How to Teach Mathematics so as to be Useful" (Freudenthal, 1968). This was followed by the Echternach symposium "New Aspects of Mathematical Applications to School Level" (Echtemach, 1973) and the Lyon seminar "Goals and Means Regarding Applied Mathematics in School Teaching" (Goals and Means . . . , 1974). Other noteworthy volumes of this kind include Notes of Lectures on Mathematics in the Behavorial Sciences edited by H. A. Selby (1973), Topics in Behavorial Mathematics by T. L. Saaty (1973), A Source Book for Teachers and Students on Some Uses of Mathematics, Max Bell (1967), A Conference on the Applications of Undergraduate Mathematics . . . (Knopp and Meyes, 1973) and La Mathémattque et ses Applications by E. Galion (1972).

The preceding list well illustrates the current diversity of applications of mathematics in contrast with the historical monolith of applications to physics. It should not be assumed, however, that the arguments between those who stress the great variety of applications in recentyears and those who feel that their total impact cannot compare to the 2000-year accumulation of success in mathematical physics have died down. In fact, this diffurence of instinctive value judgement underlies many of the arguments about mathematiss aducation to which we will retum later.

2.3 The model building process

When mathematics is actually applied to a situation in some other field, there are typically a
number of distinguishable steps in the process. These consist of a recognition that a situation needs understanding, an attempt to formulate the situation in precise mathematical terms. mathematical work on the derived model, (frequently) numerical work to gain further insiphts into the results, and an evaluation of what has been learned in terms of the original extanion situation. This picture of the model building process has been widely accepted and there are many papers which elucidate the details from various points of view. Overall descriptions appear, for example, in the papers by M. S. Klamkin (1971), H. O. Pollak (1970) and P. L. Bhatnagar (1974). The same pattern, but applied specifically to operations research, appears in the paper by Gordon Raisbeck (1975) "Mathematicians in the practice of operations research"; its application to engineering may be found in A.C. Bajpai, L. R. Mustoe and D. Walker (1975), and again in the paper by H. G. Flegg (1974). M. E. Rayner (1973) in her paper "Mathematical applications in science" in the Echtermach report describes in detail some of the difficulties in problem formulation. A quotation she gives from Eddington is particularly worth repeating, "The initial formulation of the problem is the most difficult part, as it is necessary to use one's brains all the time; afterwards, you can use mathematics instead'". A proposal for better model building in mechanics is also given by J. B. Griffiths (1976). See also Wilder (1973).

The model building process has a number of interesting properties as well as pitfalls which we shall examine. A good model is one which is to some extent successful in explaining, or even predicting, external reality. If it fails to have this explanatory power than, no matter how satisfactory the mathematics itself, the model is not good applied mathematics and must be changed. This process can be quite painful for the mathematician but real progress in interdisciplinary efforts is often made through successive changes in the model. This is one of the reasons why definition (4) of applied mathematics involves going, around the lcop many times Another phenomenon which sometimes happens is that a mathematical model predicts too mu:h rather than too little. It may happen that phenomena observed in the other field are indeed explained satisfactorily, but that farther logical implications of the model are not acceptable. For example, in the mathematica of communication a model of a signal which is of finite duration in time is very realistic. Similarly, a model of a comnunifation signon using finite bandwidth comes up in many situations and gives quite satisfactory engineering recules. Unfortunateiy, whe two are contradictory and cannot be useü at the same time in the same problem; models which do so unwittingly will lead to nonsense. On the other hand, attempts to understand this difficult situation fully have led to very interesting acivances, see e.g. D. Slepian (1976).

Another feature of the model buidding process is that the purposes for which a mathematical model is created are also quite varied. In the physical sciences and angineering the purpose is frequently very precise understanding which will in turn lead to action. In the social sciences, on the other hand, the purpose is often one of insight; you want is know whether a sertain set; of hypotheses could account for a particular obseryed phenomenon. It is often assumei, although not necessarily true, that these associations are in fact one-to-one correspondences. Fhysical models of why rivers meander, or why a rapidly slurped pice of spaghetti comes up and hits your nose, are not necessarily used for scientific decisions. On the other hand, mathematical models of shortest connecting networks and optimal pricing are often used for management action.

The overall picture of applications of se: ikessatics would not be complete wilhout a discussion of truly interdisciplinary activity. Mui: o: the most exciting current work is in fact on the borderline jetween several fields, one of wilich being in the mathernatical sciences. The above references will lead the reader to many examples of current interdisciplinary work.

3 EFFECTS OF APPLIED MATHEMATICS ON MATHEMATICS EDUCATION

3.1 Problems.and problem solving in the schools

A framework for understanding the meaning of applied mathematics has now been established, and a number of ramifications of the various definitions have been examined. A look at effects of applied mathematics on education follows. It must be emphasized that many of the topics in this chapter represent ideas and experiments in various countries which cannot claim to be adopted on any large scale. Discussions at the Karlsruhe Congress did not bring forth any data which would substantiate broad use of applied mathematics in the schools.

Traditionally most of what was considered applied mathematics in the schools has been found under headings such as "word problems", "problem solving", etc. (This does not mean the "word problem" in the sense of modern algebra) The meaning of such problem solving has been examined in a number of projects and articles in recent years. For example, the work of IOWO in the Netherlands is of particular importance. IOWO has also paid special attention to the differences in abstraction and precision between mathematical language and everyday language. The detailed meaning of problem solving is examined in papers by H. G. Flegg (1974), Beryl Fletcher (1976c) and H. O. Pollak (1969). Genuine applications of mathematics to other fields and to everyday life should ideally be in the character of definitions (3) and (4). It is often argued that a full presentation in the spirit of even definition (3) represents too large a project and takes too much time. In that case, the actual situation and numbers used in the word problem should at least be genuine extractions from an honest problem formulation. For example, estimates of crop yields and of times to complete a task should not be made to five significant figures, for this will never happen in real life. Too many plumbers in one room get in each other's way, and jobs are not always divisible. A current joint project of the National Council of Teachers of Mathematics and the Mathem: association of America in the United States is producing a Source Book (1978) of hundred. isimple problems which are intended to be genuine in the above sense.

The opposite phenomenon is that the facts alleged in the statement of a problem are sometimes totally unreal. Problems which use wrong linguistics or impossible engineering or incorrect meteorology just to have some words from another discipline should be avoided. In this case, intent can nevertheless be important. Sometimes problems are clothed in a mantle of external vocabulary only for amusement, and the pretended application is not meant to be taken seriously. We shall call such problems whimsical problems. A strong argument in favor of such problems is made for example by Arthur Engel (1969) "Some examples are artificial, like fabies. But just like fables, they have a moral, ie., they facilitate insights into things that appear in the real world". For example, it can be quite effective to begin with an unsatisfactory oversimplification of a real situation, and to approach a genuine application in the sense of definition (4) through a series of increasingly realistic problems. Thus whimsical and unreal problems are not necessarily devoid of pedagogic value. However, if they are perceived as stupid, they may well be counterproductive. Similar discussions of real and unreal problems may be found in two particularly interesting papers by Margaret Brown $(1972,1973)$ and Mary Williams (1971). In particular, Mary Williams points out that the same difficulty of unreal models happens at a very advanced level as well as at the school level. See also section 1.1:5 of Chapter IV.

The increased awareness in many countries of the importance of teaching the applicability of mathematics has led to a number of very interesting attempts to collect real problems at various levels, and from various disciplines, and to make them available for teaching purposes. One collection at the school level (Source Book ... Secondary School, 1978) has already been mentioned. Other general collections have been made by Max Bell (1972), Ben Noble (1967),
D. A. Quadling (1975), and C. W. Sloyer (1974). Collections devoted to particular disciplines, mainly at the university level, include the series on statistics by example (Mosteller et al., 1973), the social sciences problem book (Source Book. . . Social Sciences, 1977) and the coilection of mathematical models in biology (Thrall et al., 1967), although the realism of problems in the latter, collection varies. Another text in the same.spirit, although it is organized às an actual course' in engineering concepts, is The Man Made World (1971). It can be expected that very interesting collections of real problems in the above spirit will also be appearing in China. One such example of which we are aware contains, among other things, a number of excellent geometric problems from industry and agriculture (Applications . . . , 1975).

3.2 Mathematical subject matter in the schools

The diversity of applicable mathematics (definition (2)) which has emerged in recent years has greatly complicated the task of designing curricula for elementary and secondary schools. The traditional goals of preparing students for either shopkeeping or calculus (associated with definition (1)) cease to be uniquely valid when so many more areas in the mathematical sciences are of undeniable importance to so many of the world's people. As the number of reasonable choices increases, so does the difficulty of designing a curriculum. It has been argued by many that, for example, probability, statistics and computer science are as important for applications as the calculus. School materials for applications to many different disciplines have become available in recent years. Collections of materials involving applications to many different_fields may be found, for example, in Crossing Subject Boundaries (Schools Council, 1970) and the materials from the Minnesota School Mathematics Center (Rosenbloom, 1963). The Chelsea Centre for Science Education project, "Science Uses Mathematics" (Chelsea) contains interesting applications to science which can be used in an interdisciplinary way, although this is not always done. Applied Mathematics in the High School by Max Schiffer (1963) also gives excellent examples of the relationship of mathematics and scientific applications from the point of view of the schools. A collection of examples which tum the tables and use physics to do mathematics. has been made by Uspensicii (1961).

A major work examining curricular goals and pedagogy in the framework of an application to economics may be found in Damerow, Elwitz, Keitel, and Zimmer (1974). Biological applications may be found in Gibbons and Blofield (1971), and applications to geography in the materials by IOWO, in New Ways in Geography by J. P. Cole and N. J. Beynon (1968) and also in B. Fletcher (1976c). Applications to geography are also featured in the Travaux d'Orleans (Les Mathématiques dans l'Enselgnement . . . , 1975), which in fact contains many other fascinating applications to a variety of fields throughout the curriculum, including economics, technology and medicine. This work also features references to recent work on applications in France and interesting philosophy on the usefulness of mathematies. An interesting application to political science may be found in Steiner (1966); environmental applications occur in the work of IOWO and in the book by Fred Roberts (1976). As we look at applications organized from the mathematical point of view, a superb collection of applications of linear algebra may be found in T. J. Fletcher (1972), and of statistics and probability in the work of Arthur Engel, e.g. (1970, 1973) and in The Teaching of Probability and Statistics edited by Råde (1970). Mathematics Applicable by the Schools Council (1975) also motivates much secondary mathematics through examples; the volume entitled Logarithmic/Exponential is a particularly interesting sample.

This great diversity of possible applications of mathematics, and of elementary branches of mathematics with significant applicability, has made the curriculum design problem very difficult. For example, topic \mathbf{A} deserves to precede topic \mathbf{B} in the curriculum if topic \mathbf{A} is socially more important at this particular time, or if topic \mathbf{A} is a prerequisite to topic B at this particular time.

As technology and social goals change, so should the ordering of importance. As available tools for teaching change, so will the order of prerequisites. These orderings will differ also from country to country. These facts make it even more difficult than it has been in the past to export curricula from one part of the world to another. Since an imported curriculum incorporates problems, situations and values which make no sense in a new country, this was probably never desirable, but is is even more questionable now.

3.3 The possible effect of applications on pedagogy

An appreciation for the different forms of applications of mathematics should affect not only the curriculum materials of the schools but also the pedagogy. If you examine even relatively simple uses of mathematics, you find that it is necessary to understand when and how and why the mathematics works in order to apply it correctly. There are several reasons for this. One is that mathematics which has been understood will be remembered better. Another more fundamental: reason is the danger that mathematics which has been memorized without understanding will be misapplied. It is necessary to know where a particular method or formula comes from, exactly what kind of problem it will handle, and when and how it works in order to be sure that it will apply to a new situation. Curriculum reform in many countries has emphasized the "why" of mathematics in recent years on the grounds that it is essential for proper teaching of mathematics. What we see is that "why" is just as important for interactions of mathematics with other disciplines as it is for mathematics itself. The natural desire of mathematics teachers to emphasize understanding as well as technique is reinforced, not contradicted, by applications.
The model building process as developed through definitions (3) and (4) of applied mathematics interacts with mathematical pedagosy in a still deeper sense. Model building requires an understanding of the situation outside mathematics and of the process of mathematization as well as of the mathematics itself. You cannot hope to mathematize a situation without understanding it. Here we have yet another way in which "applied" problems which do nothing more than mouth words from another discipline are likely to mislead the student. A. great weakness of some courses with titles like "Methods of Applied Mathematics" is that no attempt is made to provide an opportunity for the student to understand the situation and the mathematization process. This point has been particularly emphasized by H. G. Flegg (1974) and is further substantiated, especially from the point of view of future employment, in R. R. McLone (1973). Some of the college--evel collections of real problems mentioned previously, for example Noble (1967) and Source Book ... Sociai Sciences (1977), take particular pains towards the understanding of the situation in the real world.

Another pedagogic.implication of the interaction between mathematics and other disciplines as it is described in definition (4) is that such interactions are clearly open-ended. Open-ended teaching of mathematice :traf has long been recommended by mathematics educators in many countries, although adop's. is rare. What does "open-ended" mean in this context? Besides the usual activities of solving jeblems and proving theorems, students should have the experience of finding their own problems to solve and their own theorems to prove. Such experience is an important factor in the mathematical development of the student. But exactly the same argument hoids in the context of applications. It is very valusble for the student to have openended modelling experience, which besides its great pedagogic value is an accurate foretaste of mathematical:applications in the real world. Experiments in open-ended discovery teaching of mathematical applications, many in the form of truly interdisciplinary materials, are under way in surprisingly many countries. An outstanding example is certainly China, where a major practical problem will be used for reference and inspiration throughout a course in calculus or linear algebra. There are many other examples of open-ended and truly interdisciplinary activities
at the tertiary level, represented, for example, by the Case Studies in Applied Mathematics (1976), the books by T. J. Fletcher (1972), Maki and Thompson (1973) and Roberts (1976). At the elementary level, an outstanding example is provided by the USMES project in the United States (Lomon et al., 1975) in which students attack a series of action-oriented challenges by appropriate combinations of mathematics, science and social science. Truly openended applications are particularly difficult to introduce at the secondary level, and corresponding materials are very scarce.

3.4 Applications and teacher training

As mathematics teaching changes in the light of the increasing applicability of the subject, so should teacher training. Teachers should become familiar with the new fields of applicable mathematics, with the process of model building, and with the associated pedagogic emphases on understanding and open-endedness. There is a general tendency world-wide to reverse certain recent trends and to include more experiences involving applications in the training of prospective teachers. Perhaps the most exciting development in this direction is the pattern pioneered in the United Kingdom and now also spreading, for example, to Australia (Fensham and Davison, 1972), i.e. to make an internship in industry part of the training of a mathematics. teacher. In this way, it is possible for the teacher to learn something of how the mathematical sciences are really applied. Practising teachers also sometimes help with the preparation of new interdisciplinary, openended materials (see e.g. Case Studies..., 1976). Especially in those countries in which there is cumently an ample suppiy of teachers, those prepared in the broader mathematical sciences and familiar with applications of mathematics enjoy a stronger position in looking for employment. In other countries, applied mathematics in the sense of definition (1) has always been a strong component in teacher training, but experience with applications in the sense of definitions (3) and (4) has been missing. Once again, major industrial or agricultural experience has become part of teacher training in China.

3.5 Vocational education

A further educational effect of applications of mathematics is in vocational education. As the importance of the mathematical sciences increases for many disciplines, so does the need the workers and technicians in these disciplines to leam the most appropriate mathematical techniques. Noteworthy vocational materials in a variety of technical fields have been developed in a number of countries. For example, of the order of a dozen volumes of applications of mathematics in different technologies (clothing, carpentry, metal work, etc.) have been produced in Hungary. A different development in the same spirit is the increasing popularity of special curricula for technicians in computer science and data analysis. These have become particularly prevalent, for example, in the United States.

3.6 The implications of truly interdisciplinary teaching

Teaching which is truly multidisciplinary is very difficult to achieve at any level, but perhaps nearest to reality in the elementary school, where - in many countries - a single teacher normally handles most if not all subjects. The evidence for this may be found in the many multidisciplinary materials for the elementary school which have been mentioned. Such activities, when actually carried out in the schools, are especially satisfactory for students because they strengthen the relationship between school and real life. Students are not always satisfied with the promise of future gratification inherent in such statements as "you will find out why this is useful later on", and are pleased with the applicability of mathematics to problems in which they
are interested. This is particularly stressed, for example, by IOWO and USMES (Education Development Center, 1974, 1975). However, if the time during the school day is apportioned according to disciplines, it is necessary that the time for multidisciplinary activities be contributed by the various disciplines involved. This implies, at a minimum, that multidisciplinary projects must state what responsibility they will take for specific topics in the several disciplines. Appropriate teacher training at the elementary level is very necessary. On the secondary level, the implications for the structure of the educational system are much more severe. If a single unit involves mathematics, science, social science and language arts all in a significant way, who is going to teach the material, who will contribute the time, how should the school be organized? These problems have not been solved, although team teaching is one possibility; see also Rao (1975). They are discussed particularly in section 3.7 of Chapter III and in the Report of the Memphis Conference (Education Development Center, 1974). At the university level, multidisciplinary educational activities may take the form, for example, of genuine model building courses discussed previously, or of team teaching by faculty from mathematics and from a field of application of sections in basic courses such as calcuius, linear algebra, and statistics. An example of a master's programme with multidisciplinary experience is Hunter College (1974).

REFERENCES

Alker, H.R. Jr., Computer simulations: Inelegant mathematics and worse socin scioince, Int. J. Marh. Educ. Sci Technol, Vol. 5 (1974), 139-1S5.
Applications of Mothematies in Industry and Agriculture, edited by Education Department of City of Peking, People's Republic of China, 1975.
Atkin, R.H., Marhemarical Structure in Human Affairs, Heinemann, 1974.
Bajpai, A.C., Mustoc, L.R. and Walker, D., Mathematical education of engineers, Part I, A critical appraisal, Int. J. Math. Educ. Sci. Tecinnol, Vol. 6, No. 3 (August 1975), 361-380.
Bajpai, A.C., Mustoc, L.R. and Walker, D., Mathematical education for engineers, Part II, Towards possible solutions, Int. J. Math. Educ. Sci. Technol, Vol. 7, No. 3 (August 1976), 349-364.
Balinski, M.L. and Young, H.P., The quota method of apportionment, A merican Morh. Monthly, Vol. 82, No. 7 (August-September 1975), 701-729.
Beck, U., Anwendung der Eulerschen Polyederformel zur Bestimmung von Summenformeln and Ringstrukturen in Molekulen, manuscript, 1974.
Beck, U., Polulationsdynamik und Mathematikunterricht, Ein Beitrag zur Problemorientierung des Mathematikunterrichts, Didakrik der Marhematik, Vol. 3 (1975), No. 3, 194-212.
Bell, M.S., Mathematical Uses and Models in our Everyday Forld, Studies in Mathematics, Vol. XX, School Mathematica Study Group, 1972.
Bell, M.S. (ed), Some U'ses of Mathematies: A Source Book for Teachers and Students of School Mathematics, Studies in Mathemetics, Vol. XVI, School Mathematics Study Group, 1967.
Bhatnagar, P.L., The nature of applied mathomatics, The Math. Teacher, Indic (1974),12-22.
Browder, F.E., The ralevance of mathematics, American Moth. Monthty, Vol. 83, No. 4 (April 1976), 249-254.
Brown, Margarot, 'Re19' problems for mathomatics teachers, Int. J. Marh. Edue. Sci. TechnoL, Vol. 3, No. 3 (July September 1972), 223-226.
Brown, Margaret, The use of real problems in teaching the art of applying mathematics, Echternach Symposium (Junc 1973), 65-73.
Case Studies in Applted Mathematics, Committee of the Undergraduate Program in Mathematics (CUPM) / Mathematical Association of America (MAA), CUPM/MAA, 1976.
Cavalli-Sforza, L., Teaching of biometry in secondary.schools, Biometries, Vol. 24, No. 3 (September 1968);
736-740.
Chelsea Centre for Scionce Education, Bridges Plice, London, SW6 4HR.
Cohors-Freseaboirs, E., Dynamische Labyrintho, Didakrik der Mathemàtik, Vol. 1 (1976), No. 1, 1-21.
Colo, J.P. and Boynon, N.J., New Hays in Geography, Basil Blackwell, 1968.

Comprehensive School Mathematics Program, Topics in Probability and Statistics, Chapter 12 of Elonients of Mathematics, Intuitive Background, Central Mid-western Regional Education Laboratory, Inc., 1971, 2-21 (1976).
Compyters in Higher Education, Int. J. Math. Educ. Sci. Technoh. Vol. 5 (1974), Nos. 3 and 4 (Spécial :ssues on the Proceedings of a Conference on Computers in Higher. Education, held under the auspices of NCC/CAMET, 1974).
Conway; J.R., On Numbers and Games, Academic Press, 1976.
Coxon, Anthony P.M., Mathematical applications in sociology: measurement and relations, Int. J. Math. Educ. Sci. Technol, Vol. 1 (1970), No. 2, 159-174.
Cutler, W.H., An optimal strategy for pot-limit poker, American Math. Monthly, Vol. 82, No. 4 (April 1975), 368-376.
Damerow, P., Elwitz, U., Keitel, C. and Zimmar, J., Elementarmathematik: Lernen fur die Praxis? Klett, Stuttgart, 1974.
Dumont, M., A propos des fonctions Booléennes, Echternach Symposium (June 1973), 227-243.
Durran, J.H., Markov Chains, Echternach Symposium (Junc 1973), 149-160.
Echternach Symposium, Les Applications Nouyelles des Marhèmetiques et l'Enseignement Secondaire (New Aspects of Mathematical Applications at School Levels), Proceedings of a Symposium held in Echternach June 1973, Imprimerie Victor, S.A., Gr. D. Iuxembourg, 1975.
Education Development Center, Inc., Report of the Memphis Conference on Formation of a Nacitinal Consortium for Development of Real Problem Solying Curriculum for Secondary Schools, Newton, Muss., 1974.
Education Development Center, Inc., Comprehensive Problem Solying in Secondary Schools: A Corijerence Report, Newton, Mass., 1975.
Elias, P., The noisy channel coding theorem for erasure channels, American Math. Monthly, Vol. 82, No. $\dot{8}^{-}$ (October 1974), 853-862.
Engel, A., The relevance of modern fields of applied mathematics for mathematical education, Educational Studies in Math., Vol. 2, No. 2/3 (December 1969), 257-269.
Engel, ho, A Short Course in Probability, Central Mid-western Regional Educational Laboratory, Inc., 1970.
Engel, A., Mathematische Modelle der Wirklichkeit, Der Mathematikunterricht, Vol. 17 (1971), No. 3.
Engel, A., Wahrscheinlichkeitsrechmung und Statistik, Klett Studienbücher Mathematik, 1973.
Engel, A., Computerorientierte Mathematik, Der Mathematikunterricht, Vol. 21 (1975), No. 2.
Fairley, W. and Mosteller, F., Trial of an adversary hearing: public policy in weather modification, Int. J. Math. Educ. Sci Technol, Vol. 3 (1972), No. 4, 375-383.
Fay, F.J., Extrenwertprobleme im Wirtschaftsbereich und die Interpretation des Prinzips von Fermat als wirtschaftliches Prinzip, Der Mathematikunterrichit, Vol. 18, No. 5 (December 1972), 76-94.
Fensham, P.J. and Davison, D.M., Student teachers discover mathematics in industry, Int. J. Math. Educ. ScL Technol, Vol. 3 (1972), No. 1, 63-69.
Fischler, R., A mathematics course for architecture students, Int. J. Math. Educ. Sci Technoh, Vol 7, No. 2 (May 1976), 221-232.
Flegs, H. Graham, The matnematical education of scientists and technologists - a porsonal view, Int. J. Math. Educ ScL TechnoL, VoL S, No. 1 (January-March 1974), 65-74.
Fletcher, Beryl, Illustretions of mathematical idecs and concepts in art, 1976a.
Fletcher, Beryl, Ilustrations of mathematical ideas and concepts in handicraft, 19760.
Fletcher, Beryl, A Repori an Aspects of Interection Lstween Mathematies and Geography, March 1976c.
Fletcher, T.J., Linear Algebre through its Applications, Van Nostrand Reinhold Company, 1972.
Floyd, F., Mathematics for the Mafority, Institute of Education, University of Exeter, 1967-1972.
Freudenthal, H., Der Wahrscheinlichiceitsbegriff als Angowandte Mathematik, Echrernoch Symposizam (June 1973), 15-27.
Freudenthal, H. (ed), Proceedings of the Colloquium How to Toach Mathematics so as to be Useful, Utrecht, August 21-25, 1967, Educational Studies in Math., Vol. 1, No. 1/2 (Special issue, May 1968).

