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Abstract

Use of LISREL-type structural equation modeling has become

more widespread in the social sciences, and the literature on the

specification, estimation, and testing of such models is

voluminous. The greatest proportion of this literature, however,

focuses on the technical aspects of LISREL, and many are far

advanced in statistical sophistication so as to be of little or

no help to the novice modeler. This paper presents a

"philosophical" approach to structural equation modeling and

examines some of the basic concepts and assumptions underlying

the formulation of these models. The rationales for th

structural equation model and the measurement model are outlined,

and the foundations of specification and interpretation

clarified. As part of the SPSS-X package, LISREL will be readily

available to many applied researchers. With this heightened

availability of a complicated statistical procedure will

undoubtedly come many mis,Ases and abuses. Social scientists

should become familiar with the theoretical premises of the

method.



Some Cautionary Notes on the Specification

and Interpretation of LISREL-type

Structural Equation Modeling

Recent advances in the computerized application of

sophisticated statistical methodologies have enabled social

scientists in economics, psychology, education, sociology, and

related disciplines to utilize multivariate analysis techniques

previously beyond the scope of these fields. In particular, the

linear structural relations model (LISREL) defined and developed

by Joreskog and Sorbom (1984) has given rise to a new emphasis on

covariance structure analysis. The field of covariance structure

analysis actually includes several related topics: (1) path

analysis (2) factor analysis and (3) structural equation modeling

which combines the analytical benefits of the first two.

Technical literature on the specification, identification,

estimation, and testing of linear models abounds. An overvivw of

the detailed methodology is beyond the scope of this paper, but

introductions can be found in Bentler (198()), Joreskog & Sorbom

(1984), and Lomax (1982). The social scientist who possesses a

solid background in statistical and mathematical theory has

benefitted most from the literature on the LISREL model, since

the greatest proportion concentrates on technical aspects and

state-of-the-art applications. The novice modeler, however, who
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possesses limited knowledge of intricate statistical theory may

find the bulk of the literature unsuitable as a general

oduction to the use of the LISREL computer program.

Furthermore, theoretical and philosophical considerations of

LISREL methodology, its assumptions, and its interpretations are

few. The purpose of the following paper is two-fold: (1) for the

novice, an introduction to the concepts and assumptions basic to

LISREL structural equation modeling, and (2) for the researcher

already somewhat familiar with the technical aspects of

covariance structure analysis, a clarification of those

theoretical aspects of LISREL modeling which have been most

misunderstood.

The LISREL Model- An Elementary Example

Simply put, covariance structure analysis involves the

analytic mathematical breakdown of the covariances between

measured variables into estimates of the strength of relationship

between latent variables. Consider the simple model represented

in Figure 1. The ellipsestl, t2, and)11 represent

hypothetical constructs or latent variables. Such latent

variables cannot be measured directly, and so are sometimes

referred to as unobserved variables. For instance, as a subset

of a more complicated model, Baldwin (1984) considers the

role-modeling aspects of mother-daughter relationships and

hypothesizes that the extent of a mother's influence on her

2
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daughter's academic behavior (41) and the nature of the

daughter's sex role orientation (1=) will influence the

educational and occupational aspirations of the daughter (76) and

consequently her achievement (n.). These four variables are

latent variables in that the natures of the constructs are

concealed and cannot be observed or quantified directly.

Insert Figure 1 About Here

The boxes labeled X1, Xml Xm, X4, Y1, Y-, `11, and Y.,

represent indicator or manifest variables. Such wtriables are

actual measures and collectively serve to represent the unoberved

latent variable. For instance, educational/occupational

aspiration is a latent construct which cannot be observed and

measured itself. However, by measuring the number of years of

schooling a daughter expects to.complete and by determining

occupational ambition according to a socioeconomic index, one can

obtain a rough "quantification" of a concept that.could not be

estimated directly.

