
DOCUMENT RESUME

ED 275 316 IR 012 379

AUTHOR Fischer, Gwen Bredendieck
TITLE Computer Programming: A Formal Operational Task.
PUB DATE [86]
NOTE 16p.; Paper presented at the Annual Symposium of the

Piaget Society (16th, Philadelphia, PA, 1986).
PUB TYPE Reports - Research/Technical (143) --

Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Academic Achievement; *Cognitive Development;

*Cognitive Style; Cognitive Tests; *Evaluation
Criteria; Higher Education; Pretests Posttests;
*Programing; Research Methodology; *Undergraduate
Students

IDENTIFIERS *Piagetian Tests

ABSTRACT
Concerned with a high failure rate in computer

programming courses, two studies were undertaken to discover if two
individual cognitive styles--"analytic" (formal thought) and
"heuristic" (concrete or pre-operational thought)--were predictors of
performance in a beginning computer programming course. To
appropriately measure those skills, a Piagetian-based paper and
pencil test of cognitive development called "How Is Your Logic?"
(HIYL) was administered to a total of 116 undergraduates in three
beginning computer programming courses at a small liberal arts
college. In the first study of 87 students, 91% who received a course
grade of "B+" or higher were formal thinkers, while no one who was
classified as concrete operational received a grade higher than a
"C+.:" The correlation between course grades and HIYL was
statistically significant. In study two, the performance of 29
students on a pre- and posttest of HIYL was compared with their
performance in the course to measure cognitive development during the
course; scores on the two forms did not demonstrate measurable
development over the 10 weeks of the course. Using a Piagetian
framework to analyze the text used by all classes, three major
components requiring formal thought were identified--hierarchical
classifications of abstract concepts, control structures, and
top-down design--and each is discussed. The criteria for
classification, weighting components, correlations between HIYL and
grades, and correlations between course and test grades are displayed
in tabular format. (DJR)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating IL*10

C Minor changes have been made to improve
reproduction Qualify.

Points of view or opinions stated in this docu\ ment do not necessarily represent official
OERI position or policy.

N-
Computer Programming: A Formal Operational Task

LLJ Gwen Bredendieck Fischer
Psychology Department

Hiram College
Hiram, Ohio 44234

*Abstract

In Study 1, undergraduates in three beginning computer
programming courses were given How Is Your Logic? (Gray, 1976) a
Piagetian-based, paper and pencil test of concrete and formal
operational thought. Ninety-one percent of the students who
received course grades higher than B were formal operational;
none who were classified as concrete operational received a
course grade higher than C+. In study 2 performance on two forms
of HIYL (administered as pre-test and post-test) were compared
with performance in the course to measure cognitive development
during the course. Results are explained by an analysis of the
kinds of skills required in programming tasks and those measured
by formal operational items on HIM.

*The author wishes to express thanks to the beginning computer
programming classes who voluntarily participated, to Rachel Taylor,
Patricia Hugus, and Warne Edwards, who helped with scoring ald data
entry; to Dr. James Case, Dr. Janice Green, and Dr. Oberta

QN% Slotterbeck, for their supportive interest and giving me access to their
classes and their tests; and to Dr. Mario Renzi for his help with SPSSx.r-

Pr)

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Gwen B. Fischer

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Computer Programming: A Formal Operational Task

Statement of the Problem

According to Hostetler (1983) and Mazlack (1980), cogvuter

programming courses are considered among the most difficult courses on

many college campuses. As many as 15% - 25% of students enrolled in a

programming class withdraw before the end of the course and an

additional 10% - 15% receive failing or near failing grades.

Concerned about this high failure rate, teachers and researchers have

searched for individual differences which would predict success in

programming courses. Most show little correlation. The best

predictors appear to be G.P.A. and cognitive style. Of the two,

G.P.A. is the less interesting beCause it fails to provide either a

theoretically satisfying explanation for differences in programming

ability or an intervention strategy. Cognitive style, on the other

hand, appears more promising on both fronts.

Cheney (1980) identified two cognitive styles, which he called

"analytic" and "heuristic". He characterized the former by

capabilities which developmental psychologists associate with formal

operational thought (that is, "model building, mathematical analysis,

and optimization"); the latter by behaviors reminiscent of concrete

operational, or even pre-operational thought (that is, "trial and

error, ad hoc sensitivity analysis, muddling through, and . .

selecting the first acceptable alternative"). Not surprisingly,

Cheney found that analytic cognitive style was correlated with success

on programming exams. Empirical support for the common sense

hypothesis that programming requires logical analysis and hypothetical

2 Pt

reasoning, suggests that an appropriate measure of those skills could

be constructed on a Piagetian model.