Gale, Darid, On the theory of interest, A merican Math. Monthly, Vol. 80, No, 8 (October 1973), 853-867.
Galion, E., La Marhèmatique et ses Applications (Troisième Seminaire International, Valloire 8-18 Juillet 1972), CEDIC, 1972.

Gibbons, R.F: and Blofield, B.A., Life Size: A Mathematical A pproach to Biology, MacMillan, 1971. Glayman, M. and Varga, T., Les Probodilités à l'Ec.ole, CEDIC, 1973.
Goals and Means regarding A pplied Marhematics in School Teaching, Unesco Seminar, Lyou, France,
. February 4-8, 1974.
Griffiths, J.B.; Towards the liberation of mechanics from bondage to Newton's laws, Int. J. Math. Educ. Sci. Technol, Vol. 7, No. 1 (Fobruary 1976), 79-85.
Hamilton, W.D., Geometry for the selfish herd, J. Theor. BioL, VoI. 31 (1971), 295-311.
Hastings, S.P., Some mathematical problems for neurobiology, American Math. Monthly, Vol. 82, No. 9
(November 1975), 881-894.
Herz, J.C., Exemples de mathómatisation, Echrernach Symposium (June 1973), 75-81.
Hunter College of the City of New York, Master's Programs in Applied Mathematics; 1974.
IOWO - Instituut Ontwikkeling Wiskunde Onderwijs, Tiberdreaf 4, Utrecht/Overvecht, Tho Netherlands. (Information about IOWO, e.g. in Educational Studies in Mathematics, Vol. 7 (1976), No. 3.)
Kapur, J.N., Combinatorial analysis and school mathematics, Educational Studies in Math., Vol. 3, No. 1 (September 1970), 111-127.
Karlin, S. and Feldman, M. (1972a), Mathematical genetics: a hybrid seed for educators to sow; Int. J. Math. Edue Sci Technol, Vol. 3, No. 2 (April-June 1972), $169-189$.
Karlin, S. (19726), Some miathematies models of population genetics, American Math. Monthly, Vol. 79, No. 7 (August-September 1972), 699-739.
Kemeny, I.G., What every college president should know about mathematics, A merican Math. Monthly, Vol. 80, No. 8 (October 1973), 889-901.
King, C.A.M., Mathematics in geography, Int. J. Math. Educ. Sci. TechnoL, Vol. 1, No. 2 (ApridJune 1970), 185-205.
Klamikin, M.S. On the ideal role of an industrial mathematician and its educational implications, Educational Studics in Math., Vol. 3, Jo. 2 (April 1971), 244-269, and A merican Math. Monthly, Vol. 78 (1971): S3-76.
Klein, R.J., Mathematics and Sports, University of Chicago, August 1972, an English Translation of the German Wori by Erust Lampe, Teubner, 1929.
Knopp, P.J. and Moyer, G.H. (eds), Proceedings of a Conference on the Applicarion of Undergraduate Mathematies in the Engineering, Lift, Managertal, and Social Scionces, Georgis Institute of Tecinology,
June 1973. Junc 1973.
Lomon, E.L., Beck, Betty and Arbetter, Carolyn C., Real Problom solving in USMES: interdisciplinary education and much more, School Science and Mathematics (January 1975), 53-64.
Lunnon, W.F., A postage stamp problom, Compur. J., Vol. 12 (1969), 377-380.
Maki, D.P. and Thompson, M., Mathematteal Models and Appileatlors, Prentico-itall, Iric., 1973.
Maki, D.P. and Thompson, M., Mathemattical Models in the Undergraduate Curriculum (Proceedings of a Conference hold at Indinaz University, October 30 - November 1, 1975), Indiane University, 1975.
Man Made Wordd, The, Engineesing Concepts Curriculum Project, Polytechnic Institute of Brooklyn, McGraw-Hill Book Compary, 1971.
Mathematics and School Chemtstry: Interim.Report of a Working Party of the British Commitree on Chemical Educution, The Institute of Mathematies and its Applications, March 1974.
Les Mathématiques dans 1° Eneedgement Scientifique ot Technologiqua, Travaux d'Orifans, Bulleth de l'Assoctotion des Profespeurs de Mathématiques, Soptember 1975.
May, R.M., Stábillty and Complexity in Model Ecosystems, Pincoton University Prese, 1973. .
Mayer, T.F., Mathematical sociology: some educational and organisational problems of an emergent subdiscipline, İnt. J. Math. Educ Sci. Technol, Vol. 2, No. 3 (July-September 1971), 217-232.

McLone, R.R., The Training of Mathematicions, Social Science Research Council, London, 1973.
Modern Mathematics and the Teaching of Science, A Conference Report, Mathematical Association in conjunction with the University of Leicester School of Education, Int. J. Math. Educ. Sci. Techinol, Vol. 6, No. 1 (February 1975), 89-119.
Mosteller, F., Kruskal, W., Link, R.F., Pieters, R.S. and Rising,.G.R., (eds), Statistics by Example, Addison-Wesley Publishing Company, 1973 .
Münzinger; W., Projektorientierter Mathematikunterricht, Project des Hessischen Kultusministers, Frankfurt, 1976.

Niman, J., Graph theory in the elementary schooi, Educational Studies in Math., Vol. 6, No. 3 (November 1975), 35 1-373.

Noble, B., A pplications of Undergraduate Mathematics in Engineering. The Mathematical Association of America, 1967.
Oxford Study Groups with Industry, 1968-1971, Progress Report on Applications of Differenttal Equations, Mathematical Institute, Oxford, 1972.
Pollak, H.O., How can we teach applications of mathematics? Educational Studies in Maths., Vol. 2, No. 2/3 (December 1969), 393-404.
Pollak, H.O., Applications of mathematics, Chepter 8 in Begie, E.G. (ed), 69 th Yearbook of the National Society for the Study of Educetion, University of Chicago, 1970.
Polya, G., Mathematical Methods in Science, Studies in mathematics, Vol. XI, School Mathematics Study Group, 1963.
Pospisil, L., Kapauku Papuan Economy, 1963.
Quadling, D.A., Contexts for applications of mathematies in education, 1975.
Rade, L. (ed), The Teaching of Probabillty and Statisties (Proceedings of the first CSMP International Conference, Carbondale, Ilinois, March 18-27, 1969), Wiley Interscience Div., 1970.
Raisbeck, G., Mathemuticians in the proettce of operations research (presented at the Short Course on Mathematies and (perations Research of the American Mathematical Society, 21 January, 1975).
Rao, C.R., Teaching of atariztiss at the secondary lovel, an interdisciplinary approach, Int. J. Math. Educ. Sci. Technol, Vol. 6, No. 2 (May 1975), 151-162.
Rapoport, A., Directions in mathematical psychology, Parts I and II, American Math. Monthly, Vol. 83 (1976), No. 2, 85-106, and Vol. 83, No. 3, 153-172.
Rayner, M.E., Mathematical applications in science, Echternach Symposium (June 1973), 209-216.
Roberts, F.S., Discrete Mathemattcal Models with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, Inc., 1976.
Rosenbloom, P.C., Experimental Units of Minnesota School Mathematics Centar, Minnesota School Mathomatics Center, University of Minnesota, 1963.
Royal Society - Institute of Biology, Biological Education Committec Report of the Working Party on Mathemarics for Biologists, London, 1974.
Rustagi, J.S., Mathematical models in medicine, Int. J. Math. Educ. Sci. Technol, Vol. 2, No. 2 (ApribJune 1971), 193-203.

Saaty, T.L., Thinking with Models: Mathematical Models in the Physteal, Biological and Social Sciences, 1972.
Saaty, T.Ln, Topics in Behavioral Mathematics; Lectures given at the 1973 MAA Summer Seminar, Williams College, Williamstown, Masmehusetts, Mathomatical Association of America, 1973.
Sankoff, D., Mathematical developments in lexicostatistic theory; in Sebeok, T.A. (ed), Current Trends in Linguistics, Vol. 11, 93-113, The Hague, Mouton, 1973.
Schiffer, M.M., A pplied Mathematics in the High School, Studies in Mathematics, Vol. X, School Mathematics Study Group, 1963.
Schools Council, Crossing Subject Boundaries, Hart-Davis, 1970.
Schools Council, Mathemattes for the Majority Continuation Profect, Schofield and Sims, 1974.
Schools Council Sixth Form Mathematies Project, Reading University, Methemettes Appliceöle, Heinemann Educational Books, 1975.

Selby, H.A. (ed), Notes of Lectures on Marhematics in the Behavional Sciences, The Mathematical Association of America, 1973.
'Sinden, F.W., Topology of thin fllm circuits, Bell System Techn. J., Vol. 45, No. 9 (November 1966), 1639.
Sinkov, A., Elementary Cryptanalysis, a Mathematical Approach, Random Housa, 1968.
Slepian, D., On bandwidth, Proc. IEEE, Vol. 64, No. 3 (March 1976), 292-300.
Sloyer, C.W., Fantastiks of Marhematiks, 1974.
Smith, J. Maynard, Marhematted Ideas in Biclogy, Cambridgo University Preiss, 1968.
Source Book on Applications of Mathematics for Secondary School, MAA and NCTM, forthcoming, 1978.
Source Book on Applicottons of Undergreduate Mathemattes to the Social Sciences, MAA and MSSB, 1977.
Steiner, H.G., Mathomatisierung und Axiomatisierung einer politischon Struktur, Der Mathematikunterricht, Vol. 12 (1966), No. 3, 66-68.
Steiner, H.G., What is applied mashematies? (Paper presented at the Unesco Seminar on Goals and Means regarding Applied Mathematics in School Teaching, Lyon, France, February 4-8, 1974.)
Subnikov, A.V. and Koptsik, V.A., Symmerry in Science and Art, Plenum Publishing Corp., 1974.
Tanur, Judith M., Mosteller, F., Kruskal, W.H., Link, R.F., Pieters, R.S. and Rising, G.R. (eds), Staristics: A Guide to the Unknown, Holdea-Day, Inc., 1972.
Teaching of Statistics in the Social Scionces, Int. J. Math. Educ. Sci Technol, Vol. 4, No. i (JanüaryMarch 1973).
Thrall, R.M., Mortimer, J.A., Rebman, R.R. and Baum, R.F. (eds), Some Marhematical Models in Biology, University of Michigan, December 1967.
Tumer, A.D., Nuffield "Scionce uses Mathematics"' Continuation Project, Educetion in Science, Vol. 66, January 1966, 17-18.
Twersky, V., Calculus and Science, Studies in Mathematics, Val. XV, School Mathematics Study Group, 1967.
Uspenskii, V.A., Some Appllortions of Mechanics to Mathemattes, Blaisdeلl Publishing Company, 1961.
Walton, W.U., The interface between physies and mathemattes at school level, Trend paper No. 11a, Intemational Conference on Physics Education, University of Edinburgh, July 29-August 6, 1975.
(This trend paper served as part of the background for the chapter with the same title in New Trends in Physica Teaching, Uneseo, 1976.)
Wiider, R.I., Mathematics and its relations to other disciplines, Mothematies Teacher, Vol. 66, No. 8 (December 1973), 679-685.
Williams, Mary B., Letter to the Editor, Nottces of the American Marth. Society, Vol. 18, No. 3 (April 1971),
502-503.

SONS FROM RESEARCH

UT STUDENT'S ERRORS

UP LEADERS:

STANLEY ERLIANGER
DIETER LUNKENBEIN

PARTICIPANTS OF HORKING GROUP A

H. Baversfeld, H. Bouazzaoul, V. Byers, B. Brmouna, H. Gerber, Hoffinan, R. Kayler, D. Kdrshner, A. Kramti, E. Kuendiger, D. I O. Maharmed, A. Powall, J. Vervoort, S. Erlwanger.
"Students' errors in mathenatics leaming have often been approached from a pathological point of view. In such an approach, the study of errors or error patterns is conoaiv as the study of the gymptons of some disease for which a has to be found or discovered. In other relatively recent studies, the phencmenon of errors in mathematics leaming been approsched from a more developmental, cognitive point view. In this latter approach, students' errors are seen more as signs of progress in leaming, which may indicato incompleted process, a deviation from an expected develogm or even a misconception but which essentialiy is a phename of a cognitive process called learning. In this perspecti students' errars in mathematics are inportant indicators f the description of the leaming process and its gradual de ment.

It is the intention of this working group to study and to the phenomena of error in mathenatics leaming from the la perspective.

1. by looking at some recent publications or research in this field;
2. by indicating the impact of particular results on the onception and description of models of the leaming process;
3. by identifying same areas of research, where the descr approach could be of particular interest."

The Horking Group consisted of a diverse set of individuals wit ests ranging from the elementary school to the university leve

1. Publications and Research

Several publications were on display for the group. Soma o are listed in the Appendix. In addition, several copies of reports and examples of students work were made availlable t menkers. There was unfortumately, not a wide enough range
as of research identified as of interest were in the articles display, expecially two by Ginsbarg which are discussed beThe following points of intorest emarged fram the discussions.

or Analysis for Cognitiva Purposes

as som discussion as well as genaral agreement on the idea of crors and error analyais to study cognitive procasses. The - "Cognitive Dlagrosis of Children's Arithmetic" by Ginsbung cussud as a good example of ona application of ernor analysin. felt that Ginaburg' a classification of cognitive purpose and tive purpose was a usaful way of considaring error analysis.
the members here falt that such anal.ysis could be useful for building whillo othera ware more intarested in using such a for remediation. These differences reflected individual interest and axpariences in the area of diagrosis.
the participante, H. Gerbor, has aptly observed that "the got off to a panderously slow beginning. pertaps it was due haterogenious nature of the groupa, or the variety of blases, tions, and concems, that tha first three hours were, to me at a waste of time. The meeting came alive at the start of the ession with your (Exiwangar) examples, confirming the theory stould introduce a topic with a problem that interests the e." The point being mada is an inportant ona in that it. rethe state of the art regarding error analysis in mathematics. icle by Ginsburg was a beginning attenpt towards same sort of Howaver, it became clearar over the three days that we were ily motivated by ansodotal examples ans subseguent discussions d at the descriptiva leval and led to different interpretations viduals.
a remaining two days wa attempted to follow a plan to discuss ral Errors, Conceptual Errors and finally errors in Problem

cedural and Conoeptual Errors

nction was made batween those two types of errors by V. Byers. mar ware errors in the steps of an algorithmand the latter were ed with conoepts. The discussion on procedural errors led to lowing paints:
a article, "Cognitiva Analysis of Children's Mathenatics Diffi-- by pussellatd Ginsberg was introduced by Byers as an example strate proosdural errors as specific defective procedures when ng a written algorithm. Menbers did ract have enough time st the article. It was also felt thatitis paper sumarized reather than described individual children. However, the results icate that fourth graders with leaming difficulties made a - number of errors than their peers.
(ii) Two exanples of children's work were ahown by Exlwango ono example ahowed a boy who made proosdural errora with an but could do tho example mentally in his head. Moreover, th could handle fracticris which wera used in plans for his mode structions, but ho mads errors with fractions at school. In exarple was of a boy who was able to use algorithms correctl as informal mathods of working with peroents for example. T
were used to suggest that the so-called infoumal mathods were used to suggest that the so-called informal methods
by both good and poor students, but it is anly tha latter wix by both good and poor students, but it is anly tha latter wix
often umable to use standard algorithm that are taught at scl

.

(iii) Tho exarples of conceptual errors were given.' V. Byen an example by R. Davis on the zero product principle which sc school students used inoorrectly to solve $(x-7)(x-8)=3$ as
$x-8=3$. -
A sct of examples by Eriwanger of children's interview resp to questions about the equal simn was distributed. The exam illustrated how children gave thair own (different) interpret
of the equal sign in examples such as $2+3=5,3=3$ and $5+3=3+5$. of the equal sign in examples such as $2+3=5,3=3$ and $5+3=3+5$.
There was not enough time to consider these examples or any o

C. Errors in Problen Solving

There was no time to discuss this area at all.
D. Other aspects that wero touched upon but not discussed at

1. Articles by Byers and Erlwanger. Ono article on "Content in Mathematics" raised the question whether errors should buted to either the content or the fium, or both. A seconc on "Menory and Mathematical tonderstarding" raised the ques
What do good students in mathematics remember that poor on What do good students in mathematics remember that poor on
A related question is the role of memory in srrors arising
spurious genralizations spurious genralizations.
2. Tha article by Pussell and Ginsburg supported same of the o made by the group, namely: children with mathenatics diff are not deficient in key informal mathematical conoepts an but they have trouble recalling addition number facts and
make procedural type errors.
3. The problem of how to minimise the occurrence of errors as how to use ermors as they occur to assist students in 1 . an
mathematics was proposed by M. Hoffman. mathematics was proposed by M. Hoffman.
4. Iooking at errors from a broad context in which errors cma only one aspect of the totality of that student. (H. Bauers
5. The notion that errors are subject matter specific and refl content as well as its form (Byers and Erlwanger)
6. The develoment approach in Geanetry where errors are cansi to be indicators of the level of development of children. This raised the question that we speak of children's erro quently in subjects taught at school while we seldom think
in subjects that are taught infomally such as gearetry.
discussions on ecrors remained at the descriptive level id not lead to any theory. (D. Kirahner)
ize, the working group demonstrated a os: again that our knowarding the learning of mathenatics and the causes and nature is still incomplete, fragmentary and far from a theory. the group met indtially a great deal i i time was spent in evaluate each others views. It wouls grobably have been adto have focussed on introducing each zepect by means of But it tums out that finding exarples to cover different g. elementary, secondar?, college and uriversity is quite

11 canments by participants:

avendiger

ated very much, that during discussirns a variety of differcame up, as to how an error can be ritifined and what role in the leaming process. Depending oft the chosen conoeptual different aspects come to the firis
or three different approaches, liat: partlis nre overlapping, clusive.
ley gave exarples of a student, hiry :xnlit solve an adilition mentally in a ron-school enviroment sin ould not ä it chool, neither mentally nor by using idie standard algorithm. rack, I think Bainrich's domains of leaming are very suitable be these difficulties: A cognitive structure is built up main and by this is related to this damain and is not necessarily x as a successful strategy into another domain.
ituation the tasks of the teacher would be to recognise suititegies a student posseses already, to enable the student to this strategy into another damain and to demonstrate the ship between strategleg (standard algorithm - others).
another reason why I like the above mentioned example given Yy it demonstrates the relevance of the affective part of the process. This affective aspect is - as to 耳ry opinion - one xat important characteristica of a donain, e.g. if a leaming ent is suypprtiva in a way that a student ventumes to think, of cognitiva structures fram another domain is more likely.
ther aspect cams in to the fore in Dieker's approach, that valognental one. Taking geometrical concepts as an example iogment of a cognitive structure could be described. In this 1 framework an error can be looked urion as indicator of thus develogment. 日y choosing appropriate tasks the teacher is iupport the devaloprent of the cognitive structure.
aboves, shortly described approaches complement ono another, 1 cine, incricuicosd by David Kirshner is - as to my opinion trinle with the others. Frankly, I do not agree with David, re jus kampuock as too statics an error is defined as
deviation of a well defined norm system. Moreover the cocurre errors has to be avoided. If this is not possible, the teach by intervening - has or will lead to the right way more or le: inmediately.

This approach makes it easy to identify errors and to classif but I think it is far from school learning or learning in gen
(b) D. Kinshner
"In this report, I foctis an my own principal intervertion in t Error Analysis Working Group, conceming the relationship of terce models to error analysis. The thesis cansists of the f comparents:

1. Data available on students' errors are (usuall:r nnt appro analysed through comparison to, or as deviatiani...am, ∞ behaviours.
2. Error patternis are less uniform and "stable" than compate patterns, boith within and between subjects, because the 0 of deviations from a procedure is (in prisciple and pract broader than the procedure itself. Also, errors may pres intermediate stage in the achuisition of competence. The is therefore an 'end point' of a develognental process.
3. The greater stability of competence data permits, in prir more systematic and rigorous anniysis of competenca patts is possible, independently, of error or acguision patton daninant paradigms in the psychology of mathematical ak? Information Processing) do sot exploit this potential, h competenca and error using the same tools and ascribing status to theories of error and theories of compatence. sult is that "in most (ID) analyses there has been consic obscurity in the boundary between what is meant to be tro subjects, and what is meant to be trui of a particular ex (VanIehn, Brown, \& Greeno, 1984, P.236)
4. More productive error analysis (i,9. more genalizable a may have to attend the more xigorous modeliling competena that case, error analysis may serve a new, subservient n to the evaluation and verification of competenca modals.
(c) H. Gerber

The conference zas an excellent ona, well-organized and witl speakers. However, the session got off to a ponderously inl perchaps it was due to the heterogeneoris pature of the gre:ixe the variety of hiases, expectations, and concerns, that the three hours were, to me least, a waste of time.
ating came alive at the start of the second session with your as, confinming the theory that wa should introduce a topic problem that interests the audience. Fram that moment, and me when the franoophones began to speak, our session was first-
the sessions opened a whole new aspect of teaching. I began erstand the problems, the teminology, and the present limitaon our understanding of errors. Moreover, I now have a biblioon which to begin. The next time I ses you, I intend to pate in such a meating in a more intelligent fashion.
ated an example. Lat ma remind you of the ane I gave. The of the examination scores $22 / 30,15 / 20$, and $5 / 8$, on tests calculated as $\{22+15+5) /(30+20+8)=42 \mu: 1$. My son thought that is tha same as the old percentage avericyia. In that case the of 608, 70s, and 808 is $(60+70+80) /(104+100+100)=210 / 300=$ 708. This confusion led him to belliave that if his cumbaverage aftor 3 months was 608, and he got 708 on his next ition his new average would be 65s. He was bright enough to error as socn as I pointed it out: to him."

