
DOCUMENT RESUME

ED 272 369 SE 046 698

AUTHOR Greeno, James G.; And Others
TITLE Cognitive Principles of Problem Solving and

Instruction Final Report.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENCY Office of Naval Research, Washington, D.C.
PUB DATE Jun 86
CONTRACT SFRC N00014-82-K-0613
NOTE 67p.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS Cognitive Ability; *Cognitive Processes; Computation;

ConvArgent Thinking; Graphs; Information Utilization;
*Instructional Design; *Learning Strategies; Logical
Thinking; Mathematics Education; Mathematics
Instruction; *Problem Solving; Secondary Education;
*Secondary School Mathematics; Word Problems
(Mathematics)

IDENTIFIERS Mathematics Education Research

ABSTRACT
Research in this project studied cognitive processes

involved in understanding and solving problems used in instruction in
the domain of mathematics, and explored implications of these
cognitive analyses for the design of instruction. Three general
issues were addressed: knowledge required for understanding problems,
knowledge of the conditions for applying problem-solving operators,
and strategic knowledge for problem solving. Computational systems
were developed in which graphical displays present explicit
information to students that allows them to reflect on processes that
are usually implicit, construct representations of problem
information, specify assignments of variables, and learn from
strategic errors. Research is described that provided analyses of
cognitive processes on which instructional designs were based, and
preliminary empirical results from use of the systems are presented.
(Author/JM)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

***************************v*******************************************



..*i"
.

:,:Y
*^ , "

M
.

'r ..5c
._.,`a`;,M

.
K

.
V

ia.,,..
,, i,d" -'ex ,

i).

t



SECURITY CLASSIFICATION OF THIS PAGE
..-

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION
unclassified

1b. RESTRICTIVE MARKINGS
none

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
ONR distribution list; availability
unlimited.2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANiZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

University of Pittsburgh

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research

6e ADDRESS (Gty, State, and ZIP Code)

Learning Research and Development Center
Pittsburgh, PA 15260

7b. ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Office of Naval Reserach

Bb. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

tic.. ADDRESS (Gty, State, and ZIP Code)
Personnel Training and Research Programs
Code 1142.PT

Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO. N- 00014-

82-K-0613

TASK
NO. 54-497

WORK UNIT
ACCESSION NO

11. TITLE (Ina rde Security Classification)

Cognitive principles of problem solving and instruction. (unclassified)

12. PERSONAL AUTHORS'
Green, James v., Brown, John Seely, et al.

13a. TYPE OF REPORT I13b.
Technical

TIME COVERED
FROM 1982 TO 1985

14. DATE OF REPORT (Year, Month, Day)
June 1986

S. PAGE COUNT
63

16. SUPPLEMENTARY NOTATION

Also issued as Report Number 41 in the Berkeley Cognitive Science Report Series

17. COSAT1 CODES 18. SUBJECT TERMS (Continue on revers, if necessary and identify by block number)
cognitive processes, problem solving, mathematics, instructic
problem-solving operators, computational systems, construc,
representations, strategic errors,

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Research in this project studied cognitive processes involved in

solving problems used in instruction in the domain of mathematics, and explored
implications of these cognitive $nalysmsfor the design of instruction. Three general
issues were addressed: knowledge required for understanding problems, knowledge of the
conditions for applying problem-solving operators, and strategic knowledge for problem

4, solving. Computational systems were developed in which graphical displays present

explicit information to students that allows them to reflect on processes that are
usually implicit, construct representations of problem information, specify assignments
of variables, and learn from strategic errors. Research is described that provided
analyses of cognitive processes on which instructional designs were based, and
preliminary empirical results from use of the systems are presented.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

BUNCLASSIFIED/UNLIMITED SAME AS RPT. DTiC USERe

21. ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL

Susan Chipman
22b. TELEPHONE (Include Area Code)
202/696-4318

22c. OFFICE SYMBOL

DO FORM 1473,84MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

unclassified



Cognitive Princirles of Problem Solving and Instruction)

James G. Green, University of California, Berkeley,

John Seely Brown and Carolyn Foss, Xerox Palo Alto Research Center,

Valerie Shalin, Nancy V. Bee, Matthew W. Lewis,

and Theresa M. Vito lo, University of Pittsburgh

Abstract

Research in this project studied cognitive processes involved in understanding and

solving problems used in instruction in the domain of mathematics, and explored

implications of these cognitive analyses for the design of instruction. Three general issues

were addressed: knowledge required for understanding problems, knowledge of the

conditions for applying problem-solving operators, and strategic knowledge for problem

solving. Computational systems were developed in which graphical displays present

explicit information to students that allows them to reflect on processes that are usually

implicit, construct representations of problem information, specify assignments of

variables, and learn from strategic errors. Research is described that provided analyses of

cognitive processes on which instructional designs were based, and preliminary empirical

results from use of the systems are presented.

'Final report of Project NR 154-497, supported by the Office of Naval Research Contract
SFRC N00014-82-K-0613. Some of the results were presented in a symposium:
"Advanced computer system applications in education: The next generation of educational
technology research and development" at the American Educational Research Association
meeting, Chicago, April 1985. Proceedings of that symposium will be published in
Machine Mediated Learning.
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I. Introduction

This report describes three projects involving cognitive anlayses of instructional

tasks coupled with development of instructional systems. The overall objective of the

research was to extend cognitive theory by studying cognitive processes involved in

understanding and solving problems used in instruction in mathematics, and to erniore

implications of these cognitive analyses for the design of instruction.

In the past ten years, methods of cognitive science have been used to provide

theoretical and empirical analyses of performance of several tasks used in technical training

and school instruction. These analyses have made important contribution to fundamental

cognitive theory as well as a better understanding of knowledge and skill that students must

acquire to succeed. New results about strategic knowledge in specific task domains have

been provided by analyses of problem solving in high school geometry (Anderson, 1982;

Green, 1978). New characterizations of cognitive skill and learning and understanding of

procedures have been provided in analyses of elementary arithmetic (Brown & Burton,

1980; Resnick, 1983; VanLehn, 1983). Important findings about knowledge for

understanding problems and forming representations that support effective problem-solving

activity have been obtained in studies of solving problems in basic electronics (Riley,

1984), word problems in elementary arithmetic (Briars & Larkin, 1984; Kintsch &

Green, 1985; Riley, Greeno & Heller, 1983) and basic physics (Chi, Feltovich & Glaser,

1981; Larkin, McDermott, Simon & Simon, 1980).

Further scientific advances have been achieved by using cognitive principles of

performance in designing instructional materials. In addition to the practical significance of

improvied training, fundamental empirical and theoretical advances can be provided in the

context of instructional design and development. Examples include the intelligent

diagnostic system DEBUGGY (Burton, 1982), whose development required articulating a

5
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space of variations for a cognitive procedure and a method for systematically searching in

that space to diagnose the cognitive basis for a student's errors. Another example is WEST

(Burton & Brown, 1982), in which an analysis of cognitive skill and strategy was

developed as a set of issues that provide the variables used in modelling student knowledge

and analyzing performance on problems. Instruction in general heuristics of problem

solving in mathematics (Schoenfeld, 1979), and intelligent tutoring systems for geometry

and LISP programming (Anderson, Boyle, Farrell, & Reiser, 1984) include analyses of

strategic knowledge for solving problems and articulate representations of search

processes. Instruction in representation of physics problems (Heller & Reif, 1984)

provides an aanalysis of knowledge for representing information in problems that is

significantly different from the empirical analysis that would be obtained from observations

of experts, but which shows how, at the level of student capability, it is possible to

represent problem information completely and correctly for the purpose of solving the

problems. An instructional system in basic physics called Dyna-Turtle (diSessa, 1982)

provided an analysis of stages in the acquisition of understanding of Newtonian motion,

including implicit conceptualization of velocity as a vector.

The three research projects that we have conducted involve different aspects of

knowledge that are important in knowledge for instructional tasks and that pose somewhat

different kinds of theoretical and instructional problems. The first project studied the

process of understanding problems. Building on earlier analyses of understanding

problems in elementary arithmetic, we examined more advanced problems involving more

than one step and operations of multiplication and division. A characterization of the

patterns of information needed to understand the domain of problems was developed, its

main distinctions were supported in an empirical study of problem difficulty, and a

computational system was developed that enables students to construct graphical

representations of information patterns in problems.

6
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The second project studied aspects of basic skill in a task of transforming

expressions in arithmetic. A cognitive analysis of knowledge required for algebra raised an

issue that has not been discussed previously about the relation between requirements of

new procedural domains. The transition from arithmetic to algebra includes learning new

structures of procedures, as well as learning procedures that use new data types. We

developed a task to provide instruction in the structure of transformation tasks, using

expressions in arithmetic. An empirical study of learning of this task provided new results

about the processes involved in solving problems involving choice of operators to

transform symbolic expressions. These results were used in the design of components of

an intelligent tutoring system for the task. The empirical results were used in the

formulation of cognitive issues for analysis of performance and maintaining s model of

student knowledge.

The third project studied strategic decision-making in solution of algebraic

equations. An earlier analysis of strategies in algebra (Bundy, 1975) was used in

designing a system that focuses students' attention on operators at general goals, rather

than on mechanical operations. This was accomplished by providing two resources. First,

a facility is provided that performs symbolic operations that the student selects, thereby

allowing the student to attend more fully to higher-level goals. Second, a display is

provided that traces the student's work on the problem; this enables the student to examine

retrospectively the sequence of decisions that he or she made in solving the problem, and

evaluate the decisions in light of their consequences for problem-solving success.

Significant new understanding of the problem-solving process was obtained in developing

the system, involving alternative characterizations of problem-solving operators at different

levels of generality. The requirement of presenting a usable, articulate system led to

theoretical insights about distinctions between different operators, and formulation of

global operators that can be considered easily by students in planning and in reflective

learning. 7
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2. Knowledge for Representing Problems

Analyses of cognitive processes in solving word problems has provided progress in

the integration of two large bodies of cognitive theory: the theory of language

understanding and the theory of problem solving. Texts of problems are understood, and

general principles of text comprehension apply. Problems are solved, requiring choices of

operations to achieve problem goals, and these processes are consistent with general

principles in the theory of problem solving. The task is distinctive because text processing

and problem solving are both involved in an integrated way; the activity of problem solving

is based on the information structure that results from language understanding.