The present series of studies were undertaken to discover whether

a Piagetian-based test with high inter-rater reliability, internal

consistency, and construct validity would be a good predictor of

students' performance in a beginning computer programming course. In

the first studies, I compared scores on How Is Your Logic?, (a

Piagetian based test of cognitive development) with grades in three

beginning programming classes. In the second study, students took two

forms of How Is Your Logic? (HIYL). as pre- and post- tests, to measure

whether they advanced in their level of thinking during the course.

After reporting on the results of these studies, I will present an

analysis of some of the specific programming tasks students are taught

and measured on in the course, using a Piagetian framework to discover

any structural similarity to formal operational tasks measured by

HIYL.

Subjects and Procedure.

The first study consisted of 87 undergraduates enrolled in

three classes of beginning computer programming at a small

liberal arts college : Twenty-eight students were enrolled in in

the winter of 1984 and 59 students were enrolled in two sections

during the winter of 1985. Seventy-three percent were

underclassmen. In the second study, an additional 29 student

were enrolled in a section taught in the fall of 1235. All 116

students in both studies were given Form B of How Is Your pogic?

(HIYL) (Gray, 1976) on a voluntary basis during the first week of

2

3

the quarter. In addition, in study 2, students were also given

Form A of HIYL ten weeks later (in the last week of classes).

HIYL is a paper and pencil, group administered, Piagetian test.

Botn forms consist of 13 constructed-answer problems, 5 of which

require concrete operations and 81of which require formal

operations. (See Gray, 1976 for a complete description.) See

Table I for a description of the items requiring formal thought.

The criteria used for classifying students as Concrete

Operational (CO), Transitional (Tr), Early Formal Operational (FO

I) or Consolidated Formal Operational (FO II) appear in Table I.

Students' success in the programming course was measured by their

final course grades. All teachers involved in dhe series of studies

base their course grades on a combination of out-of-class programming

assignments and in-class tests. In Table II you can see that dhe

weights they give the tests and the programming assignments

differ considerably. I'll talk more about that when I report the

findings. All HIYL tests were scored by the author and trained

assistants with 87-90% agreement. The course instructors

assigned grades with no knowledge of students' performance on

HIYL; the scorers had no knowledge of students' performance in

the computer course.

Results.

In the first study of 87 students, 91% of those who received

a course grade of B+ or higher were classified as early formal

(FO I) or consolidated formal thinkers (FO II) based on their

3

4

performance on Form B of HIYL administered at the beginning of

the course. No one who was classified as concrete operational

received a course grade higher than C+. Of the 29 students

classified as transitional, only 2 received a course grade higher

than a B. The correlation between course grade and HIYL was

statistically significant Cr = .62, p < .0005).

When the study was replicated with a smaller sample of 29,

the results were less compelling., As can be seen in Table III,

the correlation between performance on pre-test Form B and course

grade was .30 (p < .06) and between post-test Form A and course

grade was .49 (p < .004). Because all three teachers agreed that

students often work together on out-of-class programming

assignments, making those grades perhaps less valid measures of

individual ability, and because the 3 teachers weighted in-class

tests and out-of-class assignments so differently (see Table II),

I also compared performance on HIYL with test grades alone.

Those correlations are slightly higher, somewhat more closely

approximating those of the original study. As you can see in

Table IJI, the correlation with Form B was .42 (p < .012) and

with Form A, .51 (p < .003).

Comparing scores on the pre-test (Form B) and the post-test

(Form A), does not support the hypothesis that a computer programming

course might provide sufficient and appropriate disquilibrium to

promote measurable development. Three students did score one level

higher on post-test Form A than on pre-test Form B, the reverse was

4

true for an additional 5 students. In explanation, some of my more

skeptical colleagues have suggested that these findings provide

support for their hypothesis that studying programming scrambles the

brain, I prefer the more conservative explanation that ten weeks is

too short a time over which to observe measurable developmental change

and therefore the variation must be considred measurement error. An

additional factor which may have contributed to the failure to detect

developmental change is that, in the present study, no students were

identified as concrete operational, and only 8 (28%) were identified

as transitional, thus, there was little variability in performance

on HIYL.

Analysis

Using a Piagetian framework to analyze the text (Pascal by Dale

and Orshalick) used by all classes, I identified a number of

components which require formal thought. I will discuss three major

components: (1) Hierarchical classifications of abstract concepts, (2)

control structures, and (3) top-down design.