Erlwanger

s the second working group in five years that I have attended subject of errors. The first ana in 1980 focussed on results in tests and examples of remediation. This time we tried to on the value of errors in cognitive analysis. I note that in se the groups got off to a very slow start. This is probably ction of the different biases and interests of individuals.

If the discussions did not go very far, I think they did reflect velogrent in this area that ought to be pursued by furture groups - I hope in less than five years time.
suggest though that in future an attempt should be made to bera to contact each other before the conference. I think absolutely essential so that the group leaders can get scme the interests of the participants and pertaps arrange that pants bring one or more examples of errors for discussion."

Eicles

sburg, H.P., 1983, 'Cognitive Diagriosis of Children's Arithmetic', in J. C. Bergeron and N. Herscoulcs (eds): Proceedingg of the Pifth Anrual Meeting of tha International Grow for the Psychology of Mathematics Exucation, pp. 247-54.
sell, R.L. and Ginsburg, H.P., 1984: 'Cognitive Aualysis of children's Mathematics pifficulties', Cognitim and Instruction 1 (2), 9p. 217-244.
5. Mata, M., 1980, 'Towards a Corputational Theory of Algebraic Competence, The Joumal of Mathematical Behaviour, Vol.3, k pp. 93-165.

1. Byers, V. and Erlwanger, S.H., 1984, Content and Form in Mather Educational Studies in Mathematics 15, 259-275.
2. Byers, V. and Erlwanger, S.H., 1985, 'Menory in Mathematical understanding', Ejucational Studies in Mathrmatics 1G, 259-2
3. Davis, R.B. et al., 1982, The Roles of "understanding" in the Learning of Mathematics. Part II of the Final Report of the National Scie:ice Foundation, April 1982.
(b) Assorkment of books.

LOGO ACTYUITIES FOR THE

HECH SCHOOL

JOEL HILLEL

GROUP LEADER:

Appendix

This appendix contains three examples of LOGO activities for the math classroom. The first relates to the topic of Pattern and can be us varying levels of sophistication through the (elementary and secondary). The second activ to the topic of Least Common Multiple and can in late junior and intermediate level math cl The third activity, relates to teaching about and the circumference of a circle (intermedia

Report of horking Group 'B': roco

The Group spent most of its time in examining and evaluating several rosa inspiped investigative aituations which had strong links to the math curriculum. This was a follow up to last year's rroup (horking Group A: 1050 and the math-curriculum) in which the consensus emerged that the avallability of such explicit 'micuoworlds' epresents the best strategy for having 1000 accepted and used by nost teachers. It is an approach taking the path of 'minimal reistanca' ainca it calls on no specisl programming expertise by the eacher, nor does it require a major perturbation of the existing lassroam setup or the exdsting curriculum. This is not an argunent gainst other possible implementations of 1000 in the school, includng a mone inclusive Papertian vision of a fully inplemented LoGo urriculum. Rather, it is based on the pragnatic realisation that he acoeptahility of 1060 to most teachers will be based, rightly or rongly, on their peroeption of its relevanoe to what is currentily aught.

Asida from an enphasis on epecific math content, last year's .oup employed other criteria wisch wera intended to reflect the adintages of LOGO-based enviromments. These included: modifiability, tensibility, the possibility of users writing their own procedures. id following several lines of inquiry, etc. (see last year's report). the risk c: in oversimplification, wa can say that two general pes of situaitions were examined during the three days. The first pa carprised those situations created spocifically to enhanca a topio
within the existing math; curriculun. The second type campr uations whose underlying math conoepts are not traditionall but yet seem accessible to students because of the graphical ties afforded by the computer. -

Gary Flewelling of the Wellington County Board of Educa duced many examples in which Loco was used to generate "inve: situations" connected to topics in the math, curriculum. It x included investigations involving fractions, vectors, motion acceleration, trig fumctions and statistics (see the append same exanples). These were viewed by the group, which discu they could be modified, or extended to allow the user more α Denis Therrien of Universite Laval also demanstrated sor packages which dealt with number concepts such as divisors, camposite, oddeven numbers, etc.
A. Senteni of U.Q.A.M. demonstrated a non-turtle 1090 m that of variations on Conway's Game of hife (designed by B. of L.C.S.I.). Hare menbers of the group discussed briefly ht this kind of situation is only for 'buffs' or whether such as gation could be used to launch into some important math. conc such as 'state', 'action on states', 'stability', finite and 'orbits', etc.

Finally, the possibility of using woo to investigate 1 processes was discussed. Here the group thought out several limiting behaviour which could be extibited geometrically: shapes (e.g. circle as a limit of n-gons), limiting points as of inspirals, numerical limits (e.g. ratio of perimeter to di n-gan) and fractals using recursive procedures.

Menbery of the group:

R. Blake (U.N.B.)
G. Flewelling (hellington County Board)
J. Girard (U.Q.A.C.)
J. Hillel (Concordia)
B. Kastner (S.P.U.)
H. Kayler (.U.O.A.M.)
T. Kieren (U. of Alberta)
E. Lepaga (U.Q.A.R.)
designs from letter patterns
A. Senteni (U.Q.A.M.)
D. Therrien (Laval)
C. Verhille (U.N.B.)
D. Wheeler (Concordia)

(Using LoGO procedures)

Developed by
Gary Flewelling Hathematics Consultant

```
MATH
    Letter Patterns
    Properties of 2D
        Designs
```


START UP INSTRUCTIONS

- Load LOGO into your computer (see pin up card 1) - With Flewelling disk in drive, type READ "LETTERS RETURN
. When the LETTERS file has been read in, type LETTERS [RETURN]
OU WILL be asked to respond to one on two instructions.
you have responded to the instructions on the screen, lphabet keys you asked for will be activated.
th letter is typed in, it will appear in the upper portion of the screen.
lition, a largar version of the latter will appear at :een. (see below)

dditional letter begins to be drawn where the previous stops being drawn. This gives rise to a large number ter designs.
ery simple single-letter patterns will generate designs. elow

anas

BBB

- More complicated designs result from using two or

ababababababab

- If a key is hit in error and you wish to remove the from your design, Just hit the [-] key. If you wan several letters, hit the \square key several times.
- If for any reason you want to blow up or shrink a hit the [\square key.
You will be asked, "What scale factor?" If you war its dimension, for example, respond by typing [2] [B Had you wanted to shrink it to half size you would by typing [.5] LETURM]
To get back to original design size you must hit th respond with a scale factor 1 RETURN.
Below is the 'ABABAB' dopign blown up using a scale
abababababababa

ter patterns need not be set ouc on just one line as above. dimensional array of letter pattarna can also be createa. n in mohlaved by preaning the [J] kay at the and of enal e of letters in the array.
ing artiantiartianci for example, would give the letter tern and design shown below.

igns can be printed onto paper following the instructions 'pin up card ${ }^{\prime \prime}$.
ew sample print outs are shown on the next page.
Q.g. 2

BOBBOBBABBOBBOBBOBBOBBOBBOBBOBBOBBOB

- See the supplement 'WHAT CAN I DO WITH THE PRET' for ideas on how to utilize these designs. NOTE:

Should somethinc go wrong, for whatever rea want to start over again, hold the CRTL and down, together, and type in LEITERS [RETURN]

LEAST C!MMMON MULTIPLE

MATH
 Multiples

Least Common Multiple
Lowest Common Denomin
Common Factors
Coprime 's
LCM
(Uaing LOGO procedures)

Developed by
Gary Plewelling
Mathematics Consultint
Wellingtoil County Board of Education

Composite 's
Properties of 2D desic as gear ratios

START UP INSTRUCTIONS

1. Load LOGO (see pin up card 1)
2. With Flewelling disk in disk drive, type, READ -LCM RETURN
3. When LCM file is loaded, type, BEGIN RETURN

You are first asked to type in the coordinates of the con and radius for each of two circles.
I would suggest, in the beginning, typing,
00 ESTURN and

125 RETURN
for the first circle, and
00 RETURE
60 RETURN
for the secund circle.

(keep the circies within the screen dimension shown above
You are then asked to input two natural numbers. Initial should consider using one digie numbers. Had you typed, example, 8 BETURN and then $;$ BETURN you would see, on screen, eight points on a largo out circle and six points an inner circle. (fig 1$)$

Eig 1
ocedures will cause the first point of circic one (Cl) joined to the first point on circle two (C2), then the point on C1 to be joined to the second point on C2, Two coloured disks will appear on the points being (fig $2 \times$ fig 3)

in control the action on the screen (type 5 [RETURN the procedure run continuously(type [R] [RETURN]).
[S] and RERURE] will activate the [key. Each time is pressed another pair of points will be joined. shows result of pressing [five times)
above ixample, it will be noticed that the design be compiete (fig i) until 24 pairs of points have been - In this time, the disk on Cl will have made 3 trips C1 and the diak on C2 will have made 4 trips around
fe. 3 sets of 8 points were loined to 4 sets of 6
fig 4

e action been run continuously, you would see the two
Eun around their circular tracks, with the disk on Cl comg 3 laps in the time that the disk on $C 2$ completed four. touching 24 points)
ints loudly of the following
$\frac{1}{6}+\frac{?}{B}=\frac{4 \times 1}{4 \times 6}+\frac{3 \times 1}{3 \times 8}=\frac{4}{34}+\frac{3}{24}=$ etc.
a gear with 8 teeth turning a gear with 6 teeth

- Students should he able to predict strinn behaviors an comes given any two inputs.

- Natural numbers up to 100 onn be entered (too large a will result in an "out of $n \cdot m o r y^{*}$ error).
- To print completed designs (fig 9-13) from to screen to follow these instructions.

1. Have flewelling disk in disk drive and printer 'ON'. 2. Stop LCM procedures with CTRL and G keys held do together.
2. Press [P key and the RETURN key.
(Figures 9-13 had both circles centred at $(0,0)$, the ce
of the screen.) of the screen.)

fig 10 C1: 67

4 is the "least common multiple" of 6 and 8 . ncepts can be introduced with this package.

$$
\text { fig } 13 \quad C 1: 40
$$

Ihings other than LCM's and gear ratios can be inves
Q1. How do successive segments vary in length? (coul measure each off screen and plot a graph, pair v.s. length in mil)

Q2. Can you predict design characteristics given val inputs? (e.g. C1:16 and C2:12)

Q3. Given design, can you determine input values?
Q4. Arc there characteristic differences in designs inputs:
a) are a multiple of the other le.g. Cl:24 and b) share a common factor (e.g. C1:24 and C2:8) c) coprime (no common factors) (c.g. Ci:7 and C
25. Are: there charncteristic differences botween des cila, C2:b and cil:b, C2:a?

NOTE 1: prolonged use of the \square key to step out a de: result in an "out of memory" error. At this design can be completed by typing design neT

NOTE 2: The procedure is not self-stopping. You must CRTL and Geys down to stop the drawing

NOTE 3: To enter two new numbers without changing the position of the two circles; type, LCH RETURN

NOTE 4: To start with two new circles, type, INEO RETURN

NOTE 5: Should anything gowrong, for whatever reason down the CTRL and G key then type, BEGIN Make sure the Flewelling digk is in the disk

CIRCLE ACTIVITIES		
	HATII	
fis, irf, L.T	$\left\lvert\, \begin{aligned} & \text { Activicy } 1 \\ & \text { Activity } 2 \end{aligned}\right.$	circien circie dosigna dilatationa
- E]	necivity 3	circular aren
	necivity ${ }^{\text {a }}$	Tirnu-r-ram

(Tt and the carcumperemce formula)
cy doas three thinga.
aning to π.
aning to tiad of approximating π, end

- usar : way or approwing ouc a circie'n circumferanco.
is a procedure from the PI tile that draws raguiar is a procedure rime procedure used in Aceivity t. Thu ast like che polyi procedure polygon la drawn, the enca haro is that onco tha poitdo drawn, turne inwarda a to tho cencro or tha ticaction pointing in.
(ation like pD 2 lor 1 or 5 etc.) and hit Honancol keye ropatadly until you get to the oppoeita HETMAM keye ropaakady uncisured the polygon's widen the polygon. you wall heve masarad tor 1 or 5 atc.)
qate how ehe width of a spocific cogular polygon s to its perimater.

gular palygon (ragardieee of elze) hae fte own peculiar ic larrived at be dividing ice parimetor by lice wideh).

Yygon	Parimacer		Width		Constant P / W
re			4		
gon					
gon					
gon					

omputer to do arichancic calculation, just enter cer/width RETURM]
aens that the perimater of e reguler polygon can be iaply by working out the anewor to
width of polygon x polygon conatent

- weird wey of colculating a perimater. Mormaliy, uld juet take the length of one eide and multiply by mber of sides. And yat. le la a way of working out eer thets worth getcing ueed tol
he cegular polygon become e circle, you have no but to uee
widch x circle conetant il
- more familier with the usuel way of writing thla formula.
circupference of a circla $=$ dipaeter $\times \mathrm{pi}$

IMPACT OF SYMBOLIC

jymbolic Manipulation Software on the teaching of Calculus
tes Logiciels a Calculs Symboliques sur L'Enseignement du' ferentiel et Integral

Horking Group C

Leaders:	Bernard Hodgson Eric Muller	(Université Laval) (Brock University)
Participants:	Dave Alexander	Contario Minist
	Tasoula Berggren	(Simon Fraser Univer
	Hiselange Boisclair	(Cégep Montmorency)
	Gila Hanna	(OISE)
	Charles Latour	(Cegep F.-X. Garnea
	Fernand Lemay	(Universite Laval)
	Ghislain Roy	(Universite Laval)
	Robert Sealy	(Mount Allison Univ
	Bernard yenbrugghe	(Université de Monc
	Edgar Hilliams	(Memorial Universit

Acknowledgements: The leaders wish to thank Professors Dicke and Wainwright from the University of Waterloo. These three spent considerable time explaining the Maple System, its firs the introductory calculus course and the use of computers in ductory Linear Algebra course. The warm welcome to the Unive Waterloo and generous contribution of the ir time is much appr The group expresses its thanks to Gijbert Morin, an undergrad Universite Laval, for preparing documentation on the use of m

Report

this repori the terms Symbolic Manipulation Software (SMS) Computer Algebra Software (CAS) are assumed equivalent. y refer to software which manipulates algebraic systems, s rational arithmetic and can perform calculus operations.)
group started by spending three hours obtaining first hand ce of the muMATH software in the Laval Mathematics Department's puter laboratory. The group followed a set of instructions d by Gilbert Morin - a mathematics undergraduate at the te Laval (see Appendix 1).
arge number of shortcomings were found during this three hour the must serious of these being that wrong and incomplete were produced on the screen without comment. The general concerns roup is that this particular software is not yet in a form ntly consistent and correct to be used in or with a first year The group is aware that such software as MAPLE and MACSYMA have more widely used and tested and that they do not contain some hortcomings of the muMATH. At present both MACSYMA and MAPLE larger compyter systems to operate. Nevertheless it is the opinion rs in the field that both MAPLE and MACSYMA will be available on micros very soon. The group therefore was looking ahead to times ted and powerful (computer algebra) symbolic manipulation systems readily available. Part A of Appendix 2, by Charles Latour, is a arly good description of the experiences of an individual using or the first time to solve a specific problem.
the end of the first session participants were asked to think e impact of such systems on mathematics and to prepare a list of concerns, etc., which could be studied and developed by the group.
following list was drawn up at the beginning of the second session: not in order of importance)

Develop problems (examples) particularly suited to solution using symbolic manipulation software.

Develop guidelines for the use of SMS systems as a check to one's work.

Determine whether an SMS system permits the introduction of more advanced ideas at an earlier stage, i.e. order within curriculum when SMS system is used.

Discuss the use of such systems for non-university bound students.
5. Identify either
a) "routine" parts of the curriculum which can be un by the SMS system and which have in themselves no towards achfeving the aims of the course
or
b) isolate the important parts of the curriculum whi enhanced by, but not replaced by, the use of an 5
6. Guidelines on how to use the SMS systems as a means f exploratory development of mathematics
7. Isolate those skills which are necessary for using th sensibly:-
(a) Estimation
(b) Sense of reasonableness
(c) Knowledge of concepts
(d) Are the procedures used in testing algorithms us testing solutions from an SMS package?
(e) Use of graphical techniques as a check of reason
8. How much should one know about the algorithms and the language used in such packages? Do these algorithms languages give any insight into the the mathematics?
9. What properties should an SMS system have in order fo useful in education (as opposed to a pure research to capability to show intermediate steps etc.

The group then decided to isolate one topic within the differe and integral calculus and to discuss the use of SMS systems in of that cencept. Without making any statement as to when or w a calculus curriculum "limits" should be taught the group deci at the possible impact of SMS systems on the teaching and lear

IS systims und this feachtur of Limlts

Is systems do not provide a rich enviroment fur thit teaching of icept of limits. These systems can bo usid to sianplify complicated ic expressions but generally numerical procedures provide a medium to motijate intuitive ideas of limie concepts in calculus, s of the type $\frac{0}{O}$. A useful numerical software packaga would have screell displaying graphical values on one side and algebraic intations on the other. The plotting of function values should be : so that subsequent values appear one at a time. It should be to enlarge any interval of values so that intervals which initially y small could be enlarged to fill the whole graphical portion of the Such sof tware would be used to present simple cases in class and llow students to explore many different functions which are normally essible because efther the student lacks the algebraic techniques, computations are extremely tedious.
ce the concept of limit is understood SHS systems should be used vate the laws of differentiation. Every effort should be mude to the derivative as a dynamic concept and not a numerical one. SMS e allows quick access to more meaningful applications and to the ction of differential equations which provide life to the derivative.
S systems and the teaching of Integration
en discussing integration techniques -- algebraic integration res -- tho disparate points of view are expressed:

Too much time is spent on integration techniques both in class and student assignments. These techniques tend to dominate the use of the student's time and mastery of these techniques does not translate into a better understanding of integration. Some argue thdt we can now dispense completely with integration techniques as they are largely algebraic manipulations which shed no new light or insight on the concept of integration.
Integration techniques are a necessary part of any calculus course. A student faced with a particular integral is forced to consider alternative procedures for solving it. There is therefore a certain openess or trial and error situation. It is one of the few areas where students apply the algebraic skills they have acquired in school mathematics.
up believes that the following points are sufficiently significant ey can form the basis of further thought and study in the use of tware in calculus courses.

When technology is availatis, course content, lecture pre and student activities simuld shift to higher mental acti Can calculus courses learn irum the siatistics experience statistics courses spent many !usurs on simplification of involving sums of squares and crois product expressions. "good" for the students as they obtained experience using notation and manipulation of indices to change the concep definition to the efficiently calculable form. This is r now and more time is spent on the statistical concept and when and how to apply it. Is the calculus curriculum so established that it no longer has any flexibility for cha way to review the Calculus curriculum is to firstly isola concept:; which are essential to calculus and secondly to curriculum with supporting activities restricted to those the concepts and give a deeper understanding of calculus. that Slis softe:sre will play a major role in such supporti Many students presently complete a calculus course and ar integral tables. They have a very limited experience of techniques and many are unaware that the integral of the : functions do not have closed analytical forms. Hopefully ware will change this situation and will place students ir experimental situation.

A reduced emphasis on algebraic manipulation in calculus have a major impact on school mathematics courses as much algebra is directed towards preparation for calculus cours

It is clear that unviersity mathematics professors involve year calculus and 1 inear algebra courses have a lot to learn re use of SNS software in these courses. It is imperative that th are experimenting with the use of such software in their course their findings. It is important that experimental use of such well doclmented so that others can repeat these experiments in settings. Either one of the leaders of this working group woul receiviing such information and to circulate it to interested in
R.F. frymus, Jr.: "Pi." Amor. ifath. donttly 92 (1986) \%13-214.

An azampe of a corcoptual problan" (tho existecias of shomiag tho ingoetence of change uf norioblan adil integration by parts in atudying iatagzatiox,

ERGBE 8: B. Suskbarger, 0. tim Cciline rad B. Loos, Conithter Alqubres a itiballe and Alsobraic
 Pirur eqation lassed a a upplementun to the jourax E Kginestirat (1982), \quad basic book
 oxtengive refraitaricess) obuut tha sheory and iaplesisntafion of aymbilic mathomatical syetenx (tho su-xiniled "computer algobra").

aymbolic methesotical ayatome:
R.J. Fataman, "Syabolic and algebrei programing gystorm." Proc. ICMRBirkhaliser, 1983. py. 606-612.
A mini-courae on symbolic and computer proersaming eyatoms.

PEY GOOD 86
3.T. Fay ond R.A. Oood, "Rothi uticiatica curricula." In Of [NCTM. 9-52.
fyall numbor of familiar ond Euluanetical ideas ore at the hear coamon applicationr (...) A etuden by (s symbolic methomatical oysten ardure a long akill-building appr in ordar to become an affactive Eclvor - if the koy onganizing co moll undoratuod."

HEID 83

Eídason 4 AL. 85

MODOSOA: POLARID 83

EOSACK. 186
H. E. Hoid, "Csiculus with muHATE Tonchor ${ }^{\prime \prime} 11$ (1983) 46-49.
A condoneed vereion of some iasued in [COMP m MATE 84].
B. . Hodgson, B. Muller, J. Poland Tayior. Introductory calculus in [staas ioung 86] pp. 213-216.
"We propose weys in which the in Calculus curriculum might respon racant and rapidly changing compute ces:" Discussion atrosese the contextual approach, the qualitativ of functions in mathematical modell interactive modo of chaaaroon teachi
B. R. Hodgaion and J. Poland, "Havampi mathoratice curriculun: tho inf computors." CMS Noten 15 (8) (1983) 17 Outcona of working groups nt mastinge of 1932 and 1983. Raises th of the relevancer in the contex actual computer revolution, of coureen taught in the treditio Proposes acenariog of reasonable so the changes needed in undergraduat tics education.
J. H. Hoasck, "The affact of comput ayotoms on the curriculum," Prepr Collega (Haterville, MB), 1985. (5 p A genaral diacuasion regerding
aymbolic mathomatical aystem in oarly couraes (see aleo [LANE 86]) for a presontation of the Colby Curriculum Project).
J.H. Hơiock, "A quide to computer alqobra ayatans. ${ }^{*}$ Proprint. Colby College (Watervillo. HE), lkif6. (la pagen)
A comperimon of the capecitien of MACSYMA, Haple, muMATE, RBDUCB and SHP.
J.H. Hubbard and B. B. Mest, "Computar graphica revolutionizes the teeching of differentiol equations." In [STRASBOURG 85] pp. 29-36 (Suppleaent).
Illustrata the use of interective high-rosolution graphics for the (earlyl) tasching of diffarontial equations. .
"The influence of computers end informatica on mathematics and ita teeching." (An ICMI discussion docusont). L'enpoifnement mathematigus 30 (1984) 169-172.
The discusaion document praperod for the ICMI Syaposium hold in stroaboura in March 1986 (ace [stansbouna 86]). An expanded veraion of thia papar, as well as a aclection of papera subaitted to streabourg or writton by invitation following the meoting, will appear in tho Procnedinge of the Symponium, to be publiahed by the Combridge Uaiversity Press.
J. Eenally, P. Henry and C.O. Jones, "The advancod placoment program in calculup." In [KCTH . YB 86] pp. 166-176.
Sone of the topica of the maths curriculum should not be troated with tho computer. Tho authorg make perallol with anchine translation of natural lenseges: "Here, the computer is very capable with aechanicel substitutiona but tha rich aubtletias are loat."
D. Euakle and C.I. Burch, "Syabolic computer aldebre: the cleseroos computor teken a quentum Jump. M Mathenatics Toacher 77 (1984) 209-214.
Illuatrates the use of muMati for finding the sum of j ($j=1, \ldots, N$) for differant voluen of k.
E.D. Leac, "Symbolic manipulatora and the toachine of college mathomatica: some poasible consequences und opportunities." Preprint, Colby College (Hatorville, MB), 1985. (13 pagea)

Deacription of the Colby Currici integrating aymbolic nathenatical the college curriculum. A conde oppoars in [MAA. PANBL 84].