Previous Analyses. Models developed earlier provide hypotheses shout the

kinds of information structure that successful problem solvers construct when they

understand word problems in elementary arithmetic. As an example, consider Figure 1,

which shows a semantic network corresponding to one hypothesis about the meaning of a

problem: "Jay had some books; then he lost three of them; now he has five of them left.

How many books did Jay have in the beginning?"

8
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cZ '...r..--RANSFER-OUT

Figure 1. Hypothetical cognitive representation of a problem.

Models developed by Riley, Greeno, and Heller (1983) and by Kintsch and

Greeno (1985) assume that problems are represented using schematic knowledge that

organizes information into structures corresponding to sets and higher-order structures

involving relations between among sets. In the example of Figure 1, sets are represented

because of the phrases "some books," "three books," and "five books." Representations

of sets are based on a schema that includes quantity, objects, and specification as its slots.

In the example, all the sets involve books that are associated with Jay, so the objects and

specifications are all the same. The quantities are the numbers given for the sets. The

relations among the sets are based on schemata that correspond to different patterns of

quantitative interaction. The example problem describes a situation where some objects are

removed from a set, which the model recognizes as an instance of its TRANSFER-OUT

schema. Other schemata are TRANSFER-IN, COMBINE, and COMPARE. The

9
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TRANSFER-OUT schema has slots for a start set, a transfer set, and a result set. The

representations of the three sets in the problem are fit into the structure.

The use of the COMBINE schema i.-1 Figure 1 illustrates an interaction between

knowledge for representing problem information and knowledge for solving the problem.

Based on observations of children solving problems, it was hypothesized that many

children lack knowledge for linking the information in the TRANSFER-OUT schema with

problem-solving operators when the unknown quantity is in the start set. The solution then

requires finding another schema to represent relatiions between the sets, and the model

adds the structure of subsets and a superset provided by the COMBINE schema. The

model includes a link from the relations in this structure to the problem-solving operator of

combining the quantities in subsets to find the quantity of the superset, and this is done to

obtain the answer.

New Analysis of Quantitative Patterns. In the project that this paper

reports, an analysis was developed for more complex problems, including multiplication

and division operators and requiring more than one step of calculation. An example is:

The charge for parking is $.65 per hour. Ms. Jones parked for four hours.

How much change did she get from $10.00?

The model that Riley et al. (1983) and Kintsch and Greeno (1985) developed for

simpler problems could be extended easily to apply to these slightly more complex

problems. A natural extension would be to have a version of the COMBINE schema for

the multiplicative case, with the number of parts, the amount in each part, and the total

amount as the slots, and a multiplicative version of COMPARE for situations with two

quantities that are related by a multiplicative factor, (e.g.. Jay's age, Kay's age, and a

relation such as Kay being three times as old as Jay). Problems requiring more than one

step would be represented as networks formed with more than one schema. For example,

10
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the paiicing-lot problem above would use the multiplicative COMBINE schema for the

relation between four hours, $.65 for each hour, and the total amount charged, and it could

use the additive COMPARE schema for the $10.00 that was paid, the total amount charged,

and the difference between these amounts.

An analysis conducted in this project by Shalin and Bee (1985a) uses somewhat

different theoretical concepts, for two reasons. First, there are classes of problems that are

solved well by students that are problematic for the kind of schema-based model that has

been hypothesized for the domain of word problems. An example is the following (cf.

Nesher & Katriel, 1977):

During the day, 27 children went into the museum and 19 children went out.

How many children went through the museum door?

The problem requires use of the COMBINE schema, and knowledge could be added to the

earlier models to activate that schema for problems like this, but the variety of problems that

would require special additions to the model is quite large, and it seems implausible that

students must acquire knowledge of all the special cases. We concluded that

representational knowledge ese problems probably is based on a different principle,

involving more general features of problem information than were captured by the schemata

of earlier analyses.

The second reason for choosing a different assumption was instructional.

Development of our analysis was connected to a goal of designing an instructional system

that can provide training for improved skill in solving word problems. We wanted to

develop a computer-based graphics system that would display information in problem

representations so that students can see the patterns that they need to recognize in the

meanings of problem texts. A system that included the labels of schemata such as ADD-

COMBINE and MULTIPLY-COMPARE could have been designed, but we judged that

11
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this might be more cumbersome than necessary and interfere with students' understanding

of the essential relations in the problems. Whether this is so is, of course, an empirical

question, but we chose to deep a system that involved a simpler set of visual distinctions.

The formal analysis that was conducted matches the concepts that are used in a system of

graphical representation that we developed for instrintion.

In Shalin and Bee's (1985a) analysis, a problem is characterized as a set of

quantities. Several of the distinctions made in this analysis were discussed earlier by

Schwartz (1976). A quantity is a distinguished amount of some kind, such as the number

of a set or the measure of some physical substance. For example "five books" and "four

hours" are quantities, but "five" and "four" are not. The analysis includes a theory of

semantic types correspondins' to quantities in problems. For the domain of problems in the

analysis, there are four types: extensive, intensive, difference, and factor. The analysis

also includes a theory of composition of quantities. For example, two extensive quantities

can be combined to form another extensive quantity, or an extensive quantity and an

intensive quantity can be combineU to form an extensive quantity. The pattern of

information in a problem is a set of quantities arranged in a network that shows how some

of the quantities are the results of combining other quantities.

An extensive quantity is a simple amount, such as the number of members of a set

or the number of units of some substance. If Jay has six books and Kay has nine books,

then Jay's six books and Kay's nine books are both extensive quantities. A difference is

an additive relation between two quantities of the same type; for example, Kay has three

more books than Jay, and the quantity three more books is a difference. An intensive

quantity is an amount that is the same in each of several units. For example, if each of

Jay's t ioks has eight chapters, then eight chapters per book is an intensive quantity. A

factor is a unitless quantity that relates two other quantities that have the same units. For

example, Jay has two-thirds as many books as Kay, and two-thirds is a factor.

12



Cognitive Principles of Problrn Solvi..g and lastruction
Green, Brown, Foss, Shalin, Bee, Lewis, and Vito lo page 10

The analysis specifies rules of composition for quantities. The basic compositional

unit involves three quantities, two of which are composed to form the third. The

compositions are constrained by the units of the quantities. Operations on numbers are

determined by the types and nits of the quantities an the composition.

Table 1

Additive Compositions

Extensive Difference

fjctensive Extensive Extensive

Mamma Difference

Table 1 st...nvs the additive composition 3 of extensive quantities and differences. In

all of these compositions, the number of the comtination is the sum of the numbers of the

components. If the components are given, the combination is found by addition. If the

_ombination and one of the components are given, the other component is found by

subtraction.

In one kind of composition, vo extensive quantities are combined to form another

extensive quantity. When the quantities are cardinallities of sets, the units may all be the

same, e.g., two boom combined with three books resulting in five books. The units of the

combination may also be a conjunction or superset of the units of the components, e.g.,

four science books combined with two history books result in six science and history

books, or three boys with five girls resulting in eight children.

13
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A composition with three extensive quantities can also involve measures of

continuous variables, such as distances or masses of objects. Compositions of these

quantities correspond to physical concatenations of objects or events, such as placing two

objects on a scale or moving an object from one point to a second point and then to a third

point. The units of these quantities are constrained to be commensurate. An example is:

"Jay's history books weigh seven pounds and his science books weigh 19 poounds; his

history and science books weigh 26 pounds altogether."

A second kind of composition has two extensive quantities and a difference. The

units of the difference are a comparison between the units of the two extensive quantities.

One example is: "Jay has four science books and two history books; he has two more

science books than history books," where four science books and two history books are

extensive quantities, and two more science books than history books is their difference.

Another ex' -ple is: "Jay has six books; Kay has three more books than Jay; Kay has trine

books." An example involving continuous quantities is: "Jay's history books weigh seven

pounds; his science books weigh 19 pounds; his science boolcr weigh 12 pounds more

than his history books.

Differences can also be composed additively to form another difference, as in "Kay

has three more books than Jay, and El has four more books ttiF9i Kay; therefore, El has

seven more books than Jay." The constraint on relations iF, than the differences must

involve three ordered quantities; one combined qugatit- . the difference between the

smallest and the middle quantities, the other cc .umed quantity is the difference between

the middle and the largest quantities, and the combination quantity is the difference between

the smallest and the largest quantities.

Table 2 shows multiplicative compositions. The number of a combination is the

product of the numbers of the components, or the number of a component is obtained by

dividing the number of the combination by the other component.

, 14
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Table 2

Multiplicative Compositions

Extensive Difference, Intensive Factor

Extensive Extensive Difference Extensive Extensive

Diff=130 0 Difference Difference

Intensive Intensive Intensive

Factor Factor

The simplest compositions involve factors, which combine with other types of

quantities to foru combinations of the same type as the quantities they are combined with.

An example involving two extensive quantities and a factor is, "Jay has five books; Kay

has twice as many books as Jay; Kay has ten books," where the units are five books, twice

as many books, and ten books. The units of the extensive quantities may be different,

though commensurable, as with "Kay has two-thirds as many history books as science

books; she has six science books; therefore she has four history books," where the

quantities are six science books, two-thirds as many history books as science books, and

four history books.

Factors can also combine with differences, for example: 'The difference between

Jay's and Kay's heights is three times the difference between El's and Em's heights; Jay is

six inches taller than Kay; and El is two inches taller than Em." Factors can combine with

intensive quantities, for example: "Car A gets 1.2 times as many miles per gallon as Car B;

Car B gets 25 miles per gallon; and Car A gets 30 miles per gallon." Two factors can be

15
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combined to form another factor, for example: "Kay has three times as many books as Jay,

and El has one-half as many books as Kay; and El has three-halves as many books as Jay."

Another kind of composition has two extensive quantities and an intensive

quantity, with the intensive quantity and one extensive quantity as the components and the

other extensive quantity as their combination. Units of the intensive quantity are a relation

denoted by "per" between the units of the two extensive quantities. An example is "Jay has

six books; f.ach book has eight chapters; Jay's books have 48 chapters altogether." The

intensive quantity is eight chapters per book. This is combined with six books, and the

combined quantity is 48 chapters. An example involving continuous quantities is: "Kay

rode her bicycle for 8 miles; her speed was 15 miles per hour; she rode for 32 minutes,"

where the component quantities are 15 miles per hour and 32/60 hours, and the

combination is 8 hours.