To put these into the theoretical framework, let me briefly

mention those characteristics (Piaget and Inhelder, 195f/195-9) of

formal thought which seem particularly relevant: (1) The ability to

use combinatorial operations, (perceiving relationships as parts of a

closely knit system within which the thinker can move easily). (2)

The capacity for reasoning about inter-propositional operations so

that reasoning becomes independent of factual content and focuses on

establishing the logic between premises and conclusions; and the

5

6

related ability (3) to separate form from content and to use symbols

to represent statements whose truth and falisity is based on rules

governing these inter-relations. (4) The understanding of a system

of transformation in which the real or given can be compared with the

probable and the merely possible.

Now, to look at programming tasks: First, hierarchical

classification. The text introduces programming with a series of

descriptio4ii4 and definitions of concrete objects such as terminals,

computers, main frames, disk drives, and printers. While

representational (pre-operational) schemes might be sufficient to

memorize appropriate definitions, the operation of classification is

necessary to understand the relations among these objects. However,

even though the referents for these terms are physically concrete,

students cannot physically manipulate them to identify the effects of

their presence or absence; thus, students might be able to successfully

answer test questions requiring memorization of definitions, but be

unable to answer those requiring understanding of the functioning of

one part of the computer system with another. The next set of terms

students must learn to recognize and categorize have even less

manipulable referentshardware, software, batches, inter-active

systems and interfaces; from there the student is moved quickly to

source, compiler, object programs', program listings, input data and

program output, high- and low-level language, assembler and complier

programs, modules, and machine language. A student who memorizes

these terms, without understanding the relationships among their

referents, may not only fail hypothetically posed questions about the

functioning of parts of a computer system, but be reduced to random

6

7

trial and error testing (or the help of a sympathetic, but more formal

thinker) when confronted with the task of identifying the source of a.

program malfunction.

From there, matters only get worse: The student must learn yet

another set of even more abstract termd. In order to understand the

instructions for writing a program, the student must differentiate

among characters, integers, and real numbers; variables, constants and

values, reserved words, standard identifiers, and user names. A

formal thinker, who is accustomed to thinking about structured wholes,

will more easily be able to organize what must appear to the concrete

thinker and novice a confusing mass of abstract terms---and in

addition, the formal thinker wilI be able to understand , for example,

that variables, constants, values, etc., are actually symbolic

placeholders whose use is governed by rules which operate

independently of factual reality or personal experience. Clearly

second-order or formal reasoning. If the programming teacher realizes

that the concrete or transitional-thinkers are able to use, but not

create a systematic, but abstract; classification system, then s/he may

be able to aid the not-yet-formal thinker by the use of diagrams which

show the hierarchical relationships among these various terins, as well

as the functional relationships antong them. Helping the concrete or

transitional thinker understand the abstract, symbolic nature of

variables and values may require many non-computer examples. Perhaps

one reason science and mathematics majors are often more successful in

computer courses than students with other majors is their familiarity

with the use of such abstract concepts.

7

8

(2) A second component of Pascal programming requiring formal

thought involves the use of various "control structures" such as

looping and selection control. To use control structures, the

programmer must be able to separate form from content, to understand

the logic ot the relations among.propositions, as well as the closed

nature of the system. When programming is first introduced, the

order of the statements in the program corresponds to the order of the

execution of the program. While the symbols and unfamiliar terms may

create some problems for the beginning programmer, if the serial order

of execution by the computer is represented by the order of

statements, by imitating examples given in the text or in class,

even a concrete or transitional thinker might be able to write

simple programs. The correspondence between representation and

execution is altered by the use of control structures.

Control structures direct the computer to make choices based on

previous responses--for a program. to do this, the "logical order of

the program [must] differ from the physical order" (Dale and

Orshalick, 1983). Thus, even given a problem with which the student

has had direct experience, students can no longer rely on their direct

personal experience in concrete problem-solving to provide the logic

and rules which then are represented in computer language.

Successful programming using control structures requires the

separation of form from content-and the ability to manipulate rules

governing abstract propositions. For example, to construct a loop

structure (regardless of the content of the problem), the programmer

must understand how to start the loop and to stop it--i.e., must be

8

9

able to recognize the circumstances under which the identity element

is true (called "initializing the variable") and then be able to

specify the negation of that variable--in order to avoid an infinite

loop. Identifying the particular abstract element which fits this

rule, and recognizing the need to specify the negation of that element

requires that the programmer understand that the loop must constitute

a closed system within the larger system of the program which must (by

the rules of computer logic) contain both an identity element and its

negation. The programmer must focus on the logic relating the

individual propositions, regardless of the content of the particular

progamming problem.