HAA. PANRL 84

MAPLI 84

HOSES 71

NCTH.CONF 84

NCTM. YB 84
M.J. Siegel. od. Panal on Diace tica in tho Firat Two Yeara
Report). MAA, Nov. 1984.
Included is a ahort "Report un aymbolic mathomatics ayotom in ux inatruction" by J. Hoanck, K. Small.
B.W. Cher, E.O. Gaddes and G.B.
introduction to Maple: semple sassion." Reacarch Report CS-84-04 of Computer Sciense. University o (15 pegen)
An introduction to what can be symbolic aathometical oysten, usim Mople currontly under developmo Uaiversity of Weterioo.
J. Moaea, "Algebraic aimplificet for. the perplexed." Cone ACM 527-537. "Syabolic integration: decede." Copa. ACM 14 (1971) 548-5 Two papers fros the Second S Symbolic and algobraic Menipula oxcollent expoeitions, elthougl deted, givo o lot of informetio way computers can manipulate ayab aiona and find antiderivativ preparation for the reading tachaical [BUCBBRRARR 83].
H. [S. Corbitt and J.T. Fey, T computing technolory on achool (Report of an NCTM conference). (6 poges)
A brief roport from a confaranco b 1984. Lavluden rocomandations ro impact of computing tochnology on inatruction end teachor education.
J. Pey and H.K. Heid, "Imparativas litioe for $n a w$ curcicula in seco mathomatics." In Computers tan (1984 Yearbook), V.P. Heasen and od. NCTH, 1984. pp. 20-29.
Siniler in epirit to (日RID 83 Hati 84]. Stroscen Htopics o inportence" and "topics of continu co". (The whole 1984 Yearbo

27 papor \quad : ifded in fiva parta: lasuca; The computer stoaching aidi Tcaching mathematica tle : programangi Diagncetic uses of
 bcatit. HCR 1985
Of ap=こiai intarest to aymbolic conputations are the gapera [COXPORD 85]. [PBY \& 0000 85]. [ZGNSLZ. 8 RT AL. 85] and (BALSTON 86].
A.C. Noraan, "Algabraic manipulation." In Bncyclopadia of Coppytar Science and Bqkipaering, A. Ralation et al., eda. Van Noatrand. 1983. pp. 41-60.

A quick overview of difforent symbolic manipulation ayatome.
J. Poland, "Computera and the impending rovolution in mathoratica education." Ont. Math; Gaz. 23(2) (1984) 26-29. A frash diacuasion of soma of the inences raised by tho prosenco of computers and ayabolic manipulation ayatome.
A. Ralaton, "The railly now collega nathematica and its impact on the high achool curriculua." In [NCTY. YB 85] Pp. 29-42. What changos ahould occur in the high school curriculum as a raault of changes in tho colloge curriculum (ve the role of diecrete mathomatica) and the diroct impact of computers technology (va mabolic mathematical eyatoma) on the high echool curriculum.
R. N: Rand. Compytor Alsabra ib applied Me: 2Jhatice: An Introduction to MassimA. Pituan, 1984.
An introduction to the use of eymolic manipulation eyateme (viz. MACSYMA) in higher matha. ("Thia book is aiaad ot a reader who han had at lesiat three yoars of college lovol calculua and difforontial aquationa.") The ayatax of MACSYMA is loerend while workiag some examplon. Containa fow exorciaca witt detailod molutions. "It is oxnoctad that it will not be long beforo computor algebra is as common tio an engineoring student as the now obarifate elide rule once was."
informatique." Pour la science pp.90-98.)
A mont influancial paper in ma manipulation aystens known to (acientific) public.

[^2]SIGSAM 86

STBEH 81

STRHART 84
stout 79
sTOUT 83

STOUT 85

STOSAM Bullatin 18(4) and 19(1) (A apecial iamue of tha bull "Special Intoreat aroup on Syab braic Hanipulation" (SIGSAM)
Contains papars fron the aesaion mathenatical syaioms and their e curriculum" held at ICMB-6, Ad Sixty-two pages of interesting : of the papors report on exporim high achool or university.
W. Squire, "mumath ayaten offoc alsebra." SIAM News, Nov. 1984, p "The situation may bo described tial ravolution waiting for a tex
L.A. Stoon, "Conputor calculus." 119 (1981) 250-251.
A ahort presentation of symbolic syatena.
I. Stewart, Revien of [BucHBBR Intell., 6(1) (1984) 72-74.
Some comenta on the goneral
the coaputor. with ita syabolic capability, put all mathasatic
busineas ?
D.R. Stouteneyer, "Computor aynb oducation: a radical proposal."
13(2) (1979) 8-24.
Δn interesting discuasiol of aymbolic manipulation ayatena in of mathomatici. A roviaed a vorsion of thia papes han appoaro 85]. pp. 40-63, under the titl proposal for computor algobra in
D.R. Stouteayer, "Nonnumeric comp tiona to algebra, trigonometry a Tho-Yoar Coll. Matb, J., 14 (1983 A gencral introduction to aymbo tion myatena. Mentions aomac ap abr: \&at algabra.
D. \dot{H}, \quad Stoutemayor, "Using compu aeth for laaraing by diacovery BOURG 85], pp. 155-160.

Sone nica uggentiong of projecta uaing computer algebra for math diacovery．

85 The Inflyonce of Computera end Informetics on Methematica and ita Toeching．Supporting papora for tho aymposium organiad by ICMI． Strasbourg，Harch 1985．（ 256 pages plus a Supplasent of 52 pagos）．
The papora proaentad by the participanta to thi ICMI aymposium．A new adition of thoae Espporting papera ia to be published by the IBBM of Strasbars．Copies can be ordered Erom P．Pluvinage，Dopartemert do methénati－ qua®， 7 ruc Ban6－Doncartea，57C84 Strasboury Codex，Pranco．The price is Flitio．

D．Tall，＂Undaratending tha calculua．＂Math Teachipe No． 110 （Narch 1985）49－63．
Eow to use the graphical capabilitiss of the computer to illuatrate basic concerta of the calculus．Soe alao；by tho same author． ＂Continuous mathomatica and diacrete computing ara complanantary，not altornativan＂．Goll． Math，J． 16 （1984）309－391 and＂Viaualizing calsulus concopta using a computer＂，in〔STRASBOURG 86〕 pp．203－211．

2．Uaiskin，＂Mathematics is getting easier．＂ Math．Toncher 77 （1984）82－83．
＂Somo akills are claarly nocesamy，but（．．．） too much olsa should bo loarned about nathean－ tica to wasto tiae in practicine obsolete akills．Mathonatico in getting easier［wila suMATE］．Wo will dot bo abla to keep thin secrat from our atudeate forever．＂

A．S．Hilf，＂The disk with the collage aduca－ tion：＂Amar．Math．Montely． 89 （1982）4－8．
numata is coming！muMata za comias！A peper intendey as a＂distant early－waraing eigal＂ for the ：xathomatical cosquaity．
H．S．Asiby＂Syabolic mazipulation and algo－ rithes in tho curriculum of the firat two yours．＂In Tho Futura of Collera Methemetics， A．Rai；．：in aad G．S．Young，ad．，Springer－Vor－ lag，i3：33，pp．27－40．
Expanda on the isfeuas raisod in［WILE 82］．＂It can ba very unsettling to recliza that what we praviously thought was a very human ability （．．．．）can actually bo bottor done by＂ma－ chimen＂．＂（Almo contatan a doucription of a socond semeater acphomera course introduciar algoritham．）

WIH区BL 84

WINEEL 85
．Hinkolnana，＂Sona remarks on tl of clementary calculus in the com In［STBASBOURG 85］pp．1－7（Supplea ＂So if it soena posaible to mester tial equational at a mora elema than hithorto was possible，tho rogardad se the most appropriato and goal oven for the toaching of calculua at achools and collegen．＂

YUN \＆Stout 30 D．Y．Yun and D．R．Stoutemeyer， mathematical computation．＂In Ency Computar Scionca and Tochnolory．J al．，eds．M．Dokker，1980．vol 235－310．
A ganaral diacuasion of ayabolic a syatems．Includas a guide to ao ayatoma and a discuasion of basic altorativos for building up auc Tho last 30 pagea are dovoted to ap algobra，nonacalar analyaia， analyais，celoatial mochanics rolativity，bigh－onergy phyaica．

Appendix 1

AN INTRODUCTION TO mUMATH

olic mathematice package for micro－conputéra）

prosented to the CMBSG moating

by

G．Morin
Univorsito Laval

BASIC INSTRUCTIONS FOR TAB OSE OF mUMATE SYMBOLIC
1－Insert the DOS 2.10 diakette in the left diak
2－Put the power on the video screen and on t （right－aide of the machine）．

3－On tho scroon will appear：＂ENTRR NEW DATE：${ }^{n}$ the＂retura＂key（ $⿴ 囗 十$ ）in reaponse；same th ＂ENTER NEW TIME：＂prompt．

```
4- Remove DOS 2.10 diakette from diak driv
    "muMATH 1" diakat in that drive and place
    disketto in tho right disk drive.
5- Type tho word: MUSIMP on the keyboard, fo
    "rotura" key ( G ).
```



```
    it's important), thon press: [Num
7- Following the question mark, type: LOAD (MU
    press the "roturn" key.
    You are now in mumath.
N．B．In mumATH，alwayg end a sentence by－
```

followed by a "roturn".

a brief sorvey of hat mumate can do

Name of file What it does

ARITH．MUS	rational arithmetic
ALGEBRA．ARI	－alementary algebra
EON．ALG	－oquation simplificati
SOLVZ．EQN	．oquation solver
ARRAY．ARI	．array operations
MATRIX．ARR	．matrix operations
LINEQN．MAT	．．simultancous linear
	equations
ABSVAL．ALG	．．absolute－value
r，OG．ALG	logarithmic simplifi
TRg．AlG	－trigonometric simplif
ATRG．TRG	．．inverod trigonometri catis．
HYPER．ALG	－．hyperbciic trizonome
	aynbolic differe
	Taylor series
	aymbolic integration

.......... 1 imite of functions
[E.esed-form summation an
．first－order ordinary differential equations
JDE．．．．．．．．．．．．．．．．．．．．．．higher ordor ordinery difforen－ tial equations
ODE．．．．．．．．．．．．．．．．．．．extond \therefore first－order ODE methoda ．．．．．．．．．．．．．．．．．．．．．．．．．vactor ．．gabra
VEC．．．．．．．．．．．．．．．．．．．．．．vector calculv：
want to soe demonatration of or $\{$ the above itema， DS（＜itoma＇g lat nama＞，〈itom＇a 2nd namo〉，B）；
mple if you want to know how to difforantiate with type：RDS（DIr，ALG，B）i and Waif for a faw saconds． conds at soat．）
ter onch demonstration the following will appear： Break，Continuc，DOS？
onsider＂Braak＂or＂dos＂，Just prese＂C＂if you went inue with a different oxample or＂a＂if you want to he domonatration and do some of you own material the same punctuetion and orthograph as in the demons－ of coursa）．
ine＂syatem file＂named Mumata has been built to all the ao－called＂source files＂ebove．When you pad LOAD（MUMATH）；os indicated above，you thus have the memory all the toola offored by muMf こh．But if to see a demo，you need to type thr RDS command

DEMONSTAATION OP muMATE

does exect retional arithmetic．Try theso examples on board．
／3i
（1／4）i
（／4）\＃E～$(\# 1$ \＃PI／4）meening： 17 © $1 \pi / 4$
a assign an exprosion or a value to a＂name＂，e．g．
？тото： $\mathrm{Y}+3 \neq \mathrm{X}$ ；
e：$Y+3 X$
Now to sea that $Y+3 \neq X$ is really assigned to＂TOTO＂
？TOTO＋Yi N．B．＂F＂is the multiplication symbol $\begin{gathered}\text { often（but not in overy case）be o }\end{gathered}$
e： $\mathbf{2 Y}+\mathbf{3 x}$ replace by a＂apace＂．

Rewomber，you can do symbolic mathematics ao it to handie variablea who don＇t havo values asaigned

Gere＇s the trigonometric expansion function，＂TRGE
？．TRGEXPD $(\operatorname{SIN}(2 * X),-3) \mathbf{R}^{2} \quad$ theso parameters tell tb
$0: 2 \cos X \operatorname{Sin} X \quad$ how to do the expansion．
？TitGEXPD（2＊COS（X）＊SIN（X），30）；
e： $\sin (2 X)$
 RDS（TRG，ALG，B）；

SOMB USBFUL muMate COmmands

$$
\begin{aligned}
& \text { To do: } \\
& -\quad \int_{f(x) d x \text { (indefinito integral) }} \\
& -\quad \int_{a}^{b} f(x) d x \text { (definita integral) } \\
& \text { N. B. b can be positive inginity "Pinf" } \\
& \text { and a can bo minus infinity "MINF" }
\end{aligned}
$$

Type:

DEEINT（E
$-\sum_{x=a}^{b} f(x)$
SIGMA（
whera a and b can respectively be＂MINE＂and
－$f^{\prime}(x)$
DIF（E X
$-\frac{d^{n} f(x)}{d x^{n}}$

DIE（E（X
DIF $(F(X), X, N, Y, M)$;

```
```

Taylor expancion of f(x)

```
```

It A
001y. aqu. P(x)= R(x) SOLVB (P(x)==Q(x),X);
oly. aqu. P(x) = 0
TAYLOR (F(X),X,A,N);
SOLVB (P(x),X);

```
aystem of \(n\) lincar equations
supact to \(x_{2}, x_{2}, \ldots, x_{n}\)
    LINBON([equl, oqu2. ...., oquN], (xi, ...., oxn) );

\section*{difforontial equation.}
le if you want to eolve:
\(\left(y^{*}(x)+1\right) y^{\prime \prime}(x)=\left(y^{\prime \prime}(x)\right)^{2}\)

\section*{s ( \(\mathrm{y}(\mathrm{x})\) ):}

A: 'x;

umath ozaE (e.g. LN\#B=i).
\(\mu=\# P I(0.8 . \operatorname{SIN}(* P I / 2)=1)\)

1) is the lat arbitrary constant of an oxpression
2) is tho 2nd arbitrary constant of an exprossion
\(X\) from boing "Dirvar" and the dopondancy of \(Y\) upon
difvar: false;
PUT ('y, \({ }^{\prime}\) X, FALSE)
aced 1985
Appendice llu rapport du oroupe
de travail c sur
les logiciels aymboliques

Charlea latour
Departoment de mathéa
CEGBP Erancoia-Xavies
partien
(Séanco pratique tonua lo 6 juin 1985 sous la supe Bernard R. Hodgnon, Eric Muller ot Gilbert Morin.)

Le document "An Introduction to mumath" Gilbert Morin a'ast révéf fort utilo ot tout à fa Mentionnons copondunt un patit oubli à la page 4: y lira au nota bene
(e.8. \(\mathrm{I}^{\wedge} 2=-1\) ) au liou de (a.g. \(\mathrm{I}^{\wedge} 2=1\) ).

Au.coura de cette saasion nous avons choisi les "démonstrations:" auivantes:

1- LOG. ALG. aur les aimplifications logarithmig n'y avons dócalé rien d'inquiétant.

2- SIGMA. DIF. sur les sommations et produits. nous avons pu faire une observat pou surpronante. Pour la sommati nous avong obtonu une expression de
\(\qquad\) \(+\) \(\qquad\) \(+\) \(\qquad\) \(+\) \(\qquad\) \(+A-A\).
 róduite possible. c'eat sana doute un problame do grande taille pour l'dtudiant qui apprend et qui ne possède donc par l'expérience requise pour óvaluer \(^{\text {la }}\) réponse.
ant lea démonatrations \(j^{\prime}\) ai suggéŕ do résoudre le blame suivent aur le mode autonome: de la formule
\[
y=\frac{2 x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}
\]
trouver \(y^{\prime}(x, y)\) et \(y^{\prime \prime}(x, y)\) puis calculer la
\(\frac{y^{\prime \prime}}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}\)
se pose en relativité générale. La formule (l) uation en epproximation du premier ordre de la
trajectoire d'un rayon lumineux rasant lea borda (e.g. coleil). Le contexte physique indique q (1) devrait avoir l'allurs auivante


Il s'agisasit pour nous de confirmer l'allure do par l'étude usuelle des dórivées première et d'en calculer la courbure. Après quelques titong avons procédé de la fagon suivạnte à l'aide de mul DEPENDS \((Y(X))\);

DIFVAR: ' \(X\); [ligne peut-etre superflue]
DIF \(\left(Y-\left(2 \neq X^{\wedge} 2+Y^{\wedge} 2\right) /\left(X^{\wedge} 2+Y^{\wedge} 2\right)^{\wedge}(1 / 2), X\right)\);
[peut-atre inutile]
C: \(\theta_{i}\)
SOLVE ( \(c=0, y^{\prime}\) ):
c1: (2*X^3+3*X*Y^2)/((X^2+Y^2)^(3/2)-Y^3);
[-erte expreasion est \(Y^{\prime}=Y^{\prime}(X, Y)\) : poser simp
ne fonctionna pas pour la suite]
\(\operatorname{DIF}\left(\operatorname{DIF}\left(Y-\left(2 \neq X^{\wedge} 2+Y^{\wedge} 2\right) /\left(X^{\wedge} 2+Y^{\wedge} 2\right)^{\wedge}(1 / 2), X\right), X\right) ;\)
[je pense que DIF(Cl,X); aurait été plus sim facile pour la auitel
c: 9
```