An intensive quantity can be combined multiplicatively with a difference, and their

combination is another difference, for example: "There are five cats per sack; and Jay has

three more sacks than Kay; therefore, Tay has 15 more cats than Kay," where the

components are five cats per sack and three more sacks; and the combination is 15 more

cats. Two intensive quantities can be combined multiplicatively, and their combination is

another intensive quantity; for, example, "There are seven kits per cat; and there are five cats

per sack; therefore, there are 35 kits per sack."

When two extensive quantities are combined multiplicatively, their combination is a

Cartesian product, which is ano.her extensive quantity; for example: "Jay has five shirts

and seven ties; therefore, he has 35 shirt-and-tie combinations." An extensive quantity and

a difference can be combined multiplicatively, and their combination is a difference; for

example: "Jay has five shirts; and he has four more blue ties than red ties; therefore, he has

20 more combinations of shirts with his blue ties than combinations of shirts with his red

16
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ties." We have not found a meaningful way to combine two differences multiplicatively, so

Table 2 has the entry 0 in that cell.

Table 3 shows additive compositions involving all four types of quantities.

Extensive quantities do not combine additively with intensive quantities or factors, and

intensive quantities do not combine additively with factors, as far as we can determine.

Factors can be combined additively

Table 3

Additive Compositions

Extensive Difference lucky& Factor

Extensive Extensive Extensive 0 0

Difference Difference Intensive FaLtcr

Intensive [Intensive] 0

El= Factor

with other factors; for example: "Jay has three times as many books as El; and Kay has five

times as many books as El; toge:h1r, Jay and Kay have eight times as many books as El "

A difference can be combined additively with an intensive quantity, and the result is another

intensive quantity; for example: " Jay's average of hits per times at bat was .005 less than

Kay's average of hits per times at bat; Jay's average was .318; and Kay's average was

.323." Factors also can be compared additively, although the comparisons are somewhat

awkward. An example is: " Jay has three times as many books as El; and Kay has five

times as many books as El; so Kay has two more times as many books as El than Jay."

17
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An entry in Table 3 of special interest is the additive combination of two intensive

quantities. The physical operation corresponding to addition is concatenation, but when

two objects or substances with different values of an intensive quantity are concatenated,

the value of the quantity is not the additive sum of the components. For example, if two

objects with densities DI and D2 are fastened together, the resulting object does not have

density DI + D2. The quantity that results when two intensive quantities are combined

depends on other quantities specifically, extensive quantities that are the amounts of the

objects involved in the combination. For example, if two objects with densities DI and D2

and masses m1 and m2 are fastened together, the resulting object has density

D12 = Mimi + D2M2Y(M1 + m2).

Instructional System for One-Step Problems. Students are required to

solve word problems, and according to our analysis, this requires comprehending relations

among quantities in the problems. Instruction usually does not include explicit attention to

patterns of quantitative relations, and we hypothesize that a medium for representing

quantitative patterns explicitly can aid =dents in learning to solve word problems. The

instructional system that we have constructed is a graphical system, developed by Valerie

Shalin, Nancy Bee, and Ted Rees, that allows students to construct diagrams that represent

the patterns of information in word problems. To represent a problem, a student identifies

the quantities that are mentioned in the problem and includes them in the representation. In

more complex problems, quantities that are not mentioned also need to be identified and

represented.

18
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(a) ( b ) (C) (d)

Figure 2. Menu of shapes for representing quantities.

Figure 2 shows the menu of shapes that are in the system. Shape (a) is for

extensive quantities, shape (b) is for differences in additive comparisons, shape (c) is for

intensive quantities, and shape (d) is for factors in multiplicative comparisons.

To represent a problem, a student constructs a semantic network that has one of the

shapes in Figure 2 for each of the quantities in the problem, and links between the

quantities corresponding to their compositional rela ions. As an example. consider the

problem:

there?"

"Jay put 48 books into bags,with six books in each bag; how many bags were

Figure 3. Semantic network for a one-step problem.



Cognitive Principles of Problem Solving and Instruction
Greeno, Brown, Foss, Shalin, Bee, Lewis, and Vito lo page 17

Figure 3 shows a diagram for this problem. The units of the three quantities are books,

bags, and books per bag. A convention of the system is that in additive compositions, the

components that are added are beside each other, and the quantity that they form as their

sum is above them, and that in multiplicative compositions, the components that are

multiplied are at one level, and their product is above them. Therefore, in Figure 3, the

quantities for books per bag and bags are at one level, and the quantity for books is above

them. Numerical values forbooks and bcoks per bag are given, and the quantities with

given values are marked with filled circles. The number of bags is unknown, and that

quantity is marked with an arrow. The types and units determine that the relation is

multiplicative, and because one of the component quantities is unknown, with the other two

numerical values given, the answer is found by dividing the combined quantity by the

given component. Figure 4 shows the diagram with these inferred steps included.

Figure 4. Semantic network for a one-step problem,
including the solution.

Analysis and Instructional System for Two-Step Problems. Problems

requiring more than one step can be represented by combining two or more triads like the

one in Figures 3 and 4. An example is in Figure 5, for the problem
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The charge for parking is $.65 per hour. Ms. Jones parked for four hours.

How much change did she get from $10.00?

The dollars charged per hour, hours, and dollars paid are the given values, and the

difference of dollars paid more than dollars charged is the unknown. Another quantity, the

dollars charged, is not mentioned in the problem. The need for this quantity has to be

inferred by a student in order ...o solve the problem. It is an extensive quantity, resulting

from the combination oe dollars charged per hour and hours. The representation includes

the expression 4 * 0.65, indicating the operation for calculating the numerical value 2.60.

The unknown quantity in Figure 5 is the difference between two extensive

quantities. It is combined additively with the smaller of those quantities; the spatial

arrangement with the smaller quaiitity beside the difference and the larger quantity above

them preserves the convention that addition moves upward in the diagram. Because the

calculation uses the combined quantity and one of the components, 1:-.1 operation used is

subtraction. Figure 5 shows two intermediate expressions
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dollars charged

4'0.65

2.60

dollars charged per hour

0.65

I

dollars paid

10.00

-0°

hours

difference of dollars paid

more than dollars charged

10.00 - (4'0.65)

10.00 - 2.60

7.40 i

Figure 5. Graphical representation of a two-step problem.

in the quantity for the difference: 10.00 - (4 * 0.65) and 10.00 - 2.60. Both of these can be

obtained from the representations far dollars paid and dollars charged, and inclusion of the

alternative expressions calls attention to their equivalence. The ans ver for the problem,

7.40, is marked with an arrow.

Shalin and Bee analyzed a domain of word problems that contain three quantities

with given values and an unknown that is found using two operations. The problems can

all be solved by evaluating an expression of the form A op (B op C) or (A op B) op C,

where each operator is from the set (add, subtract, multiply, divide). The problems all

have representations that invelve five quantities, with two triads that are combined.

One form of the combination imduces a hierarchy, such as Figure 5. This occurs

when a single quantity is the combination of one triad and a component of the other triad in
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the problem. There are two other patterns in which the quantities in two triads can be

combined. One of these is illustrated in Figure 6, which represents the following problem:

Paul works in a doughnut shop. He made 14 t -res of glazed and powdered

doughnuts, and 8 of these boxes were powdered cloughntas. If he put 12

doughnuts in each box, how many glazed doughnuts did he make?

I

boxes of glazed doughnuts

and powdered doughnuts

14

glazed doughnuts

(14-8).112

6'12
72

boxes of glazed doughnuts

14-8

6

boxes of powdered doughnuts donuts in each box

12

Figure 6. A problem with a shared-component structure.

The inferred quantity, boxes of glazed doughnuts, is a, component in both of the triad

structures. Its value is obtained by subtracting the number of boxes of powdered

doughnuts from the total number of boxes, and then it is used along with the number of

doughnuts per box to obtain the number of glazed doughnuts by multiplication.

The third kind of pattern is illustrated in Figure 7, for the problem:
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Dr. Wizard has discovered a group of monsters living in a dark cave in South

America. He has counted 7 monsters and there are &fingers on each monster.

If there are 4 fingers on each monster hand, how many monster hands did he

find?

L56

e

1_
monsters

fingers

fingers on each monster

-
1

hands

(7'8)/4
56/4

14

fingers on each hand

Figure 7. A problem with a shared-combination structure.

Here the inferred quantity, the number of fingers, is the combined quantity in both of the

triad structures. It is obtained by multiplication of the monsters and fingers on each

monster quantities, and then used along with fir ers on each hand to obtain the number of

hands, using division.

Empirical Study of Structural Patterns. Shalin and Bee (1985b) conducted

an empirical study to test whether the differences in problem structures identified in their

analysis correspond to psychologically significant distinctions. Problems were constructed

with the different patterns, allowing for comparison across sets of problems with the same
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operations. Sets were also approximately balanced for the numbers involved. If the

difficulty of problems is related systematically to the patterns of quantitative structure, we

can take this as at least presumptive evidence that the distinctions in the theoretical analysis

correspond to significant factors in psychological processing of the different problems.

Shalin and Bee constructed 34 prOlems, representing 11 patterns of quantities.

The problems included three combinations of operators: (a) problems with two additive

compositions, (b) problems with cne additive and one multiplicative composition, and (c)

problems with two multiplicative compositions. They also included the three kinds of

quantitative patterns: (a) binary trees, (b) patterns with a shared component, and (c)

patterns with a shared combination. Examples of problems with one additive and one

multiplicative composition include the problem of Figure f, which has a shay' d component,

and the following two problems

(binary tree)

Tom is restocking the shelves in his grocery store. He has 840 diet and regular

cokes altogether, and there are 8 cokes in each carton of cokes. If this makes

65 cartons of regular c '-..e, how many cartons of diet coke (12r'S Tom have?

(shared combination)

The Girl Scouts are selling cookies for their annual fund raiser. There are 24

cookies in each box of cookies and 34 boxes of chocolate and vanilla cookies.