A selection control structuce directs the computer to execute

instructions conditionally. To use these structures the programmer

must understand Boolean expressions, which requiies understanding

the relationship among variables; relational operators, and

expressions; further, the programmer must understand the rules the

computer will follow when given a variety of possible variables,

expressions and operators. In addition, the rules specify that the

values of the variables being operated on must come from the same

category (e.g., within one expression, all values must be

characters, real, or integer numbers); thus, a separate, but equally

abstract classification system must be kept in mind.

The relational operators present another kind of problem for

the novice programmer: Operators are common words ("AND", "0IV, and

"NOT") which have been given very precise definitions, presented in

9

10

the form of truth tables such as are used in formal logic. The

programmer must grasp what the computer will do given each of the

possible statements, and this understanding requires both an

understanding of truth tables as. well as a suspension of the common

sense translation of the expressions and the usual meaning of the

operators.

(3) The third, but most central component of programming is

what Dale and Orshalick call the "Top_ Down Design". They describe

this method of programming as ";4orking from the abstract (,.

description or specification of the problem) to the particular

[or)...actual Pascal code) (p. 66)." They introduce this concept in

a nice clear and concrete.tanner: How can you take the problem of

giving a party and break it down into component parts (p. 68) ?

.Although most students will never have planned a party as

consciously and systematically as Dale and Orshalick describe, none-

the-less, at least parties are experiences with which most college

students are familiar, and therefore this is a reasonable example to

begin with. However, after that single example, the authors move on

to examples which sound simple, but are problems with which students

have had little or no first-hand'experience, such as calcul4ting

weighted averages of a series of.test scores.

Once the student can no longer rely on concrete experience, the

process of breaking down a problem into component parts must entail ,

formal thought: The student must be able to see a problem as a

statement summarizing a set of inter-related, but unstated

components, some of which are given, others probable, and still

others are merely possible. Dale and Orshaliok describe the process

in the following way:

We start by breaking the problem into a set of sub-
problems. This process continues until each sub-problem cannot
be further divided. We are creating a hierarchical structure,
also known as a tree structure, of problems and sub-problems
called functional modules. Modules at one level can call on the
services of modules at a lower level. (p. 66)
To create such a tree structure, one must be able to conceive of

all the possible steps or parts of each module or problem, and be able

to determine in what order they must occur When working ii,=1.th a

problem with which the student has had concrete experience (such as

giving a party), common sense ahd prior experience would tell a student

that making a guest list must occur prior to locating their phone

numbers. However, to find the weighted averages of a series of

test scores, requires knowing how this process is done "bv hand",

otherwise, the tree structure in:which the modules "get data" and

"find average" are not helpful in determining what actual lines of

programming must be written. PrOviding transitional thinkers with a

great many examples using familiar content may show them the

advantage of systematic analysis, while providing them with models

for such analysis.

These three components of programming require the ability to

reason about the relations among abstract and symbolic statements

independent of factual content, kld to use combinatorial operations in

which relationships are seen as parts of a closely knit system and

given instances are recognized as parts related to all possible

instances.

Of the formal items on HIYL, the combinations and permutations

problems would appear most likely to require the same capabilities.

To check this analysis empirically, I grouped together those items on

the two forms of HIYL which measure three different formal operations:

(1) make correct inclusions, (2) deny incorrect inclusions, and (3)

construct complete combinations and permutations. I then compared

students' answers on these three composite variables---first with

final course grade, and then with test grade. As you can see in

Table IV, correlations of "construct complete combinations and

permutations" with test grade was .57 (p < .001) and with test grade

was .64 (p < .0001), suggesting that understanding the relationships

of parts to wholes and systematically being able to construct all

possibilities is perhaps the most critical operation for successful

programming.

12

13

TABLE I

CRITERIA FOR CLASSIFICATION:

Eight items on How Is Your Logic? require the following formal
operations:
Items Form A Form B

2, 3 9, 10 Making correct implications
5 6 Constructing complete combinations
6 7 Constructing systematic permutations
9, 10 3, 4 Denying incorrect implications
12, 13 11, 12 Proportional reasoning

These items could be solved at a preoperational, concrete operational,
transitional, or formal operational level (a score of 7 or 8 indicates
a formal answer and was required to be considered a successful solution).

LEVEL OF DEVELOPMENT: CRITERIA

Consolidated Formal Thought (F0 II)
Beginning Formal Thought (FO I)
Transitional (Tr)
Concrete Thought (CO).
+++++++++++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++

TABLE II

WEIGHTING OF COMPONENTS OF COURSE GRADES

= 6 - 8 Formal items solved
= 3 - 5 Formal items solved
= 1 - 2 Formal items solved
= None solved at the formal level

Date
STUDY 1.