$\left.=0, Y^{\prime \prime}\right)$;
tent
${ }^{\prime \prime}\left(X, Y, Y^{\prime}\right)$

```
\(3 y^{2} x^{2}\left(y^{1}\right)^{2-6 y^{3}} x y^{1}+3 y^{4}\)
\(2 Y^{2} X^{2}\left(Y^{2}+X^{2}\right)^{1 / 2}-Y^{3} X^{2}+Y^{4}\left(Y^{2}+X^{2}\right)^{1 / 2}+X^{4}\left(Y^{2}+X^{2}\right)^{1 / 2-Y^{5}}\)
tenir \(Y^{\prime \prime}=Y^{\prime \prime}(X, Y)\), jo sóderia la furmule prócóD aubetituant cl a \(Y^{\prime}\) et utilise BXPANDI
)i
ient \(Y^{\prime \prime}=Y^{\prime \prime}(X, Y)\) on 18 lignes! \(]\)
róderis l'expression pour \(\left.\mathrm{Y}^{\prime \prime}\right]\)
( \(\left.63 /\left(\left(C 1^{\wedge} 2+1\right)^{\wedge}(3 / 2)\right)\right)\);
procuro la courbure \(K=K(X, Y)\) on 3 1/4 pagea!]
on de proćder évoquée ci-dessua ast sans doute àre maie elle est Juste. Elle a óté testée sur
\[
y=x^{2}, x=\frac{6 x}{\left(1+9 x^{4}\right)^{3 / 2}}
\]
\(x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, \quad E=\frac{1}{3(a x y)^{2 / 3}}\)
ont pajcür réaida dans la fait de réfcrire cl ot 18. Je suis raisonablement sor (et satisfait) enu les bonnes expressiona pour \(\gamma^{\prime}, \gamma^{\prime \prime}\) et \(k\).
unsi testé le calcul de dérivées plus complexas de la fonction \(y=x^{1 / x}\). on n'obtient pas la plus.aimple, comme c'est le cas pour \(y=x^{4}\) par
exemple. Il faut utiliser EXPAND.
Au niveau de l'intéreation muMATH ne peut \(p\) \(\int \sqrt{x} \sqrt{1-x} d x\) directement mais 11 effectue très bien qui est évidemment une forme équivalente. Mais \(c^{\prime}\) ai transforme \(\sqrt{x} \sqrt{1-x}\) en \(\sqrt{x-x^{2}} \quad\) : Le logicie dobtenir \(\sqrt{x-x^{2}}\) de \(\sqrt{x} \sqrt{1-x}\) ? Si non, l'étudi -'appuyer aur le logiciel pour résoudre lintogr alors s'entrafner de façon traditionnelle à me expressions algébriques. Cette situation amène pluz gédrale suivante: "Etant donné qu'il ast fr doive transformer lógèrement lou intégrales pry utiliser les tables dintégration, dans quel. système muMATH perinet-il de le faire?" "Ouala ce logiciel pour ecrire de façon différente un algébrique ?"
- (A ce propos, on a soulevé au cours de lendemain la pertinence d'utiliser un logici symbolique dans l'ftude de l'intégration pa rationnelles pour éviter la longue "digression" algébriques. Mon opinion à ce sujet eat que Je que muMath puisac convertir, par exemple, \(\frac{2 x+3}{x^{3}+x^{2}-}\) en \(-\frac{3}{2 x}{ }^{+} \frac{5}{3(x-1)}-\frac{1}{6(x+2)}\). Jen'ai pas eu le tester mumath à ce sujet.)

\section*{PARTIE B}
flisation de muMATH en clasaa ou an laboratoire)
atalior il fut gurtout discuts fe lemploi d'uis symboliqua dens l'ftuda de la notion de limite.
opinion a co sujat oft que si lon a'on tient a la uro" du typo \(\lim _{x+3}\left(x^{2}+4\right)=13\) par exemple, alors le
symbolique est a touto fin pratique inutile. Saul que eat on jeu. Mais pour la definition de la ar une limita, le logiciol peut se révéler utilu.
10
\[
\lim _{\Delta x+0} \frac{f(x 0+\Delta x)-f(x 0)}{\Delta x}=f^{\prime}\left(x_{0}\right)
\]
\(=x^{4}\) a \(x\) m 2. L'otudiant peut demander le ment do \((2+\Delta x)^{4}-2^{4}\) puis lo quotient par \(\Delta x\) (puiscue Ce serait a explorer on laboratoire.
aut egalement panaer a utiliaer ce logiciel pour indeterminations par la régle de l'Hospital.
généralement, lemploi de tels logiciels pose la fondamentale auivante: "Les étudiants perdentios chose (ai oui, quoi?) a ne plus s'entrainer i de façon traditionncllo?" Erois que oui parce que l'ftude des wattématiquis et lisation comportera toujours du "calcul" sous une une autre.
lèvo de \(3^{\circ}\) annéa qui rèusait une division \(s^{\prime}\) exerce \(\dot{a}\) calcu.
(b) L'èlève de secondaire III qui exécute \(x^{3}-\) a uncalcul d'uncran plus abstrait.
(c) Plus tard celui ou cille qui montre que pour \(f\) ot astisfaiagnt des conditic s'exerce encorc an calcul plus abstrait.
(d) Lorsquion montre que dans un groupo. inverae á droite sist auaai élément invera calcule oncore á un niveau pius abstrait.
(e) Lorsqu'on démontra les trois théorèmes d'i théorie des froupea, on calcule toujours moins) an niveau encore plua abstrait. (f d'unc façon particuliére an rivoau plus

Je suia d'avia qua les mathématiques reat lement une étude des formes de calcul (dana un avouons-le jagua!) - la géométrie élémentaire exception qurnd elle \(n^{\prime}\) est pas modelée par l'al ou la théorio des groupen.

En. conséquence l'étudiant chez qui le calcul sous forme traditionnelle aura fait de d'un effort accru au niveau do lu conceptual mise en équation, de la "matheratisation" présentés pourra, selon moi, souffrir de niveau supérieur, oú 1 'on ne peut plus reléguer la machine. En résumé, si dans un chemineaen qui va de l'élémentaire à d'université, l'ét

\begin{abstract}
res etapes do son entrainement au calcul - etant
tout "apactateur" au plan "calculatoire" durant ces
dtapas. qui peuvent a'dtendre jusqu'eucolldrial -
Vraiaemblabla qu' 11 manifeatera une faibleaae dana
a de toutes manipulations symboliques (lesquelles.
lo, aont indvitables dans l'etuda des aciencas
\end{abstract}
uterai que les demonetrations mathénatiquas (de
les longuas) offrent une occasion gingulière de
    Longuos chatnes de pensees ou dildes en devent
d'un lien solide entra chacune. Jo aoutiena qua
lete "formar des chatnea" eat fondamentale a bien
    dans lexercice de la science. La miae en
    la conceptualisation, bien que tres importantea,
pae un tel intérat de ce point de vue. Quant à la
e d'acquérir ailleura cetto habiletó (en jounat aux
- exemple). je réponds qu'il est proffirable que le
cquiere la forme sur son velo plutit qu'en nageant
    (D'ailleurs, aux échecs, le lien entre chaque
a'est pas toujours aussi ftroit et solide que dana
tration mathématique).
aion. je pourauivrai a@rement ma réflexion sur de co typo de logiciel dans lenseignemeat dea uee. Je le ferai autant par golt quo par néces-
cials soient jumelde a des logiciels graphiques mais dea logiciels de traitement de textes mathématiques. permettraient peut-atre l'ecriture "normale" des exp algébiques dont le déchiffrement devient très lorsqu'elles dépassent en longueur plus de deux ligne

Appendix 3
on au groupe de travail CMESG/GCEDM 1985
NCE DES LOGICIELS A CALCULS SYMBO; SUR L'ENSEIGNEHENT DU CALCUL DIFIIEL ET INTEGRAL"

Noëlange Boisclair
Cegep Mantmorency

\section*{COMmentaires}
'enseignamant actuel des premiars cours de calcul: univerBt cégeps
ochs axiomatique at rormelle livras de référence des étudiants)
prépondárance pour la calcul numérique à teridance acrobatíque
1 académique très vif mais, carence dars l'ensaignement rieur
s mathématiques du sacondaire et le dáveloppenent de la nséa formaila s'harmonisent sur da courtes durées; exption pgut-être pour la \(12^{\mathrm{B}}\) année du Hign 5cnool)
entissage confíe à l'étudiant responsable de sa formation univarsíté làgue catta práoccupation au college ou au cégef: collega ou le cégep lègua au Higi School ou à la polyalenta;
là, l'instance responsabla davient muette!)
MERVEILLENENT: afficacité at reudement s'approprient las nollieurs du cours
tout étudiant écoute ulle certaine musique; tout étudiant découvre les séries harmaniques; qui fait u. lien?)

COMmentaires sur l'atel.ier
Aucuin participant n'étant spécialiste de l'incidence des calculs numériques dans l'enseignament du calcul diffíren régral, il an ressort que les nomoreux thèmes soumis par nants représentent une ébaucne intéressanta quí nécessítu une classification suivant leur caractère pédagogique at té d'insertion dans une séquence d'apprentissage.
Toutefois, discuter du concept de LIMITE at/ou dINTEGRAT nous l'avons fait, m'apparait una approche d'un dynamisme à court terme car, elle perd de vue la structure globala A mon sens, la LIMITE ast comme un architecta, elle crée, entre autras, la DERIVATION at l'INTEGRATION at elle sa vicher posepte inhérente.
De ceci, ma réaction aux discussions est que l'on a au te téger sa vision personnelle du calcul tout en manifestant rêt àvouloir répondre aux nouvalles axigences scientifiqu A mon avis, on a eגploré des moyens de moderniser les cou à vue le rythme traditionnel des concepts tals qu'enaeign
Nonobstant cette remarqua, catta concertation a eu un asp dans le sens qu'ella a répondu à une nécessitá de poser u cussion qui se veut l'amorce d'una réflexion plus articul congrès. Je partage l'idéa qu'un tel débat mérita une dém te et réfléchie.

\section*{SUGGESTION}
- Il me semblerait intéressant d'orienter le débat autour a
 gissa da MUMATH, da MACSYMA, de MAPLE ou d'autres.
Disons, en guisa d'exemplas, qu'un logiciel pourrait être divers aspects, saient:
un outil pour alléger l'enseignement des notions reconnue les cours préalables
v.g.: manipulation algébrique
domaine et image de fonctions élémentaira
un outil pour développar une représentation spaciale des tiques
v.g.: graphiques statiques
graphiques dynamiques; mouvement des \(\varepsilon\) et
familles de courbes:
```

nt pour soutenir at/ou fralonger l'enseignement
v.g.: esquisces d'analyse
propasition de synthèse
interprétation des valeurs numérlques

```
['est-ce qu'an mat la-dedans?... un peu de génie et.. créativité à l'éprauva.

The Canadian Mathemacica Education Study Group
Leval 85 Meeting

A Personal Report from Working Group C
```

Pėfrange poprodeir
NOELANGE BOISCl.iIR
collège Montmarency

```

\section*{107}

1 suspect that for some of us in Working Group \(C\), our first two sessions e appropriately labelled as Learniag Group C. We did try to come to some conclusio last session and overall, I can honestly say that, for me, the learning, the discuss product of Working Group \(\mathbf{C}\) made it one of the moat fruitful and interestiag se bave attended.

Without going into a lot of detail, I would like to summarize some of the conel drew from this session. in what followa, the ahbreviation CAS will refer to Symbol - tion Software Programs or simply Computer Algehra Software (CAS).
1. CAS bas the poteatial to provide Professors with the opportuaity to spend less clasroom illustratiag routine but time consumiag computations and more tir
and more exciting Mathematical concepts.
doo has the poteatial to provide students with the epporturity to spead leas time on \(y\) and time consuming paper and pencil computations, as is normally required on ments, and to apend mare time doing real mashematics. Yput, CAS can be used an a tool to alleriate computational drudgery and ailer more ex examples to be introduced and studied.
ean be used by both students and professora to check ansuers to assigned or conahomework.
can be used to automata part of a task, for example, the computation of Taylor When the task is to examine questions of con:iergease, ete.
axamplea can be done and done successfully when the computer takes over the chore tine computation.
ceptional students, CAS may permit the introduction of Calculus and other areas of much earlier than is posible at the moment.
the possibility of incorporatiag graphicy capabilities into a CAS system, it may be le to illuatrate many concepta geometrically right before the studeats eyes in a very ic and interactive way.
bas tho potential to improve student attitudes toward mathematics especially for of average ability or below.
as the poteatial to permit us to re-establish the importance of creative thought and, m solving in the mathematics curriculum.
resent generation of CAS Systems were developed for the use of Sciencists and iers. Howerer, with potential developmeats in Artificial latelligence, the future ial for improvemeat in CAS desizaed for educational purposes, seems enormous.
as the potential to provide opportunities for more individual attention to those stu-
dents who need it.
13. Successful mathematics students today appear to learn by being "pro ple", i.e. after observing enough examples, a methodological techniqu tunately, many (unauceessful) Mathematics students gever infer such them correetly, or in some cases, aever even realize such rules exist. C to coavince weaker studente that such rules exist and that even a du programmed to carry them out.
14. CAS can be wed to provide earichmeat and motivation in the mathem:
15. CAS bas the potevitial to permit studeats to do exploratory mathemat before possible.
10. CAS can be extended to include automatic drill, teating, and record : advantage to chose of us who have better ways to spend our time.
17. What are we going to do when many, or most, or perbaps all of our st to come to clasa with a relatively inexpeasive hand held computer witt We must answer that queation dow. Otherwise, our students will answer

Appendix 5

Some thoughts on the "Impact of symbolic manipulation software on the teaching of calculus"

\section*{D.W. Alexander}
routines are unnecessary for understanding?
at routines are necessary for understanding?
w can the graphic capabilities and symbolic nipulation potential of computers be best used to hance learning (of calculus)?
w might the availability of symbolic manipulation ftware (and.graphics) effect priorities, order?
n these be used to promote understandings, en-endedness a la Pollack?

W does this relate the Whitehead's cycle: romance, :ecision, and generalization?

\section*{iggested sequence:}

Graphical introduction to derivative:
chords to tangent; "window" on screen;
associate slope of tangent at a point:
exploration - generalization for specific function,
"derivative" (i.e. slope of tangent at any point).

Symbolic manipulation code for derivative
Maximum/minimum problems
- approximation (graphically)
- precision (using derivative code)

Should problems be limited to polynominals or students "understand" derivatives of other func

Should equation solving capacity of symbolic ma be used?

Is there need to explore second derivatives or graphical capacity remove that need?

Could second derivative tests be introduced as confirming computer graphs? (reasonableness of

What other aspects of "curve sketching" technic still appropriate assuming availability of grag packages?

Should inverse differentiation (differential ec problems be introduced?
3. Generalization: Explorations of derivativ given by symbolic manipulation to give \(y^{\prime}\) trivative of sinx \(=\) cosx; derivative of \(c\) sinx; derivative of sinax, etc. Is this time to introduce limit ideas as a basis
4. Other "Rules of Derivatives"
- Derivative of a Sum
- Product Rule for Derivatives
- Derivative of Quotient
- Chain Rule

Given the symbolic manipulator, how much of thi needed?

Could it be motivated by "need" to know how to results without the "black box"? By a desire \(t\)
tend" how the derivatives are obtained?
his be "optional" and only done with some students?
mental issue: Do we desire to teach calculus as a us" development with the need for "proofs" or is 1 to use calculus in solving problems?
the latter, then 4. and perhaps 3. are
say. (Is it only my conditioning that makes me onus of this conclusion?)

THE ROLE OF FEELINGS LEARNING MATHEMATI

\section*{GROUP LEADERS:}

JOHN POLAND
FRAN ROSAMOND

\section*{HATHEMATICS AND FEELINGS}
ctlofpants: Dorothy Buark, Renee Garon, Claude caultn, (an, Bithigotnaon, John Poland. Pat Rogers. Fsan Ralph giail. Pater Taytor.
-gan thit working group by axplating that although lot ot litesituse touohing on the cole of fetingitin eathematios. there ts almost mothing diseotiy on it. tmportant area to undergiand and wa must cely etcongiy ciamples shared in the group.
eaoh pastioipant lntsoduoed himor hesselt to ihe datintig his os hat conneation to this woskshop. thla going asound the group to ghase wat key oomponent of as of ous working group. The tollowing axoerpte from the introductions indioate the wondectul oolleotion ot axpoctenoes tn this group.
fathomation is oonneoted with teeting the powes of looking at new and stgitioant ideas. Theretit the hetil of invention, ot beling ableto name. ot making Ip new words.
 lew and exoiting thinge. Therets the useka experienit the faciling ot oustosity, ot ohallenge. ot actitheto, and the phitoeophioal gide of unoovering seal iasio tsutha.
would like to see how the enthustastum ot the tatoher in fintuonoe atudents in the olasafoom.
 lase was spent in analyitng a pieon of poetry. The ther halit was epent analyxing a math problam. it would
 usio. math.
see that the beginnesin view of math batis ditiecent 50m tha mathematloitan viston and would like to explort ow to open up the latter viston to the beginners.
ara intereated in how the envisonment intiusioes us. lici would like to try to be spooltig about whioh ealings wa pay attention to.
hareare not many people at my ohool with whom 1 ain tsouse these tdeas. I tel tsolated and would like his workihop to bethe beginning ot a suport group.
heretano uoh thing as non-amotional motives. Paop-- aem lass fnhiblted to axprass teetinge about musio. arge groupi of mathematiotani love musio. la there a omplimentacity heref

As a positbletsamework bor ous topto we disoussed the Persy divelopment eohene. geveral h soheme that act attauhed to this paper were kindiy Dotathy duerk. As thete indioate. it geams ihat
 students to evolveto level i. Easly levele oollu ot the world that what la corgeot is cestrioted to tamily, psisi, sohool and lsetiectedingetatiment teaohar last yase didn't do it that way "

In thitegasd, Lass Janseon defo ous attenti
 We discusend but lett uncesolved whether emotions are mosetmportant at lowes Pescy levelathan at h Doas a change in pedagogy equate to ahange in th ot Etudente peroeptionet The efertenoe of many in that fsolting of oommunity and oarting in the olami tmportant cole in periy developmant. Therole oontinued to be a theme on suodesityedaye.

Pastiofpants were asked to atend the Tof Problem-Solving by Peter Taylor that afternoon.
 When wemet on the acond day. the gharing of thes a great stimulus. pat Rogers desoribed how beilings and the neid tobe awase ot them, experdenos ot having then. This validation helped ctuatione when negative or oontuiting festinga arost

One feting tur example, way pate anget with pecse who were model gtudients tor the teaoher durtn golving easetion. Therealso wag an angier with th ingifting on cooiving his own anawer trom the facting of anger tormed blook that kept pat involved partiotpant in the problam-Solving eseston

 beting turned ott or diesigaged during the fi - © 5 sion.
 traced to speotito inotdentg. Mals-ifenite dit disoussed fnthis oontaxt. It was noted that in aosogs all subjeots, ceseasoh has shown that teaol oisoussion shat who were not pastioularity athletio oould be aooept they exoeltedinmath. Many questiong such ag ine catesd. Does mathematios always assume one sor wor unusualiy etrong in the teiling ot eelt-worth?
 eets trom interaotion with peerf.
 one ol the oonveraltion foliows.
th out etudente:
nuet make manimumettort to dnvolve ait and avold oooupation with jugt the brtght atudente.
 dayeleamion withthem. Thentnolaed thenemt they joln the digouitelon beoauee they have had a
 advanot.
 Ititomald groupa and then coport back.
try to Inyolve the tudentiluting moditied Moote thod., There ace wetily aelgnmentaleading co big

 - 58.
want the atudentito teatn to ininkwilder in the
 jgenta an dea. that pereon lathelea. Reteoting opinton dy ceteoting thepercon. In bratnatorming,
 tee of oommundty has developed ln the grupp.

In the olasatroon:
Provide olosure. At thend of every hout polnt to
 a good question. Look lorward and baokward in in
t use two overtiead projeotora. One batud used
 enthutiam with themathand alao look at the atude The other it uacd to weite apontaneousty on.

When discuising preacelgned probleme. keep poe other bnteretting problems that oome up. Let t beoome optinal homework probleme.

1 wost with oolteaquet tn team teaching. An Eng teaoher tolntiy tacheemy math olaga. Weach
 what makee a pom work. Then ditioues what make nath problam work. Theceltorltiolymot thewrl esperienoe at weti ae ot themath problemeotving.
treiate what we are tudying in math to other area math. Take a problem and approagh it from atye
 diequesion ot blographiali. hiatorloat or oult atpootat otheubteot. They timit what they want prote to taik about. tis. as tithor, sati we ohanged the cround ruiter on them.

I give matke tor attendanoe. litume progreacion or growth.depende on atiefidanoe. It
 attend cogustity.
 quis but \(1 t\) de not tor aride. Thetudents writ


Ac a leathe:
There his to be hatmony between belng to eqooentrio or totatiy out-going. Theteacher mu in ohate of what le oingon in tho olaestoom. At teacher muet dieten to what the atudentabiad and they esy ti tnthim way the teioher oan heat mia Thateaher oan butid on etudentg past eaperienoe

The teacher muel hang on to a genulno egooentel gitudente don't want a teacher who ditappeaciatio
 beoaue you've got eomething. Be youseitifithat whit rou have the moel of. conoentrating on o requicit a detaohment trom roucselt.

\section*{Appendix to the Report of Horking Group D}

\begin{abstract}
 aliy he or the hat copotal pecuonal metaphor with loh to enplelnthooonoget. We ohould shace out laphore In the oliceroon. Talk about mathemation as you act talking to a pecton while witking by a lake whtie on atcoll thcough the woode.
\end{abstract}
```

10 Important to be uplc.ont about what wo ace dolng.
that we expeot our etudente to move through the
ccioulum by ficot belng able to do probleme ol one

```

```

|E own end anjoy what mathemation has to otice.
to oan bu writtinn in a handoift and eadd in olace.
IE Impoctant to buidd on etudente pact especienood.
aooopt whth good graoe ay own mlotakes. The dieal

```

```

ame mugt iunotion ae a eupport eytam. Thte muat ba
Car to the etudent oo therg te no toar to opentng-up.
bogin ficet olase with fote of eolf-dicoloeure and
me In emall groupe. Thie laye the groundwork zor
sounaton of E|-\lnga.
at oommunty wag n dominant thame among aur
Communlty providae eataty and bilonging. This
odente. Thig allowe thom to be in oontact with
to know thamesiven. Wo \&-e the olageroan at a

```

