DOCUMENT RESUME

ED 274 551	SE 047 251
AUTHOR TITLE	Sherman, Lawrence W.; Zimmerman, Deborah Achievement in Cooperative versus Competitive Reward-Structured Secondary Science Classrooms.
PUB DATE NOTE	Oct 86 10p.; Paper presented at the Midwestern American Educational Research Association Meeting (Chicago, IL, October 1986).
PUB TYPE	Reports - Research/Technical (143) Speeches/Conference Papers (150)
EDRS PRICE DESCRIPTORS	MF01/PC01 Plus Postage. *Academic Achievement; Biology; Cognitive Style; *Competition; *Cooperation; Cooperative Planning; High Schools; Instructional Design; Learning Processes; Learning Strategies; Science Education; *Science Instruction; *Secondary School Science; *Teaching Methods; Teamwork
I DENT I F I ERS	*Science Education Research

ABSTRACT

The reward structure of a classroom refers to the means by which a teacher motivates students to perform school tasks. This document reports on a study in which academic achievement in competitive and reward-structured environments was examined in two high school sophomore level biology classes of equal academic ability. Each class was pretested and taught an identical unit of study, one in a competitive structure and one using a cooperative structure called the Group-Investigations Model. In this model groups of 5 or 6 students are formed for the study of a particular topic, and each student works on a subtopic for the group. At the end of 7 weeks both classes were post-tested. The results indicated that although both cooperative and competitive techniques obtained significantly higher post-test scores than their pre-test scores, neither strategy was superior to the other in producing academic achievement. Results are discussed and compared to previous studies which have examined differences between cooperatively, competitively, and individually structured classroom environments. (Author/TW)

	***************************************	***
*	Reproductions supplied by EDRS are the best that can be made	*
*	from the original document.	*
****	***************************************	***

ACHIEVEMENT IN COOPERATIVE VERSUS COMPETITIVE REWARD-STRUCTURED SECONDARY SCIENCE CLASSROOMS

ED27455 LAWRENCE W. SHERMAN and DEBORAH ZIMMERMAN

Miami University Oxford, Ohio

U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION

This document has been reproduced as received from the person or organization originating it.

Minor changes have been made to improve reproduction quality.

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

aurenc man

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Paper presented to the Annual Meeting of the Midwestern American Educational Presearch Association, (Chicago, IL, October, 1986).

5E 047251

ACHIEVEMENT IN COOPERATIVE VERSUS COMPETITIVE REWARD-STRUCTURED 1 SECONDARY SCIENCE CLASSROOMS,

LAWRENCE W. SHERMAN AND DEBORAH ZIMMERMAN, Department of Educational Psychology, School of Education and Allied Professions, Miami University, Oxford, Ohio 45056.

ABSTRACT. Academic achievement in competitively and cooperatively reward-structured environments was examined in school sophomore level biology classes of equal two high Each was pre-tested and taught an ability. academic unit of study, one in a competitive structure and identical a cooperative structure called the one using At the end of 7-weeks both Group-Investigation model. classes were post-tested. A two-way within subjects ANOVA was used to determine significant differences in pre- and post-test scores within each class and between treatment results indicated that although both groups. The obtained competitive techniques cooperative and significantly (p<.05) higher post-test scores than their pre-test scores, neither strategy was superior over the producing academic achievement. Results are other In and compared to previous studies which have discussed examined differences between cooperatively, competitively and individually structured classroom environments.

The reward structure of a classroom refers to the INTRODUCTION. means by which a teacher motivates students to perform school tasks. three such pedagogical structures as Johnson (1979) described competitive, cooperative. Traditionally, Individualistic. and classroom structure has been either individualistic or competitive. an individualistic structure, students are given individual goals, l n and a criterion-referenced evaluation system is used to assign rewards. In a competitive system, students are also given individual goals, but are rewarded by means of a norm-referenced evaluation Theoretically in a competitive system students discourage the system. performance of their peers, since one student must fall if another is to succeed (Slavin, 1978b). Success is available to only a few, and many students who could potentially achieve at a high level turn their attention away from academics to peer-supported activities such as sports and social functions (Coleman, 1961). Several studies have discussed the potentially negative effects of a competitive reward on learning (Holt, 1967; Johnson & Johnson, 1975) and system self-concept (Kirschenbaum et al, 1971). In addition, traditionally competitive instruction has been observed to stress the acquisition of