Winter, 1984
& Winter, 1985

Teacher.

1

Winter, 1985 2

STUDY 2.
Fall, 1986

Basis for course grade

out-of-class programming (15%),
three in-class exams (15% each)
in-class final exam (40%)
out-of-class programming (33%)
three in-class exams (33%)
in-class final exam (33%)

3 out-of-class programming (50%)
three in-class exams (12%, 13%, and 25%).

+++

STUDY 2.

Course Grade:

Test Grades:

TABLE III

CORRELATIONS BETWUN HIYL AND GRADES

. 2979
p < .06
. 4175

p < .012
(pre-test)
Form B

.4944
p < .004

.5142
p < .003

(post-test)
Form A

14

CHARACTERISTICS OF FORMAL THOUGHT
Piaget and Inhelder (1966/1969 Psychology of the Child) identifyfive thought processes as marking the transformation from concrete
operational thought to formal thought:
(1) Reason about hypotheses and deduce logical consequences.Essential to this capability is that the individual be able to
reason from hypotheses or assumptions in which she does not
believe. In other words, the individual must accept the hypothesisas tentative and subject to verification.
(2) Reason about inter-propositional operations. Reasoning
independent of factual content---focusing on establishing the logicbetween premises and conclusion.
(3) Separate form from content---using algebraic or other symbols
to represent statements in which truth or falsity is no longerbased on factual reality, but on the rules governing the inter-
relationships of statements within an argument.
(4) Use of combinatorial operations. The formal thinker perceives
relationships as parts of a closely knit system, and so is able tomove from one part of the syStem to another.
(5) See the real as a subset of the possible. Only when the
subject understands the closed nature of the system of
transformations can real instances be set into relationships and socompared with probable and the merely possible instances.

*++PROCESSES IN PASCAL PROGRAMMING REQUIRING FORMAL THOUGHT:

(1) Hierarchical classification. Terminals, computers, main frames,disk drives and printers. Hardware, software, batches, inter-activesystems and interfaces; source, compiler, object programs, programlistings, input data and program output; high-level language, low-levellanguage, assembler and complier programs, modules, and machine language.
Characters, integers, and real numbers; variables, constants and values;reserved words, standard identifiers, and user names.

(2) Separation of the serial order of the program statements from theserial order of the computer's execution of a program by controlstructures. The purpose of control structures is to provide a means bywhich the programmer can direct the computer to make choices based onprevious responses, including starting the loop and stopping it--recognizing the circumstances under which identity element is true (calledinitializing the variable) and then specifying the negation of that
variable--in order to avoid an infinite loop. Clearly a problem inreversibility.

(3) "Top Down Design". Beginning with a broad, abstract statementand breaking it down into component parts.

TABLE IV
CORRELATIONS:

CORRECT IMPLICATIONS
p < .116

COURSE GRADE
.229

p <.207
DENY INCORRECT IMPLICATIONS .351
p < .03 p <.005
COMBINATIONS /PERMUTATIONS- .573

P <.001

15

TEST GRADE
.156

.469

.644
P <.000

References

Barker, Ricky J. and E.A. Unger. A Predictor for Success in anIntroductory Programming Class Based Upon Abstract ReasoningDevelopment. SIGCSE Bulletin. 15 (1) (1/83).

Cneney, Paul. Cognitive Style and Student Programming Ability: AnInvestigation. AEDS Journal. Summer, 1980.

Dale, and Orshalick. Pascal.

Gray, W. M. How Is Your Logic? (Experimental edition, Forth A).Boulder: Biological Sciences Curriculum Study, 1976. (a)

Gray, W. M. How Is Your Logic? (Experimental edition, Form B).Boulder: Biological-gnences Curriculum Study, 1976. (b)

Hostetler, Terry R. Predicti,ng Student Success in an Introductory
Programming Course. SIGCSE Bulletin. 15 (3) (9/83).

Inhelder, B. and J. Piaget. The growth of logical think ig from
childhood to adolescence An essay on the construction OrfUfWal
operationaistructures (AParsons and-7r. Milgram, trans.). New
York, Basic Books, 1958. (Originally published, 1955).

Mazlack, Lawrence J. Identifying Potential to Acquire Programming
Skill. Communicationa of the ACM. 23 (1) Jan. 1980.

Note: ACM = Association for Computing Machines; SIGCSE = Special
Interest Group on Computer Science Education.

16