```

high an of patelng tho mathemetlos.
med \&ac too gulokiy and wo havemunh to ditoune. We
|y Intecetted in whioh emotione bolong etciatly to
and osnnot be svoidid boosueg of the nature of the
core or whon do we oog the "Ah ha" experionoe ta
our etudentap Wa aldo want to explore etratogles tor
maolng that but!d oommuntty. Ous melngoal lb ta
ctudente.

```

June, 1985
U. Laval
(R.A. Staal)

One of the by-products of working in this group was a h appreciation of the importance (and existence) of emotive as learning in machematics which have their source ourside of \(t\) mathematics itself.

Within mathematical activity, chere are nume rous examp what we might call "emotive" facturs - while not strictly pa mathematics, they are inseparably connected with it, and ref essencial nature of the total mathematical experience. A fe are: "Eureka!": various forms of aesthetic satisfaction (pl the apparently complex and instructured to a simple, structu of a beautiful and ingenious proof...); the teeling of secu dealing with a "clean", well-defined structure with clear cri success; the excitement and suspense of exploration; che sen stimulation of mystery; the "down side", of Erustration ("wh this work", "why couldn't I have seen that?" I just wasn't be a machematician') etc. These examples are all pretcy fam and come to mind rather easily.

At a less purely marhematical level, chere are emotive arising from interactions of mathematics with other subjects at the seashore). These are hard to list in a systematic wa surface In our discussions.
40 Co the main point of this nota: thére are amotive aspects eroom experience which have nothing especially to do with per ge - they apply to the clasaroom, racher than the subject - influence on the learning of whatever the subject might ways adequately kept in mind. They have co do essencially al-Interpersonal matters, and include such chings as: on In the development of material, parcicipacion as a member of a group, getcing approval versus being put doun, deled imporcant as a person.

Co be emphasized that here wa are concerned with the role pecta in che learning of mathematics, and have no incencion 8 the path in which concern for "che whole child" is expressed phasis on che learning of a subject.
la of the ceacher is brought to the fore in this. Self-study, ry materiala, and computer-assisted-instruction (both of cime-co-time are couted as in the forefront of educational eave this aspect of learning virtually untouched, unless, used as a supplementary cool at the hands of a teacher. A \(f\) our chesia, chen, is chat the teacher is uniquely importanc. llowing destription of four levels of ceaching mathematics fics oments into a brosder scheme.
bject maceer is preaenced, in logical form (Definition, Theorem, mples are worked out, problems are assigned and solucions

259: 11
ds in leval I , but enriched by the addition of backgrous (ibicgrapitical and historical material included), mathamat and intatconnecticns wich ocher topics and subjects.

Lavel III
As in level \(I I\), but in addicion the students are brou piccure as participants in the mathematical activity. (The fairly obvious - Socracic and similar approaches, the use of exploratory assignments, etc.)

\section*{Level IV}

As in Level III, but, in addicion, the students are con fully as persons, and the emotive aspects of the classroom en are caken inco accounc as part of the process of learning ma

The Dualistic View
Prepared For
roject MATCH Conference (Davidson College)
6/19/85
By Dorothy Buerk
Ithaca College

Look more olosely at the boliets of those holding a Perry 2 view jal knowledge. Students holding this vieu will have a number of ; boliofs:

25wors are known by an authority for all mathematical questions. - no dosolved problems, and no multiple answers. Right answers ned On, not created by the authority.

3 ope right mathod to attain the right answar and while students asked to find it for themsolves, they know they are being asked HE method to find THE answer.
ics is learned by memorization and hard wark and by doing avery that is assignad, while rollowing literally each instruction a teacher (or the textbook) gives. We know how much practice d.
aither good at mathematics or bad at mathematica. Is you are it you will catoh on very quiakly. Otherwise you will not. In contrast to the notion that one oan come to undarstand over
not act on a probiem and one does not bring ona's experience to em. Ona brings the mathods that have been taught for similas Even the authorities learn this way.
lent's role is to colleot faots, not aot on them, but to store they are recolved. Ope joes not use one'sintuition.
- no gradations of truth - \(n o\) gray aroas.
cority (teacher, textbook, eto.) is responsible when a student ouledge.
education isn't ceicessary, sinoe it mon't do me any good on my

To appear: Journal of Education Fall 1985, 16

\author{
Strategies to Enhance Learning By Dorothy Buerk \\ Irhaca College
}
- Provide time to experience and elarify a problem (s rocusing on solution. Lat each person think about the anyone spaaks. Respond to questions about interprat This would inolude providing background for application student's rield. Focus on resolution only arter each problem (question) olearly.
- Inolude the historical perspeotive to help students beo person-mado quality of mathematics. Concepts as milmp negative aumbers were controversial and adopted with and yet students are expected to accept them without que
- Acknowledge and ancourage alternative methods approximation, guessing, estimation, partial solutions, 1 ntuition.
- Ansuar quoeitions wita questions that both olarify questions and that help the students realize their 0 problem solvfis and problem posars.
- Encourago sfiudents to share ideas, partial solutions interpratations of probleas with each other. Establish enoourages collaboration and the poolling of ideas to and/or san questions. Sharing authority in the clasaroc to the improvement of student 1 earning.
- Encourage the asking of new questions and create an both teacher and student are cree to Honder out lourt. sea their teachers asking, thinking, puzzilng, und coade
in class.
- Hake concerted atteenpts to avoid absolute language.
- Sat as a goal the development of each student's internal of fionfidenoe, and of control over the matarial. He rizize that mathematios oan be learnod by thinding memoriziag.
- Offar opportunitios for atudents to raflect on papar ab and feelings about mathematios. often after aoknowl roolings and reaotions a student oan mora on as it burden. Writing out onol a theugats often brings a deeper a new insight and with these como a naw sense of confldanc
- Don't rush closure. It is important to oontinue to think a problem, an idea, a question, and oven a possible ansue leave rosolution until the next or an even later class.

Our Expectations of our Students
Prepared For
roject MATCH Conference (Davidson College) 6/19/85

By Dorothy Buerk
Ithaca College
ar in talking with oollege mathematios faoulty about thair of that \(r\) students, \(I\) have conoluded that mathematics students to bo:
al and able to think quantitativoly and doduatively.
do proofs, a akill which requiros bringing togothor disparate knowlodge and soal ng the situation rron savaral parspeotives. in both "top down" and sbotton ups wodes is often peoessary to a proof.
soe the relovance of applioations the theory and theory to ions and, in addition, to understand the conmootions betwean
use problea solving heuriatics to approank non-traditional and to have the pationos to try out several approaohes - to a a dircioult problea.
realize that one's intultions are icportant and need to be id; that these intuitions oan be misleacing aud naed to be tested a theory or with evidenon.
learn on thair oun and from onob other; hare the intornal sansa sasing meoessary to do that.
make ramsonod grasses, conjeoturos, and to estimate results in sass of imulry.
ask good questions - eapeoially new ones (problem posing).
ful of the poiser of mathematios, but atill willing to experiment, zut ideas that may not work.
urite good dofinitions and to use them - to pull out relevant bion and to be coaplote.

PEoposal for 1984 Wofking Geoup on getings and

The 1985 Working Group on Eetinge and Mathemat oonoupt analysis to identitythe meaning. cole. woskings ot atioot tn mathematice ingtcuotion: propose to fusthes develop the anatysis of how afif



Hhide most reenasch in mathematics education EOIVing has looused on developing intormation-proc
 coogntiton that alicotivedimenstons acetntegra gtimulatithe cogntitve. Enotions and beltel Eyst

 (1985) usgee oarelul atcentiontothetanguage as Ingtivotion and gayg we badiy nead oomprehengton at gtudies of aifeot in mathamatios ciaseas. In
 futuse ceseacoh and polioy, Good (ifiq) emphactect -xamine sygtematioally howtaacher beltat syeteme
 b-arning.

The tmmediate deeoriptorg ot attectace the
 Molaod (i9ti) has celated to mathamatios pro Mandiec theory that emotion ceutis when an planned behavios is tntergupted. Mandies'g theosy may need to be espanded to tnotude emotionseuon retiel and Ani Hal Eucekal described by partiotpan Working Gfoup. Emotion also de eoked by unconsoio ot present aotivity with past ovents. Reoaliol of


\footnotetext{
A cognitive interpretation ol aliootive tnoluda the ingluenoe of beliel and value gytame.
 Perty (1970) ae ficst model ot how student beliel tasningaceralatad. Workot Rogamond (1984), Bu Coper (1982) will demonstrate the celevanoe of pest -paolitomathematios oousfes.
}

iances. "Cogntitve Change in Adult Women Encolled inatics Ruviaw." Presentation tor Spectal Interistfathamatics Education and Research on Women at the

Frances. Listening to givdenes in the cornell
Suppport Cgnter. Dootoral Dissertition, Cornalt
1901.
Alan \(H\). "Motacognitiva and Eptstomolratcal tssuas in
    Understanding." in Teaghing.... Learning
Problam Salyina. Mulbiele fegears: Pergoectives.
Trer. Editor. Lawrence Erlbaum Assocletas. 1985.
© . A Red Book for Oyern' y. Departmont of Machomaticy
=s. Quen'z Univerisiy. Kingston. Ontarlo Kil JNo.
r. Exploratory Problem Solving in the Classroom.
e is happy to have anyone write for copies of these
Problem Solving book contains 6 problems he used
2 and 13 (good students) plus references and

\section*{BY: PETER TAYLOR}

\section*{Ion Unique?}
an exercise in cooperative theorem discovery, formulation hat may not be clear from che following review of the session considerable time was spent playing with the formulation and current result to make it satisfactory to me and to the
\(c\) was the uniqueness of factorization of natural numbers. I viewing the notion of prime number and ensuring everyone was the proceas by which a prime factorizacion is obrained. I bout the amateur Canadian mathematician J.P. \(0^{\circ}\) Reilly hose hobby for many years was playing with large primes. In vered by chance that if the multiplied the primes
\[
\begin{aligned}
& P_{0}=2648552497 \\
& q_{0}=9133228103
\end{aligned}
\]
resulting number \(n_{0}\) was divisible by 19. He realized at if he factored the quotient \(n_{0} / 19\) he would get a second of \(n\). This he did, obcaining
\(\sigma^{-} n_{0}=19.73 .223 .727 .1481 .2161 .33613\).
has been written as a product of primes in two differen:
primes in common. This was a revelation to \(0^{\prime}\) Reilly because t time generally supposed that prime factorizations were order); indeed this was known to be true for reasonably 0 - Reilly's discovery recelved some attention from 9, and for many years, \(n_{0}\) was the only number of chis cype \(d\) the following definicion is now scandard,

An \(0^{\circ}\) Reilly number is a number with at least two disjoint (no mon) prime factorizations.
the class for another example of a number with two not lsjoint factorizations. After a moment they agreed that e of \(n_{0}\) had this propercy. They formulated:
\(n\) is an \(0^{\circ}\) Reilly number, then for any \(k\), \(k n\) has 2 factorizations.
one asked about the converse.
n has two different prime factorizations, then \(n\) is, or of, an \(0^{\prime}\) Rellly number.
moments to find the simple proof of this, based on amon primes of the two factorizations.
oint, one or two students declared some confusion: is it
not the case that all numbers have only one factorization' 1 that while this was indeed the case for the numbers one met it life, it can evidenty(!) fail for large numbers. linded our session was to discover just hou widespread chis fallure migh young man, lan by name, was not satisfied. lie insisted that divide either \(p_{0}\) or \(q_{0}\). That cannot be, 1 replied, chey prime. Someone had a calculator whicl took 10 digits and ver: indeed was not a divisor of \(P_{0}\) or \(q_{0}\). The yourli became angry. (I knew him to be one of the brighter and more active the group.) \(0^{\circ}\) Reilly musc have made a mistake; 19 cannot di \(\mathrm{n}_{0}\) - I patiently explained that although I had not cliecked such an error would surely have been nocised by now. He pers was sure that factorization was unique. How do you know, I a: could not say. lis fellows were embarrassed for him and askec down. lle did but the was upset.

Someone asked whecher all \(0^{-}\)Rellly numbers were as big as chere any smaller ones? I answered chat alchough ochers have chey are all bigger chan \(n_{0}\). Indeed an American mathematicia used a computer in 1952 to verify that all numbers less than unique factorization; \(n_{0}\) is the smallest \(0^{\circ}\) Rellly number.

Of course, i continued, it is not pleasant to have number unique factorization falls, and it is important to try to unde it is about these numbers which gives them this property. The theorems cell us chat to understand such numbers, it is enougt understand \(0^{-}\)keilly numbers. The cask \(I\) am proposing is to \(f i\) cheorems about \(0^{-}\)Reilly numbers, which elucidace their propert

To start them off, I suggested
Theoren 3, an \(0^{-}\)Reilly number cannot be even.
We spent some time finding and being careful about the pr knew that this was to serve as a model for other proofs to com seemed natural to scarc by concradiction. Suppose \(n\) is an number. Since \(n\) is even it has a factorization which contaln since it has two disjoint factorizations, it must have one tha concain 2. Thus \(n=p_{1} \cdots p_{k}\) where the \(p_{1}\) are odd. But the odd numbers is odd. So \(n\) is odd. Contradiction. Accually, carefully at chis proof, you will notice that it does not real (should nor?) proceed by contradiction, but can be done more directly. 1 will write subsequent proofs in this direct mode, ones produced in class were always by contradiction.

I asked for another cheorem of chis nature. The one I go Theorem 4. an 0 Reilly number cannot end in 5.

The proof proceeds as above. An \(0^{-}\)kellly number \(n\) must factorization that does not contain 5. The primes in this fac
in 5 (or they wouldn't be prime). So \(n\) is the product of ch don't end in 5 , and so can't end in 5 either.
oof hinges on the fact that the product of two numbers whit cll \(n 5 \operatorname{can}^{\prime} t\) and in 5 , and I asked how chey could be sure of chis. d that one just had to check the possibilicies. The key point ciplcacion has the property chat if you know the last digit of , then you know the last digit of cheir product. So you draw digit" multiplication table for numbars nut ending in 5.
pointed out that, because a number ending in 5 is odd, the only be constructed for the odd last digits \(1,3,7\) and 9.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & 1 & 3 & 7 & 9 \\
\hline & 1 & 1 & 3 & 7 & 9 \\
\hline t & 3 & 3 & 9 & 1 & 7 \\
\hline Irst & 7 & 7 & 1 & 9 & 3 \\
\hline er & 9 & 9 & 7 & 3 & 1 \\
\hline
\end{tabular}
d for more theorems. Someone put forward that an \(0^{-}\)Rellly d not be prime and I called this Theorem 5. I asked for a onging to the same family as the previous two. It was remarked tate chat \(0^{-}\)Reilly numbers are not divisible by 2 or 5 . What small primes?

An \(0^{-}\)Reilly number 18 noc a multiple of 3.
the class some time to think about chis. Can they do for they did for 2 and 5 ? It was realized that 2 and 5 worked out \(y\) are the factors of 10 which is the base of our number scheme, redients of our proof were licrle facts about endings of chis base. The requirad results were not avallable for 3.
t work in based 33 Let's try. The proof should begin as \(O^{-}\)Reilly number \(n\) muts have a factorization which does not If we writs the pripes * this factorization in base 3, then will end inzero. iu. uess) their product cannot end in is not divisible 0 ? ? that seems to do it.
d the fact that in base - , the product of numbers not ending in and In zero. Is chis crue? Everyone said it was. Are you ked. After a moment, it was decided that you simply had to ast digit table.


Base 3
Last digit table for product of two numbers not ending in zero

Since no zeros appear, the product of two llumbers not ending 3) cannot end In zero.

We appeated to have an foreresting "machitue". What's ne It was suggested we should try 7 next. But the young man, La some trouble with earlier, who had been sitcling scoullag for while, sald qulety, let's try 19.

Theorem 7. An 0"keilly number is not a multiple ur ly.
Of course, I hastily explained to the class, we know thi be Ealse. But in trying the above approach on it, we may, in find the proof, learn something about why 19 is different froo 5. So off we went.

An \(0^{-}\)Rellly number must have ar least one factorization not contain 19. Think of these prime factors in base 19. Nor end in zero, so the possible endings are \(1,2,3, \ldots, 17,18\) treat the numbers \(10,11, \ldots, 18\) as single "digitsi". \({ }^{\prime}\) Can t two such numbers end in zero? I asked the class.

Someone said no, of course not, but someone else argued think of the base 19 representation of \(P_{0}\) and \(q_{0}\) above. II end in "digits" berween 1 and 18 . But their product \(n_{0}\) must zero. Make up the cable, someone said. I sketched out an 18, It's a bly table, I sald.

Lan had borrowed the 10 place calculator and was calculat final "digits" base 19 of \(P_{0}\) and \(\mathrm{F}_{0}\). He did chis by divi 19 and taking the remainder. He got 17 and 18 respectively. multiplied them cogether and filled in that square of the tabl The class was silent for a moment. I wonder what that means, means \(0^{\circ}\) Reilly was wrong, suid lan immedlately, and there was silence.

I think what it means, \(I\) said after a moment, is that \(I V\) one or both of these numbers \(P_{0}\) or \(q_{0}\). \(I^{-m}\) surry, they In my notes. Ian shook his head In dismay. Having tasced blo not about to be put off. Fill in the table, he said; you won zero. Itns a blg rable, I replied again.
- Okay, I said, after a moment, suppose we fill in the tabl we get no zero. What have we got? He know \(0^{\prime}\) Rellly's example came the reply. No \(0^{-}\)Reilly number is divisible by 19. Right where do we go from there? Do we do the same thing for orher far can we get just by filling in larger and larger tables? \(C\) any way of arguing directly that the table couldnt have a zer actually filling it in? Such an approach would be very poserf it might extend co a large family of primes. Suppose there's the table. Can you see anything wrong with that?

This was a large plece of direction \(I\) had given them, and
for auhile. llappily it way Ian who found the argument. It :o restore his equilibrium.
lers is a zero in the base 19 table, say in the ( \(h, k\) ) position, \(h, k \leq 18\), than \(h k=198\) for some 6 . Since \(h\) and \(k\) are 19, This gives us two different factorizations for the suna ance gives us a new \(0^{-}\)Reilly numbar (posaibly after cancelifing ecors). Thia new number ia certainly smaller than \(n_{0}\), and ts the fact that \(n_{0}\) was the amallest.
clage kas respectfully silent. Notice what's happened, ifald. illing in the base 19 cable, we argued that it couldn \({ }^{-t}\) hava a \(t\) we used a piece of information we hadn'c used before: tite \(y\) of \(n_{0}\). How generally can you make this crick worki
yone felt game to try to tackle:

\section*{There ars no \(0^{-}\)keilly numbers.}
ook a bit of crial and error to get the proof right. It turns to generalize the \(n_{0}\) argument there are really two important s: that \(n_{0}\) be the 8 mallest \(0^{\prime}\) Reilly number and that 19 be the prime factor of \(\boldsymbol{n}_{0}\).

Theoren 8. Supposing the theorem Ealse, let \(n\) bei tire buallest number and let \(p\) be the amalleat prime factor of \(n\). Now \(n\) a prime factorization that doesn't contain \(p\), say \(n=p_{1} \ldots p_{\text {o }}\) \(p_{1}>p\). Replace each \(p_{i}\) by ica final "digit" \(\mathrm{F}_{\mathrm{f}}\). in base at \(t=r_{1} \ldots r_{m}\). Since \(n\) is divisible by \(p\). che last f \(t\) (which is the same as the last "digit" of \(n\) ) is zero (base :- pk. This gives us two factorizations of \(t\), which, after E common primes, gives us a new \(0^{-}\)Reilly number less than \(n_{0}\) Ich \(\left.r_{1}<P_{1}\right) \cdot\) Concradiction.
the end, some of the clasa were a bi'c bewildared by what had been d. I pointed out that unique factorization was indeed a property tegers, and chat chat was in fact what Theorem 8 stated. What we iced, in our explorations, was quite a reasonable proof of the actorization result. Had anyone, I asked, seen a proof of the actorization theorem before? One or two thought they had, but ant gure.

I have given this exercise to four different groupa: high achool , high school math teachers, universicy math seniors, and ty math educators. In all groups there was some initial confusion appearance of an example which appeared co concradict a firmly lef. But if the example was properly dressed up with the right al footnotes, I found ay audience on the whole quite willing to their disbelief" and enter actively into a search for theorems. numbers \(P_{0}\) and \(q_{0}\) are chosen with care. I don't have any O belleve they are prima, but they have no factors \(\leq 61\). If you
135
multiply them out with a 10 digit hand caleulator you get which is also what you gat if you multiply out the "small' of \(n_{0}\). Also if you do a "hat 3 digit" analyais of the factorizations you get 391 for the product of both sides. factorizations are the same mod 1000.

Tha unique factorization result is usually (casually) high schnol, and is proved in a first or second algebra co univeraity. |Navartheless I had no trouble selling my exa univeraity studenta.] The uaual proof uses the Euclidean Thare is a atandard proof similar in spirit to our "diaco Theorem 8, which Nachan Jacobsen |Basic Algebra I, Freemar atcributes co Zermelo, II am grateful co John Poland for It goes as follows: let \(n\) be the amallest number with th factorizationa
\[
\begin{gathered}
p_{1} \cdots p_{m}=n=q_{1} \cdots q_{k} \\
\text { and suppose } p_{1}>q_{1} \cdot \text { Then } \\
\left(p_{1}-q_{1}\right)\left(p_{2} \ldots p_{m}\right) \cdot=q_{1}\left(q_{2} \ldots q_{k}-p_{2} \ldots p_{m}\right)
\end{gathered}
\]

By completing the factorization of both sides we get two \(p\) factorizations of a number smaller chan \(n\). one of whict the other of which does not (since \(q_{1}\) cannot divide \(p_{1}-q\)
divide \(p_{1}\) ).

Peter D. Taylor Dept. of Mathematics Queen's University Kingston, Ontario K7L. 3N6
fitre arrogant poür une conference si,d'une part,on tradu "fallacies" par "faussmtes" et si.d'autre part, an imagine que invective ses auditeurs. Il perd cepeidiant son impertinence s le sens d'illusion puiscisil se transforme en lapalissade. Qu oserait affirmer que l'on peut aller "quelque part" dans le do tissage des mathematiques en se berçant d'illusions et d'illus ques au surplus. Mais ceete lapalissade n'en est pas vraiment a pas le caractêre premier, soit l'evidence liee a l'univocité connote. Pourtant, pour ceux d'entre nous qui ont reflechi a cer de l'apprentissage des sciences. elle a acquis un sens êvident graduellement au jour par des travaux qui forment un veritable cherche que l'on reconnait dans la littérature sous les etique tions pre-scientifiques, conceptions ou representations spontar tre perḍ alors definitivement toute insolence ou pretention pui l'apprentissage des sciences et ne s'adresse donc pas, tout au aux didacticiens des mathematiques. Mais nos travaux peuvent-i certaine utilite?

C'est la question qui a oriente ma reflexion et je me prop succinctement avec vous des sujets suivants:
1) Quelques exemples de representations spontanees.
2) M. Bachelard, ses obstacles et son profil epistémologic
3) \(L_{a}\) droite, le point. le hasard.

\section*{1) Queloues exerples de peprésentations spontanees: La chaleur, le mouvement, etc.}

Lorsqu'on demande a des enfants d'une dizaine d'annees d'e l'excremite \(A d^{\prime}\) une tige de métal devient chaude alors que la s est située a l'extrémite \(B\) de celle-ci, on ne les prend pas au fournissent spontanément des explications. Celles-ci, bien que
eci en commun: il y a quelque chose qui se deplace du point \(B\) au qui au demeurant est tout d fait logique. Mais qu'elle est la nature e chose qui se deplace ainsi? Evidemment, c'est de la chaleur et ne oeut rien reprocher a l'explication. Si on poursuit lequestion'a leur demander ce que c'est la chaleur, on decouvre que pour eux, il substance plus ou moins volatile,qu'ils comparent a l'air, a la n fluide quelconque. Ces explications ne correspondent qui forment le champ de connaissance de la science moderne, bien que, s cas, elles presentent des similarites etonnantes avec des théories nt reonnnues (1) par les scientifiques, notamment la theorie du calo-

Cependant, ces explications enfantines,
e verrons ci-aprês, font obstacle a l'apprentissage des sciences et, a ce aient atre prises en consideration dans l'élaboration de stratégies
cation du mouvement fournie par des eleaves d'une dizaine d'années autre exemple de représentation spontanee. Ceux-ci, a l'instar ne peuvent concevoir qu'un objet puisse se mouvoir sans on d'une force qui non seulement initie le mouvement mais le maintre part, sf la vitesse d'un objẹt est constante, c'est que nẹcesforce agissante est constante, et plus celle-ci est grande, plus la proportionnellement grande. Dans cette optique, un objet qui se ande vitesse doit necessairement être mu par une grande force.
(2) utilise l'expression "children's science" pour designer es explications que les enfants'construisent spontanément pour renas phénomènes avec lesquels ils interagissent, avant toute éducation formelle, mais egalement pour souligner que ces explications forment conceptuelle dont on doit tenir compte en pedagogie des sciences, parce qu'elle permet aux enfants de donner un sens a leurs ob-」otidiennes. Or, jusqu'a tout récemment, on a négligé de le faire, I suffisait de montrer la bonne solution pour que les elėves changent ations. Les resultats de la recherche sont clairs \({ }^{(2)}\), les elêves t pas leurs explications premières et les reutilisent très volontiers ontexte du problème qui leur est posé diffère de celui des problèmes apitre dans un livre; ce qui d'ailleurs ne les empēche pas de réussir Mais que devient la connaissance scolaire quelque temps aprês les
études? N'ayant pas été vraiment assimilé, elle est reléguée lentement inais sürement se transforme en vague souvenir - Ah: le principe d'Archimède - l'eau qui monte dans la baignoire... vraiment compris.

Le spectre des raisons quil peuvent ētre invoquees pour ex nos enseignements respectifs \({ }^{(3)}\) est varie: formation des matt tique, stratégies pedagogiques, nature des disciplines, develos des élẽves, Sont autant de facteurs a examiner afin d'éclairer toutes ses dimensions. Or, parmi ceux-ci, je m'attarderai a la gique intrinsèque du processus de la transformation de la conna considère du point de vue historique ou du point de vue de l'ap víduel, ce qui me pérmettra de spécifier en quoi les représenta des élèves constituent des obstacles a leur apprentissage des s
2) Monsieur Bachelard, ses obstacles, son profil epistêmologique

Il est étonnant de constater que la publication du petit Kuhn (4), La Structure des Révolutions Scientifiques, ait provo chez les intellectuels de toutes les disciplines, alors que l'o d'epistémologie historique de Gaston Bachelard continue a ētre Oès ses premières publications \({ }^{(5)}\), ce dernier, en interrogeant 1 de la relativite et de latheorie quantique, posait les jalons d' qui, \({ }^{\text {a }}\) mon avis, est plus riche d'enseignement que l'oeuvre de an regard de la compréhension de la nature du savoir scientifiq formation, mais egalement du point de vue pédagogique, car s'il mologue, Gaston 8achelard a d'abord ete professeur de sciences. pas s'etonner de trouver tout au long de l'oeuvre de Bachelard pour l'enseignement scientifique; n'ecrivait-il pas des les ann
"Les professeurs de sciences imaginent que ' \(\ell\) 'esprit conmen une leçon, qu'on peut toujours refaire une culture nonchil redoublant une classe, qu' on peut baire comprendre une dem tion en la repetant poist pour point." (6)

Il ne saurait eatre question d'épuiser en quelques pages un che; je me contenterai donc d'évoquer quelques-uns des concepts cét auteur, qui permettent, a mon avis, de saisir en quoi les spontanees constituent des obstacles a l'apprentissage.