The relationships of the latent variables (thel4's and the

VVs) are represented by structural equations of the form

pgix *
and the paths between the variables (thelr's and theA's) are

3
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called structure coefficients. That part of the model which

defines the relationships between the latent exogenous

(independent) and endogenous (dependent) variables is called the

structural equation model. Foi- this particular example, there

are two structural epuationN

vawg,.. 4. if

r Oat 4ni AV'
and three structure coefficient:* r11, Y1 2

The relationships between the manifest variables and their

corresponding latent variables are represented by the equations

of the measurement model:

Xs 12 AA' 4. Si

x.= 341 gy,

)(311 A32 Z2. t5.3

xLi c Xia
s A 711 + 61

+ 62.

Y4i Aga 712- 4" C,/

There are eight equations and eight factor loadings (the2's).

Each indicator variable only loads on one latent variable.

Together, the structural equation model and the measurement

model make up the LISREL model. which can be analyzed via the

LISREL computer program. As can be seen by the example, the
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LISREL model can be utilized in behavorial research sitauations

characterized by the presence of latent variables. The power of

the LISREL computer program lies not only in its ability to

calculate parameter estimates, i. e., the structure coefficients,

factor loadings, measurement and equation error terms, and latent

variable correlations, but also in its capabilities to compute

standard errors, goodness-of-fit indices, standardized solutions,

and indices to suggest possible modifications to the model. All

of these potential analytical tocls make LISREL a formidable

statistical technique, a technique which can be of tremendous

exploratory or confirmatory value when used in accordance with

the theoretical principles on which it is based.

The Rationale of Structural Equation Modeling

Structural equation modeling, linear structural relations,

covariance structure analysis, and simultaneous equation modeling

are synonymous terms for the same methodological approach. All

of these terms can be classed under the more general rubric of

causal modeling. In a very loose sense, causal modeling infers

"causation." That is, a change in some variable X causes an

effect-- a change in another variable Y. The cause and effect is

direct and in many cases unidirectonal or recursive. In the

LISREL example, it was hypothesized that the nature of a

daughter's sex role orientation would influence her educational

and occupational aspirations; that is, a change in sex role

5
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orientation would directly cause a change in educational/

occupational aspirations.

Sophisticated programs like LISREL IV have increased the

rigor by which researchers can analyze data but at the same time

present severe interpretational problems when making causal

inferences about hypothetical constructs (Cliff, 1983). As the

levels of complexity and sophistication associated with programs

like LISREL rise, it becomes relatively easy for the researcher

to lose sight of one of the most fundamental principles of

research-- that inviolable caveat, "Correlation does not infer

causality." Covariation among variables may or may not represent

a cause; the covariation may be due to spurious correlation, or

there may be significant intervening variables masking the

directness of the effect. The most satisfactory method for

inferring causality is still the true experiment, whereby the

researcher maintains active control of the variables. However,

in social science research the true experiment is a rarity.

Rather the researcher usually relies on prior experience,

prwsonal observation, and the prevailing theories of the

discipline. In many instances though, the experience may be

scant, the observation tainted, and the theory contradictory. In

many instances causal inference of a dubious nature may result in

poor modeling practices and incorrect parameter estimates. In as

much as the structural parameters reflect the strength of causal

relationships, poor models reinforce poor theory and do little to

6
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advance fundamental knowledge in the field.

James, Mulaik, & Brett (1982) make a distinction between a

functional relation which is deterministic and a functional

relation which is probabilistic. For example, the linear

equation

y. igyx, 4,, X ,,

is deterministic because Xt and Xm completely determine Y.

However, in any one social science research question, the number

of possible functional relationships between all potential

variables is for all practical purposes infinite. The

deterministic notion then of accurately specifying all components

of a causal relationship is unreasonable. Instead one must take

a probabilistic view of causality and specify a linear

relationship by

4.- A,3, X,. e.

wher e is a random error or distlirbance term which accounts for

all of the unknown influences not specified by X. or X.

The problematic distinction then comes between what variables

are explicitly included in the model and what variables are

represented by the component e. James et al. refers to this

distinction as the difference between a measured relevant cause

and an unmeasured relevant cause. The failure to include all

relevant causes in a structural equation model results in biased

parameter estimates and erroneous causal conclusions. A

relevant cause is defined as a variable that:

7
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(a) has a non-minor, direct influence on an effect,

(b) is stable,

(c) is related to at least one other cause included

explicitly in a functional equation, and

(d) makes a unique contribution to a functional equation...

(James et al., p. 23).

The inclusion of all relevant causes in a functional

equation guarantees that the disturbance term e will include only

those causes of Y that are minor, indirect, unstable,

independent, and random. Therefore, a researcher must think of a

causal model as a subsystem of a larger theoretical system, but

that subsystem must be "closed" or self-contained. In

practicality, no model can ever be truly self-contained;

behavorial theory is too complex for such gross

over-simplification. Careful consideration and thoughtfulness in

specifying the structural model, however, can result in better

models and more meaningful results.

The existence of unmeasured relevant causes is a type of

specification error which results in covariation between the

explicit causes (X1 and X2 in the linear example) and the

disturbance term e. Such covariation is a violation of the

assumptions of the general linear model, and the results may

be biased parameter estimates and false conclusions based on

improper modeling. Since all relevant variables cannot be

practically entered into the model, the problem then reduces to
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constructing the model such that all known relevant causes are

included while recognizing that such a procedure is guaranteed to

be theoretically incomplete (Blalock, 1982).

James (1980) outlines a series of decision steps which can be

used to determine if a cause is relevant or not. These decision

steps are somewhat subjective and untestable in the verification

sense, yet may provide a basis for model-building. The first

step consists of identifying all known major and moderate causes

of the dependent variable. The researcher should decide whether

any unspecified cause correlates with any cause already in the

model. At this point, James encourages a decision based on the

absolute value of the correlation; a low correlation (- .20 to

.20 is suggested) would allow the researcher to disregard the

unspecified cause as its inclusion in the model would probably

not affect parameter estimates. A moderate to high correlation

however warrants a model alteration if the variable makes a

unique contribution to the dependent variable. The unique

contribution can be viewed from the question of redundancy, i.e.,

if there is a very high correlation between two variables, then a

multicollinearity problem will result. The variables are nearly

one and the same, and the variance contributed by the second is

not unique. Correlations between unspecified and specified

causes may be estimated by references to past research, by

theory, or by exploratory study. Without the inclusion of a

relevant cause, serious bias in parameter estimates may result,
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and the model cannot be considered as representative of reality.

As we have seen, the judicious selection of variables based

on the seemingly true nature of causality and the approximation

of a self-contained system will result in the specification of

improved models. Two other considerations must also enter into

the model-building process: (1) the specification of causal

order, and (2) the specification of causal direction. Causal

order is indicative of the temporal sequence of cause and effect;

that is, we assume that if X causes Y, X occurred first and then

uccurred as a result of X. It also then natural to think of a

specific time lapse between the occurrences of X and Y, although

in some cases the elapsed time may be so insignificant so as to

appear that X and Y are simultaneous. In structural equation

models, it is not necessary to specify the causal interval; but a

causal order must be specified. The arrangement of the variables

in the graphic representation of the model relates the causal

order of the latent constructs. So in the mother-daughter

example, a change in the mother's influence in academics precedes

a change in educational/occupational aspirations.

As with the selection of variables, the specification of

causal order can be quite difficult, especially in the absence of

recognized guiding theory. Insignificant or unobservable causal

intervals may lead the researcher to misspecify causal order by

inferring s6imultaneity when it does not exist or by reversing the

true causal order.
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Structural equation models likewise require the specification

of causal direction. So far, the mother-daughter example has

only considered a unidirectional flow of causality. A model

which is unidirectional is termed recursive while a model that

considers reciprocal causation is called non-recursive. Suppose

that the model in Figure I were modified to include a reciprocal

relationship as in Figure 2 (Of course, there must be some

theoretical justification for such a modification. In this case

let us simply assume that theory suggests a possibility.)

Although the graphic representation of the model does not appear

to be significantly different, the structural equations by which

the parameters are estimated are quite different. Now there is

only one exogenous (independent) variable *43. and three endogenous

(dependent) variables 11.,11., and lqm. The structural equations

are

71: -41 A1A-42. /1,

rI2.. A2 /1 1 + 4 # 1 2.

A3 712- 45 3

and four structure coe4ficients1.21,151=421, and$mm will be

estimated. There are also resulting changes in the equations for

the measurement model.

Insert Figure 2 About Here

Note that in this non-recursive example, causal order is
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still maintained, i.e., a change in sex role orientation still

precedes a change in educational/occupational aspirations. In

other models, however, causal order may be irrelevant, so that

reciprocal causation may be depicted as

ti
in which case either X or Y may "initiate" the causal action.

The effect of mutual causation is a dynamic system, and it is

assumed that such reciprocity reaches a theoretical state of

equilibrium (Namboordiri, Carter, & Blalock, 1975). The causal

interval is insignificant and in most cases may be regaredd as

approaching zero.

A differentiation must be made between reciprocal causation

and cyclical causation which is an influential factor in some

types of analysis. Cyclical causation may be depicted as

4
Yz

where Y1 causes Y= which in turn influences Yy through a feedback

loop, the difference being that a known time interval exists

between the occurrences of Y1 and Y-. In actuality, the model

would be specified as

Y ties" .tr-+ y=caid--+ y1 ts

where t specifies a time indicator. The number of occurrences of
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Vl and `iv., would be determined by the exact form of the design and

the resultant oata collection. This type of cyclical causation

then would be treated as recursive since all causal effects are

unidirectional (Strotz & Wold, 1971).

In the consideration of the rationale of the structural

equation model, one must consider another important prerequisite

for the specification of causal models-- the issue of moderating

variables or "contextual boundaries" (James et al., 1982). Such

variables are contingent upon the types of subjects and the

environment of the analysis and severely limit the extent of

generalization which is, of course, one of the primary aims of

social science research. For example, the modeling of

mother-daughter relationships as depicted in Figure 1 is limited

to such relationships and could not be generalized to

father-daughter, mother-son, or father-son relationships unless

prevalent theory guided one toward that conclusion. The

uniqueness of sex role related experiences would make such a

conclusion improbable however, and alternative models might be

specified and estimated for the alternative relationships. Even

in the event that such a model might be conjectured for each of

the parent-child subgroups, it would be beneficial to conduct

each analysis separately and test the derived parameters for an

interaction effect. Such interaction effects are common in

studies involving variables of classification, i.e., sex, SES,

race, age, or any other variable which could theoretically divide

13
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a sample into differing subgroups. Failure to specify contextual

boundaries and account for varying subgroups via differential

model specification may make conclusions less meaningful and

generalization impossible.

In conclusion, when structural equation models are used in

theory-building, the emphasis is on defining the model so as to

correspond to the perceived true nature of causality. In other

words, one would wish to specify as exactly as possible how a

change in one variable affects another variable. In any

examination of causal relationships, one would want to know (1)

if a relationship actually exists (that is, there exists a

non-zero correlation); (2) if a supposed causal relationship is

spurious; (3) if the order and directionality of causality can be

specified; (4) if the causation is direct or indirect; (5) if

reciprocal causation exists; and (6) if some moderating variable

may be producing an interaction effect.

The reasons for using latent variables in a structural

equation model seem self-evident: latent variables are

abstractions-- hypothetical constructs which cannot be directly

observed or measured. Since direct measurement is impossible,

obervable indicator variables must be used as representations of

the constructs. However, the researcher must guard against

oversimplification and thoughtless modeling which has little

regard for substantive theory. Both me;nodological and

theoretical assumptions must be met before the model can

14
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reproduce the strength and nature of the effects. Structural

equation modeling is explicit and quantitative; it allows us to

"explain" how variables relate to each other. This type of

modeling also has simulation power in that it permits the

researcher to consider an entire working subsystem and its

character (Heise, 1969).

The Rationale of Measurement Modeling

There is a functional distinction between the philosophical

bases of the measurement model and the structural model. The

measurement model is not concerned with the notion of causality;

the fundamental significance of the model stems from the

correlations that indicate the relative ability of the known

estimators to predict a value for a theoretical construct. The

prime criteria for the evaluation of measurement mode3s are

efficiency and accuracy. Structural equation models are usually

more hypothetical and therefore more complex in one sense. The

specification must be theoretically correct, and it must be

quantitaively valid so as to mathematically reproduce causation.

Measurement models, however, are more pragmatic and may be less

nebulous. The primary concerns are the reliability and validity

of measurements.

Measurement models represent attempts to define latent

constructs through manifest and observable variables. When only

one indicator variable represents a latent variable, the

15
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indicator variable serves as a surrogate for that which cannot be

directly estimated, and perfect re3iability (i.e., no measurement

error) is assumed. If all latent variables in a model are
4

represented by only one corresponding indicator variable, then no

measurement model is necessary. The relationships between the

manifest variables are represented by the structural equations,

and the two-part LISREL model is reduced to a path analysis

model.

In this case, the reliability coefficient for each measure is

assumed to be 1.00, although in actuality a "high" reliability

satisfies the operationalization of latent variables without much

distortion of parameter estimates (Joreskog, 1979). Yet

practicality in the social sciences dictates that perfect

measurement is an impossibility, and consistent high reliability

of measureme-t is an improbability. Tests and measures designed

by human beiny. 7,easure latent characteristics of other human

beings will be fa. ,3e by their very nature and subject to

varying proportions of error.

While a de of error always expected, the magnitude of

that error is co' ch concern. As stated previously, one

manifest variable vcould be selected to represent a latent

construct, but perfect reliability must be assumed and a

corresponding loss of accuracy is inevitable. A second solution

is to combine a number of measures into one variable which serves

as an index. This method may preserve some information and

16



improve accuracy, but will not be as helpful as using several

independent indicators. Use of multiple indicators increases the

number of testable predictions, increases validity, and guides

respecification of the model if an initial analysis proves

unacceptable (Sullivan, 1971).

The use of separate indicators however may pose problems in

complex models. Large numbers of multiple indicators become

unmanageable in practical applications of the LISREL computer

program. Thus by restricting the number of indicators or by

using composites, one tends to lose the advantage of multiple

indicators when, in the analysis of complex models, these

advantages are needed most. The consideration of reliability

becomes essential when selecting measurements in this case.

The problems of indicator reliability surface frequently in

LISREL model specification. If necessary, one could use the

available measure as is and simply hope that the resulting

parameter estimates are not overly biased. Use of multiple

measures, however, increases overall reliabilty even if the

individual reliabilities are considerably less than perfect. A

third possibility is to correct the correlation coefficients for

unreliability and then to use the disattenuated coefficients as

input to the LISREL program. One problem with this approach is

that the reliability of the instrument must be known which in

some instances is not the

Lomax (1986) demons At the notion of measurement



error for LISREL models is somewhat different from the common

notion of measurement error derived from classical test theory.

In classical test theory

Total observed variation = True variation + Error variation

(common + specific)

where the true variation consists of common variation and

specific variation which is non-random, systematic, and due to

the nature of the particular variable. In contrast factor

analysis (the LISREL measurement model) assumes that

Total observed variation = Common variation + Unique variation.

(specific + error)

jnique variation in this model consists of specific variation

plus error which is random, unsystematic and due to

unreliability. Thus in order to examine the effects of

unreliability in LISREL models one must decompose the unique

variation into its two components. Lomax's study of the effects

of unreliability presents several important points which must be

considered in the formulation of measurement models: (1) LISREL

"measurement error" estimates may be deceptive as these estimates

actually consist of specific variation and error due to

unreliability; (2) if reliability for the indicators of one

le
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latent ~table are reduced relative to other indicator

reliabilities, the resultant estimates for the structure

coefficients will be decreased and therefore biased;

(3)standardized parameter estimates do not seem to be as affected

by unreliability as unstandardized maximum likelihood estimates;

and (4) if indicator reliabilities are known and are less than

.80, the correlations should be corrected before being used as

input. Thas the situation of using a singular indicator

variableie far from ideal. Using multiple indicators is always

preferable and using disattenuated correlations in situations of

low reliability may also be desireable.

Substantive knowledge of possible indicator flaws may aid the

researcher in determining approximate levels of reliability if

the exact reliability coefficient is unknown. Knowledge of

ceilinq or +loor effects, test administration problems,

systematic measurement error, and other such sources of possible

bias may provide clues to possible measurement model alterations

if an initial analysis shows unreliability of some indicators.

Most commonly, an inspection of the residual matrices may reveal

some unually high residual values relative to the other residual

estimates. Such high estimates may be indicative of measurement

unreliability. Costner & Schoenberg (1973) suggest an

examination Of residuals followed by the fitting of alternative

models. Progressive deletions of suspected unreliable

indicators cdn permit a diagnostic analysis of the effects of
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unreliability on parameter estimates. Such a procedure could be

quite tedious and time-consuming but may prove indispensible if

unreliability problems are suspected and other knowledge of

indicator accuracy is scant.

Cliff (1983) draws attention to the problems of reliability

and validity in discussion of the "noministic fallacy." That is,

naming a property or trait does not imply understanding of that

property or even naming it correctly. There is a basic

contextual gap between the hypothetical composition of the latent

variable and the realistic composition of its indicators. The

size of this contextual difference depends not only on the

unreliability problem, the problem of consistency, but also on

the invalidity problem, the problem of accurate representation.

Special attention must be given to the appropriate selection of

variables so as to maximize validity in an efficient manner. The

addition of multiple indicators may increase reliability but will

not increase validity if the validity of each individual

indicator is doubtful. Validity will however be strengthened if

the nature of each measure does accurately correspond to the

nature of the construct. Usually correlational data is only

suggestive af the underlying construct. In other words, high

correlations between associated measures may aid in selecting

which indicators should be utilized, but cannot guarantee the

construct validity of the latent variable. The primary question

of validity must be addressed by substantive theory, critical

20
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knowledge of the indicator, and precision in defining the latent

variable. The definition and interpretation of latent variables

only becomes less uncertain when theory guides selection and when

the individual indicators are valid and reliable.

Most variables of interest to social scientists are latent

variables, conceptualized to be continuous at the latent variable

level. At the indicator level, however, a variable may be

ordinal and discrete. Yet uses of multivariate parametric

statistics, including LISREL, usually require assumptions of

multivariate normality. LISREL models then are formulated in

mathematical terms which take interval level measurement for

granted. The propositions of these models express values of

variables as functions of other variables. Wilson (1971) states

that when measurements are ordinal, meaningful estimates are

usually impossible to 'obtain. Ordinal variables can be viewed as

sets of mutually exclusive categories such that the categories

can be put on a continuum. For instance, an attitude sca:e may

have categories ranging from "strongly agree" to "strongly

disagree." Any sequence of values can be assigned to the

corresponding categories. The values are essentially arbitrary.

Only the order of the values as reflects the order of the

categories is significant. According to Wilson, in certain

circumstances some models using ordinal data may be used to

derive causal inferences but inferences are weak, and the model

itself is usually faulty.

21
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In contrast, Borgatta & Bohrnstedt (1981) argue that it

intuitively makes sense that the bulk of most observations should

lie close to the mean with relatively fewer cases at the

extremes. Therefore it should be possible in most cases tm

assume that the distribution of most indicator variables should

approximate normality.

Social measurement is usually crude in comparison to the

sophisticated measurement possible in the physical and natural

sciences. Measures are likely to be imperfectly continuous and

noninterval in the sense that derived categorical intervals are

not truly equal. However, if a measure is developed carefully,

one should be able to assume a monotonic relationship between the

imperfect indicator variable and the continuous latent variable.

That is, a difference between two points on the manifest variable

scale should reflect a coarse approximation to the corresponding

difference on the latent variable scale. Measurement error

therefore could be defined as the difference between the observed

reality of the indicator variable scale and the unmeasureable

reality of the latent variable scale. This measurement error

will have an effect on the estimation of the model.

Furthermore, Borgatta & Bohrnstedt point out that the concept

of ordinal data in most social science research does not reflect

the true concept of ordinal position. A member of a population

is not truly numerically "ranked" relative to every other member

of that population. Ordinal scaling usually results from a

22
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transformation in which intervfa information is lost. Some

researchers contend that the loss of information is so

significant as to render the use of ordinal data useless--

insensitive to the basic laws of mathematics and algebra and

consequently to the axioms of parametric statistics. If this is

true then computing a tau or Wilcoxon test should make no sense

as the computations require the mathematical addition of ranks.

In reality, these tests transform ordinal ranks into a form of

the interval scale such that a distance of one is between each

value. That this unit distance does not perfectly correspond to

a unit of distance on the latent interval scale is of less

consequence than might be thought. One must reflect on the

totality of the manifest variable distribution and its

approximation of the latent variable distribution.

Lomax (1983) offers a guideline which may be useful if the

researcher feels that the ordinal variables being used are

approximating a normal distribution; if the number of categories

for the variable is greater than or equal to 4 and if skewness

does not exceed 2.0, then the underlying distribution is

approximately normal and resultant parameter estimates will not

be significantly affected. Data-gathering on any level should

maximize the information being collected given the limiting

circumstances under which measurements will be made. Thus

decisions concerning ordinal vs. interval scaling must be made on

a pragmatic basis, weighing the cost of presumed accuracy in
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balance with the advantages of efficiency.

The Interoretation of LISREL Models

If the specification of the structural and measurement models

can be considered correct-- that is, that the equations

approximate reality given the limitations of social science--

the problems of interpretation may still affect results.

Technical aspects of interpretation can be found in numerous

papers (for example, see Bentler & Bonetett (1980) for guidelines

on analysjs of goodness-of-fit, and the LISREL VI User's Guide

(Joreskog & Sorbom, 1984) for information on modification

indices, goodness-of-fit indices, and related technical

analysis). Let us consider instead some philosophical viewpoints

in regard to interpretation.

Ona principle of scientific inference which may be violated

is the notion that the data do not confirm the model even if the

model does have a "good fit" as indicated by the chi-square test

statistic. The researcher can only fail to disconfirm the model

given the unique theoretical rationale which guided the

formulation of the model (alternate theoretical explanations may

be just as feasible) and given the specific data set used -FL,

analysis (conclusions may be sample-specific). In actuality, an

infinite number of different models may be equally plausible in

the theoretical and mathematical sense. Goodness-of-fit only

implies that the particular model under consideration has the

mathematical capability of reproducing the sample covariance

24

27



matrix.

"Confirmation" in the LISREL sense means that the predictions

regarding the covariances of the indicator variables are

consistent with the empirically derived covariances. If the

model is disconfirmed or rejected, then the predictions regarding

variable relationships are inconsistent with the sample data

(James et al., 1982). The confirmation of predictions seems to

imply corroboration, but this corroborations is meaningful only

in a very limited sense.

In the development of a theoretical model of structural

equations, the inclusion of a causal path between variables

indicates that the expected value of that path should be

significantly different from zero. Failure to include such a

path in the model then indicates a prediction of zero for the

corresponding structural parameter. By conducting tests of

significance on the estimates, one can ascertain whether a

prediccion is consistent with the data. It may be possible that

some path coefficients are non-significant even with careful

attention to theory and the statistical meaningfulness of a large

sample. One might ask how serious such misspecifications may be.

Tie answer is conditional and cfrpends on the model, the type of

misspecification, and the underlying causal hypothesis (Baldwin,

1986).

Heise (1969) refers to phenomenon known as "theory-trimming."

The deletion of causal linkages or factor loadings is often
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dictated by the derived estimates of these parameters. Those

estimates which are statistically negligible are simply assumed

to be zero and are deleted from the model. Theory-trimming is

completely assessed by the ability to reproduce the sample input

matrix; theory-trimming becomes then a form of exploratory

analysis in which previously hypothesized relationships are

altered by statistical considerations of the data.

Conflicting viewpoints exist on the validity and permissible

extent of theory-trimming. Cliff (1983), for example, refers to

the "unreliability of hindsight." That is, there is a tendency

to treat ex post facto analysis as confirmatory by establishing a

theoretical model and testing its fit on a body of data. If this

model proves a poor fit, it is modified and consequently

"accepted." This modification procedure is an exploratory one

however, not confirmatory, so that the researcher seemingly

switches the purpose for research during the course of the

analysis. Modification and acceptance of the model does not

imply an improved model in the confirmatory sense. The new model

fits better because the researcher "fixed" it to fit the data.

One must remember however that the original model describes

reality accr ding to available theory. If a model is rejected,

it may be due to a lack of available theory or contradictions in

theory. There is a subjective point beyond which a lack of

knowledge cannot be tolerated, and exploratory analyses simply

become number-crunching exercises. Saris, dePiiper, & Zegwaart
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(1979) suggest making small modifications but adhering to the

original specifications as closely as possible. Even in these

cases, modification of the model should always be judged in light

of theoretical implications.

Cliff (1983) hints at cross-validation as a possible

compromise to the exploratory/confirmatory dichotomy. Cudeck &

Browne (1983) suggest splitting the sample data into two half

samples-- using the first half to fit the model in an exploratory

sense and then using the second half to confirm the model. Thus

acceptance of the model is based not on one set of data but on

two sets. In this sense, the goal of analysis is to find one or

more possible models in the exploratory stage and then

cross-validating to examine which model performs optimally for

the second sample. A cross-validation index can be calculated

which is a measure of the discrepancy between the reproduced

covariance matrix of sample set 1 (the calibration sample) and

the covariance matrix of sample set 2 (the validation sample).

The choice of the model with the greatest predictive validity is

based on the smallest value of the cross-validation index.

Double cross-validation is also a possibility. The first wave of

analysis proceeds as described above, the first sample set being

used for calibration and the second for validation. The

second wave of analysis then uses sample set 2 for

calibration and sample set 1 for validation. After both stages

of analysis are completed, the confirmed models can be compared.
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Cudeck & Browne emphasize that the identification of one "best"

model is not the objective of cross-validation. The goal of

analysis should be to select one or more possible models and

proceed to further study from that point.

Green (1977) expands the concept of interpretation beyond

model-fitting by asking the following two questions: (1) how

statistical variation exists in the parameters; and (2) how

sensitive is the model to changes in the parameters. If the

intent of analysis is the understanding of cauasal dynamics,

much

then

the parameters must also be interpreted. Parameter values which

change significantly from sample to sample may be too unstable

to be interpreted realistically. The sensitivity of parameters

relative to slight changes in model specification is also an

indication of stability. There is a conceptual difference

between parameter sensitivity and sampling variability which must

be distinguished. Sampling variability is primarily dependent on

the number of observations, and slight changes in parameters due

to differences

as long as the

small so as to

in sampling variability are usually not as serious

sample is not exceedingly large or exceedingly

make the parameters and goodness-of-fit statistics

completely meaningless. Parameter sensitivity however is

somewhat independent of N and reflects more on the nature of the

model than on sample size.

LISREL-type structural equation modeling is a powerful

statistical technique that seems especially appropriate for
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social science variables which are inevitably complex and

difficult to measure. The use of causal modeling methodologies

implies attention to philosophical aspects of specification and

interpretation as well as correct technical procedures. Granted,

much is not known at the present time about the robustness of

estimates with regard to violations of assumptions and

modeling errors. Monte Carlo and analytical investigations are

slowly making some of these issues more clear (see Boomsma, 1982;

Baldwin, 1986; Ethington, 1985; and Muthen & Kaplan, 1985 for

some current research on the robustness of LISREL maximum

likelihood estimates). In the meantime,however, it is essential

that the researcher proceed in LISREL analysis with as much

technical and philosophical knowledge as possible.
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