If there are 360 vanilla cookies in these boxes, how many chocolate cookies are

there?

The representation of most problems is not unique; for example, the problem above about

Girl Scout cookies can be represented without a shared combination by using six quantities

involving three triads, leading to a solution in three steps rather than two. The patterns that

were designated by Shalin and Bee for the different problems were those that provide
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simpler representations and solutions, and they used word orders that should bias the

representations in the way they specified.

The use of 11 patterns, rather than nine, and the use of 34 problems, occurred

because of vt .iations within some of the cells that were included to increase the

comparability of some variables across problems, such as the use of intensive quantities

and multiplicative factors in multiplicative compositions. Three versions of the problem set

were constructed wiui different assignments of numbers to problems, providing an

approximate balancing of numbers used in the different problem structw'es.

Eighty-two elementary school children worked for 40 minutes an the word

problems. The problems were presented in booklets that had the problems in different

orders, providing an approximate balance in the problems that children tried to solve during

the session. Children were in the third, fourth, and fifth grades, but their instruction was

individually paced, and children were working in text books at grade levels from three

through seven. These text levels were used in analyzing the data. Each child's

performance was scored by counting the number of each kind of problem he or she solved

coffecdy, and dividing that by the number of that kind of problem the child attempted to

solve during the session. The data are in Tables 4, 5, and 6, for the problems with

different combinations of additive and multiplicative compositions.

The data provide a fairly consistent picture in which problems with binary tree patterns

were easier than the other patterns. The patterns with shared components were easier than

those with shared combinations in problems with two additive compositions, and in

problems with one additive and one multiplicative composition; with two multiplicative

compositions, the shared-combination pattern may have been easier than the shared-
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component pattern. Analyses of variance were performed using the data for the different

text grade levels in separate analyses. For all five grade levels, the effect of

Table 4

Mean Proportion Correct on Problems

with Two Additive Compositions

Text Grade Level Binary Tree Patterns Shared Component
Patterns

Shared Combination
Patterns

3 .44 0 0

4 .75 .12 .05

5 .79 .56 .32

6 .92 .88 .46

7 12. SI/ .44

Average .76 .45 .25

Table 5

Mean Proportion Correct for Problems with One

Additive and one Multiplicative Composition

Text Grade Level Binary Tree Patterns Shared Component Shared Combination
Patterns Patterns

3 .03 0 .06

4 .21 .23 .19

5 .44 .45 .46

6 .88 .77 .73

7 ,a2. a ,42

Average .48 '17 .38
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Table 6

Mean Proportion Correct on Problems

with Twc Multiplicative Compositions

Text Grade Level Binary Tree Patterns Shared Component
Patterns

Shared Combination
Patterns

3 .22 0 .10

4 .17 .14 .13

5 .43 .14 .35

6 .83 .60 .78

7 .12 .E.

Average

.L.011

.53 .39 .44

problem structure was significant. The effect of the different kinds of compositions was

significant only for the fifth grata level students, and structure interacted significantly with

the kind of composition for the third, fourth, acid fifth grade levels. The data support a

conclusion that the distinctions between problem structures are related to the psychological

requirements of solving the problems in a significant way.

Preliminary Results with the Instructional System. We hypothesize that

if students are taught to represent word problems using the graphical display system to

construct semantic networks, they will acquire knowledge that will facilitate their

understanding of problem information and therefore improve their performance in solving

problems. A systematic empirical test of this hypothesis has not yet been conducted.

However, Shalin and Bee have conducted a preliminary study in which four students
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learned to construct diagrams for one-step problems involving several of the additive and

multiplicative compositions.

SIbjects in the study were five saidents, recruited from a class in remedial algebra

at the University of Pittsburgh. Pretests were given including 56 one-step problems, 28 of

which were stated with numerals and 28 with letters (e.g., "Barbara and Kenneth have a

books altogther, b of the books are Barbara's; how many of the books belong to

Kenneth?"). In another test, 64 two-step problems were given, including 32 stated with

numerals and 32 with letters. Time limits were imposed, with 15 minutes for each set of

one-step problems, 25 minutes for the two-step problems with numerals, and 35 minutes

for the two-step problems with letters. Students were told that they could skip problems

and return to them later. The one-step problem pretest was given before any instruction;

the two-step problem pretest was given after a few of instructional sessions had been

given, during the secor4 main unit of the instruction.

Students were given instruction using the graphics system in one-hour sessions.

The instruction included explanations of the different types of quantities in word problems

and the conventions for constructing semantic networks. Five instructional units were

developed, each concerned with one of the following types of one-step problem: additive

combination, additive comparison, multiplication of an extensive and an intensive quantity,

multiplicative comparison, and multiplication of two intensive quantities. Each unit except

the last one introduced a new type of quantity, and instruction included a discussion ofthe

new quantity type and the shape used to represent it graphically. A problem using the new

kind of quantity was shown as an example. Then the student practiced labelling individual

boxes on the screen according to text phrases that specified single quantities.

Instruction was then given using example problems. First, the instructor discussed

a problem setting with the student indicating the placement of quantities in the network and
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the correspondence between the quantities in the word problem and the quantities in the

network. Next, an example was used to explain different interpretations of a triad.

(1) In an additive combination, the triad was described as a whole with two parts

and as two parts combining to make a whole.

(2) Additive comparison triads were described in terms of the larger quantity broken

into two sets, with one set equal in size to ..4 amount of the smaller quantity and another

set for the amount left over. Additive comparison triads were also described in terms of the

smaller set augmented by the difference set, creating a set equal in size to the larger

quantity. Finally, the difference quantity was described as an abstract relation between the

two concrete quantities.

(3) Multiplicative triads with two extensive and one intensive quantities were

described as converting or exchanging or cashing in the smaller quantity, with the intensive

quantity as a rate of exchange. These triads were also interpreted as sorting the larger

quantity into piles represented by the smaller "container" quantity, with an equal number in

each pile represented by the intensive quantity. These multiplicative triads were also

described as an abstract relation, the intensive quantity, between two concrete quantities.

(4) Descriptions of multiplicative comparison triads were similar to those of

multiplicative triads with an intensive quantity, with the main difference involving different

dimensions in the extensive-intensive triads, and only one dimension in multiplicative

comparisons.

(5) The quantities in multiplicative triads with three intensive quantities were

described approximately as follows: "The stuff that there's the most of, the stuff that

there's an intermediate amount of, and the stuff that there's the least of. The intensive

quantities with round hats refer to possible relations between these. The two relations at

the bottom of the network involve the intermediate quantity. The relation at the top of the
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network relates the stuff that there's the most of to the stuff that there's the least of, by-pass

int the intermediate quantity and relating the smallest and largest quantities directly. All

possible relational descriptions were also provided: "The right-hand intensive relates the top

intensive to the left-hand intensive," etc.

Next, the student saw the permitted permutations in the network (e.g., an exchange

in the positions of the parts) and those that are not permitted (e.g., an exchange of a part

and the whole). Unpermitted examples were demonstrated by inverting the display,

showing black boxes with white printing. The student gave explanations for the illegality

of the =permitted arrangements.

Next, two examples were used to describe the step-by-step process of representing

word problems with values of two quantities given and the third value unknown. 1 nen the

student worked a series of problems, including construction of network diagrams. The

student worked approximately four examples, or as many as the instructor considered

necessary until the student appeared to have learned to solve the kind of problembeing

used Thinking-aloud protocols were obtained during the solution of these problems.

The instruction then moved to another kind of problem, involving the same types of

quantities but with different types given and unknown. The student was told that the new

set of problems had the same types and pattern of quantities, but the order in which the

quantities were mentioned was different. For the unit on additive combinations, there were

two kinds of problems; for the other units, there were three kinds ofproblems.

Finally, the student practiced on a set of problems with about one-half of the

problems of the kind that the student had just learned, and the rest distributed among the

kinds of problems studied previously.

Throughout the instruction, students were prompted with questions such as "Is that

right?" and "How do you know?" following their solutions. Students were also asked
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frequently about their placement of quantities with questions such as "How do you know

where things go?" or "How do you know there are more?" and were encouraged to focus

on the words to determine quantity placement rather than the numbers. The instructor also

pointed out the consistence between quantity placement and word order conventions in

additive (more-than) and multiplicative comparisons and in extensive-intensive

multiplicative compositions, in which the name of the relational quantity always refers to

the largest quantity first (placed at the top) and the smallest quantity second (placed at the

bottom).

All of the instruction with graphical representation involved one-step problems with

numerical values of variables (i.e., not with letters). Students were told that the

representations could be used for more complex problems; this came up when students

wanted to enter the results of arithmetic operations before linking the boxes, and the

instructor said that it would be easy to get confused if there were several boxes on the

screen for a multi-step problems. Students also were told that the value in the bottom line

of a box could be anything, even a variable, and the procedure for setting up the network

would be the same.

The total instructional time was about 15 hours. Following the instruction, the

student solved a set of review problems using the graphics system, with one problem of

each kind from the instruction, presented in random order. Then the student took a posttest

that included 120 problems, of the same kinds given in the pretest, and with the same time

limits

Results of this preliminary study are necessarily impressionistic. The most

important finding is that students found the task of learning to construct representations a

reasonable one. Apparently the human factors issues in the design of the graphics system

have been dealt with reasonably well. We also have the impression that learning the

graphical representation served its intended purpose of teaching students to recognize a set
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of distinctions and patterns that are important forms of information in word problems. This

impression is supported by comments in the protocols, such as the following:

"It's -- there's a lot of different ways of looking at these.

You know, usually, what I usually do, I look at them one

way. But this helps me to see that the different way that you

can look at it, which would be helpful, you know. Because

sometimes you will have this as the unknown and that as the

unknown, or whatever."

"The hat, though, tells me that I'm, well, you know, like

when you think of, math, you think of addition and

subtraction together. And multiplication and division

together. And if I look at this hat, I blow that that's a

difference box and difference is subtraction. So, depending

on whether, you, though I know I'm going addition or

subtraction right there. And then wherever the unknown is,

I work toward that. If I'm working up I add, if it's down at

the bottom, I'm working clown, I subtract."

"This tells me which box to pick: the pointy one or the round

one. But then I don't do what I'm going to do until I see it

all set up."
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Table 7

Problems Attempted

Steps, Student Pretest, Number

Posttest, Variable
Problems

Problems

Posttest, Number

Problems

Pretest, Variable

Problems

One-Step, Si 28 28 10 28

One-Step, S2 28 28 23 28

One-Step, S3 24 24 12 28

One-Step, S4 28 28 23 24
_

One-Step, Average 27.0 27.0 17.0 27.0

Two-Step, S1 31 21 11 13

Two-Step, S2 29 32 22 30

Two-Step, S3 27 29 23 25

Two-Step, S4 19 24 25 27

Two-Step, Average 26.5 26.5 20.2 23.7
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Table i',

Correct Solutions

Steps, Student Pretest, Number

Posttest, Variable
Problems

Problems

Posttest, Number

Problems

Pretest, Variable

Problems

One-Step, Si 28 28 3 25

One-Step, S2 28 28 17 28

One-Step, S3 24 24 10 15

One-Step, S4 28 28 17 23

One-Step, Average 27.0 27.0 11.7 22.7

Two-Step, S1 28 19 2 10

Two-Step, S2 26 29 14 22

Two-Step, S3 26 25 13 16

Two-Step, S4 16 23 19 25

Two-Step, Average 24.0 24.0 14.5 18.2

Tables 7 and 8 show the results from the pretest and posttest. There was no

improvement in performance on problems with numerals, although this might be due to a

ceiling effect with the college-age students who participated in the study. There was,

however, a substantial improvement in performance on the problems with values of

quantities denoted as letters, requiring formulas as solutions. Recall that instruction

involved only one-step problems with numerical values of quantities, so the problems with

variables as values were new (as were the two-step problems). A reasonable interpretation

is that the instruction may have provided students with knowledge for representing problem
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information more abstractly, so the combinations of quartities denoted by letters were

easier to reason about representing problem information more abstractly, so the

combinations of quantities denoted by letters were easier to reason about.

3. Basic Skill in a Transformation Task

Analyses of performance in mathematical tasks have contributed significantly to the

theory of procedural knowledge and problem solving. One feature of this contribution has

been the detailed analysis of strategic knowledge that is acquired through instruction for

problem solving in specific domains.

Previous Analyses. Analyses of solving proof exercises (Anderson, 1982;

Greeno, 1978) in geometry provided detailed examples of knowledge that organizes

problem-solving activity in a task domain in which students receive instruction and

practice. Rather than the weak problem-solving methods that characterize problem solving

in novel domains (cf. Newell & Simon, 1972), students in geometry appear to use specific

strategies that use features of the geometry problem domain. Examples include proving

that triangles are congruent as a subgoal for proving that components of the triangles are

congruent, and using relations between angles formed by parallel lines to prove that angles

are congruent or supplementary.

Analyses of procedural knowledge in elementary arithmetic also have provided

theoretical understanding of knowledge for organizing problem-solving activity through the

setting of goals. A significant portion of errors in arithmetic tests apparently are caused by

underlying procedural flaws, or "bugs," and these can be understood as variations within a

general structure of an arithmetic proced= chat includes the main components, such as

answering in each column (Brown & Burton, 1980). Acquisition of many of the incorrect

procedures can be explained by assuming that the general goals of the procedure are
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known, but the student's knowledge is incomplete and therefore an impasse is ^ncounteted

in which the student is unable to achieve a goal with the procedure that he or she knows.

The student then is assumed to use an action than satisfies the general goal using general

problem-solving heuristics, but this action may not be correct. However, if that action is

remembered and used in later problems, the student's performance will show one of the

"bugs" (` "anLehn, 1983).

In a research project conducted before the one desciibed in this report, an empirical

study was conducted of problem-solving performance by beginning students in algebra

(Greeno, Magone, Rabinowitz., Ranney, Strauch, & Vitolo, 1985). The intention of that

project was to develop cognitive models of students' knowledge in early stages of learning

algebra. Our major conclusion was that the beginning students in our study had largely

fragmentary and unsystematic knowledge. This contrasts with the conclusions about

characteristics of mathematical knowledge in other domains that have been studied, in

which the knowledge that students acquire is apparently quite well organized, as we have

discussed above.

There might be several reasons for students' acquiring fragments of knowledge,

rather than a systematically organized procedural structure. One reason that seems

plausible is a lack of prior knowledge of the kind of procedure that is needed in the new

domain. When we considered the cognitive requirements of elementary algebra problems,

we realized that they have a fundamentally different structure from that of almost all the

tasks students learn to perform in arithmetic. In arithmetic, almost all problems involve

evaluating symbolic expressions, but in algebra, most problems involve transforming

symbolic expressions into equivalent expressions. The operators and goals for

transformation tasks differ significantly from those of evaluation tasks. This means that

students who have learned arithmetic have had little or no training in the general structure of

procedures that they need to acquire when they begin learning algebra. The algebra domain
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also presents significantly new kinds of symbolic data: variables and equations. These also

cause difficulty in learning the domain (e.g., Kieran, 1980; Matz, 1980; Wagner, 1981).

A New Task for Learning Procedural Structure. A new task was

developed to allow investigation of knowledge and learning of procedures like those of

algebra, but without the new symbolic structures of algebra. We obtained significant new

results about the acquisition of procedures in a symbolic domain by observing students

learning the task. The task is also potentially useful for instruction in preparation for

algebra or concurrent with the beginning of algebra instruction, and we investigated some

issues in the design of intelligent tutoring systems by developing some components ,)f a

computer-based tutor for the task.

The task that we developed is an adaptation of a symbolic transformation task used

by Newell and Simon (1972) in a classic cognitive analysis of problem solving. Newell

and Simon studied the task of finding proofs in propositional logic. A set of rules is given,

for example, AvBez)BvA, ADB44--AvB, and ADB, A = B. In the task, one or more

expressions are given, and another expression is the goal. The task is to find a set of

transformation^ that work from the given expressions and produce the goal. For example,

if the given expressions are QvP and P, and the goal is Q, then the first rule can be used

to obtain PvQ from QvP, the second rule can be used to obtain PmQ from PvQ, and

the third rule can be used to obtain Q from PmQ and P.
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R1 -> A+B<.>B+A <- R1
R2 .> AxB<.>BxA <- R2
R3.> Ax(B+C)<.>(AxB)+(AxC) <-R3
R4 -> A x (B - C) <.> (A x B) - (A x C) <a. 114

R5 .> (A + B)/C <-> (A/C) + (B/C) <- R5
R6 -> (A - B)/C <-> (A/C) - (B/C) <- R6
R7.> A +(B +C) <- >(A +B) +C < -R7
1313.> Ax(BxC)<.>(AxB)xC <-118
R9 -> A - (B - C) < -> (A - B) + C <- R9

R10 -> A - (B + C) <-> (A - B) - C <-R10

Figure 8. Rules for the transformation task for arithmetic expressions,

as shown on the computer graphics display.

In the task that we developed, the given expressions and goals are arithmetic

expressions. An example problem has the initial expression 3 x (5 + 4), and the goal is (3

x 4) + (3 x 5). Rules are given for transforming expressions. Figure 8 shows the set of

rules in the form that they are displayed in the computer-based tutor. To solve the example

problem, Rule R3 can be used to obtain (3 x 5) + (3 x 4) from 3 x (5 + 4), then Rule R1

can be used to obtain (3 x 4) + (3 x 5) from (3 x 5) + (3 x 4).

The procedural structure of this task is like that of logic exercises, and different

from that of ordinary arithmetic. Newell and Simon (1972) characterized the process of

solving logic exercises as a form of heuristic search that they called means-ends analysis.

The problem is solved by moving through a sequence of states. The initial state is the set

of given expressions, and the goal is the expression to be derived. Each step in the

solution produces a new state by adding a new expression to those given and previously

derived. In the means-ends method, the current state is compared with the goal state, and

differences between the current and goal states provided the basis for selecting an operator.

Of the differences that are found between the current and goal state, one difference is
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:hosen to be the focus of activity; a subgoal is set to reduce or remove that difference. An

operator is chosen that is known to change the feature that distinguishes the current state

from the goal. An attempt is made to apply that operator. Operators have conditions that

are required for their application, and the attempt to apply an operator includes a test

whether the current state satisfies the operator's conditions. If the o: erator can be applied,

it is, and the result is a new problem state. Then this new state is compared with the goal,

and if the goal has not been reached, another difference will become the basis for a new

subgoal. If the operator cannot be applied, there may be another subgoal to change the

state to satisfy the operator's conditions, or another operator may be selected to try to

achieve the same subgoal, or the subgoal may be set aside and a new subgoal may be

chosen based on another difference between the current state and the goal.

The difference between the procedures of ordinary arithmetic and the transformation

task can be illustrated with the problem mentioned earlier, with the given expression 3 x (5

+ 4) and the goal expression (3 x 4) + (3 x 5). In the means-ends method, the initial state

and the goal state are compared, and differences are noted. The differences depend on the

way that expressions are represented. A representation for arithmetic that is like Newell

and Simon's (1972) for logic uses a tree structure with operators, subexpressions, and

numerals. There are several differences between the initial and goal states; one is that the

operators i- and x appear at different levels in the two representations, with x being the

highest level operator in the initial expression and + being the highest level operator in the

goal expression. In a model of successful problem solving that we developed, this

difference is chosen as the target of a subgoal. There are four operators that change the

level of an operator; these are the distributive rules R3, R4, R5, and R6. R3 is chosen

because the operators in R3, + and x, are the same as those in the expression to be

changed. R3 can be applied either from left to right or from right to left; the left-to-right

application changes the highest-level operator from x to +, as needed for the subgoal. The

left side of R3 is then matched to the current expression, with A bound to 3, B bound to 5,
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and C bound to 4. A new expression is constructed according to the right side of R3, with

these bindings, producing (3 x 5) + (3 x 4), and the addition of this new expression c;:eats

a new problem state. The new expression is compared with the goal state, and Inc

difference is that subexpressions are in different orders. Rules R1 and R2 change the order

terms, and in R1 the operator between the terms is +, as in the expression to be changed.

The left side of R1 is matched to (3 x 5) + (3 x 4), with A bound to (3 x 5) and B bound

to (3 x 4). Then the right side of R1 is used to construct a new expression with these

bindings, producing (3 x 4) + (3 x 5). This expression matches the goal, so the problem

is solved.

In ordinary arithmetic, students learn to evaluate expressions, rather than to

transform them. An expression such as 3 x (5 + 4) is evaluated by performing a series of

operations with the numbers in the expression as arguments. The sequence of operation.: is

indicated by parentheses in the expression, so that for 3 x (5 + 4), the first operation

evaluates 5 + 4, giving 3 x 9, and this is evaluated to obtain the answer, 27.

Evaluation can be considered as a transformation task, but there are some important

features of the "proof' task that pre not present in evaluation.

First, in evaluation all operators have outputs consisting of single numbers. The

operators are the arithmetic "facts," involving functions that co- :-spond to a +, x, or /

sign in a subexpresion, the numbers in the subexpressioi. arguments, and a single

number as the value. In the 'proof' task, operators transform expressions into other

expressions more generally. The operations are formal, in that they transform expressions

based on their form, rather than on the specific numerals that .kr. *I the expressions. This

difference in the operations involved is reflected in the way r are stated in th vo tasks.

The operators of evaluation are stated in terms of specific numbers, such as 3 x 9 is 27.

The operators of the "proof" task are stated in terms of variables that can correspond to

many different numerals or subexpressions, such as A x (B + C) x B) + x C).
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A second difference is that in evaluation, structural features of the expression are

needed only to determine the sequence of operations. A subexpression is found that can be

evaluated, and its value is substituted into the expression. Operations do not change

structural features of expressions, except in the simple way of taking a subexpression at the

bottom of the tree and replacing it by a single number. In the "proof' task, structural

features of the expression are used to select operators and operators transform expressions

in ways that change their structures. For example, operators change the groupings of terms

in the expressions, and change the locations of operators in the trees that represent

expressions.

A third difference between the "proof' task and evaluation is the inclusion of

specific goals in the "proof' task. In evaluation, the goal is to "find the value," and

operators are applied until the expression is changed into a single numeral. In the "proof'

task, the goal is a specific expression to be derived. The choice of an operator is then

determined by differences between the current expression and the goal, and attention is

therefore directed to the 70a1 expression to determine how it differs from the current

expression. In evaluation, where the goal is always to derive a single numeral, attention

can be focused entirely on features of the current expression, to find a subexpression that

can be replaced by its value.

The tasks that students learn to perform in algebra are like the "proof" task in the

first two of these features that distinguish it from ordinary arithmetic, but are like ordinary

arithmetic in the third feature. The operations that students learn for simplifying

expressions and solving equations are transformations of expressions into other

expressions, rather than evaluations with numerical values, and they are defired formally

by the structural features of expressions rather than by the specific numerals and letters in

me expressions. The goals of obtaining simpler expressions or solutions of equations,

however, are not in the form of specific expressions that are to be derived, as in the "proof"
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task, but are general criteria to be achieved. The process of simplifying expressions seems

to involve more attention to the current expression and an attempt to apply an operation to

change it, rather than attention to fer Pures that distinguish the current expression from a

goal. The process of solving equations is more goal- directed, but the goal is like that of

evaluation, involving a single form in which the variable is alone on one side of the

equation, so the choice of operators is based entirely on features of the current expression

rather than on features that distinguish the current expression from a goal that varies in

structure from one problem to another. Further analysis and empirical study would be

needed to determine whether and how work on this new task might facilitate or impede

students' learning of algebra, and we do not propose a strong opinion about this complex

question here. Even so, the features of the "proof' task shares with algebra are sufficient

to make it seem worthwhile to study acquisition of the task for its potential usefulness in

the mathematics curriculum. And in any case, there is considerable theoretical interest in

studying the properties of a task that involves several significant extensions of knowledge

beyond that required for arithmetic.

Empirical Observations of Learning. A small empirical study was

conducted with a few middle-school students and some students from a remedial

mathematics class at a community college. Protocols were obtained as the students learned

to solve problems in a paper-and-pencil version of the task. The students were given an

explanation of the task and a list of the rules. They were shown an introductory example

involving a simple application of Rule R 1 . Then they were given a series of problems to

solve, increasing in complexity.

" .s inform.' study had two main goals. First, we determined whether students

can learn the task of transforming arithmetic expressions in a reasonable time. Second, we

obtained a collection of errors that students make while they are learning the task. These

errors provide information about knowledge needed for the task that students do not have
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when they begin learning. This is important for a theoretical understanding of the process

of acquiring skills in symbolic domains, because analysis of a learning process requires a

characterization of the initial knowledge state of the learnar as well as a characterization of

the knowledge that is acquired. It also is important for the design of instruction in the skill,

because the diagnosis of student knowledge and tutorial decisions are based on a

characterization of the skill as a set of cognitive components in terms of instructional

issues.

In order to observe errors that would provide a full picture of the cognitive

requirements of learning, instruction was given in a discovery mode. New kinds of

problems were presented without instruction in how to solve them or examples of correct

solutions. After the student gave a solution, feedback was given to point out any errors

that occurred and Ix) explain the correct operations.

We present errors that 'curred in three categories: (1) errors of commission that

neglect restrictions; (2) errors of emission in which operatcis are not applied when they

could be; and (3) slips ',al variabis and values are confused.

(I; Errors of '70,7:mission. S,:veral errors involved use of an operator incorrectly,

where a global roperiy cf the operaio.r's condition is saddled in the current expression,

but a more specific requirement is not satisfied. One kind or error involved matching the

terms of a rule to the terms of an expression, where the general form of the rule matched

the form of the expression, but the terms of the rule did not correspond to the terms of the

expression in all their occurrences.

Apply Rule R3 (right-33-left): A x (B + C) (=> (A x B) + (A x C)

Current Expression: (3 x 2) + (5 x 3)

Correspondence: [A B A C].
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The student had not learned that a single term that appears more than once in a rule must be

matched with the same numeral in all of its occurrences.

A second kind of error involved transformations that agree with global properties

but not with relevant details. One example was the following:

Apply Rule R7 (left-to-right): A + (B + C) a (A + B) + C

Current Expression: 4 + (7 + 5)

Correspondence: [A B C]

New Expression: (7 + 5) + 4

The student said that the rule and the expression had a "thing in parentheses and something

sticking out both ends," and the operation reverses the direction in which something sticks

out Another mistake characterizes Rule R7 as reversing the direction of terms, and

produces a new expression in which all the elements are reversed, apparently obtained by

reading the left side from right to left; for example, for ,

New Expression: (5 + 7) + 4.

(2) Errors of Omission. One kind of error involving an incorrect restriction was

observed when students did not apply an operator because the variables in the rule already

had values in a previous transformation. For example, a problem was begun by one of the

students:

Apply Rule R3 (right-to-left): A x (B + C) a (A x B) + (A x C)

Current Expression: (9 x 1) + (9 x 3)

Correspondence: [A B A C]

New Expression: 9 x (1 + 3).
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The goal of the problem was 9 x (3 + 1), and Rule R1 could be used to change 1+3 to

3+1. The student said that Rule R1 should be used, but it could not be applied because A

already had the value 9. The missing knowledge was that after a transformation is

completed, the bindings of the variables used in that transformation are no longer in force

for the next transformation.

Another kind of error occurred because students had to learn that rules can be used

to change subexpressions rather than whole expressions; for example,

Apply Rule R1 (left-to-right): A+ B <=> B+ A

Current Expression: 3 x (4 + 5)

Correspondence: [A B].

Students had to learn that the rules are not restricted to situations where the complete

expression is matched to the rule. A similar requirement is to learn that variables in a rule

can be bound to subexpressions, rather than only to single numerals, as in:

Apply Rule R2 (left-to-right): A x B e=> B x A

Current Expression: (2 + 4) x (7 + 1)

Correspondence: [ A B ]

Some students were unwilling to apply a rule in this way, assuming that variable had to be

matched to individual numerals until they were instructed that variables could be bound to

subexpressions.

(3) Slips between Values and Variables. In the experimental situation, students

directed the instructor to write on paper, providing an audible account of the session to be

recorded. Errors that occurred frequently in the process of telling the instructor what to

write involved substitution of variable names for the varies of the variables. For example:
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Apply Rule R5 (right-to-left): (A + B)/C <=> (A/C) + (B/C)

Current Expression: (2/5) + (3/5)

Correspondence: [A C B C]

New Expression: (A + B)/C

The slip can also occur in part of the expression, as in the following:

Apply Rule R3 (right-to-left): A x (B + C) a (A x B) + (A x C)

Current Expression: (3 x 4) + (3 x 5)

Correspondence: [A B A C]

New Expression: 3 x (4 + C)

These slips probably result from execution failures in the process of reading the result of a

transformation, which is a translation from an expression in a rule to an expression with

numerals, based on a set of bindings of the variables, in which the process of recalling the

values is dropped out. These errors may not indicate significant procedures that need to be

learned, in the sense of their being unknown by the students, but they indicate that there are

distinctions in the symbolic domain that are not handled easily when the information-

processing load is heavy.

The errors that we have described here can be characterized as involving the

technical skill needed to perform the task, in contrast to the strategic knowledge that is

required. Only a few hours of instruction were given, and during this time the students

worked on problems requiring understanding of the basic rules, but the problems did not

become complex enough to provide much information about their use of the means-ends

strategy. There were some instances of learning of strategic know ledge, in which student:.

began to notice differences between the goal expression and expressions that were given or
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had been derived, and to use these difference in choosing operators. The most likely

conclusion is that strategic knowledge, in the form of processes for performing means-end

analysis, has to be learned when problems that involve nontrivial strategic choices are

presented.

The errors that we observed provide detailed information about the components of

technical knowledge required for the task, and this involved an aspect of cognitive skill in

symbolic domains that had not been considered in detail previously. Newell and Simon's

(1972) subjects, working on logic exercises, did not have difficulty with the basic

processes of matching rules with expressions, perhaps because they had more advanced

training in mathematics. In any case, Newell and Simon's model focused on the strategic

aspect of problem solving, and their analyses of protocols focused on the accuracy of

simulations provided by GPS for the strategic decisions made by their subjects. Our

students had considerable difficulty in processes of matching rules with expressions, and

we therefore obtained data that enabled us to characterize the more basic components of

skill involving knowledge of how to associate variables in the rules with symbols in the

expressions.

Components of an Intelligent Tutoring System.2 The empirical findings

that were described zziove indicate that development of a computational system to provide

instruction for the risk of deriving "picas" for expressions in arithmetic would raise

important new questions in the design of intelligent tutoring systems for skills in symbolic

domains.

We developed some components of an intelligent tutoring system for the task of

deriving arithmetic expressions, using the general framework provided by the WEST

tutoring system for an arithmetic game (Burton & Brown, 1982). In the system that

2An earlier vusion of these components was developed by James Rowland
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Burton and Brown implemented, the focus of instruction was on strategic knowledge.

Technical knowledge in their task consists of basic arithmetic facts of addition, subtraction,

muitiplication, and division. In the game, a player is given three numbers and has to form

an expression using those numbers to determine how far his or her piece will move on the

board. The WEST system includes an expert problem sever that generates expressions

with the given numbers that are optimal, according to a specified strategy. It also includes

a model of student knowledge that is based on an analysis of successful performance,

consisting of a set of cognitive issues. A set of filters is included, testing whether each

issue is relevant to the solution given by the expert problem solver and a solution given by

the student A differential diagnosis is conducted, comparing the student's solutions over a

sequence of trials with the solutions of the expert, and updating the student model with

respect to the student's knowledge state regarding the various issues. A tutorial strategy is

followed, providing advice to students regarding strategies that could be used differently

than the student has been following.

In the tutoring system that we have partially developed, the cognitive issues for the

task include both strategic issues and technical issues involving basic skill. Burton and

Brown's (1982) system included a provision for issues involving basic skill, but these

were not developed explicitly. The extension of the WEST-type tutoring system to include

technical as well as strategic issues does not seem to require fundamentally new

conceptualizations in the design of the system. On the other hand, there were some

significant technical requirements, only some of which .,:e achieved during the time

available in this project.

Previous analyses of procedural skill for instruction have characterized knowledge

in terms of an ideal model of student performance (Anderson et al., 1984), or in terms of

flawed versions of procedures (Brown & Burton, 1980; Sleeman, 1982). The cognitive

issues are abstractions from components of correct procedures, and can be considered as
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specifications of procedures at what Newell (1982) called the knowledge level. In a

procedural characterization, the goals of instruction and diagnoses of performance focus on

whether certain components of cognitive procedure have been acquired by students. In the

characterization that we give, goals and diagnoses focus on whether the students' cognitive

procedures satisfy certain specifications. The two characterizatic seem similar in many

ways, but whether their differences lead to significant differences in the design of tutoring

systems requires further analysis.

Table 9 shows the 11 cognitive issues that were used in the design of a problem

generator, and a student model and diagnostic system. Most of the issues were based on

the observations of students learning the task, discussed in the previous section.
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Table 9

Cognitive Issues of Basic Skill

in the Arithmetic Transformation Task

1. Match the operators of the problem expression to the operators of

a rule

2. Bind values of variables consistently from the initial expression
to the resulting expression of a rule

3. Bind all occurrences of each variable to a single value

4. Rebind variables in each new problem

5. Rebind variables in each step of a problem

6. Allow the same value for different variables

7. Allow non-isomorphic mappings between an expression and a
rule

8. Allow transformations to be applied to subexpressions

9. Allow variables to be bound to subexpressions

10. Bind variables only to syntactically complete subexpressions

11. Use rules either from left to right or from right to left

A problem generator was developed, to enable construction of problems in which a

specified set of issues could be involved in the solution. The problem generator constructs

pairs of expressions that differ in ways related to the specified issues. The generator

produces transformation sites that can be filled either with single n-.merals or with

subexpressions. This permits issues to be included in solutions of problems in a kind of

layered structure, with a specification of one transformation at the level of a complete

expression, involving one issue, and another transformation involving a subexpression that

involves a different issue. The transformations that are specified in the generation of

problems provides a solution of the problem; however, there may be other correct
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solutions, so it is necessary to provide for solutions that differ from the one that the is

specified by the problem generator.

e

3x(G+4)

<5> (3x4)+(3x5)

CURRENT STATE

(3x(5+4))

PROMPT

Choose a rule and type the left or right side
that match°s the current state.

R1 lo. A+B .c.). B+A c. R1

R2 .> Axle .clo. BxA <1B R2

R3 .> Ax(B+C) <s). (AxBi+(AxC) <1B R3

R4 lo, Ax(B-C) .c.> (AxB) -(AxC) .c. R4

115 .> (A+B)/C .c.). (A/C)+(B/C) .c. R5

R8 1B> (A-B)/C <s> (A/C)-(B/C) <1B R6

R7 IB). A+(B+C) .c.). (A+B)+C <1B R7

R8 10. Ax(BxC) <10. (Ax8)xC .c. Re

R9 le, A-(B-C) .c.). (A-B)+C .c. R9

R10 lo. A-(B+C) <1.). (A-B)-C 411 R10.

Figure 9. Presentation of a problem.

Figure 9 shows a problem in the form that it is presented to students. Two modes

of interaction are available. In one mode, the student types the part of a rule that matches

the current state, lnd the new state that is produced by the application of the rule. If this is

correct, the current state changes to the one produced by the student's action, and if the

problem is not solved, the student is prompted to choose another rule. In the other mode,

the student is required to type the part of a rule that matches the current state and is

prompted to type the values that are bound to the variables in the rule in matching it to the

expression.
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An expert problem solver was developed that solves problems using means-ends

analysis. The problem solver is used when a student works on a problem to provide a

differential diagnosis of the student's performance with respect to the cognitive issues.

When the problem is presented, the expert solver analyzes differences between the given

expression and the goal, and chooses a rule that will reduce the most important of the

differences, according to an ordering that it uses. When the student chooses a rule, it is

compared with the expert's rule. If the student's rule and the expert's rule disagree,

information may be obtained about one or more of the issues involving the possibility of

usmg rules in situations where students may not know they can be used. Whatever rule the

student uses, information is obtained from the correctness or incorrectness of the rule's

use. Filters are used to evaluate the relevance of the issues to the correct application of the

rule, and the relevance of the issues to the way in which the student's use of the rule differs

from the correct application, if it is incorrect. If the student uses a rule correctly and

produces a new expression, the expert uses that new expression as a problem to be solved

with means-ends analysis, and work on the problem proceeds.

After a problem has been completed, or a student attempts to use a rule incorrectly, the

student model is updated. The student model consists of an inferred level of knowledge for

each of the issues, ranging from weak to strong.

Tutoring can be provided, using the student model to choose an issue for which the

student's knowledge is judged to be weak. The problem generator can produce a problem

in which the issue is relevant, and the expert problem-solver's solution can be shown to the

student. Air example is in Figure 10. The expert's solution can include explanations of the

rules that are chosen using the differences between the current state and goal in means-ends

analysis. This full disclosure is shown in Figure 10. An option is to merely show the

solution that the expert produced, without the explanations.
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We did not implement programs that make tutorial decisions, or that provide tutorial

interactions other than student problem solving and presentation of worked examples.

Further work on these comments would be needed for the tutoring system to function

independently of a human tutorial supervisor, and would allow a more complete evaluation

of the analysis of the skill as a set of cognitive issues and the other components of the

tutoring system that were completed.

PROMPT

ROBLEM

(1.4)/6

(1/6) (4/8)

URRENT STATE

((1 -4)/6)

The expert will solve a problem

CURRENT GOAL:

The nrnhlem IR to transform the expression
11141/111

Into tha attnraasinn
((1/6) - (4/6))

WI-AVM diffarn frnm 111 /RI . 14/6))
in the LOCATION of the OPERATORS.

If tha I FFT sinF of Ritla RR In annllarf tn
((1.4)/13), this difference will be eliminated.

**PROBLEM**

INITIAI STATE II 1 .411/111
arum RTAT.; ((1/6) (4/6))

**SOLUTION**

Annhi tha I FFT side of Rule R6
tn 111.41/111
tn nat (MAI I4 /A11

which is the goal state.

R1 > A+13 01). 8+A c. R1

R2 > Ax13 <is> 13xA os R2

R3 se> Ax(B +C) 4c.). (AxB) +(AxC) 40. R3

R4 .0. Ax(B-C) <is> (AxB)-(AxC) <is R4

F15 xi> (A+13)/C <is> (A/C)+(13/C) <is R5

R6 .). (A-8)/C <is> (A/C) -(B/C) 40. R6

R7 .> A+(B+C) 4c.). (A +B) +C <1. R7

R8 .0. Ax(BxC) 40.> (AxB)xC <1. 1:18-

R9 is> A-(B-C) <is> (A-B)+C <1. R9

R10 is> A-(B+C) <.> (A-B)-C 40. R10

Fig= 10. An example problem with means-ends information and a solution.
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4. Strategic Knowledge and Reflective Learning

The third project that was inc!uded in this contract is concerned with acquiring

strategic knowledge in the domain of elementary algebra. By "strategic knowledge" we

refer to knowledge for setting goals and adopting plans in work on a problem. Strategic

knowledge, like knowledge for representing problems, usually is tacit.

A computational system called Algebraland, developed at Xerox Palo Alto Research

Center by Kelly Roach and Carolyn Foss, provides instruction in strategic knowledge for

algebra using two pedagogical dtvices. One device is the use of graphics to present

information that is directly relevant to the student's strategic performance, enabling the

student to reflect on strategic issues more directly. The second device is to reduce some of

the non-strawgic demands on the student's problem solving, enabling more attention to be

given to Performance and learning at the strategic level.

14(2+N) - 20

4(2) + 4N - 20 4(2+N) - 4 . 20 - 4
4(2+N) 20

4
IN

4

1

+ N -

2+N-2 - 5-2
I

Figure 11. Display of the trace of a student's solution in Algebraland
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Figure 11 shows a trace of a student's work on a problem, created by the

Algebra land system. The trace shows the expressions that were formed by transformations

that the student applied.

The transformations are chosen by the student from a menu of operations, shown in

Figure 12. For example, the first operation in the left branch of Figure 7 was Distribute.

To produce the expression in the middle branch, the student subtracted 4 from both sides.

To reach the first expression in the right branch, the student chose to divide both sides by

4. Do-Arithmetic is the name given tic a collecticn of operators that "clean up" expressions,

simplifying them by cancelling numbers in the numerator and denominator of a fraction, or

performing simple arithmetic calculatims. Expressions that are obtained prior to use of

Do-Arithmetic are enclosed in light rectangles, and darker lines are used to enclose

expressions after Do-Arithmetic has been used. Double lines connect stares in the solution

that are identical.

H r,u111 ,

ADD

MULTIPLY

SUBTRACT

DIVIDE

Do-Arit' .iletic

Distribute

Expand

Combine-Terms

Figure 12. Window in Algebraland showing

basic operations.
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The display also provides a menu of planning concepts, shown in Figure 13.

Concepts like these were suggested by Bundy (1975). The concepts correspond to general

goals that can be used to organize problem-solving activity. In the Algebra le Ad system, the

plans are available for a student to use in annotating a trace of problem solving activity,

either that the student has produced or that is provided for didactic purposes.

The opportunity to examine a trace of problem-solving activity and relate steps in

the solution effort to strategic goals provides an unusual situation that encourages nalective

learning. For example, a student could examine Figure 11 and consider which planning

goal is furthered by each of the fast steps that was attempted. The left branch achieved the

goal of splitting an expression containing N. The center and right branches involved

attempts to isolate the variable by removing a numerical term; the attempt in the cer.*rr was

unsuccessful for a technical reason. In this problem, the strategy of isolating the variable

leads to a more effi"ient solution than splitting the expression, as can be seen from the

solution expression requiring two steps (ignoring Glen -ups) instead of three. The reason is

that in the initial expression, N is a term without a coefficient, and distributing 4 through

(2+N) results in a term, 4N, that then has to be reconverted to N. To appreciate this

somewhat subtle feature probably requires an opportunity to reflect on the consequences of

alternative actions of the kind that Algebraland affords.

PLAN MENU

ISOLATE the variable

COLLECT like terms in a single expression

GROUP together like terms (transpose terms)

SPLIT apart expressions containing the variable

SIMPUFY the expression

Figure 13. Menu of planning concepts
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Several theoretical distinctions have been clarified in the process of developing the

Algebraland system. One issue involves the level of detail in characterizing algebraic

operations. An operation called "Do-Arithmetic" is poorly specified by formal standards,

and its use in this system is justified by its cognitive utility. An early version of

Algebra land distinguished between different arithmetic operations such as cancelling a

number in the numerator and denominator, replacing a pair of multiplied numbers by their

product, and replacing a pair of added numbers by their sum. The effect of these

distinctions was a set of operations that was clearly difficult for students to manage. By

including an operation that seems poorly specified, a significant simplification of the

system was achieved, allowing more successful use by students. Our hypothesis, based

on this experience, is that operations like the ones we have included in "Do-Arithmetic"

come to be relatively routine for students and do not enter significantly into their deliberate

analysis and planning.

A second issue that has become clearer is the way in which goal states and

operators can interact in a student's understanding. The representation of operators and

strategic concepts in Algebra land was designed with the goal of enabling students to reflect

on strategic aspects of problem solving. This required that the representation of operators

and the problem-solving trace be at an appropriate level of detail to allow the learner to

recall or reconstruct the goal states that occurred during problem solving. The decision to

have Do-Arithmetic as a general operator was motivated by this consideration.

Thirdly, we also came to appn-cdate that efforts to relit e students of low-level

cognitive demands may be less simple than they appear. Algebra land provides students

with capabilities that allow them to avoid a great deal of symbolic computation. On the

other hand, they must learn to manipulate the Algebra land system, which is demanding in

itself. Some of the requirements are quite obvious, but some are interesting and involve
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issues of representation in the domain, such as whether a studen, is required to supply

arguments for an operation lik_ combining terms.

Results of a Study of Acquisition of Error Management Skills.

Algebraland provides a setting for studying processes of reflective learning of strategic

concepts, and Foss is currently conducting stch a stud/ at Xerox PARC. This study

focuses on the acquisition of skills in detecting, recovering from, and learning from errors.

These skills are an integral part of acquiring and us'.ng a new procedure. They are

particulaty important once the student is faced with new problems, removed 2,om the

tutorial situation.

Error management refers to skills needed for 1) recognition of error states or

inefficient solution strategies ("thrashing") and 2) error recovery. To recover from an

error, students need to apply some sort of state selection heuristics; i.e., they need to decide

to either back up to some previous problem state in the search tree or to continue applying

forward operators (e.g., distribute or combine terms) from the current state. Foss is

investigating the possibility that such error management skills can be acquired by

appropriate experiences with making, recovering firm, and learning from errors in a "safe"

situation, ..nch as that produced by Algebraland.

Two aspects of error management were explored in a study with junici- high-school

and high-school students who solved problems with Algebraland. Foss was interested in

both how students recognize error states and how they detect thrashing in the absence of

feedback, and what they do in response to such discoveries.

Error states are defined as problem states that are off the optimal solution path.

They are detected by determining if the number of operations separating the current and

goal state is greater than the number separating than the number separating the previous (or

initial) state and the goal. Introductory algebra students usually lack the knowledge needed
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for such an evaluation function, however, so we suggest that they rely on heuristics that

use simple visual information about the problem's surface features or other cues available

in the problem-solving environment to c"..,:tect errors. Many cues for monitoring progress

are present in the problem -solving environment the surfact appearance of the equation; the

shape of the search tree; and the student's cognitive context such as the student's goal stack

or the overall certainty the student has regarding a particular solution strategy.

In an initial study, 12 junior high-school and high-school students used

Algebraland to solve a set of algebra equations. After they were instructed in the use of the

system and were given a set of sample problems to solve with the guidance of an observer,

they worked through a set of progressively difficult algebra problems. Afterwards, they

were interviewed regarding their solution strategies for two of the problems. While

viewing the search trees produced while working the problems, they were asked to

describe what they did at each state (i.e., what operator was applied) and what they were

trying to accomplish. Special attention was paid to branch points and back-up points --

i.e., they were asked why they decided to back up and why they selected a particular state

to return to.

The students seemed to have a repertoire of informal rules for recognizing error

states or thrashing. Table 10 presents a categorization of cues in the problem-solving

environment that students reported using for detecting error states or thrashing. Points

currently under consideration are 1) which cues are most effi..ztive (i.e., least likely to

produce false alarms or misses); 2) how students' use of these cues changes with practice

and expertise (e.g., there is probably a movement from emphasis on surface features to

"deep features" such as active goals); and 3) how the cue attended to affects aspects of error

recovery such as state selection (i.e., is there a particular type of "repair" or error recovery

response associated with the rules used to detect errors?). Note that these cues can also be

useful for deciding whether the current solution strategy is on the right track.
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Foss suggests that these cues are used not only to detect error states, but that they

also can trigger various error recovery strategies: backing up to some previous state,

perhaps re-thinking the current strategy, or engaging in some sort of brute-force search for

an operation that will move the equation closer to the goal state. One aspect of error

recovery is state selection: choosing a problem state to retreat to or deciding to continue

from the current state. In related tasks, students usually choose to either back up to the

immediately preceding state or to start the problem over, which is not always the optimal

thing to do since states closer to the goal may be on other branches. This could be due to

some problem-solving set or it could be that it is too difficult to develop some sort of state

evaluation function, or to re-establish the problem-solving context corresponding to an

intermediate state. But perhaps the same cues that alert the student to errors can be used to

aid in electing a proper strategy for recovering from them.
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Table 10

Cues Reported by Students for

Detecting Errors or Thrashing

Cues in the Physical Context

1) Surface Features of Equation: increase in equation's complexitity, e.g., number of terms

around the target variable, number of variable's occurrences, placement of variable in

the equation.

2) Repeated States: duplicate states and return to previous states (i.e., branch points).

3) Repeated applicatiod of inverse operators: e.g., add n, subtract n.

4) Noticing shorter path on other branch in search tree (often when equation gets messier

than its initial state).

Cues that Require Cognitive Context:

5) Difficulty in deciding on appropriate operator (when too many seem applicable or none

does)

6) Certainty factor drops below threshold (perhaps because the student used too many

guesses for current problem).

7) Expectation Violation (when applicat ,n of operator produced a surprising result).

8) Plan-Action Conflict: the actiions used to satisfy a goal were ineffective.

9) Conflicting Subgoals: earlier accomplished goals are undone as a result of satisfying the

current subgoal.

10) Plan Evaluation Difficulties: cannot see ahead or evaluations is difficult for some other

reason. 62
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11) Approach seems too messy, too long, or too difficult.

As an example, if a student decides to back up because of conflicting subgoals, then

the student knows that his or her goal or overall problem strategy should be revi xi. In a

problem such as 5B + 17 = 7 - 3B, some students tried to solve the problem by setting two

subgoals: 1) solve for the B on the left side, and solve for the B on the right side. After

dividing both sides by 5 (thereby isolating the left-side B), then dividing both sides by 3/5

(thereby isolating the right-side B), then dividing both sides by 5/3 (thereby isolating the

left-side B again), etc., me student realized that he was thrashing: satisfying one subgoal

undid the other subgoaL At this point he backed up to the part of the search tree

corresponding to the point just before he started isolating the variables individually.

Another alternative car. occur if a decision to back up is based on some other cue,

such as noticing that the equation is getting more complex. Then the student may simply

try alternative ways of satisfying the current goal rather than making major revisions to the

overall goal structure of the current solution method. This occurred at a point in a solution

process where a student wanted to isolate W in 1/W = 5, but needed three tries before she

was successful. After each try she backed up to the problem state corresponding to her

current goal (1/W = 5) rather than completely starting over.

Learning to monitor progress in problem solving and to fix errors in the absence of

.,al feedback is rim irnporiant metacognitive skill that has not been studied or

documented. By (:!..I-xeres students using Algebraland Foss has been able to observe the

development of a set of ..curistics that students use to monitor their progress. These

heuristics have implications for issues related to how much exploration of the search space

is optimal (Le., what can be learned from visiting error states) and the role of making and

correcting errors in acquiring a skill
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