helard \({ }^{(7)}\). seule une philosophie dispersee des sciences peut rendre transformation historique du savoir scientifique, et c'est.a partir de masse qu'il illustre cette idée. Il affirme que l'on peut disstades dans la transformation de cette notion correspondant a rants philosophiques, c'est-a-dire: le realisme naif, le realismerationalisme, le rationalisme dialectique et le rationalisme complet. ade, la masse est conçue intuitivenent comme une "appreciation corme gourmande de la realite \({ }^{\text {" }}{ }^{(8)}\); au deuxième stade, la masse est iquement par l'opération de la balance et alors: "Peser c'est penser. peser" (9). Ce \(n^{\prime}\) est qu'au troisiène stade que la notion prendra l'on peut parler ainsi, et sera rationnellement conçue comme s de notions et non plus seulement come un elément primitif d'une mediate et directe." (10), et definie comme le rapport de deux s, la force et l'acceleration. Cette belle assurance rationaliste u moment de la complexification de la notion de masse qui devient vitesse de l'objet en plus d'être transformable en énergie. Enfin, re et a la logique theorique et aux exigences empiriques, il a ete accepter l'idé d'une masse negative.
iption de ces stades ne nous informe cependant pas quant au mecaable de cette transformation, et c'est pourquoi Bachelard a mis au ept de rupture épistémologique. Par exemple, le passage de la masse massa relative suppose l'abandon de certaines prémisses épistemoloelles d'espace ẹt de temps absolu, et d'en accepter d'autres dont itesse limite. Il y á donic une rupture qui rend ces notions incomce qui ne signifie pas pour autant que celles-ci ne soient pas ertains domaines spécifiques. D'une façon similaire, la theorie permet de définir en science la notion de chaleur exige e de considerer la chaleur corme une substance pour adopter le ènergérique, beaucoup plus abstrait, puisque la chaleur est alors conscus: ie cinétique moyenne des atomes ou moléculesi,telle que donnée par \(=\frac{1}{2} \mathrm{mv}^{2}\). Or, il s'agit d'une veritable rupture dans la mesure oũ aire de nier les impressions sensorielles a partir desquelles, tout on construit une certaine representation de. la chaleur, sans tre part, l'elimination de la notion de froid, qui \(n\) 'adaucun sens xte des theories scientifiques. De méme, l'enfant doit nier les ensorielles premières, qui le conduisent logiquement a croire au et ànier qu'un objet puisse.se déplacer
sans l'action d'une force, pour accéder a la compréhension du pr C'est dans ce sens qu'il faut saisir le mot de Bachelard lorsqu'
"en fait, on connait contre une connaissance anterieure, er des connaissances mal faites, en surmontant ce qui, dans \(\ell\) même, fait obstacle à la spiritualisation." (11).
d'oũ la notion d'obstacle épistémologque qui meriterait à elle commentaire. Je rappelle seulement que ces transformations de 1 intrinsèque a l'apprentissage des elẻves sont l'équivalent d'une relle. Le rôle du pêdagogue doit alors s'articuler aux exigence formations et on conprendra qu'll est alors nettement insuffisan version officielle des sciences, même si la presentation est log

\section*{3) Le point, la droite}

Les notions de l'épistemologie bachelardienne nous ont aide en quoi les représentations spontanées des eleeves constituent de leur apprentissage des sciences. En effet, elles nous revèlent transformation de ces connaissances exige la remise en question ment implicites qui forment la structure de base de la vision du laquelle les elèves règlent, avec un certain bonheur, leurs inte vers matériel. Il est dès lors illusoire de penser que ces char s'opereront au cours de quelques leçons bien faites. L'apprent matiques pose-t-il des problèmes similaires?

Je ne me risquerais pas a affirmer que l'on retrouve exacte problèmes au niveau de cet apprentissage, compte tenu de la préc ture mathematique et ce,tant au plan des notions elles-memes que épistémologique. Cependant, il me semble qu'un certain nombre c geometrie euclédienne (la seule que je connaisse) presente des similaires a celles que j'al évoquees ci-avant, au plan de leur des êlèves.

Pour ces derniers, corme pour la plupart des gens, il n'y a de distinction entre la ligne et la droite. Celles-ci correspor physique obse:rvable qui.manifestement.a une longueur et une épa quant a lui, s'il est minuscule, \(n^{\prime}\) est quand mēme pas infinimen la deva,h leurs yeux et bien visible. Et il est tout a fait con eux, un point qui se déplace dans l'espace engendre une ligne,
ace. Mais on sait que les definitions mathematiques du paint et da correspondent pas a ces representations sensuelles. Il est fort r les elè̀ves de s'en détacher et de concevoir un noint sans dimension, a l'intersection de deux segments de droites qui n'ont qu'une lond'épaisseur. Or, la comprehension des concepts de la géometrie euessite un detachement par rapport a ces représentations concrètes r d'univers abstrait des constructions geomêtriques. Il s'agit ia saut qualitatif sans lequel on imagine mal comment les individus acceunivers "etranges" des geometries à \(n\) dimensions où la reference au titue un vêritable obstacle epistêmologique.
it-il pas ainsi une kyrielle d'obstacles epistemologiques a identi--t avec de nombreux concepts mathematiques au sujet desquels les istruit spontanement des representations? Je pense,par exemple, aux ints: l'infini, le hasard, la relation et, pourquoi pas, le nombre? ar des obstacles a l'apprentissage est une chose, creer les stratígies our les surmonter en est une autre.
s pas certain que mes propos aient ete parfaitement clairs, ni tout a fait pertinents par rapport aux problèmes rencontres dans e des mathematiques. Intuitivement, je pense que les concepts de e bachelardienne ont un certain d-propos eu egard a vos preoccupaticiens des mathematiques. La discussion qui suivra permettra, je profondir ces questions.

\section*{Ceequir Whasautes
Trofesseent.}

143
hotes de réferemces
1. Je ne suppose pas ici que l'ontogenèse est une simple récapit phylogenèse, bien que,dans certains de leurs aspects,il y ait ments etonnants.
2. D:RIVER, Rosalind. The Pupil as Scientist?, 1983, Stony Strati University Press.
\(\therefore\) Voir notanment:
8ARRUK, Stella. L'Age du Capitaine, 1985, Paris, Editions du Science Ouverte.

DESAUTELS, Jacques. Ecole + Science \(=\) Echec, 1980, Québec, Qu Editeur.
4. KUHN, Thomas. La Structure des Revolutions Scientifiques, 198 Collection Champs.
5. BACHELARD, Gaston,. Le Mouvel Esprit Scientifique, 1983, Paris Presses Universitaires de France, l5e edition.
5. - AACliELARD, Gaston. La Formation de l'Esprit Scientifique, 197 brairie Philosophique J. Urin.
7. 8AChelard, Gaston. La Philosophie du Non, 1973, Paris, Presse: de France, 6e edition.
8. Idem, p. 22.
9. Idem, p. 26.
10. Idem, p. 27.
11. bachelard, Gaston, op. cit., 1975, p. 14.

\title{
SEX DHPFEHENCES IN THLE MATILEMATICS ACHIEVE OF EIGITII GIIADEIIS IN ONPARIO
}

\section*{NT CANADIAN RESEARCH}

\section*{ILA HANNA RIKA KUENDIGER OBERTA MURA}

In the pust two decades researchers have shown considerable interest in \(t\) between the sex and the mathematics achievement of children in the upper grad schools. Sume have exa mined sex differences by comparing total test scores (Bat \& Stanley, 1980, 1983; Maccoby \& Jacklin, 1974), while others have focused on students who unswered a particular item correctly (Armstrong, 1980; Fennema Wahlstrom \& McLean. 1984). In a recent study by S.P. Marshall (1983) the anal comparison of the kinds of errors made by male and female students

Some of the studies done to date purport to have established that lit age is difference in mathematical ability between the sexes, and that it is experially pr high-scoring exceptionally gifted students, with boys outnumbering xirls is io 1 1983), while others have argued the opposite: that very little differenrre exists, if difference is detected it favours boys only slightly (Fennema \& CarpenteI 1981 Internationa/ Review on Gender and Ifathemutics (Schildkamp-Kündiger. 1982 research carried out in nine countries, gender-related differences in achie vemen vary considerubly both within and among countries.

The purpose of this study is to issess the scope of sex•related differences ir achievement of Ontario Grade 8 students, making use of the pool of data collecte International Mathematics Study (SIMS).

Test Instruments and Data
For the SIMS study, a random sample of 130 schools was selected froma to schools after each school had been assigned to one of twenty-six strata bused on categories: (a) school size, (b) type of school (private, French. Einglish Cutholic. rural or urban, and (d) geographical region of the province. In Intario, virtuall olds are enrolled in either a private or a public school.

The present analysis does not use data for private schools (which are atten Grade 8 students). Since previous analyses (Mc Lean, Raphael \& Wahlstrom, 19 students in private schools had much higher rates of success, and since there we boys as girls in the private-school stratum, it was decided to delete these data-fr sample retained for this study consisted of all the Grade 8 students not attendin whom data were available for both the pretest and the posttest: 3523 in total, 17
had devaloped 180 ltams for Grude 8, udministered In flve forms: a Core form of 10 Rotated forms of 35 ltems each; for tochnical reasons alx ltems were not purt of the The 174 Ontario ltems covered fiva broad toples: Arlthmatic ( 58 itens), Algebru ( 31 try ( 42 ltems), Probablilty and Statistics ( 17 items), und Masurement (20 Items).
ants were administored both a pretest and a posttest. Each student respundod to the to one of the Rotated forms A, B, C, or D on each occusion. Each student was given the m at both the pratest and the postest, but not necessurily the same Rotuted form; the were administered randomly on both eccasions, ouch forin to one quarter of the class. As of this method, there are variations in number of respondents a mong the four Rotated between the two occaslons for the same Rotated form. In addition, the Core form yialds ision of rasults. since it has about four times as many respondents us a flotated form. arizes the pattern of responsen to each of these test forms.

Table 1
Number of Respondents by Sax und Test Form
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pretest} & \multicolumn{3}{|c|}{Posttest} \\
\hline Boys & Girls & Boys & & Girls \\
\hline 455 & 417 & 459 & & 417 \\
\hline 427 & 470 & 465 & - & 444 \\
\hline 447 & 426 & 433 & & 437 \\
\hline 444 & 437 & 416 & & 452 \\
\hline 1773 & 1750 & 1773 & & 1750 \\
\hline
\end{tabular}
number of respondents 3523.
wore ilva-ulternative muitiple choice (one corract response and four distractors). ise to each item was coded lnto one of three categories: correct, wrong, or item omitted. a, three parcent values (correct, wrong and omitted) wero calculated separately for boys with the student as the unit of analysis. (The percent correct of an item, for example, is ge of students who answered that item correctly.I Three mean parcant vulues ware then ole 2.

Table 2
Meun Percent Vulues (und Stundurd Deviatlons) per Cutegory of R by Sex and by Toplc


Note. Due to rounding arror the figures for Correct, Wrong und Omit may not ad

\section*{Results}

For euch topic the difference between boys and girls in the mean percent ol omitted responses was analysed using the paired t-test with the item as the unit addition, u Wilcoxon matched-pairs test was performed to obtain the z-statistic a probabllity as well us information on the number ofitems with positive or nagat botween boys and giris.

\section*{in Correct lluspangey}
in in Table 3 no atatisticully siunificunt difforaices ware found between lwys and sirls on n for thr ec of the tnpics (Arithmotic, Algobra, und Probubility and Stutistics). In In Meusurement, however, more boys gave correct responses an buth oecustans: in buth areas the difference of about 3 percent is statisticully significant ut the . OI levei.
retest as a whole, boys were more successful on 100 Items and girls on 60: buys and girls tin Geometry and in Measuremont, boys did better than girls on more thun twice us This puttern of results was very much the sumo for the posttest.

Table 3
Differences Between Boys and Giris in Mean Percent Values by Topic
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Pretest} & \multicolumn{3}{|c|}{Posttest} \\
\hline df & Correct & Wrong & Omit & Correct & Wrong & Omit \\
\hline 57 & 1.3 & -0.2 & .1.0* & 0.7 & 0.4 & -1.1 \({ }^{\circ}\) \\
\hline 30 & 1.1 & 1.3 & -2.3* & -0.5 & 1.8 & -1.3 \({ }^{\circ}\) \\
\hline 41 & \(3.0{ }^{\circ}\) & -0.7 & -2.2* & \(2.4{ }^{*}\) & . 0.6 & -1.7 \({ }^{\circ}\) \\
\hline 16 & 0.6 & 0.8 & \(-1.4{ }^{\circ}\) & 0.9 & 0.2 & \(-1.0{ }^{\circ}\) \\
\hline 25 & \(3.3{ }^{\circ}\) & -2.0 & -1.2 \({ }^{\circ}\) & \(3.2{ }^{*}\) & -1.8 & -1.2 \({ }^{\circ}\) \\
\hline
\end{tabular}
dive difference represents a higher mean percent for bays; a negative difference, in for girls.

\section*{in Wrong Responses}
were no statisticaily aignificant differances between boya and giris at the .01 level on any the two sexes gave wrong responses with similar frequency.
pretest as a whole more boys gava wrong responses on 84 items while more giris did so an ms the percent of wrong response was the same for both sexes. In Arithmetic, Geometry a boys and girls gave wrong responses on approximately the same number of items. In vever, the rate of wrong responses was higher for boys on 20 items, while for girls it was ; this pattern was reversed in Maasurament. with the girls giving more wrong responses and the boys on 9 . The posttest results were very similar to those of the pretest in terms of ion of wrong responses.

Differunces in Omilted llospungus
A.s shown in Thable 3, the differences betiveen the sexes were negatlve, indi parcent of omilted responses for girls was greater than that for boys on all the su pretest and tho posttest. Furtierinore, the 1 -test puirad comparisans showed tha between buys and gitls were statisticully significant at the 0 , lovel.

In both the protest and the pustest more girls than boys omitted responses was higher for the boys only on 17 items ( \(10 \%\) of the test), while it was higher for (70\% of the test). The Wilcoxon unulyses yielded 2 . statistics signilicant at the ul topics, Indicuting that this trend was consistent from topic to topic.

A detailed examinution ul the oinitted responses reveuled that the percenta omilting ltems on the pretest runged from 0 to 28 for giris and from 0 to 23 for boy 4.5 and 3.0, respoctively. Aithough there was a decrease in these values for both posttest (that is, fewer students omitted items), the gap between the sexes was mo postlest the range was 0 to \(2 i\) with a mediun of 3.0 for girls, while it was 0 to 17 wi boys.

\section*{Differences in Gaing}

The gains are based on the difference between the mean percent of correct topic on the posttest and on the pretest, for each group taken separately, and cou taken to represent the growth in mathematics achievement for the group. The r 4 would indicate that on average bays and girls improve at the same rate during no statistically significant differences (at the \(\mathbf{0 1}\) level) between the two groups i in mean percent ofcorrect responses by topic.

Girls showed greater gains on 93 ltems and boys on 63; giris and boys tied In Measurement giris had greater gains on approximately the same number of it Arithmetic, Algebra and Geornetry, taken togather, giris had greater gains than many items.

Table 4
Gains in Mean Percent Values by Sex and Topic
\begin{tabular}{lrr} 
& Bcys & Giris \\
& & \\
Arithmetic & 5.4 & 6.0 \\
Algebra & 9.5 & 11.1 \\
Geometry & 8.6 & 9.1 \\
Probablity \& & & 3.8 \\
Statistics & 4.1 & 7.6
\end{tabular}

Note. Differences between boys and giris not significant at the \(\mathbf{0 1}\) level.

\section*{Discussio!}
s of this study may be summarized as follows:
percent of correct responses in two of the inve topics iGeonetry and ent) was slightly higher for boys than for girls. These differences, though not e statistically significunt at the . Ol level.
differences between boys and girls in omitted responses. All the t-tests were at the . 01 level Girls had much higher omission rates on ull topics. On average on ratio of boys to girls was 2:3.
ion of the guins indicated that instrucinerin Grade 8 had about the same on girls as on boys.
e findings asjume educutional sipnificance wenn one bears in mind thut the boys and the same randomly selected schoo? in anprosiserately equal proportions and thus can atched on socio-economic level, on ar. \(-\boldsymbol{y}\) :nt of turmal training io mathematics, and on ng (ignoring possible differential treatmenter the two sexes in the part of teachers). hus be generalized to students attending public schools in Ontario. und any sex 1 must be attributed to factors other than socio.economic level, formal training, or ng.
vable that the boys had had a certain amount of informal training through out-of-class mally pursued by girls (following instructions for building models, reading charts and ike). Different informal training in mathematics could explain the differences in Jeometry and in Measurement in particular.
to McLean, Rlaphael and Wahlstrom (1983), Ontario teachers reported that only about etry items had been taught at all, either before or durlng Grade 8. This would lend the idea that out-of-class activities contributed to the disparities in achievement es. On the other hand, the other topic which showed differences between the gexes, ras among four topics in which mosit teachers reported covering a bout SO\% of the is on the basis of the information available it is not possible to determine with any her out-of-class activities had an effect on the differences between the sexes in asurement.
xes sonitimes cited for sex differences in mathemstical achievement, such as the mathematics as a male domain (Becker, 1982) or the prosumed social conditioning and ations for boys and girls (Fennema, 1978), might explain why more girls omitted did boys. On the basis of the Crade 8 SIMS data no attempt could be made to determine of these factors, or indeed of infotrial training.

\section*{References}

Armstrong, J. M. (1980). Achicvenent andparticipation of women in mathemutics: A (Report 10-MA-00). Denver: Education Commission of the States.
Backman, M. E. (1972). Putterns of mental abilities: Ethnic, socioeconomic, and sex d American Educationa/ Research Journal, 9, 1-12.
Becker, J. R. (1982). Gender and mathematics in the United States. In E. Schildkamp An internations/review ongender andmathematics (pp. 131-141). Columbus, OH Clearinghouse for Scienco, Mathematles and Environmental Ec'ucation.
Benbow, C. P., \& Stanley, J. C. (1980). Sexdifferences in mathematical ability: Fact o Science, 210, 1262-1264.
Benbow, C. P., \& Stunley, J. C. (1983). Sexdifferences in mathematical reasoaing aibil Scjanco, 222, 1029-1031.
Fennems, E. L. (1978). Sox related differences in mathematics achievament: Whe \({ }^{\prime}\) a a Jacobs (Ed.) Perspectives on women and mathematics. Columbus, OH: ERIC Clea Science, Mathematic:s and Environmental Education.
Fennema, E. L., \& Carpenter, T. P. (1981). Sex-related differences in mathematics. In
- (Ed.), Results from the Second Ifachematics Assessment of the . Vational.tssessme Educationa / Progress. Reston, VA: National Council of Teuchers of Mathematics.
Maccoby, E., \& Jacklin, C. (1974). The psychology ofser differences Stanford, CA: Fit University Press.
Marshall, S. P. (1983). Sex differences in mathematical errors: An analysis of distract Juurnalfor Hesessrch in .Ifathematics Educstion, 11, 325-336.
McLean, L., Raphuel, D.. \& Wahlstrom, M. (1983). The Second International Study of An overview of the Ontario grade 8 study. Orbit 67, /A3).
Raphael, D., Wahlstrom, M., \& McLean. L. (1984). Results from the Second Internatio Mathematics Study: Are boys better a\& math than girls? Crbit 70, 1A2).
Schildkamp-Kü ndiger, E. (Ed.). (1982). An internationa/review on gender and mathes Columbus, Olt: ERIC Clearinghouse for Science, Mathematics and Envirenmental




How nuch longer doef. de take
ior car a to go 50 km chan it
does for car \(A\) to go 50 ki lometres?
A Ih is an

B 1 n 30 nan
c : :

0 \(2 \mathrm{~h} \quad 30^{\circ} \mathrm{min}\)

E in ls aln

Wher is :he capacity of
a cubl: Eonisalner 10 cm by \(: \rho=\mathrm{by}: \mathrm{Ocx}\) :

A 1 L
b \(\quad 10 \mathrm{~L}\)

C \(\quad 100 \mathrm{~L}\)
- 1000 L

E 1000 cm

M How many pleces o . isch \(20^{\circ}\) plong. required to const
pipeline one kllo pipeline
lengeh?

15
a 50

C 500

D 5000

E 50,000


According to the seale : the length of ide AC of
rectangle ABCD (co che ractangle ABCD (co the
HEARESI CEMTIHETRE) la

A 3 cm
- 6 cm
c 1 cm

D 8 cm

E 9 cm

Figure 10

Figure 9
155

\section*{perceptions af pre-service student teachers}

ON MATHEMATICAL ACHIEVEMENT AND ON TEACHING MATHEMATICS. RESULTS OF A PILOT StUDY
ce of teacharg' expectations in the learning process has been wall racognized, since Rosenthal and blished thair book 'Pygmalion in the Classroom' in ittempts have been made to trace the channals by which ixpactations and students' achievament ara linked in particular, this question has become of interest in ocusing on sax-ralated differancas in students' achiavement and course-taking behavior.

10 for a moment a teachor has the following attituds: it as able as boys when it comes to mathematics and, their future profession thay ara not going to néad as boys do. According to this attitude the teacher ixpact the girls in his/her class to do vary wall cs.
several posaible ways in which this teachar's
might be communicated to the students. The teacher display thom whan commenting on the poor work of a r ha/she might consciously or unconsciously uso mora yoig.g., pralsing a girl vary much for correctly easy quastion, asking mostly boys to solvè really oblems, and attributing good mathematical achiavement a lot of affort and by boys to abilicy. .
is not only a subject that more or lass often gots - teachars, parents and students themselves but it is jeect that many poople perceive as very difficult to

Let us assume for a moment a primary teacher who sue passing high school math fairly wall. The teachar famala because most primary teachars are femala. high gehool she did not take any math courses at th leval.it was not until she entered the pre-sar training program that she had to deal with mathem According to har parsonal experiences with mathemati that it is a difficult subject to learn and that s good grades because she worked very hard at it. Her in relation to mathematics is low and she might aven that somehow man are the better nathematicians appeared to her during high sehool that those studen to have the least difficulty with mathematics and the most self-confident in daing it ware boys. Alth not necessarily get the best grades, the boys did need a lot of effort to grasp the main concepts.

During har time in preservice teacher training our teacher pays particular attention to learn how to mathematics,for, as she seas it, this is the mo subject she is going to teach. She likes to coll teaching ideas as possible. The more ready made \(t\) better. She wants to be priapared for all possible a she is going to use her entire stock when traching very hasitant about trying new things, in future \(y\) not give har students much scopa to bring math \(p\) encounter outside school into the classroom. Ther fear that she might not be able to solve unfamiliar

Of course the learning history of our teacher could different. Let us assume for a moment that she is teacher. She is ona of the faw famale high sehool have mathematics an a teachable subject. For har, was always an enjoyable adventure. She is proud of in this subject and found it easy to teach rig beginning of har carger as a teachar.

Her self-confidence in har math ability being wall e she is not afraid of challenging quastions from her the contrary sho appraciates them as they demonstr students are interested in math. She often uses the as starting points for math investigations, of whic does not know the rasults in advance.
 ut the mathomatical learning higtory of teachers ath at diffarent grada levalg, about the ralationship cif ory to their parceptions on taaching mathematics, and or actual traching. Moreovar, the same is true for entering a prouarvice program, that is for teachers to saems to be raasonable to assume that the learning -ongly influances cortain aspecte of taaching and that 1 investigating these variablen.
5 a pilot study was carriad out at the University of The atudy focuard - among other things - on answaring ing questionss
the personal laarning history in mathamatics of preIdant taachers?
ant are thay in teaching mathamatics?
ans do thay give when tha gtudents thay taught during asching did not make much prograss in mathamatics?
wers to the above stated quegtions depend on the sak of nt teachar and/or on the division he/she has chosen to

Procadura
or training program of the Univargity of Windsor is a program and includes threc divisions, these are the nior ( \(K-6\) ), the juniorfintermediate ( \(4-8\) ) and the telgenior (7-13) division. Students enrolled in the nior program have to taka the math oducation courge or thair division, while for studenta in the other math aducation in an optional courge . Students enrolled the junior/intarmadiate or the intermediate/sanior are grouped togather for the analysig of th.s results - as Jun/int/gentor diviston.

Ral gvant information was gathered via a questionna; The variable ilaarning history in mathem operationalized ag follows students were asked to a mathematical achi ovement during their schooldays and reasons to thair achievement. The questionnaire use the latter variable was developed by the author in another research study (s. Schildkamp-Kuendigar 1980

Moreover, the student teachers were asked to co achigvement in mathematics and their confidence in with that in other subjecta. Thay ware also asked ti related students'achiavament differences they hal schools. To evaluate the reasons the gtudent teach the pupils thay taught not makind satisfacory mathematics, a questionnaira developed for the Secon International Mathematics Study was used.

The questionnaire was answered by. students educational claseas after they had been out for th four practice teaching gessiong. Students answared or and anonymous basis.
Chi Square Tests were used to compare the responses groups of gtudents; e.g. mala and famale stude enrolled in the primary/junior division. In the graphs showing the results, arithmetic mean characterise tha distributions.

\section*{Results}

Qverall 111 student teachars, enralled in the division, enswered the questionnaira; 96 famale and tazachars.
The corrasponding numbers for the jun/int/senior di overall bl student teachars; 36 female and 25 male \(t\)

Will be digcusged for primary/junior gtudent taachero formation about thair laarning history in mathematics is in graph 1. As a group primary/junior teachers remembar th achiavament during their echooldays as avarage and unt for it by a lot of reasons. The internal tated arei math ability and learning effort; relevant reamons are \(:\) math is difficult, good or poor teacheris an and hesp by othars.
nt aax-diffarancas ( \(p<0.05\) ) within the group are one variable only, that \(i \equiv\) lack of help of others. This is not considared as vary relavant in genieral, but udent taacharg judgu it as oven less ralgant than mala
unior student taachers romamber tineir math achievement lase.good than their achievement in other school ( see grahp 2 ). This goes togather with thair of being comparatively lass good in teaching this
ncouraging that thay only gometimas encountared gaxchievament differmences in their pupils during practice Moraovar, the quastionnaira ravaalg that, if sakdiffarances had been obsarved, they did not show icular aubject like mathomatics.
d famale primary/junior toachers do not differ ntly as to the variables considered in graph 2.
displays the rassone teachers parceive as relevant when is thay taught during practice teaching did nok make ory progreas in mathamatics. Primary/junior atudent mention two rassons the aosti lack of ability of the d lack of motivation. Lack of gtudent ability is a reason for the teachers this is not his/her llity. Motivating to learn on the other hand is that falls in the duty of a teacher. female taachers diffur gignificantly in their evaluation ta' misuahavior and lack of motivation; femala teachers se reasons as more important as thair mala colleagues.
thare are very fow significant sex-ralated differances ale. and famale primary/junior gtudent teachers. This ia partly due to the fact that there are very few male in this sample. It seams as if teaching in the unior gradem will stay mainly a famale affair. Whather 1 e and female primary/junior student teachers can really upon au having the same charcteristics as to the considered hara has to be answered by subsequent

GRAPH 1

MATH ACHIEVEMENT DURING SCHOOLDAYS \(l_{\text {ABOVE }} \times 0\)
avera

\section*{CAUSAL ATTRIBUTION DF STUDENT TEACHE}

MATHEMATICAL ACHIEVEMENT

OWN MATH ABILITY
LACK OF MATH ABILITY
big learning effort
LACK OF EFFORT
GODD LUCK
ECEL.
MAT:S 1 F : \(A S Y\)
MATH \(\perp\) S RYFFICULT
GODD TEACHER'G
EXPLANATION
POOR TEACHER'S
EXPLANATION
HELP BY OTHERS
LACK OF HELP

fPPLICABLE

O PRIMARY/JUNIOR STUDENT TEACHERS, \(N=111\)
\(x\) UUN/INT/SENIOR STUPENT TEACHERS \(N=61\)
INDICATES SIGNIFICANT DIFFERENCES BETWEEN THESE TWI
+ (p < o.og, CHI sQuare test).
```