A PAPER PRESENTATION TO THE MIDWESTERN AMERICAN EDUCATIONAL RESEARCH ASSOCIATION MEETINGS, CHICAGO, ILLLINOIS, OCTOBER, 1986.

and the second second second

low level information rather than high level ideas (Sullivan, 1980), stimulate competition and social comparison rather than cooperation (Johnson & Johnson, 1975; Pepitone, 1980), and produce negative intergroup perceptions and attitudes (Cohen, 1980).

an alternative approach described by Johnson (1979) and called the cooperative or team structure students' rewards depend on the performance of a group. Group members, therefore, encourage each other to do well and to help each other meet their goals. Studies have shown that the use of a cooperative reward structure has had positive effects as compared to a competitive structure on academic achlevement (Lucker et al, 1976; Slavin, 1978a; DeVries & Slavin, 1978), mutual concern (Aronson et al, 1975; DeVries & Slavin, 1978), self-esteem (Aronson et al, 1975; Blaney et al, 1977; Slavin, 1978a), increased interpersonal relationships (DeVries et al, 1978; and Theoretically, this occurs because "...groups improve 1978). Slavin. performance due to an increase in peer norms favoring performance and because they provide opportunities and motivation for students to help one another. They increase mutual attraction because assignment to groups and peer tutoring increase contact between students and because Interdependence among students causes students to like one another" In addition, group learning can aid students in (Slavin, 1978). less dependent on teacher instruction and become more becomina responsible for their own learning (Bingman & Koutnik, 1970).

techniques for cooperative learning have been developed Several example, several student-team learning years. For I n recent (1978) DeVries et al created by techniques have been Student Team Achievement Divisions) (Teams-Games-Tournaments, and (Jigsaw) which combine the use of team Aronson et al (1975) competition and academic games in the classroom as a cooperative The success of these student-team learning strategy. learning techniques with regard to academic achievement, increased self-esteem, improved interpersonal relationships, and mainstreaming has been summarized by Slavin (1980). In addition, numerous modifications of these three basic techniques have been developed in recent years to meet special purposes or needs in the classroom.

Investigation (GI) is another cooperative learning Group technique that was developed by Sharan & Sharan (1976) and Sharan & Hertz-Lazarowitz (1980). According to this method, a class is divided Into groups of 5-6 students for the study of a particular topic. Groups plan their strategy of study so that each student is involved In the formulation and completion of the project. Each student in the group selects a subtopic for which she or he is responsible. They research topic to the group and the group prepares contribute their presents the material to the entire class. A group engaging in a and will proceed through six phases: topic selection, GI project and cooperative synthesis, planning, . Implementation, analysis presentation of the final project, and evaluation. A description of these phases can be found in Sharan and Hertz-Lazarowitz (1980).

Slavin (1983) distinguished six types of cooperative structures on the interactive basis of two possible task structures and three possible incentive structures. He reviewed 46 experimental studies

contrasting these cooperative structures with either individual or competitive goals. He found that cooperative learning methods that used task specialization and group rewards, of which GI would be an example, increased student achievement more than control methods. Methods that used task specialization and individual rewards, however, did not have this effect. He suggested that because the number of task specialization studies are few, more research is needed before conclusions can be drawn.

In one study (Sharan et al, 1980) GI structure was reported to be more effective than a competitive structure in promoting learning on a level of cognitive functioning. In a more recent study, Sharan hlah (1984) compared GI Instruction, Student Team Achievement Divisions (STAD), and whole-class (individually competitive) teaching strategies regard to academic achievement, cooperative behavior, and social with attitudes in the classroom. Results of his study indicated that the GI STAD (cooperative) methods were similar in terms of their and effect on academic achievement: both these methods were more effective Individually competitive whole-class instruction; and, the GI than method was more effective than both STAD and whole-class instruction terms of producing more positive social interactive behaviors and In attitudes among students. Okebukola (1985) and Okebukola and Ogunniyi (in press) have examined 8th grade Nigerian science classes contrasting Johnson's GI technique, Aronson's Jigsaw and Slavin's TGT (In and STAD techniques with an individually competitive structure and determined that the most academically favorable structures were the cooperative ones, especially TGT and STAD. Okebukola's studies did not include Sharan's GI goal structure model. The objective of the study was to provide further comparison concerning present the effectiveness of a cooperative (i.e., Sharan's GI model) versus an individually competitive classroom structure with regard to achievement galns in two high school Biology classes. This was determined by teaching an identical unit of study to two different classes of approximately equal academic abilities, and comparing the achievement of students in the individually competitive structured class with achievement in the class utilizing a cooperative student group Investigation model. Differences between the two classes and relative gains in achievement within each class were evaluated. - 1 + was hypothesized that while no significant (alpha > .05) difference between the two groups was expected on their pre-tests, both groups were expected to obtain significantly (alpha < .05) higher post-test Furthermore, based on the results of previous studies, the scores. class the cooperative GI approach was expected to make using significantly (alpha < .05) higher gains on their post-test scores as contrasted with the competitive classroom.

METHOD

SAMPLE. This project was conducted during Spring, 1985 in a midwestern, predominantly white, middle class rural high school. The subjects were from two sophomore level Biology classes of approximately equal academic abilities. Biology is an elective at the high school, and a majority of the students taking this course rank in the top one-third of their class. Class A (n=21) used the cooperative GI strategy; Class B (n=25) received the individually competitive

treatment. The unit of instruction examined in this study concerned ecology and environmental science. A significant portion (25%) of the students' 4th-term grades consisted of a research project concerning major biomes of the world. Both classes were exposed to the same study content, labs, in-class activities, homework, reading materials and the same instructor for seven weeks. They differed only in the classroom structure that was utilized.

by the GI cooperative PROCEDURES. Class A students learned All in-class activities, labs, and projects were conducted technique. in pre-assigned groups which consisted of 4-5 members who were equally diverse in terms of academic ability based on previous academic the class, gender, and race. Grades were based on a In performance criterion-referenced evaluation system. Each student within a group was required to contribute to the overall completion of the project. A major blome (tundra, coniferous forest, deciduous forest, grassland, desert, or tropics) was randomly assigned to each group. For each group, 5 major sub-topics concerning their particular blome was required to be addressed in Students decided the final report. amongst themselves who would be responsible for each topic. Final evaluation of the project was based on a) one written report per group a contribution by each member, and b) a class presentation by wIth each group with participation by each member. Each member of a group received the same final grade for the overall completion of the blome This project was designed after the group-investigation project. method as described by Sharan and Sharan (1976) and Sharan and Hertz-Lazarowitz (1980).

Class B students worked individually on all class activities throughout the 7-week unit. Grades were based on a norm-referenced evaluation scale. Each student in the class had the opportunity to choose the blome they wished to report on. Five major sub-topics concerning the blome were required to be addressed as with Class A.

Both Classes A and B were given three weeks to complete this assignment. Students in both classes were given two class periods during these three weeks to work on their projects. All other activities related to this assignment were conducted out-of-class. In addition to this major project, students performance on worksheets, labs, reading assignments and outdoor experiences were evaluated in both classes. Class A students conducted these activities in their pre-assigned groups; Class B students conducted them individually.

DEPENDENT MEASURE. The same teacher-made 40 item pre- and post-test was given to both classes at the beginning and end of the ecology unit. To insure reliability for this test a KR-21 coefficent was computed to be .71 on the post-test, which was considered to be an acceptable measure of internal consistency.

DESIGN AND ANALYSIS. A pre-test, post-test quasi-experimental design for two intact classroom groups (Cambell & Stanley, 1966) was used in this study and allowed two types of evaluation: 1) comparison of pre- and post-test scores within each class, and 2) comparison of changes between pre- and post-test scores between the two classes. Thus, a two-way within subjects ANOVA of mean achievement scores between groups (competitive vs. GI cooperative) across time (pre- and post-test scores) within subjects was utilized.

•

RESULTS

Pre- and post-test scores and changes between the two for Classes and B are presented in Table 1. Results of the ANOVA for the stated A hypotheses are illustrated in Table 2. Figure 1 illustrates a plot of mean pre- and post test scores for each treatment group. Results from two-way ANOVA indicated a significant difference (p<.0001) in prethe and post-test scores. Post-test scores were significantly greater pre-test scores for students in both treatment groups. than The (I.e., the treatment by time score) was used Interaction F statistic differences between treatments with regard to academic to determine achlevement. No significant difference (p>.05) in pre-test or These data post-test scores between treatment groups was found. Indicate that although both cooperative and competitive techniques were effective learning strategies, neither strategy was superior over the other in producing achievement gains. Possible reasons for this are discussed in the Conclusions section of this paper.

Table 1

Mean pre- and post-test scores in cooperative and competitive classrooms.

	Time		
Group	Pre-test	Post-test	
Cooperative (n = 21)			
mean	18.33	25.19	
sd	3.58	5.01	
competitive (n = 25)			
mean	19.60	27.28	
sd	6.04	5.64	

Table 2

Two-way within subject ANOVA of Treatment (Cooperative vs. Competitive) by time (pre- vs. post-test).

Source	df	MSe	F	P <
Treatment	1	64.28	1.47	.229
Subject within treatmont	44	43.33		
Time (pre vs post)	1	1205.95	110.77	.001
Treatment by time	1	3.86	.35	
Subject by time within treatmen	+ 44	10.89		

CONCLUSIONS

Previous studies have reported greater academic achievement in cooperative versus competitive classroom reward structures (e.g., Holt, 1967; Johnson & Johnson, 1975; DeVries & Slavin, 1978; Slavin, 1978b; Sharan, 1984). Most of these previous studies, however, utilized a cooperative system with an incentive structure based on

2

æ

group reward for Individual learning with no task specialization, as described by Slavin (1983) (e.g., TGT, STAD). Slavin (1983) found type of cooperative structure to be the most consistently this effective in improving academic achievement. Only a few studies, however, have dealt with a cooperative system that has an incentive structure based on group reward for group performance with task specialization, as exemplified by the GI method. Two studies that did reported achievement In Gl versus academic use GI areater classrooms (Sharan et al, 1980: Sharan. competitively-structured Results of the present study do not support these past 1984). observations: there was no significant difference in achievement between students learning in a cooperative (GI) environment and those learning in an individually competitive class. Both approaches equally and effectively produced significant learning.

discrepancy between the results of the present study and This found in other reports may be due to the timing and the duration those project which was accomolished during the final 10 weeks of of this high school year. Students at that point in the year had already the established friendship "circles." As a result, students may have been more resistant to a change in classroom structure than they would have been if cooperative learning had been established as a classroom norm at the beginning of the year. Sharan (1980) hypothesized that learning attempted at the beginning of the school year cooperative with newly composed classrooms may be more effective than when done after a class has already established a collective history.

35-day unit of study may also have not been sufficient time to Α effectively implement and evaluate a cooperative teaching strategy. According to Gibb's (1964) individual-group maturation model of group development, achievement of Individual and group goals is not possible feelings of adequacy, self-esteem, and trust are felt by all uniess Personal observation suggests that this first members of the group. not achieved by some of the group stage of group development was in the cooperative classroom. As previously discussed, many members students were resistant to change in classroom norms because of to already established friendship circles. One boy, for lovalties example often refused to participate in activities with his group and preferred to work alone. The GI method was an unfamiliar strategy to GI is a method that involves relatively complex cognitive students. (Sharan, 1980), such as the selection and learning tasks interpretation of data, problem-solving, and the collective synthesis Sharan, et al (1979) suggest that the utilization of Gl of Ideas. requires a greater investment in teacher training and educational change than do other cooperative techniques such as peer tutoring. (1984) study comparing STAD, GI, and a comperitive technique, Sharan's example, involved intensive teacher training and the sample size for terms of number of classses used (9-14 per teaching method) was In greater, thus allowing for more accurate statistical analyses.

To summarize, the results showed no significant difference in academic achievement between students learning in a Gi cooperative versus an individually competitive classroom environment. Both groups, however, obtained significantly higher post-test than pre-test scores, indicating that both pedagogical strategies have positive

۰.

SHERMAN/ZIMMERMAN PAGE 7

effects on academic achievement. A factor not examined in this study, but which may be an important effect of a cooperative structure over a competitive one deals with the impact of cooperative learning on values and racial attitudes. Cooperative learning methods have social been found to have positive effects on self-esteem, race relations, and the acceptance of mainstreamed academically handicapped students (Slavin 1983). In addition, a cooperative environment may produce positive attItudes towards learning and teachers than a more competitive structure (Johnson et al, 1984). Future studies examining effects of the GI cooperative learning model on academic the achievement and attitudes towards learning are warranted.

REFERENCE NOTE

The development and preparation of this paper was supported by the Dean of the Graduate School and Research and the Dean of the School of Education and Allied Professions. Requests for reprints should be sent to Lawrence W. Sherman, Department of Educational Psychology, Miami University, Oxford, Ohio 45056

REFERENCES

- Aronson, E., Blaney, N., Sikes, J., Stephan, G., & Snapp, M. (1975). The jigsaw route to learning and liking. Psychology Today, July, 43-59.
- Bingman, R. & P. Koutnik. (1970). A small group study approach for biology based inquiry objectives. The American Biology Teacher, 32.
- Blaney, N. J., Stephan, S. Rosenfield, D., Aronson, E., & Sikes, J. (1977). Interdependence in the classroom: a field study. Journal of Educational Psychology, 69, 121-128.

Cambell, D. & Stanley, J. (1966). Experimental and quasi-experimental designs for research. Chicago: Rand McNally.

- Cohen, E. (1980). Design and redesign of the desegregated school: problems of status, power, and conflict. In W. Stephan and J. Feagan (Eds.), School Desegregation: Past, Present, and Future. New York, Plenum.
- Coleman, J. S. (1961). The Adolescent Society. New York, The Free Press of Glencoe.
- DeVries, D. L., Edwards, K. J., & Slavin, R. E. (1978). Biracial learning teams and race relations in the classroom: four field studies on TGT. Journal of Educational Psychology, 70, 356-362.
- DeVries, D. L. & Slavin, R. E. (1978). Teams-Games-Tournaments: review of ten classroom experiments. Journal of Research and Development in Education, 12, 28-38.
- GIbb, J. (1964). Climate for trust formation. In L. Bradford, J. Gibb, and K. Benne (Eds.). T-Group Theory and Laboratory Method. New York: John Wiley.
- Holt, J. (1967). How Children Learn. New York: Dell.
- Johnson, D. (1979). Educational Psychology. Englewood Cliffs, NJ: Prentice Hall.

Johnson, D. W., Johnson, R. T., Tifany, M., & Zaidman, B. (1984). Ethnic relationships: The impact of intergroup cooperation and Intergroup competition. Journal of Educational Research, 78, 75-79.

Johnson, D. W. & Johnson, R. J. (1975). Learning Together and

Alone. Englewood Cliffs, NJ: Prentice Hall. Kirschebaum, H., Simon, S. B., & Napler, R. W. (1971). Wad-ja-get? The Grading Game in American Education. New York: Hart.

Lucker, G. W., Rosenfield, D., Sikes, J., & Aronson, E. (1976). Performance in the interdependent classroom: a field study. American Educational Research Journal, 13, 115-123.

Okebukola, P. A. (1985). The relative effectiveness of cooperative and competitive interaction techniques in strengthening students! performance in science classes. Science Education, 69, 501-509.

Okebukola, P. A. (In press). Cooperative, competitive and Individualistic laboratory interaction patterns: Effects on students' achievement and acquisition of practical skills. Journal of Research in Science Teaching.

Pepitone, E. (1980). Children in Cooperation and Competition. Lexington, MA: Lexington Books.

Sharan, S. (1980). Cooperative learning in small groups: recent methods and effects on achievement, attitudes, and ethnic relations. Review of Educational Research, 50, 241-258.

Sharan, S. (1984). Cooperative Learning in the Classroom: Research In Desegragated Schools. Hillsdale, NJ: Lawrence Erlbaum.

Sharan, S. & Hertz-Lazarowitz, R. (1980). A group investigation method of cooperative learning in the classroom. In S. Sharan, P. Hare, C. Webb, and R. Hertz-Lazarowitz (Eds.), Cooperation In Education. Provo, Utah, Bringham Young University Press.

Sharan, S., Darom, E., & Lazarowitz, R. (1979). What teachers think about small group teaching. British Journal of Teacher Education, 5, 49-62.

Sharan, S., Lazarowtitz, R., & Ackerman, Z. (1980). Achievement of elementary school children in small group versus whole-class Instruction. Journal of Experimental Education, 48, 125-129.

Sharan, S. & Sharan, Y. (1976). Small Group Teaching. Englewood Cliffs, NJ: Educational Technology Publications.

Slavin, R. E. (1978a). Student teams and achievement divisions. Journal of Research and Development in Education, 12, 39-49.

Slavin, R. E. (1978b). Student teams and comparison among equals: effects on academic performance and student attitudes. Journal of Educational Psychology, 70, 532-538.

Slavin, R. E. (1980). Using Student Team Learning. The John Hopkins Team Inquiry Learning Project, Baltimore Maryland, John Hopkins University.

Slavin, R. E. (1983). When does cooperative learning increase student achievement? Psychological Bulletin, 93, 429-445.

Sullivan, E. (1980). Can values be taught? In M. Windmiller, N. Lamber and E. Turiel (Eds.), Moral Development and Socialization. Boston: Allyn and Bacon.

• •