HEYEMENT IN MATHEMATICS }\mp@subsup{|}{\mathrm{ EETER }}{1}\times0<\mp@subsup{|}{\mathrm{ LESS GOOD}}{+
THAN IN OTHER SUBJECTS
ITEACH MATHEMATICS

```

```

THAN OTHER SUBJECTS
STUDENT'S LACK OF ABILITY
IUNIOR STUDENT TEACHERS, N=111
BENIDR STUDENT TEAL IERS, N = G1
SIGNIFICANT DIFFERENCES BETWEEN THESE TWO GROUPS
CHI SQUARE TEST).

```
\(O\) FRIMARY/JUNIOR STUDENT TEACHERS, \(N=111\)
\(x\) JUN/INT/SENIOR STUDENT TEACHERS. \(N=G 1\)
+ INDICATES SIGNIFICANT DIFFERENEES BETWEEN THESE TWD
( \(p\) < 0.05, CHI SQUARE TEST ).
history of jun/int/senior student teachers is quite rom that of the primary/junior group (g. graph 1). or atudent teachars ramember their achiavement during as above average. It is significantly higher than that ary/junior group. Morsovar, the jun/int/senior group - reasons for this achigvemant. Lack of ability, good tuck, difficulty of math and poor teacher explanation 1 to significantly less as causeg of achievemsiit. At th ia parceived as easiar.
sanior group remambers \(1 \pm 9\) math achigvament as about in other subjactss and judges its ability in ralation ject as average. For both variabies the differences jun/int/senior teachers and the primaryijunior , significant.
do not differ as to the axtent achievement differences and girls had been obgerved during practice teaching.
imm to indicate diffarences in the attribution pattern in/int/senior student taachars and primary/junior iachers in the direction that the jun/int/aianior ed fawar reasona to account for students not making progrega in mathematicg. Only for the reason time for math are tha differences significant on but there is a trend ( \(p\) ( 0.07 ) for the reasonsi ack of motivation, limited resources, and too many
two groups of student teachars geom to differ in icta congidarad in this reseach.
differences between mala and female primary/junior achers ware rares this is not the case for the or group. Although the whole group remembers its math. during schooldays as abowe average, this is even more the female teachers (p< 0.01 ). Moreovir famale valuate thair math ability and goor: \&meners" as more ralevant a reason for their actritubuant than tacherg ( \(p<0.05\) ) whergax lack of effort is lass a reason by femala teachers (p < 0.05 ).

Finally there is another rather unexpectad significant between male and female jun/int/senior student teacherg comes to sixplaining why their pupils did not make sa progress femala teachers more often perceive in proficiency on their part to be the reason. This is agtonishing as ,according to their learning mathematics, they should be uven more self-confident male teachers.

Summary

The results of this pilot study reveal considerable d E.stween student teachers in the primary/junior division in the funior/intermediate/senior division. Student \(t\) the latter division have a much more positive learning mathematics than the primary/junior group.
Of course, it can be arguad that the group of jun/ gtudent teachars considerad hare would not have taken courge, if they had not felt rather confident in this as they had a choice the primary/junior student teache have. The situation becomes more delicate, if this history is looked upon as having important impact on \(t\) of teaching. Afterall all these student teachers will get. a teaching postion after finishing the program. the primary/junicir student teachers will gtart teaching less confidence in their ability to teach this subject teach other subjectz.
It can be expected that - in doing the job - they will confident in teaching mathematicg. But the hypothesi easily be turned down that they might gain this confi following a rathar rigid teaching method that mini, challenge of unexpected quastions and problems.
Up to now the results of this pilot study indicate - a a trend - chat the primary/junior student teachers neie upon moris reasona than the other group to explain pupils fail to learn mathenatics. Further information a student teachers think to be important to make math tea effective is available and will be analysed in the near

diffaiancas for jun/int/senior studants. It geams ag studew teacherg only choose to teach mathematics if vary confident about thair competence in tha gubject. :ogether with a readineas to axplain failures in thair arning more often by pergonal ingufficient proficiency - \(\operatorname{if}\) male collaaguas. The quagtion ramaing open what -rima thege future famal teacharg are gaing to deliver anale students.
put ifx-related achievement differencess at school have ad tirnt girls tand to have lower self-estem in crieir math ability, aven when thay have the same as boys. It is worth invastigating if there is a the teacher level in so far as the perception of maching proficiancy comes into play.
R., Jacobson, L. 2 Pygmalion in the classroom. Naw York. -Kuandiger, F. 8 Laarnig tha concept of a function. Ins anhold at al. (eds.): Cognitiva Development in scienca atics. Leeds 19日0, p. 1日1-190.

Roberts Murs Universitó Laval

\section*{Mécanismes doctuslisotion de lo sous-réprésentation des femmes en mathém}

\section*{orésentotiond'unorojet encours}

Un sondage réalisí : : 198i sur l'élat de la recherche concernant les différem sexe en mathématique au Canéda, avalt indiqué qu"ì peu près dons tout le pays, la des filles aux cours do malhématique commence è décliner vers la fin du sece qu'aucune recherche n'avait citá effectuée pour tenter d'expliquer ce phénomàno ( \(M\)

Cette constatation m'o incitée a concovoir uns première étude exploratoiro Comme il ma semblait Importont d'ftudier le phénomène dans sa globalite, j collaboralion de collėgues avec des compétences en sociologie et en psychologie; et Meredith Kimball, ont ecceplé do se joindre à moi ot notro projel a obtenu une Conseil de recherches en sciences humoines du Canodo.

Au Québec, dans le secteur francophone, le phénomèno de la sous-représentati en mathématique s'amorce au passagè du secondaire au collégial (Cegep) -- c'es I lème à la 12 ème année. D'après les statistiques fournies par le Ministère de Québec, en 5òmo secondaire (dernière année de l'école secondaire), même al mothómaliqua ne sont pas obligatoires, depuis plusieurs années, les filles représ de le clientèle de ces cours. Au collégial par contre, à l'sutomne 1984, elles n'e plus que 42\%. Toujours d'après la Ministèra do l'Education, la réussile des fillas comme ou Cegep, est aussi bonne quo celle des qarçons, sinon meille ure.
aut en étent conscientes que les racines des cholx que les èlèves font en entrant au Cegep ramonter loin dans le passá, nous avons décidé d'aborder le problème en étudiant ce u moment de se formulation; c'est-id-dire vars la fín de la cinquième ennéa du secondaira. pramière phase de la cueillatte de données a eu lísu de févrior à mai 1983 dons trois de ses de mathématiquo de cinquième secondaire. Pendant cette période les èlèves faisaient, chéant, leur damanda d'edmission au Cegap. Les mêmes êlêves ont onsuito été contactê/e/s ou un an plus tard.

Ss savions que lo phénomène de la différenciation des choix scolaires selon le sexa était nplexe at nous avons choisi don brosser un tableau global, plutôt que d'en étudier plus il quelques aspects soulemont. Dens cetto porspectiva, nous avons opté pour l'omploi né d'une veriété de méthodes de cueillatto des donnécs: questionnaires aux èlèves, tlons en classas, antravuas avec las alèves at avec leurs ansaignant/o/s de mothémetiqua. 3 avons retenu un grand nombre de variobles. Parmi les principoles, on retrouve les s:
occupation at la scolerití des parents,
Ecert entre limaga do sol el l'image d"une pursonne de sciance,
valour intrinsèque at la volour utilitaire ettribuées à lo mothématique,
attitudo anvars la succis on mathámatiqua at en frongais,
confiance on ses copscités on mathémotiqua,
- cousas auxqualles les élàves attribuent leurs succès et échecs en mathématique et en ancals,
a prívisions da réussita an mathématique,
a aspirations scoleires et professionnelles,
- le présence do modèlesde rôles scientifiques dons le milieu de lëlève,
- las cours suivis et las notes obtenues,
- les motivations du choix scolaire telles qu'exprimées par les élèves,
- l'attituda du millou de l'aleve envers son choix scolaire,
- les interactions entre les êlèves et leur enseignent/e de mathématique,
- le perception que l'enseignant/o a du potentiol de ses élèves en mathèmatiqu intérêt pour cette matièro et de leur niveau de confiance,
- les prévisions de l'enseignant/o à l'égard de la réussite de ses élèves,
- les causes ouxqualles les enseignant/e/s attribuent les succès et les échecs d Dans la choix de ces variebles, nous nous sommes an partid inspirées du madil Eccles (1985) -- madèle qui ètoit déjà disponible avant le début de notre projat.

Toutes les variables ont éte anslysées en forction du sexe et du chotx scolatro choix scolaire o étódéfini à partir do lo demande d'edmission au Cegep faite dar printemps 1984; nous ovons oinsi. distingus les èlèves qui ont choisi ui scientifique do coux at celles qui ont choisi une outre orientation. Tel que prév groupe comprenait proportionnellement moins de filles que de garçons. Catte deff scoloire a le désavantage deélargir le champs d"étude de le mathématique aux scié nous o semblé plus fiable qu'une définition basée sur les intentions de sulvre mathématiquos cintridmées par les élèves, cer dens lo demande d'edmission l'élè progromme suquel il, ou elle, veut silnscrire sons préciser les cours particuli suivis.
do prísente ici saulament quelques résultats präliminaires à titro d'axemple personnes intéressées à se procurer la rapport final à la fin de 1985.
lonsamble, nous avons trouvo plus de differences reliees au choix scolaire que de 5 roliéss au sexe. Ainsi, l'écart entro l'imege que les 日́lèves ont d'eux-mêmes, ou emes, et l'imege qu'ils, ou elles, se font d'une personne de science est plus petit chez qui s'orientent vers les sciences que chez les autres. De même, le premier groupe une plus grande valeur intrinséque et utilitaire à la malhématique et possède plus de en sos capacités dans cette matière. Parmi ces quatro varíables, la dernière est la a donné lieu ò une différence entre filles et garçons, ces derniers manifestent un plus au de confiance.
iste toutefois quelques oxceptions. Par exemple, ò propos des causes auxquelles les tribuant laurs succès ot échecs en mathematique, nous avons irouvo des differances exe, msis non selon le choix scolaire: les filles attribuent très mejoritoirement leurs leurs efforts, tandis que les garçons sont parlages entre leurs efferts et leur habile le. ui est des explications de l'échec, la mejorita des filles comme des ņarçons fait appel au effort, meis qualques filies invaquant aussi lour manque d'habiletio ou la difficultio de la es mêrnes tendances se sont menifestées à propos des causes par lesquelles les t/e/s expliquent les succès et échecs de leurs ćlèves. Nous n'avons pas trouvé de - analogue entre filles et garçons dans leur perception des causes de guccés et d"ëcliec en
outre difference importante entre filles el garcons est apparue dons leurs propres iomploi of dans co qu'elles, ou ils, prévoient pour le conjoint, ou la conjointe, lorsque I les enfants: gerçons et filles s'accordent mejoritairement pour dire que ce seront ces -qui assumaront les responsabilities majeures au niveau des táches familiales et at leur emploi à l'extérieur au temps partiel ou même le suspendront complètement.

L'influence de ce facteur sur le choix scolaire'est liee à l'image des sciences cor particulièrement exigeant, où il est difficile de poursuivre des éludes ou une carr parliel, ou de les reprendro après une interruption.

Entin, un dernier exemple de difference entre filles et garçons touche leur com classe de mathémailque: nous avons observe que les garçons participaient be vocalement que les filles, en répondant ì \(75 \%\) des questions de l'ensaignant/e lors néteient pes adressies à un/e élève en particulier (les gerçons constituaient 4 echantillon). Avane d'avancer des hypothèse sur le rôle de ce facteur dans les choix faudrait cependant effecfuer des observalions pour savoir si ce comportement ne se aussi dans des classes où l'on abordo des disciplines non scientifiqucs.

\section*{Références.}

Eccles, J. (1985). Modal of students' mathemetics enrolliment decisions. Education Mathematics, 16:3, 311-314.

Mura. R. (1982). Gender and mathematics in Conafa. In E. Schildkamp-Xündig International Reviev of Cender and Mathematics, (pp. 32-43). ERIC Science, Mall Environmental Education Clearinghouse, The Chio Slale University, Columbus, Dhio.

Roberta Muro
Facultí des sciences de l'éducation Universilié Loval Québec, P.Q., GIK 7PA

\section*{LIST OF PARTICIPANTS 1985}

173

```

 Alexander, Dave
 16th Floor, Howat Block
 Queen's Park
 Toronto, Ont. M7N 1L2
 Bauersfeld, llelurich
 Fahrenheitweg 230
 D-4800 Bielefeld, H. Cermany
Bemmouna, Benyounès
DEp. de didactique
Faculte des sclences de l'éducation
Unfversita Laval, quebec GlK 7P4
Berggren, Tasoula
Mathematics and Statistics
Simon Fraser Univ., Burnaby, B.C. V5N 1S6
Blake, Rick
Bag Service 145333, Fac, of Educ.
Univ. of N. Brunswick, Fredericton, N.B. E3S 6E3
Bolsclair, Noëlange
Collège Hontmorency
Dép. de machématiques
4 7 5 Boul. de l'Avenir
Laval II7N 5ll9
Bolduc, Yvonne
5-2412 Jean-Durand
Ste-Foy, Québec GlV 4Kl
Brnconne-Mi choux, Almette
2396 Jeall-Durand %
Ste-Foy, Quëbec GlV 4J7
Buerk, Dorothy
Mathematles Dept
Itliaca College
Ithaca, N.Y. 14850 U.S.A.

```
Byers, Victor
Hath. Dept, Concordia Univ.
7141 Slierbrooke St. Hest
liontréal, Qué. Il40 lRG

Carun, Renée
1325 Bolabriand
St-Bruno-de-Moncarville
Que. JJV \(4 \mathrm{~K}_{6}\)
Clark, Jolın L.
Toronto Buard of Education
155 College St
Toronto, Ont. MST IHf
El Douazzaoui, llabilia
Dép, de didactique
Faculté des sciences de l'éducation
Université Laval, québec G1K 71'4
Erlwanger, Stanley 11 .
Mathematics Dept.. Concordia Univ.
7141 Slierbrooke St. Hest
Montréal, Qué. 114B1R6
Flewelling, A. Gary
Mathematics Consultint
Hellington County Board of Ed'N
500 Victorla Rd N.,
Guelph, Ont. NIE 6R2
Gaulln, Claude
Faculté des sciences. de \(1^{\prime}\) éducation
Universite Laval, Quéhec G1K 7P4
Gerber, llarvey
Hathematics Dept.
Simon Fraser Univ.
Burnaby, B.C. V5A 1S6
Girard, Jeanne-d'Arc
Université du Québec a Clilcouthal
555, Boul. Université
Clil couclail, luinbec (i7il 2Bl
Hanna, Cila
Dept. of Measarement Evaluation \& Cump. Applicaliuns
OISE, 252 Bloor St. IVest
Torbuto, OAt. MSS IVG

l.akramt I, Alıned
lifp. de didactique
Faculte des sciances de l'éducatlon Univeraite Laval, Québec Cilk 7lı
lavole, Paul
Collège de Slierbrooke
475, rue Pure
Sherbrooke, Québec .1111 5A17
l.emay, Ferinand

1308, Jeall Jequen
Ste-Foy, Quëboc CilW 3116
Lepage, Ernestine
6 e rallg ouest
St-Narcises
RImouski, Québer COK ISO
Lunkenbein, Dieter
1439 Rue Desjardins
Sherbrooke, Qué. JlJ 1G3
Hanuel, Peter \(H\).
Dept. of applied mathematics
University of Western Ontario
l.ondon, Ont. N6A 5B9

Huller, Eric
Dept. of mathematices
Brock University
St Catharinea
Oit. L.2S 3A1

Hura, Roberta
Dep. de didactique
Faculté des sciences de l'ëducation Unlversité laval, Québec GlK IP4

Poland, Jolin
Dept. of mathematica and fititlstics
Carleton Universtity
Ottawa, Oitt. Kis 5:G

171

Pollak, Henry
Dell Communt cations Researeh
435 South Street
Morristown, NJ 079 isd II.S.A.
Powell, Arthur
109 St. Marks Place
Brooklyn, N.Y., U.S.A. 11217
Proppe, llal
Dept. of Mathematics, Concordia Lalversity
7141 Sherbrooke St. West
Hontreal, QuEbec II4B 1 R6
Rhodes, Mary
Bishops University
Lennoxville, Québec

Rogers, Pat
Math Dept, York University
4700 Keele Street
North York, Ont: N3J 1P3
Rosamond, Fran
717 Jersey Court
San Diego, CA. U.S.A. 92109

Roy, Chislaln
Departement de mathématiques, statistlques et actuariat Universite Laval, Québec colk 714

Senteni, Alain
235 Villeneuve Onest
Montréal, Québec l|2T 2RB
Staal, Ralph \(\wedge\).
Dept. of Pure Mathematios
University of Haterloo
Haterloo, Ontario

1:2.

Tuytur, leder

Greco's lutversity
Klngetul. Ont. Ki7l. Mis
Vanberugghe, liernard
Dept. mathematitis
Université de Muncton
Noncton, N.B, E:JA 3:4
Verhille. Charles
Currlculum \& Instruction hiv.
University of Niew IIrungwidis
Fredericton, N.B.
Vervoort, \(G\).
lakehead University
Thilmaterbay, Ont. I'7B 5l:I
Whecler, Javid
Hath dept. Coneardia linlvarisity
7141 Sherbrooke St. Hest
Montréal. Québec II4B lRG
WIJllas, Edgar K.
Dept. Mathematles and Statlstles
Memorlal University
St. Jolu's, HFl.I), A1C SS7```


[^0]:    * 

[^1]:    * Dr. Pollak's lecture followed closely parts of the text of his paper "The interaction between mathematics and other school subjects", Volume 4, UNESCO. The appropriate parts of the text are reprinted here by permission of the author and UNESCO.

[^2]:    R. Pevelle, M. Hothacein and "Computar algobris: ${ }^{\text {n }}$ Scient. Anar., pp. 136-162 (Version française:

