TITLE

INSTITUTION SPONS AGENCY PUB DATE NOTE

PUB TYPE
EDRS PRICE DESCRIPTORS

IDENTIFIERS

Title IV Quality Control Policy Option: Final Report on the Evaluation of Data Element Reduction, Stage 1 , Phase V.
Advanced Technology, Inc., Reston, VA.
Department cí Education, Washington, DC.
Jun 85
ll8p. ; Legibility of tables may be marginal due to type quality.
Reports - Evaluative/Feasibility (142)
MF91/PC05 Plus Postage.
Computation; Data Collection; Efficiency; *Eligibility; Erro: Patterns; *Evaluation Criteria; *Federal Aid; Financial Aid Applicants; Financial Policy: Higher Education; *Need Analysis (Student Financial Aid); Public Policy; Quality Control; *Student Financial Aid

ABSTRACT
Efforts of the Department of Education (ED) to simplify the Pell Grant formula by reducing the number of data elements used to calculate awards (i.e., data element reduction) are evaluated. A framework is deseloped to assess the critical characteristics of individual data elements, to ; liminate elements from the formula, and to develop proposals for data element reduction. Individual data items used in the Pell eligibility and award formulae are evaluated on the basis of five measures: budget impact, aggregate distributional impact, sensitivity, reliability, and verifiability. Included is a comparisor of two simulations of a reduction in the number of data elements used in the Pell eligibility and award formulae. The two simulations, the standard and the er ror free simulations, are identical except for the data base used. Both simulations eliminate all but five data elements (adjusted gross income, federal taxes paid, nontaxable income, number in household, and number in postsecondary education). The applicant-based model and data base, and techniques used to adjust the ED applicant data base for the error patterns found in the Pell Stage III data, are described in appendixes. References and a substantial series of data tabies are also appended. (SW)

[^0]
IV QUALITY CONTROL POLICY OPTION:

FINAL REPORT ON THE EVALUATION OF DATA ELEMENT REDUCTION

STAGE I

PHASE V

JUNE 1985

U 8 DEPARTMENT OF EDUCATHN Oisce of Educationel Revearch and Improvement EDUCATIONAL RESOURCES INFORMATION

EThis doc
his document has been reproduced as
eceived from the person or organizetion originating it
C Minor changes heve been mede to improve repraduction qualliy

- Points ol view or opinions stated in this docu ment do not necessarily represent officia OERI position or policy

Submitted By

ADVANCED TECHNOLOGY, INC.
12001 Sunrise Valley Drive
Reston, Virginia 22091

TABLE OF CONTENTS

Page
LIST OF TABLES iii
CHAPTER 1: INTRODUCTION 1
Summary of Fincings 2
Assessment of Individual
Elements 3
Analysis of a Five Element Formula 4
Background 5
Analytic Context 8
Organization of the Report 9
CHAPTER 2: EVALUATION OF THE IMPACT OF INDIVIDUAL DATA ITEMS 10
Methodology and Analysis : 1
Measures and Database 11
Budgetary Impact $1+$
Aggregate Distributional Impact $1 t$
Sensitivity 17
Reliability 23
Verifiability 25
Joint Consideration of the Measures 29
Conclusion 32
CHAPTER 3: ANALYSIS OF A FIVE DATA ELEMENT FORMULA 34
Description of the Simulations 34
Standard Simulation Using Reported Data 37
"Error Free" Simulation 43
Findings 49
Conclusion 50
APPENDIX A Description of the Model and Data Base
APPENDIX B Imputation of Stage ill Error Patternsto the ED Applicant Data Base
APPENDIX C Tables
APPENDIX D Tablesii 3

LIST OF TABLES (Continued)

Page
Table 13: Comparison of Number of Recipients and Program Costs for the 1982-83 Pell Program Year Under the Full and Five Data Element Formulae Using Error Free Data 44
Table 14: Comparison of Pell Awards for the 1982-83 Program Year Under Full and Five Data Ele- ment Formulae Using Error Free Data 45
Table C-1: Joint Distribution of "Best" Family Size and "Best" Number in College by Respective Reported Values C-1
Table C-2: Regression Equations Used for Imputation of Best Values to Applicant Data Base C-16
Table C-3: Mean Values of Best, Imputed, and Reported Values from the Stage III and Applicant
Data Bases C-25
Table D-1: \quad Comparison of Number of Recipients and Program Costs tor the 1982-83 Pell Program Year Under the Full and Five Data Element Formulae Using Standard Reported Data Without Taxation Rate Adjustments D-1
Table D-2: Comparison of Number of Recipients and Program Costs for the 1982-83 Pell Program Year Under the Full and Five Data Element Formulae Using Error Free Data Without Taxation Rate Adjustments.................................... D-2

LIST OF TABLES (Continued)

Page
Table 13: Comparison of Number of Recipients and Program Costs for the 1982-83 Pell Program Year Under the Full and Five Data Element Formulae Using Eiror Free Data 44
Table 14: Comparison of Pell Awards for the 1982-8s Program Year Under Full and Five Data Ele- ment Formulae Using Error Free Data 45
Table C-1: Joint Distribution of "Best" Family Size and "Best" Number in College by Respective Reported Values C-1
Table C-2: Regression Equations Used for Imputation of Best Values to Applicant Data Base C-16
Table C-3: Mean Values of Best, Imputed, and Reported Values from the Stage III and Applicant Data Bases C-25
Table D-1: Comparison of Number of Recipients and Program Costs for the 1982-83 Pell Progrann Year Under the Full and Five Data Element Formulae Using Standard Reported Data Without Taxation Rate Adjustments.................................... D-1
Table D-2: Comparison of Number of Recipients and Program Costs for the 1982-83 Pell Program Year Under the Full and Five Data Element Formulae Using Error Free Data Without Taxation Rate Adjustments D-2

INTRODUCTION

The Department of Education (ED) has been interested in simplifying the Pell Grant formula by reducing the number of data elements used to calculate awards. This endeavor is commonly called data element reduction. Three overarching objectives motivate ED's approach to data element reduction. A reduced Pell formula must:

- Maintain or enhance the ability of the program to efficiently identify the target population,
- Simplify, streamline and make more understandable the determiriation of program eligibility and resulting 2 wards, and
- Reduce the program distortions associated with error-prone, difiicult to verify data elements.

Any data element proposal is also subject to the following constraints:

- Minimize the redistributional effects caused by data element reduction, and
- Neutralize the potential budgetary impact.

These objectives are not easily achieved. In fact, past attempts to eliminate data elements from the Pell formula have faltered because policymakers have been unable to demonstrate that these objectives could be achieved subject to the constraints identified.

Past analyses of reduced Pell formulae have assumed that eliminating infrequently reported data elements to increase efficiency automatically decreased equity by adversely affecting the awards of groups of recipients (e.g. those with high medical/dental expenses). The current analysis suggests that data elements placed in the Pell formula to enhance equity may actually undermine equity by introducing reporting error that distorts award patterns. These data elements may not have their intended effects on targeted recipients and their elimination may actually increase equity. Thus, a reduced Pell formula could achieve both efficiency and equity without massive distortions to awards for the vast majority of recipients.

The current analysis of data element reduction uses an approach that is fundamentally different from past analyses. A framework was developed to assess the critical characteristics of individual data elements and rank them under known assumptions. The framework allows one to select elements to eliminate from the formula and, thus, alternative data element reduction proposals can be developed for analysis and comparison. One recent proposal for a five element formula is discussed in-depth in Chapter 3 of this report.

SUMMARY OF FINDINGS

The anaiysis has produced many useful findings concerning data element reduction, including:

- The analytic framework used in this analysis can be a powerful tool for developing rational, defonsible data eirment reduction proposals.
- Pell Grant data elements can be ranked in an objective, value-free manner according to their impact on she program.
- Data elements can be identified for ietention in the formula or elimination on the basis of this ranking.
- The analysis of the five data element Pell formula with a standard and an "error free" data base suggests almost identical patterns in individual awards:
- few recipients lose large amounts (oyer $\$ 400-\$ 500$)
- the neediest students, those receiving the highest awards, continue to receive high awards (98 percent receive within $\$ 200$ of the maximum award)
- a disproportionate number of recipients who lose eligibility received low awards ($\$ 500$ or less under the full formula)
- The cost estimates using ED's standard data base, which contains reporting errors, must stand as official estimates of the likely cost of data element reduction. However, a comparison of the cost estimates produced by the standard and error free simuiations provides a potential budget range for a five element formula (\$2.6 billion using standard data, $\$ 2.4$ billion using error free data).
- The analysis suggests that increased costs incurred by reducing the formula tc five elements could be potentially "financed" simply by eliminating error from the rernaining elements, rather than adjusting formula taxation rates upward.

More specific findings from both the assessment of individual data elements and the analysis of a five elernent Pell formula follow.

Assessment of Individual Elements

The assessment of the impact of indiv. Jual data elements has demonstrated that this analytic framework is both an appro riate and effective policy tool. The framework has provided a means for syster atically evaluating, and ranking 17 data elements in the Pell eligibility and award formulae across five measures. The framework provides a means of integrating i rese discrete measures (budgetary and distributional impact, sensitivity, reliability anc verifiability).

We have provided two examples of how suc 1 an integration can be conducted and demonstrated how the results of these examples can inform policymakers in their consideration of data element reduction. In the f rst example, using equal weights for all measures, we ranked the data elements and cla. sified them into three groups: high (high rankings on most measures), moderate (mixe 1 rankings on these measures), and low (low rankings on most measures).

The data items were classified in the example a; follows:

High

- Adjusted Gross Income
- Social Security Education Benefits
- U.S. Taxes Paid
- Family Size Offset
- Employment Expense Offset

Moderate

- Net Home Equity
- Number in College
- Nontaxable Income
- Veteran's Education Benefits
- Elementary and Secondary Tuition
- Dependent Student's Net Assets
- Net Investment Equity
- Dependent Student's Income
- Net Business/Farm Equity
- Student Marital Status
- Cash/Savings/Checking
- Unusual Medical/Dental Expenses

The example generally suggests that the data items in the low classification could be considered for elimination from the Pell formulae with minimum impact across the five measures (budgetary and distributional impacts, sensitivity, reiiability, and verifiability). Those classified as moderate would require closer scrutiny and would have higher impact. Those classified as high, for all practical purposes, could not be eliminated without substantial impact to the p. -3m. An exampie using differential weights for the measures resulted in two changes in the rankings and no changes to the classifications.

The discussion above is only a summary of the examples. The results of these must be put into the context provided by the thorough discussion of the analysis, findings, and the caveats provided in Chapter 2.

Analysis of a Five Element Formula

As Chapter 2 presents a methodology and data for developing data element reduction proposals, Chapter 3 presents a detailed and thorough analysis of the budgetary and distriberional impact of one data element reduction proposal, a five element formula. Two simulations, conducted for Advanced Technology by the Division of Policy and Program Development (DPPD), Office of Student Financial Assistance, formed the basis of the analysis. The first simulation used a standard applicant data base in conducting model runs of full and five element formulae. The second simulation was identical to the first except that an "error free" data base was used to simulate the effect of eliminating error along with data elements. (A description of the imputation procedures used to develop this unique data base is contained in Technical Appendix B.) A comparison of the two simulations produced the following findings:

- Differences in impact are most evident on the aggregate level of program costs and number of recipients.
- The error free simulation results in nearly $: 50,000$ fewer recipients and a slightly higner budgetary impact than the standard simulation. However, the baseline budget was substantially lower (about $\$ 200$ million) for the error free simulation.
- The error free simulation produces a lower baseline budget (about \$2.2 billion) and the five element formula without taxation increases roughly equa's the standard simulation full formula baseline costs (about \$2.4 billion). This calls into question the need to increase taxation rates in the simulation.
- Average awards for the error free simulation are unchanged but lower than the standard simulation, in which awards decline.
- On most other dimensions (e.g., numbers of awards increasing, decreasing, or staying the same by applicant characteristic) the differences are minimal.

These findings and the analysis of the simulation are discussed in detail in Chapter 3.

BACKGROUND

Discussions surrounding the number and type of data elements used in determining eligibility and award for the Pell Grant program are as long-standing as the program itself. These discussions typically have focused on several major policyrelevant issues including the program costs for different combinations of data elements, the sensitivity of different formulae to specific groups of applicants, and the redistributive effects of adding or eliminating data elements. In addition, the relationship of the Pell formula to the overall student aid delivery system has been a concomitant issue.

Recently, the findings of the Pell Grant Quality Control (QC) Project have resurfaced data element reduction as a potential corrective action which could lower program-wide error through eliminating error-prone data elements from the Pell SAI and award formulae, and simplify the application process as well. The Pell Grant QC

Project measured quality in the delivery of funds in the Pell Grant Program. Using a variety of data collection methods, including institutional site visits, record abstractions, personal interviews with parents and students, and acquisition of IRS records; the project recomputed awards based on the most reliable data and then with original awards and institutional disbursements. The results of the project were twofold. First, the analyses generated program-wide estimates of errors; second, these analyses identified data elements in the SAI and award formulae that were error-prone and difficult to validate. Consequently, as part of the Title IV Quality Control Project, the Division of Quality Assurance (DQA) has identified Pell Grant data element reduction as a potential corrective action to reduce errors and has requested a series of analyses to support ED policymakers in the renewed policy discussion surrounding data element reduction.

Numerous analyses of data element reduction have been undertaken in recent years. Most have focused on the budgetary impact of reduction and the alteration of the award patterns that exist under the current formula, which are most of ten used as a measure of program equity. However, none of these analyses was able to analyze fully the impact of data element reduction for at least two reasons. First, most previous analyses assumed that reported application data were correct and hence failed to capture the effects of error on the program. Second, none of these recent analyses was able to systematically evaluate the impact of data elements across several diverse program goals.

Program-wide analyses of several combinations of data elements in a reduced eligibility formula conducted by Advanced Technology during Stage Il of the Pell QC Project accounted for error by using verified data in the simulations. ${ }^{1}$ Despite controlling $f^{\prime \prime}$ applicant error for the first time, these analyses were condilcter on a recipient data base and therefore the impacts of these alternative combinations on newly eligible recipients could only be estimated. As a part of the present policy option, preliminary a alyses were conducted to measure the program-wide effects of data element reduction at a detailed level. ${ }^{2}$ These analyses utilized data from the official ED applicant-based model, with the assistance of the Pell Grant Branch,

[^1]DPPD, to measure the effects of data element reduction on subpopulations of applicants. While these data brought the strengths of an applicant data base to the analyses, the analyses could not account for application error, a major source of program error. However, the findings from the 1982-83 Pell Grant QC Project allow substitution of more accurate data for error-prone data elements through the creation of an adjusted applicant data base and measurement of the effects of data element reduction on the pattern of awards. This provides a more accurate basis for comparing distributions of awards under the full and reduced data element formulae. Both the preliminary and the present analyses of full and reduced formulae hold the budget constart by adjusting upward the taxation rates.

Another approach to data element reduction was proposed by Advanced Technology. An informal position paper preses..ed a framework for systematically evaluating the impact of individual data elements. The Stage III Corrective Actions volume from the Pell QC Project utilized this framewcrk and presented an approximation of the impact of each element across five criteria, using Stage III Pell recipient data.

This policy option report represents an integration of the approaches from several prior anialyses and benefits from the strengths of each. The analysis has two discrete parts. The first, which was recommended in the Stage III Corrective Actions volume, assesses the impact of individual data elements on five program dimensions:

- Budgetary Impact
- Aggregate Distributional Impact
- Sensitivity
- Reliability
- Verifiability

[^2]These dimensions and the assessment methodology are described in Chapter 2 of this report.

The second analysis compares distributional trends resulting from program-wide simulations of the applicant-based model for the full formula used for the 1982-83 academic year with a five element formula using both reported data (those containing error) and error adjusted or "best" data (from which error found in the Pell QC Stage III has been corrected). Chapter 3 contains this analysis. ${ }^{4}$

ANALYTIC CONTEXT

The rature and focus ot the analysis conducted for this policy option refort must be carefully delineated and explicitly contrasted with policymaking. Both analy, esthe program-wide simulation of the full and five element formulae ard the assessment of the impact of individual data elements-have been designed to provide data with whici. ED policymakers can make informed policy decisions. We have avoided making implicit policy decisions throughout our analysis. For example, the goal of assessing individual data elements is to provide policymakers with a framework for ranking data elements according to their impact, not to advance any one proposal within this paper. Nevertheless, analysis such as this requires making judgments in order to provide data to ED for policymakirg purposes. We have clearly identified points at which judgments were made and explicitly stated these judgments.
in addition, the policy relevance of the findings must be delineated carefully, particularly with regard to simulating the program-wide effects of reducing the number of data elements in the Pell eligibility and award formula to five. The analysis has been designed as an evaluation, not as a forecast. The emphasis of the assessment of individual data elements is the measurement of the impact of data elements across sevriral dimensions. Therefore, the findings from both analyses can isolate the effects of data element reduction within a research context; only official ED estimates can stand as forecasts of likely policy consequences.

Some general comments should be offered concerning the data base, simulations and generalizability of the results of our analyses. These simulations utilize a large

[^3]data base that permits generalization to the popu.'•: \cdot n of applicants. Different eligibili-y criteria, however, are likely to change the composition of the applicant populati 7. We were unable to acicunt for this likelihood in this analysis, since the model an! our analyses simulate the effects of program changes on an existing and static app icant population. Also, the results of the assessment of individual data elements a-e, to a degree, formula specific, although some of the results would be identical. The degree of difference between the formula used and another-a subsequent y ar or reduced form-must be examinei; and considered before generalizations could be considered. This analysis focuses explicitly on the impact of eliminating data element. from the eligibility and award formulae. It does not assess the implications oi eliminating items from the application form nor does it deal with issues of compa ibility with other need analysis tests or forms. Although these are important consid.rations, they are beyond the scope of this analysis.

This analysis can play the important role of informing the policy debate by measuring the efficiency of data element reduction as a corrective action for program error by accurately and comprehensively capturing its effects. The assessment of individual data elem n ts can also serve as a basis for developing alternative proposals for altering the num ser and types of data elements used in the determination of ellgibility and award.

ORGANIZATION OF THE REPORT

This report is comprised of two chapters that parallel the analysis and technical appendices. Chapter 2 fescribes the analysis and findings resulting from the evaluation of the marginal impact of the individual data elements. Chapter 3 compares two simulations 0° a redustion in the number of data elements used in the Pell eligibility and award for nulae using two data bases. The .Appendices describe the data base and model, the imi utation that was conducted to adjust the ED applicant data base for the error patterns found in the Pell Stage III data, and additional program simulation tables.

EVALUATION OF THE IMPACT OE INDIVIDUAL DATA ITEMS

Characteristically, data element reduction has been approached by presenting alternative configurations of eligibility formulae with five, six, or seven data elements or substituting number of exemptions for household size. These alternatives have then been evaluated by measuring changes to the budget and the distribution of awards at the program level induced by changing the formula. Despite the intuitive appeal and relative ease of such an approach, these analyses have failed to provide either a framework or the daca for systematically developing and evaluating alternatives. In addition, the developinent and evaluation of data element reduction alternatives are subject to competing, if not conflicting, goals which most approaches cannot deal with easily.

Data element reduction most often has been advanced as a strategy to maximize two of these program goals: integrity and efficiency. Integrity is maximized by making :he program less error prone and increasing the reliability of data collected. Efficiency is achieved by reducing applicant data burden, administrative costs to institutions and application processing costs to the government. However, past reduction proposals have run afoul of budget and equity concerns. Analyses of data element reduction proposals have suggested that these proposals cause budget increases and shifts in distribution of awards that were judged to be unacceptabie and resulted in decreased program sensitivity to applicant characteristics. Prior policy discussions have not provided the framework or data with which to consider these goals simultaneously.

The current approach provides both the framework and the data with which to make informed judgments about alternative configurations of data elements. This approach provides these by evaluating each data element individually on the basis of five measures:

- Budget Impact
- Aggregate Distributional Impact
- Sensitivity
- Reliability
- Verifiability

The approach also ranks the data elements for each measure ordinally from the highest to the lowest impact.

This approach also allows for simultaneous consideration of these measures in order to enable policymakers to identify groups of items that must remain in the formulae, those that can be eliminated with little impact, and those that could be eliminated giver: certain tradeoffs. An underlying premise of the analysis suggests that items that rank low on all measures more easily could be eliminated, whereas high-ranking items should be retained.

METHODOLOGY AND ANALYSIS

The focus of the analysis in this portion of the report is the evaluation of data Items used in the eligibility and award formulae as they directly affect the award. For the most part, these data elements correspond with a single formula item. ${ }^{5}$

Each item was evaluated individually changing to zero all non-zero reported data values for the item being evaluated, such as net home value or unusual medical and dental expenses. Table 1 lists the values used to eliminate the item from the formula. All awards were then recalculated and analyzied for each of the five measures. For one item, family size offset, changes to the SAI software were necessary in order to eliminate the data item.

Measures and Database

In this portion of the analysis five measures are used to assess the impact of individual data elements on awards. In order to assess this impact we used the 1982-83

[^4]TABLE 1

DATA ITEMS EVALUATED THROUGH ELIMINATION FROM THE PELL ELIGIBILITY AND AWARD FORMULAE

Value Used toEliminate theData Item
Income
Adjusted Gross Income 0
Nontaxable Income 0
U.S. Taxes Paid 0
Dependent Student's Income 0
Veteran's Education Benefits 0
Social Security Eduこation Benefits 0
Assets
Net Home Equity 0
Net Investment Equity 0
Cash/Savings/Checking 0
Net Business/Farm Equity 0
Dependent Student's Net Assets 0
Offsets and Protections
Student's Marital Status
Family Size Offset
Unmarried
Number in College 1
Unusual Medical and Dental Expenses 0
Elementary and Secondary Tuition and Fees 0
Employment Expense Offset 0

ED data base and a standard full formula for the 1982-83 program year as a baseline. Individual data elements were removed from the formula and awards were recompu:. 1 using the 1982-83 Pell eligibility and award formulae. The resulting awards were multiplied by a sampling weight assigned to each applicant on the file and, from the first two measures, by a participation rate assigned by income level. These procedures estimate program changes attributable to the elimination of the data element. The changes were then analyzed througt, the five measures, each of which is described below.

- Budgetary Impact is the change in program budget when a data element is excluded and the resulting budget is compared with the baseline budget under a full formula.
- Aggregate Distributional Impact is meeasured as the change in the distribution of program funds across income and other categories compared against the baseline distribution with all elements included in the formula.
- Sensitivity is a measure of the relative responsiveness of the program to applicants with particular characteristics (e.g., two working parents). Sensitivity is reported as the average change between the base award and the recomputed award with the data item removed.
- Reliability is the degree to which reported data accurately represent applicants' true characteristics.
- Verifiability is an assessment of the degree to which items can be checked against reliable corroborative data sources.

The framework utilized requires that we make judgments concerning several analytic issues including classification and weighting. In each of the analyses, data elements are classified as having high, moderate, or low impact. The basis upon which data elements were assigned to these categories is explicitly treated in each of the following sections. In the last section of this chapter, the results of the five analyses are integrated. Although we have included two examples of weighting schemes, the values we assigned to the classifications in order to rank the data items ($2,1,0$ for high, medium, low) remain constant. The use of different values (for example, $5,1,0$, respectively) may alter the ranking and potentially the classification.

The remainder of this chapter is divided into sections that describe the analysis conducted for each of these measures and the findings of these analyses. Each measure addresses a specific research question that introduces the sections.

Budgetary Impact

One of the primary and often asked questions concerning the effects of data element reduction is the impact on the program budget. This portion of our analysis was motivated by the following question: How does the program budget change when single data elements are removed from the Pell formulae? Within this framework, data elements that had high budgetary impact would likely be retained in the formula; those with low budgetary impact wou'd be candidates for elimination on the basis of budgetary impact.

In order to address this question, we eliminated each of the 17 data items in turn and recomputed awards for cases in which changes to the data element were made and summed all weighted awards. The result was a new program budget total. The difference between the baseline budget and the new budget is defined as the budgetary impact, represented as a dollar difference and percentage change. Table 2 represents the ranking of the budgetary impact of removing individual data elements. lhe data elements are ranked from highest to lowest percent absolute change. In addition these budgetary changes are classified as high, moderate or low according to the following ranges:

- $\quad \frac{\text { High }}{\text { million) }}$ more than 10 percent change in program cost (approximately $\$ 250$
- Moderate -- 2 to 10 percent change in program costs (approximately $\$ 50$ to \$250 million)
- Low -- less than 2 percent change in program costs (approximately $\$ 50$ million or less)

Several features of Table 2 are noteworthy. Eliminating data elements produces both positive and negative changes. Increases in budget result from eliminating income or asset items that are used as resources for family contribution to educational costs. Conversely, decreases in budget result from eliminating expense allowances that protect portions of income from contribution. Adjusted gross income, family size, and social security education have the greatest judgetary impact, although the changes are both positive and negative. Adjusted gross income, family size, and social security education benefits have the greatest budgetary impact, although the changes are both positive and negative. Seven data items (VA education benefits, elementary and secondary tuition, investment equity, business farm equity, cash/savings, student's marital status and medical/dental expenses) affect program

TABLE 2

RANKING OF THE BUDGETARYIMPACT OF ELIMINATING DATA ELEMENT'S FROM THE ELIGIBILITY AND AWARD FORMULAE

Impact	Data Item	Increase/ Decrease(-) in Program Budget $\$$ (millions)	Percent Change in Program Budget
$\begin{aligned} & \text { 펍 } \\ & \underline{y} \end{aligned}$	Adjusted Gross Income	1708	68.66
	Family Size Offset	-1455	-58.49
	Social Security Education Benefits ${ }^{2}$	276	11.10
	U.S. Taxes Paid	-155	-6.23
	Net Home Equity	117	4.72
	Number in College	-:10	-4.42
	Nontaxable Income	90	3.64
	Employment Expense Offset	-80	-3.23
	Dependent Student's Income	71	2.86
$\begin{aligned} & 3 \\ & \mathbf{O} \\ & \hline \end{aligned}$	Dependent Student's Net Assets	35	1.39
	Veteran's Education Benefits	13	0.53
	Elemeritary and Secondary Tuition	-13	-0.53
	Net Investment Equity	10	0.39
	Net Business/Farm Equity	8	$0.34{ }^{3}$
	Cash/Savings/Checking	8	$0.30{ }^{3}$
	Student's Marital Status	5	0.21
	Unusual Medical/Dental Expenses	-2	-0.08

[^5]costs by iess than 1 percent. Several of these items, the asset items, are subject to $\$ 25,000$ protections and are, for most applicants, "taxed" at 5 percent, effectively reducing the budgetary impact of these items. Relatively few applicants report tuition expenses or levels of medical expenses high enough (greater than 20 percent of effective family income) to reduce family discretionary income.

This analysis uncovers an interesting, seemingly anomalous, finding relating to the difference between the impact of social security and veteran's education benefits. Both of these elements are included in the award formula, which means that they more directly affect Pell awards than other elements in the SAI formula that are taxed or subject to protections or offsets. However, the budgetary impact of VA education benefits is vastly lower than social security education benefits. This is a result of the fact that far fewer (about 2 percent) report receiving VA benefits as opposed to social security (about 11 percent). The mean value for VA benefits $(\$ 3,200)$ is also slightly more than half the mean value for social security $(\$ 5,300)$. These two facts result in a substantially lower budgetary impact for VA benefits. This, of course, is to be expected. Items that were infrequently reported or had low effective values tended to have low budgetary impact.

Aggregate Distributional Impact

The impact on the distribution of awards resulting from changes to the eligibility and award formulae is of fundamental importance to any analysis on the impact of data elements. Particuiarly since the impetus for data element reduction is the reduction of error, rather than redirecting program funds, the elimination of data elements from the formulae must have as a constraint minimizing redistributive effects induced by these changes. Therefore, a particularly relevant question for this analysis is: What is the impact on the distribution of awards of eliminating each of the 17 data elements? Data elements that have high redistributional impact on program funds would likely be retained; those that have low redistributional effects would be candidates for elimination.

This distributional analysis was conducted by comparing the applicant's original award under the full formula with the award when the respective data element was removed from the formula. The results of these comparisons, for presentational
purposes, were tabulated by percentage of applicants who experienced no change in award ($+/-\$ 150$) and two levels of increases and decreases ($\$ 101-\$ 600$ and over $\$ 600$) and ranked from highest to lowest impact. Those data items that induced the largest number of increased and/or decreased awards were ranked as having the highest distributional impact. Converiely, the data items that cause the fewest changes in awards were ranked as low impac:.

Table 3 presents the results of this distributional analysis and an ordinal ranking of the distributional impact of each individual data element. In addition, the distributional effects are classified as high, moderate, or low in the following manner:

- High - Greater than 10 percent of the applicants would receive a different award (different by more than $\$ 100$) when compared with the original award.
- Moderate - Greater than 5 percent but less than 10 percent of the applicants would receive a different award (different by more than $\$ 100$) when compared with the original award.
- Low - Less than 5 percent of the applicants would receive a different award (differerit by more than $\$ 100$) when compared with the original award.

Several conclusions can be drawn from the table about the distributional impact of individual data elements. Only three data elements cause redistribution for more than ten percent of all applicants (family size, adjusted gross income and U.S. taxes paid) and therefore could be considered to have high impact. Four more data elements can be classified as having moderate impact, causing redistribution in between five and ten percent. Ten data elements have a redistributive impact for iess than five percent and are considered to have low impact. Six of these 10 low impact data elements cause redistribution for less than one percent of all applicants.

Sensitivity

The preceeding measures assess the impact of eliminating data elements at a program-wide or aggregate level. Although this assessment is fundamental to any analysis of changes to the Pell formulae, other dimensions of the impacr cannot be overlooked, including the effects of the change in awards of individual apflicants.

Table 3
RANKING OF THE IMPACT ON DISTRIBUTION OF AEARDS OF ELIMIIAATING INDIVIDUAL DATA ELEMENTS FKOM THE ELIGIBLLITY AND AVARD FORMULAE

RANKED FROM HIGHEST TO LOWEST IMPACT

Empact	Data Element Eliminated	Increase		$\begin{aligned} & \text { No Change } \\ & (+/-100) \\ & (x) \end{aligned}$	Decrease	
		Over \$600 (\%)	$\begin{gathered} \$ 101 \text { to } 5600 \\ (\%) \text {) } \end{gathered}$		$\begin{gathered} \$ 101 \text { to } \$ 600 \\ (\%) \end{gathered}$	Over $\$ 600$ (\%)
$\underset{\text { I }}{\text { I }}$	Family Size Offset Adjusted Gross Income U.S. Taxes Paid	$\begin{array}{r} 0 \\ 32.26 \\ 0 \end{array}$	$\begin{array}{r} 0 \\ 9.86 \\ 0 \end{array}$	$\begin{aligned} & 49.41 \\ & 57.87 \\ & 85.19 \end{aligned}$	$\begin{array}{r} 19.89 \\ 0 \\ 14.66 \end{array}$	$\begin{array}{r} 30.70 \\ 0 \\ 0.15 \end{array}$
	Employment Expense Olfset"	0	0	91.11	8.82	0.07
	Number in College	0	0	91.90	7.17	0.73
	Social Security Education Benefits	6.08	1.93	91.94	0	0
	Net Itome Equity	1.82	4.70	93.47	0	0
${ }^{3}$	Nontaxable lincome	1.40	3.14	95.46	0	0
	irependent Student's licoine	1.38	1.59	97.03	0	0
	Lup:ordent Student's Nel Assets	0.24	2.57	97.20	0	0
	Elementary and Secondary Tuition	0	0	98.76	1.20	0.04
	Veterali's Education Isenefits	0.27	0.47	99.27	0	0
	Studesit's Marital Status	0	0.63	99.29	0.04	0.04
	Cash/Savings/Cliecking	0.07	0.50	99.43	0	0
	Net Real Estate/Investinent Equity	0.16	0.32	99.53	0	0
	Nei Busuress/Farin Equity	0.16	0.11	94.72	0	0
	Unusual Medical and Dental Experises	0	0	99.88	0.09	0.02

- Not an application item, computed fron incone portions.

Therefore, this analysis explored another research question: How ds individual awards change for applicants facing particular circumstances when a data element, included in the formula to sensitize the award to such circumstances, is removed?

Elimination of data elements from the formulae can have a substantial effect on the sensitivity of the formulae to specific groups of applicants, an importanc component of equity. Equity, as it is used in this context, can be stated simply as equal treatment of equals. The Pell formulae (eligibility and award) have many components that potentially enhance sensitivity--the $\dot{c}^{\text {h }}$ ility to account for differences among applicants-and thereby equity.

Elimination of data elements can decrease sensitivity by reducing the ability to differentiate among applicants. In addition, elimination of certain data elements will affect sensitivity to a greater degree than others. For example, the elimination of the family size offset would certainly have a greater impact on sensiti ity than the elimination of medical/dental expenses, since the former decreases discretionary income by approximately $\$ 1,200$ for each additional family member from a bast of $\$ 4,200$ and the latter reduces discretionary income by the amount of expenses in excess of 20 percent of effective income (all income minus taxes). Those data elements that are included in the formula to enhance sensitivity but have little impact on awards--even for applicants at the upper ranges of the data value--would be candidates for elimination on the basis of sensitivity.

We have measured the impact on sensitivity of awards to the individual data elements by identifying the upper range of data values, ${ }^{6}$ eliminating the value and recomputing the award for this subsample of cases. Table 4 lists the data values for these ranges. The upper range of each value was selected because the elimination of the data elements would show the greatest impact at that level.

[^6]TABLE 4

VALUES FOR DATA ELEMENTS USED

IN THE SENSITIVITY ANALYSIS

	Range of Data Values ${ }^{1}$	
	Low	High
Adjusted Gross Income	29,084	31,464
Social Security Education Benefits	1,005	4,963
Net Horne Equity	38,220	49,879
U.S. Taxes Paid	4,413	5,351
Family Size	6	7
Employment Expense Offset	1,500	1,500
Number in College	2	4
Nontaxable Income	5,078	7,932
Veteran's Eduction Benefits ${ }^{2}$	1	4,699
Elementary and Secondary Tuition ${ }^{2}$	563	2,052
Despendent Student's Net Assets	159	$j 33$
Net Investment Equity ${ }^{2}$	6,882	40,145
Dependent Student's Income	2,387	3,694
Student Marital Status	married	married
Cash/Savings/Checking	3,001	6,103
Unusual Medical/Dental Expenses	1,139	1,629
Business/Farm Equity ${ }^{2}$	4,180	77,730

[^7]It should be noted that we measured sensitivity for ill data elements with the single exception of dependency status, which posed methodological problems. Clearly, the elimination of several of these, such as AGI, would not seriously be considered, since this would alter the fundamental nature of Pell as a need-based student aid program. Nevertheless, these elements were included in the analysis in order that the methodology be comprehensive, and the ranking of the elements be accurate.

Table 5 presents the results of this analysis of sensitivity. The table ranks the dats elements on the basis of absolute percent change in award. In addition, the sensitivity of the data element is classified as high, moderate, or low in to the following manner:

- High - 50 percent or greater change in mean award
- Moderate -- 10 percent or greater but less than 50 percent change in mean award
- Low - 10 percent or less change in mean award.

Table 5 contains several columns: the base or original award, the marginal award recomputed with the respective data element eliminated, the change in award or difference between the two, and percent change in award. The change in award represents the sensitivity of the award to the data element measured in dollars. The percent change in award represerics the change in award as a percentage of the mean baseline award. The data items are ranked on the basis of absolute percentage change in award from highest ($\mathrm{AGI}, 1,507$ percent) to lowest (business/farm equity, . 1 percent), ignoring the direction of the change. Items were ranked by absolute change because it was assumed that increases and decreases have equal weight; that one is not preferential to the other from the perspective of sensitivity. The data in Table 5 suggest that, given the methodology, awards are most sensitive to the high impact elements, including AGI, social security education benefits, net home equity, U.S. taxes paid, and family size. The relatively low mean baseline award for AGI (\$81) results from the fact that few applicants with AGI's within the 90 to 95 th percentile receive awards. Thus, the meal• or average award is depressed by the large number of zero awards in that range of $A G I$ values. When $A G I$ is eliminated from the formula, awards increase dramatically, because of the nature of the formula. Awards have relatively high sensitivity to social security education benefits because these benefits directly reduce award since it is part of the award formula.

TABLE 5

SENSITIVIT:' OF AW/ARD TO THE ELIMINATION OF INDIVIDUAL DATA ELEMENTS BY DATA ELEMENT

Sensitivity	Data Item	Mean		Difference	
		$\begin{aligned} & \text { Base } 1 \\ & \text { Award } \end{aligned}$	$\begin{aligned} & \text { Margingit } \\ & \text { Award } \\ & \hline \end{aligned}$	Change In Award	Percent Change , In Award
$\begin{aligned} & \text { I } \\ & \mathbf{I} \end{aligned}$	Adjusted Gross lncorne	81.54	1,310.4	1,228.86	1,507.06
	Sucial Security Education Benefits	315.52	928.54	613.02	194.29
	Net Home Equity	171.84	344.09	172.25	100.24
	U.S. Taxes Paid	38.45	8.85	-49.6	-84.86
	Farnily Size Offset	606.15	213.58	-392.57	-64.76
$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{㐅} \\ & \underset{\sim}{\sim} \\ & \text { 울 } \end{aligned}$	Employment Expense Offset	89.74	65.41	-24.33	-27.11
	Number in College	579.27	478.12	-101.15	-17.46
	Nontaxable Income	569.52	647.70	78.18	13.73
	Veteran's Education Benefits	676.96	760.08	83.12	12.28
	Elementary and Secondary Tuition	452.36	403.81	-48.55	-10.73
	Dependent Student's INet Assets	323.01	356.58	33.57	10.39
?	Net Investınent Equity	270.97	292.31	21.34	7.88
	Dependent Student's lncoıne	401.06	425.69	24.63	6.14
	Student's Marital Status	755.95	769.03	13.08	1.73
	Cash/Savings/Checking	267.89	271.36	3.47	1.3
	Unusual Medical/Dental Exienses	335.53	334.40	-. 63	-. 19
	Net Business/Farın Equity	603.24	603.82	. 58	. 1

${ }^{1}$ Original award computed with all data elements.

Awards are moderately sensitive to six data elements ranging from employment expense offset (-27 percent) to dependent student's net assets (10 percent). Awar's are relatively insensitive to another six elements. These range from net investment equity (8 percent) to business/farm equity (less than 1 percent).

Reliability

Program integrity is a fundamental design and program goal. In fact, if the data collected are not accurate and reliable, other program goals are undermined. Consequently, the reiiability of applicant data is a relevant, if not essential, component of any assessment of the impact of individual data elements. We addressed this dimension of the analysis by posing the question: How accurately does applicant reported data represent an applicant's true characteristics?

The reliability of data elements was assessed through the use of the Pell Grant Quality Control Prcject Stage III data. We have defined reliability as the discrepancy rate found in Stage III. Two error rates were developed in this study: simple case discrepancy and case discreparcy with payment consequences. Case discrepancy occurs when true or validated data differ from application data used in the determination of Pell eligibility and award. Case discrepancy leads to payment consequences when the validated data result in a different award than calculated with original application data. Table 6 presents the discrepancy rates under both definitions and the ordered ranking for both. The data elements are ordered by case discrepancy rate. This rate was selected because it is more reliable since the other rate is formula specific and would change under a different formula. Thus, the former is more generalizable.

Data elements are also classified into groups of high, moderate, and low reliability items. This classification is the obverse of the error rate: the lower the error rate, the higher the reliability. The classification is as follows:

- High -- Less than 5 percent cases discrepant
- Moderate -- 5 to 10 percent cases discrepant
- Low -- Greater than 10 percent cases discrepant

TABLE 6

RELIABILITY OF DATA ELEMENTS USED IN THE

 PELL GRANT FORMULAE RANKED FROM MOST TO LEAST RELIABLE$\left.\begin{array}{lllll} & & & \begin{array}{c}\text { Cases with } \\ \text { Discrepancies } \\ \text { Resulting }\end{array} \\ \text { in Payment } \\ \text { Consequences }\end{array}\right)$

1 Estimate, computed from error rates for assets and debts.
${ }^{2}$ Estimate, computed from the error rate for income portions.

Four items in Table 6 have high reliability and their discrepancy rates and rankings are similar. Two are moderately reliable, although the rankings begin to diverge slightly for these items. Eleven items are classified as having low reliability based on case discrepancy rate. These range from net home equity (about 11 percent) to the least reliable, on this scale, cash/savings/checking (about 46 percent). Four items have low reliability using both rates: dependent student assets and income, nontaxable income and family size.

The rates differ because of the nature of the formula. Clearly, the more directly a change in the data element produces a change in award, the closer the rates and ranking. Many elements, such as cash/savings/checking, dependent student's assets and income, are subject to protections and taxed at a low rate; thus, the differences between the rates and rankings are wider.

Several observations should be made concerning this data and case discrepancy rate. First, the data are recipient data. We are consciously generalizing from recipient to applicant behavior. We believe this is sound because no data suggest that applicant and recipient misreporting behavior is different. In fact, the Title IV Quality Control Project, which examined error in the Campus-Based and Guaranteed Student Loan Program and included many Pell applicant non-recipients, reports error patterns generally similar to the Pell QC Project. Second, the discrepancy rate represents the rate at which the true or validated data values differed from reported values by more than plus or minus $\$ 2$, the range specified by ED in the Pell QC Project. Third, the rate includes zero and non-zero reported values. Since the discrepancy reflects both values, the rates are therselves an artifact of the occurrence of this characteristic in the general population. For instance, if a small percentage of the population has business/farm equity, the error rate inherently will be lower than for AGI or nontaxable income. This occurs because, among other reasons, nonbusiness/farm owner applicants implicitly report zero values. Thus, there is a lower probability of error in the general population.

Verifiability

The final dimension on which the data elements were evaluated is verifiability. Verifiability is a corollary of reliability and a logical and important policy concern in
any systematic evaluation of data elements. We focused our analysis by addressing the yuestion: To what degree can the data element be corroborated through an alternate source of documentation?

Our assessment of the degree to which data elements can be verified is essentially qualitative. The assessment draws upon a rich body of qualitative data developed through the fall 1982 study of Pell validation compliance and particularly the "best value" selection software for the Pell and Title IV QC projects. The research that produced the best value selection software and documentation represents one of the most thorough reviews of corroborative documentation for data items used in the Pell formula. These data informed our assessment of individual data items.

Each item was analyzed from five perspectives:

- Is a reliable corroborative data source available for each item?

In answering this question, we essentially asked whether a document existed with which the data item could be verified and which was produced by an "official," neutral third party. We also considered whether the data from this document treated the time period and used the same general definition for the data item as the formula.

- Is the document readily available?

In assessing the data element from this perspective we considered whether most families have and maintain this documentation. Conversely, if families must request the document often, we considered whether it was easily obtained. The experience of our staff's fieldwork with financial aid staff was used extensively in this analysis.

- Is the document provided quickly?

Here we evaluated whether the agencies (companies, etc.) from which a family would have to request a document(s) provide these in a timely manner. We also called upon staff experience with financial aid officers, and their experiences, to conduct this cvaluation.

- Is the data retrospective?

We assessed whether the data used in the formula was retrospective (e.g., prior or base year AGI), which can be verified more easily.

- Can errors of omission as well as commission be detected?

Lastly, we evaluated the degree to which failing to report as well as under or overreporting could be identified.

These five questions focused our assessment of the individual data elements. Once each data item was evaluated, we ordinally ranked the items. Ranking took place in several stages. Each of the questions discussed above was weighted equally, except omission/commission, which doubled the elements' score if both errors could be detected. Each of the data elements received one of five assessments (yes, reliable approximation, uncertain, often no, no). Each of these was weighted on a symmetrical scale from +2 for yes to -2 for no. The elements were then classified into high, medium, and low error of validation as follows:

- High -- Three or more yeses and both omission/commission (a score of greater than 10)
- Moderate - Between two yeses and both omission/commission, and three yeses (a score of between 6 and 10)
- Low -- Fewer than three yeses (a score of less than 6)

Table 7 presents the results of the evaluation. Four elements are classified as having high verifiability; four as moderate. Nontaxable income is ranked by the composite of its subcomponents, which are examples of the types of income that are included in this data element.

The verifiability for the remaining data elements is classified as low. Generally these are asset items (home, business/farm, and investment equity and dependent student assets), demographic items (family size, number in college and student's marital status) and expenses (medical/dental). Assets receive low scores because of the difficulty of establishing value, the relative difficulty in discovering errors of omission and the potential difficulty of rapidly providing up-to-date documentation. Two of the demographic items, family size and number in college, are prospective and therefore virtually unverifiable, although number of exemptions can be used as a reasonable approximation, acknowledging the limitation of such comparisons. Student's marital status is difficult to verify because almost nothing short of a marriage license can conclusively prove the student's status. Therefore, no other documentation can be considered reliable (e.g., tax forms). Medical/dental expenses may be difficult to verify simply because of the potential volume and diversity of documentation and payment forms.

VERIPIABRITY OF DATA ELEMENTS USED IN THE PELL FORMULAE

Classiilcation	Item/Sub-icem	$\begin{aligned} & \text { Rellable } \\ & \text { Source } \end{aligned}$	Readily Avallable	$\begin{aligned} & \text { Provided } \\ & \text { Ouichil } \end{aligned}$	Retrospective	Omission/ Commistion
$$	Adjusted Gross lncome	Yes	Yes	Yes	Yes	O/C
	Employment Expense Offset	Yes	Yes	Yes	Yes	O/C
	U.S. Taxes Paid	Yes	Yes	Yes	Yes	O/C
	Veteran's Education Benefits	Yes	Yes	Yes	No	O/C
	Social Security Education Benefits	Yes	Yes	Yes	Yes	C
	Dependent Student's Income	Yes	Yes	Yes	Yes	C
	Cash/Savings/Checking	Reliable Approximation	Yes	Yes	Yes	C
	Nontaxable Income					
	Social Security Denefits	Yes	Yes	Uncertain	Yes	C
	AFDC	Yes	Uncertain	Often No	Yes	C
	Child Support	Often no	Oiten No	Uncer tain	Yes	C
	Welfare	Yes	Uncertain	Uncertain	Yes	C
	Unemployment	Yes	Yes	Uncer tain	Yes	O/C
	Rallroad Retirement Benefits	Yes	Yes	Yes	Yes	C
	Disablity lncome	Yes	Yes	Yes	Yes	C
	Veteran's Benefits Interest from Tax Free Bonds	Yes Yes	Yes Yes	Yes Uncertain	Yes Yes	C
	Elementary/Secondary Tuition	Yes	Yes	Uncertain	Yes	C
$\stackrel{\rightharpoonup}{\mathbf{O}}$	Dependent Student's Net Assets	Rellable Approximation	Yes	Uncertain	Yes	C
	Net Home Equity	Reliable Approximation	No/Uncertain	Often No	Yes	C
	Net Investment Equity	Reliable Approximation	Uncertain	Often No	Yes	C
	Net Business/Farm Equity	Reliable Approximation	Uncertain	Often No	Yes	C
	Unusual Medical/Dental Expenses	No	No	No	Yes	C
	Student's Marital Status	No	No	No	Yes	
	Family Size Offset*	No	No	No	No	O/C
	Number in College*	No	No	No	No	C

[^8]
Joint Consideration of the Measures

The analyses presented in the prior sections of the chapter provide the data with which to evaluate the impact of individual data elements across several measures. However, we have assumed that decisions concerning the elimination of data elements cannot be made on the basis of any single measure or dimension. Consequently, our approach has assumed that it is necessary to jointly consider the impact of data elements across these five dimensions. Such an integration, however, confronts fundamental policy questions, for instance concerning the relative importance of each of the measures, which only $F J$ policymakers can address. Fully acknowledging this fact and the fact that policymakers may differ concerning the relative importance, our approach to integrating the results of the discrete analyses is two-fold. First, we present a framework that allows ED policymakers to make individual judgments about the impact of data elements. Second, we provide two examples of how such judgments can be made within this framework.

There are numerous ways to classify the data elements across the five measures. For brevity's sake, we have chosen only two as examples. Ta'le 8 presents the first such example. In this first example we assume that each of the measures has equal importance and therefore high budgetary impact is equally as important as high reliability and verifiability. In addition, for simplicity's sake, we have grouped the data elements by assigning values to high, moderate, and low scores $(2,1$ and 0 , respectively) on each of the measures and divided the elemer ; into three approximately equal high, moderate, and low classes. Those elements classified as high on average have the highest impact across the five measures; conversely, those classified as low have the lowest. We have assumed that one would approach the elimination of data elements by beginning with data elements in the low joint classification and considering whether the elimination of each data elemel t requires too substantial a tradeoff.

One of the seven data elements in the low joint classification (medical/dental expenses) received low classification across all of the measures. Dependent student's income had moderate budgetary impact and verifiability. Dependent student's net

TABLE 8
EXAMPLE OF JOINT RANKING OF THE DATA ELEMENTS ASSIGNING EQUAL \#EJGHTS TO EACH MEASURE

Classification		$\begin{aligned} & \text { Budgetary } \\ & \text { Impact } \\ & \text { (Weight }=1 \text {) } \\ & \text { (\$ Million) } \end{aligned}$	$\begin{gathered} \text { Distributional } \\ \text { Impact } \\ \hline(\text { Weight }=1) \\ (\% \Delta) \end{gathered}$	$\begin{gathered} \text { Sensitivity } \\ (\% \text { (elght }=1) \\ (\% \text { in award }) \end{gathered}$	Reliability (Weight $=1$) (\% w/error)	Verifiability (Veight $=1)$ $($ Rank)
$\begin{gathered} \text { 프́ } \\ \hline \end{gathered}$	Adjusted Gross Income	$\begin{aligned} & \text { High } \\ & (1,708) \end{aligned}$	High (42)	$\begin{gathered} \text { High } \\ (1,507) \end{gathered}$	Low (16)	High (1)
	Social Security Education Benefits	High (276)	Moderate (8)	High (194)	Moderate (5)	Moderate (5)
	U.S. Taxes Paid	Moderate (-155)	High (15)	High (-85)	Low (14)	High (3)
	Fainuly Size Offset	$\begin{gathered} \text { High } \\ (-1,455) \end{gathered}$	High (51)	High (-65)	Low (22)	Low (16)
	Employınent Expense Oifset	Moderate (-80)	Moderate (10)	Moderate (-27)	Low (18)	High (2)
	Net Home Equity	Moderate (117)	Moderate (7)	High (100)	$\begin{gathered} \text { Low } \\ (10.7) \end{gathered}$	Low (11)
	Number in College	Moderate (-100)	Moderate (8)	Moderate (-17)	Low (14)	Low (17)
	Nontaxable Incorne	Moderate (90)	Low (5)	Moderate (14)	Low (31)	Moderate (8)
	Veteran's Education Benefits	Low (13)	Low (I)	Moderate (12)	High (1)	Moderate (4)
	Elementary and Secondary Tuition	$\begin{aligned} & \text { Low } \\ & (-13) \end{aligned}$	Low (I)	Moderate (-11)	High (2)	Moderate (9)
플	Dependent Student's Net Assets	$\begin{aligned} & \text { Low } \\ & \text { (35) } \end{aligned}$	Low (3)	Moderate (10)	Low (35)	Low (10)
	Net Investment Equity	Low (10)	Low (II)	Low (8)	High (2)	Low (12)
	Dependent Student's Incoine	Moderate (71)	Low (3)	Low (6)	Low (37)	Moderate (6)
	Net Business/Farm Equity	Low (8)	Low (")	Low (*)	High (1)	Low (13)
	Student's Marital Status	Low (5)	Low (1)	Low (2)	Moderate (10)	Low (15)
	Cash/Savings/Checking	Low (8)	Low (I)	Low (1)	Low (46)	Moderate (7)
	Unusual Medical/Dental Expenses	$\begin{aligned} & \text { Low } \\ & (-2) \end{aligned}$	Low (")	Low (in)	Low (23)	Low (14)
$\text { ERICin } 1 \text { percent. }$		35		BEST COPY AVAILABLE		

assets had moderate sensitivity and cash/savings/checking had moderate verifiability. Student's marital status had moderate reliability. Ne: investment and business/farm equity both were classified as having high reliability. Thus, all seven could be reasonably considered for elimination under this classification.

For the data items in the moderate joint classification, consideration of eliminating them from the Pell formulae becomes a process of dealing with the tradeoffs among measures. Veteran's benefits and elementary and secondary tuition have identical impact across all measures, having low budgetary and distributional impact, moderate sensitivity and verifiability and high reliability. Number in college has moderate budgetary and distributional impact, and sensitivity and low reliability and verifiability. Nontaxable income has moderate budgetary impact, sersitivity and verifiability and low distributional impact and reliability. Net home equity has moderate budgetary and distributional impact, high sensitivity, but low reliability and verifiability.

The remaining items (AGI, social security education benefits, U.S. taxes, family size, and employment expense offset) have the highest impact across the five measures. Within this framework, these items could not be eliminated without a major impact on the program.

The above discussion is an example of how a policymaker might integrate these data given the weighting and classification. Alternative weights could be assigned to each measure, suggesting ihat some of the measures, such as budgetary impact, are more important than others. In the second example of integrating the scores from the individual measures, we have selected budgetary impact as most important, distributional impact and sensitivity as more important and reliability and verifiability as less important. Thus, we have assigned a weight of three to budgetary impact, a weight of two to distributional impact and sensitivity and a weight of one to reliability and verifiability. Effectively this means thai budgetary impact has three times the weight of verifiability, implying greater importance.

Table 9 presents an example of how this differential weighting affects the classification of data elements. One will notice that the classification of the data elements was not affected by differential weighting. The differential weights may,
however, affect the decision to eliminate an individual data element within a classification. For example, number in college received moderate classifications on budgetary and distributional impact and sensitivity and low classifications on reliability. Using equal weights, one might choose to eliminate this item. Assigning the differential wei\& ris, however, may lead one to reconsider the elimination of the item, since the measures on which the data item received moderate classifications would be assumed to be more important. Greater changes in classification would occur as the difference between the highest and lowest weights increase. This example suggests, however, that classification is relatively unaffected by small changes in weights.

CONCLUSION

This chapter has presented the results of a systematic analysis of the impact of individual data elements designed to provide ED policymakers with the data needed to make informed decisions concerning potential data element reduction options. Each section has presented the results of analyses on an individual measure. The final section presents a framework that policymakers will find useful for integrating these individual analyses, which would be necessary to simultaneously consider the measures. This section also provides two xamples of how the framework could be used, employing different weighting schemes. The result is a powerful analytic tool for ED policymakers to develop and evaluate potential data element reduction proposals.

A word of caution should be offered concerning the interpretation of the joint consideration of measures. The analysis assessed the impact of eliminating individual data elements. These results cannot inform policymakers about the cumulative effects of eliminating groups of data elements. The following chapter provides an evaluation of the effects of one such alternative, a five element formula.

TABLE 9

EXAMPLE OF JOINT RANKING OF THE DATA ELEMENTS

 ASSIGNING DIFFERENTIAL WEIGHTS TO EACH MEASURE| Classification | | $\begin{aligned} & \begin{array}{l} \text { Budgetary } \\ \text { Empact } \end{array} \\ & \text { (Weight }=3) \\ & \text { (\$ million) } \end{aligned}$ | Distributional Impact $($ Velght $=2)$ $(\% \Delta)$ | $\begin{aligned} & \text { Sensitivity } \\ & \text { Weight=2) } \\ & \text { (x) in award) } \end{aligned}$ | Reliability (Weight $=1$) (\% w/error) | $\begin{aligned} & \text { ififlability } \\ & \text { (Reight=l) } \\ & \text { (Rank) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { T } \\ & \end{aligned}$ | Adjusted Gross income | $\begin{aligned} & \text { High } \\ & (1,708) \end{aligned}$ | High
 (42) | $\begin{aligned} & \text { High } \\ & (1,507) \end{aligned}$ | Low (16) | High (I) |
| | Soctal Security Education Benefits | $\begin{aligned} & \text { High } \\ & (276) \end{aligned}$ | Moderate (8) | High (194) | Moderate (5) | Moderate (5) |
| | Family Size Offset | $\begin{gathered} \text { High } \\ (-1,455) \end{gathered}$ | High (5i) | High (-65) | Lo v (22) | Low (16) |
| | U.S. Taxes Paid | Moderate (-155) | High
 (15) | $\begin{aligned} & \text { High } \\ & (-85) \end{aligned}$ | Low (14) | High (3) |
| | Employment Expense Offset | Moderate (-80) | Moderate (10) | Moderate (-27) | Low
 (18) | High
 (2) |
| | Net Home Equity | Moderate (117) | Moderate (7) | $\begin{aligned} & \text { High } \\ & (100) \end{aligned}$ | $\begin{aligned} & \text { Low } \\ & (10.7) \end{aligned}$ | Low (II) |
| | Number in College | Moderate (-100) | Moderate (8) | Moderate (-17) | $\begin{aligned} & \text { Low } \\ & (: 4) \end{aligned}$ | Low (17) |
| | Nontaxable Income | Moderate (90) | Low
 (5) | Moderate (14) | Low
 (31) | Moderate (8) |
| | Veteran's Education Benefits | Low
 (13) | Low (1) | Moderate (12) | High (I) | Moderate
 (4) |
| | Elementary and Secondary Tuition | Low
 (-13) | Low
 (1) | Moderate (-1 I) | High (2) | Moderate (9) |
| 증 | Dependent Student's IJet Assets | $\begin{aligned} & \text { Low } \\ & \text { (35) } \end{aligned}$ | Low
 (3) | Moderate (10) | $\begin{aligned} & \text { Low } \\ & \text { (35) } \end{aligned}$ | $\begin{aligned} & \text { Low } \\ & (10) \end{aligned}$ |
| | Net Investment Equity | Low (10) | Low
 (i) | Low
 (8) | High (2) | $\begin{aligned} & \text { Low } \\ & \text { (12) } \end{aligned}$ |
| | Depu lfent Student's income | Moderate (71) | Low
 (3) | Low
 (6) | Low
 (37) | Moderate (6) |
| | Net Business/Farin Equity | Low
 (8) | Low
 (*) | Low
 (*) | High (i) | Low
 (13) |
| | Student Marital Status | Low
 (5) | Low
 (1) | Low
 (2) | Moderate (10) | Low
 (15) |
| | Cash/Savings/Checking | Low
 (8) | Low
 (I) | Low
 (I) | Low
 (46) | Moderate (7) |
| | Unusual Medical/Dental Expenses | Low
 (-2) | Low
 (*) | Low
 (I) | Low
 (23) | Low
 (14) |
| "Less than I percent. | | | | | | |

ANALYSIS OF A FIVE DATA ELEMENT FORMULA

The prior chapter presented an analysis of the impact of eliminating individual data from the Pell Grant eligibility and award formulae. This chapter presents an analysis of one proposal to reduce the number of application data elements that are used to calculate Pell awards to five. As described in the Introduction, this analysis is better able to isolate the effects of eliminating data elements by controlling for reporting error. We have controlled for error by conducting analyses of a second simulation using a data base from which error has beer eliminated by imputing error patterns found in the Stage III Pell QC data base to the applicant data base. This imputation procedure is presented in detail in Technical Appendix B.

DESCRIPTION OF THE SIMULATIONS

The two simulations conducted by the Division of Policy and Program Develcpment in this analysis-the standard and the error free simulations-are identical with the exception of the data base used. Each simulation consists of three model runs, the first of which develops a baseline measure using the full formula in the 1982-83 program year. Both simulations then eliminate all but five data elements. (Dependency status remains in the formula and is not treated explicitly as a data element.) These are:

- Adjusted gross income
- Federal taxes paid
- Nontaxable inccme
- Number in household
- Number in postsecondary education.

Eliminated from the formula are the following income, asset, and expense data (not necessarily data elements):

- Student/spouse income
- Net home assets
- Net farm and business assets
- Cash, checking, savings
- Net interest assets
- Dependent student's assets
- Offset for unreimbursed elementary and secondary tuition
- Offset for high medical and dental expenses
- Employment expense offset
- Social Security Education Benefits
- Veteran's Education Benefits.

The second run, which uses a five element formula, is used to estimate the adjustments to formula "taxation" rates required to maintain budget neutrality. Budget neutrality was one parameter for analysis specified by ED. Tax rate adjustments are necessary because reducing the formula to five :lements causes the budget to increase by approximately $\$ 130$ million. The tables in Appendix D (Tables D-1 and D-2) display this increase for both data bases when tax rates are not adjusted.

The third run has taxation rates adjusted to maintain budget neutrality (Table $10)^{7}$. The analysis primarily focuses on the first (full formula) and third (five element with taxation rate adjustments) runs. This aralysis explicitly identifies the effects of data element reduction using a standard and "error free" data base while maintaining budget neutrality.

The analysis of be h simulations focuses on four policy questions that will assist OSFA policymakers in evaluating data element reduction as a potential corrective

[^9]TABLE 10
TAXATION RATES FOR PARENTS' DISCRETIONARY INCOME USING BOTH THE STANDARD AND ERROR FREE SIMULATIONS

Discretionary Income
$\begin{aligned} 0 & \text { to } \$ 5,000 \\ \$ 5,001 & \text { to } \$ 10,000 \\ \$ 10,001 & \text { to } \$ 15,000 \\ \$ 15,001 & \text { and above }\end{aligned}$

Standard Taxation Rate

11\% of discretionary income
$\$ 550+13 \%$ of amount over $\$ 5,000$
$\$ 1,200+18 \%$ of amount over $\$ 10,000$
$\$ 2,100+25 \%$ of amount over $\$ 15,000$
\qquad

13\% of discretic.ary income
$\$ 650+15 \%$ of amount over $\$ 5,000$
$\$ 1400+27 \%$ of amount o er $\$ 10,000$
$\$ 2750+30 \%$ of amount over $\$ 15,000$
action. The results from these simulations are compared to assess the effects of data element reduction under different simulations. These four questions are:

- How do eligibility and awards change when data elements are reduced to five?
- What are the characteristics of those who gain and lose from the program changes?
- What are the characteristics of newly-eligible recipients?
- What are the characteristics of students who lose eligibility?

These simulations are presented below.

Standard Simulation Using Reported Data

DPPD staff conducted a simulation of the effects of reducing the number of data elements to five using the standard data base (reported data) holding budget constant. The results, organized around the four questions, are as follows:

How do eligibility and awards chinge?

Generally, analysis of the standard simulation indicates that at the highest level of aggregation, reducing the number of data elements results in very small changes in the number of recipients, istribution of recipients by income strata, and mean award. More specifically, the findings indicate that:

- Although the budget remains approximately constant, the adjustment of taxation rates to maintain a constant budget produces slight increases in the number of recipients by over 50,000 (2 percent), when the number of data elements is reduced to five (Table 11).
- The proportion of program costs awarded to higher income recipients declines slightly. The mean award decreases to $\$ 960$ from about $\$ 980$.
- About 82 percent of those applicants ineligible under the full formula remain so under the reduced formula (Table 12).
- The majority of recipients in most award strata receive the same award (the center diagonal of Table 12).

TABLE 11
COMPARISON UF NUMBER OF RECIPIENTS AND PROGRAM COSTS FOR THE 1982-83 PELL PROGRAM YEAR UNDER THE FULL AND FIVE DATA ELEMENT PORMULKE ! ISING STANDARD REPORTED DATÁ

Five Element Formula

SAL
Jal Income
On le ef
P,000
001-7.500
501-10,000
.,001-12,000
.0001-15.000
\$,001-20.00)
P.0u1-25,0011
3.001-30,0ac
P.OUS un midel

Pwil Farnacio

Nove On mierpreting This Tables The above table indicales the percentage of recipients who receive awards under the reduced formula that are the same, greater or bess then those recelved under the full forinula. The center doagorual lines Irom top left to bottom rishi hishlight the percentage of reciplents within eech award range (e.g., \$501-c00) wiose award was unchanged under the retuced formula. For emample, about 65% recelved an award of belween $\$ 501$ and $\$ 600$ under boith formulee. About 26% recelved leas and cbous $\$ \%$ recelved more under the reduced formula. Two percent of those who recelved an award between $\$ \$ 01$ and $\$ 600$ under the full formula recelved between $\$ 601$ and $\$ 700$ under the reduced formula. The areas in the upper right and fower iofl set off by single diagonal lines indicate the gueatest changes in awards.
Tectricat Notes The totals In iths simulation do not equal the actial mumber of applicants because a parikipation rate (or no show rate) has been applied to all applicants by adjusting the sampling weight of each applicant. The resplt is a reduction in itse overall number of applicants to more accurately reflect the mumber llut become recipients. The number of recipients is accurate.

- Of those receiving the maximum awards-the neediest students--91 percent continue to receive the maximum award and 99 percent receive awards within $\$ 200$ of the maximum. Of those recipients receiving an award of more than $\$ 1400$, 92 percent receive more than $\$ 1400$ under the $f .$. e element formula.
- Of those receiving the lowest awards (not greater than $\$ 400$) 49 percent continue to receive an award not greater than $\$ 400$.

What Are the Characteristics of Those Who Gain and Lose?

In general, the following patterns describe those applicants who have their awards increased (gainers) or decreased (losers):

- Mast gainers are clustered in the middle of the award range; students receiving smaller awards (below $\$ 500$) are more likely to lose under the reduced formula than those receiving the higher awards. The neediest students, those receiving the highest awards, are least likely to lose significant amounts. Relatively few applicants gain or lose extremely large amounts (upper right and lower left sections of Table 12).
- Of those whose awards increase, 66 percent increase by less than $\$ 600,25$ percent increase by $\$ 600-\$ 1,200$ and 9 percent by more than $\$ 1,200$.
- Those gaining less than $\$ 600$ had a mean $A G I$ of $\$ 12,700$ and mean net assets of almost $\$ 40,000$; those gaining $\$ 600-\$ 1,200$ had a mean AGI of $\$ 12,500$ and mean net assets of $\$ 54,000$; and those gaining over $\$ 1,200$ had a mean AGI of $\$ 9,000$ and mean net assets of $\$ 92,000$.
- Of those recipients whose awards decrease, almost 98 percent decrease by less than $\$ 600$; about 2 percent decrease by $\$ 600-\$ 1,200$ and less than . 1 percent by more than $\$ 1,200$.

The following data summarize the percentage of Pell Grant recipients who gain, lose, and stay the same (within $\$ 50$) by specific demographic and financial characteristics under the five data element formula when compared with the current formula.

Characteristics	Percentage Who Receive a Smaller Award	Percentage Who Receive the Same Award \qquad $(\pm \$ 50)$	Percentage Who Receive a Larger Award
- All Applicants	16	73	11
- Dependent Students with Family Size 4 and Under	20	63	17
- Dependent Students with Family Size 5 and Over	$\begin{aligned} & 19 \\ & -40- \end{aligned}$	66	15

	Characteristics	Percentage Who Receive a Smaller Award	Percentage Who Receive the Same Award \qquad	Percentage Who Receive a Larger Award
\bullet	Independent Students	11	86	3
-	Families with I in Postsecondary Education	14	77	9
\bullet	Families with more than 1 in Postsecondary Education	21	63	16
-	Dependent Students with Net Home Value under $\$ 10,000$	26	65	9
\bullet	Dependent Students with Net Home Value over $\$ 10,000$	16	64	20
\bullet	Dependent Students with Family Investments under $\$ 10,000$	21	64	15
	Dependent Students with Family Investments Over $\$ 10,000$	8	69	23
	Dependent Students with Family Business/Farm Value Under $\$ 10,000$	20	65	15
	Dependent Students with Family Business/Farm Value Over $\$ 10,000$	12	59	29
	Families with No Nontaxable Income	18	71	11
	Families with Some Nontaxable Income	13	76	11
	Dependent Students with No Extraordinary Family Medical/Dental Expenses	17	71	12
	Dependent Students with Any Extraordinary Medical/Dental Expenses	21	61	18
	Suidert Enrolled Full-Time	16	72	12
- Student Enrolled Less Than Full-Time		13	82	5
		$-41-52$		

From these data we can conclude that:

- Almost three-quarters of all applicants would receive the same award under the reduced formula as under the full formula; one-quarter would rece: . 'ifferent award.
- The vasc majority (86 percent) of independent students are unaffected by data element reduction.
- Students who fare better than average under data element reduction as expecterl are those from families with higher home equity, larger investments, businesses, or farms. These wealth elements are not considered in the reduced data formula.
- Students enrolled less than full-time, reflecting a high proportion of independent students, are less likely to be affected by data element reduction than are full-time students.

What Are the Characteristics of Newly Eligible Recipients?

- An estimated 200,000 applicants who are ineligible under the full formula would become eligible under the reduced formula.
- Of these newly eligible recipients, half would receive an a ward of less than $\$ 600$, one-third would receive between $\$ 600$ and $\$ 1,200$, and one-sixth over $\$ 1,200$.
- Those newly eligible recipients gaining less than $\$ 600$ had a mean AGI of $\$ 20,000$ and mean net assets of $\$ 57,000$; those gaining awards of between $\$ 600$ and $\$ 1,200$ had a mean AGI of $\$ 15,000$ and mean net assets of $\$ 61,000$; and those gaining awards in excess of $\$ 1,200$ had a mean AGI of $\$ 9,000$ and mean net assets of $\$ 97,000$.

What Are The Characteristics Of Students Who Lose Eligibility?

- Slightly less than 150,000 students who received awards under the full formula become ineligible under the reduced formula.
- Of the 360,000 who received an award of less than $\$ 401$ under the full formula, 33 percent became ineligible. Almost no one among the 1.2 million students who received in excess of $\$ 1,000$ under the full formula became ineligible under the reduced formula.
- Those students who lost an award of less than $\$ 600$ had a mean AGI of $\$ 24,000$ and mean net assets of $\$ 14,000$; those who lost an award between $\$ 600$ and $\$ 1,200$ had a mean AGI of $\$ 22,000$ and mean net assets of $\$ 7,000$ and those who lost an award in excess of $\$ 1,200$ had a mean AGI of $\$ 12,000$ and mean net assets of $\$ 8,000$.

"Error Free" Simulatiun

The Division of Policy and Program Development conducted a second simulation of the impact of a reduced formula using a data base to which "best values" were imputed. This imputation effectively removed reporting error from the data base and permitted a more accurate measurement of the effects of data element reduction as distinct from the elimination of error. This simulation focuses on the same four questions as the standard simulation.

How Do Eligibility and Awards Change?

This simulation also indicates that at the highest level of aggregation, reducing t..s number of data elements, using an error free data base, results in even smaller changes in the number of recipients, distribution of recipients by income strata, and no change in mean award. More specificaliy, the findings indicate:

- Maintaining approximate budget level results in a negligible increase in recipients, about 11,000 or less than .5 percent (Table 13).
- The proportion of program costs awarded to low income recipients increases slightly and the proportion awarded to high income recipients de $\begin{aligned} \\ \text { reases. }\end{aligned}$
- The mean award of $\$ 940$ is unchanged.
- Over 86 percent of those 1.2 million ineligible applicants under the full formula remain ineligible under the reduced formula (Table 14).
- The majority of recipients in most award strata receive the same award (the center diagonal of Table 14).
- Of the 250,000 students receiving maximum awards--the neediest students--90 percent continue to receive the maximum and 98 percent receive within $\$ 200$ of the maximum. Of the 480,000 students receiving more than $\$ 1,400,92$ percent continue to receive in excess of $\$ 1,400$.
- Just under 50 percent of the 350,000 students who teceived $\$ 400$ or less under the full formula continue to receive an award of $\$ 400$ or less. Thirty-six percent of the students who originally received $\$ 400$ or less become ineligible.

What Are the Characteristics Of Those Who Gain and Luse?

In general, the following patterns describe those applicants whose awards

COMPARISUN OF NUMBER OF RECIPIENTS AND PROGRAM COSTS FOR THE 1982－83 PELL PROGRAM YEAR UNDER THE FULL AND five data element formulae using error free data

Fuls Formula
Five Element Pormala

	Fuld Formula					Five Element Parmula				
	6 E11：	VEn	CIMPIIFE Fxe	－FCPP傦		carima	aren	cnmpuren expf	Piten am	An
	NIIMAER OF RECIPIFNTA	$\begin{aligned} & \text { E NF INPAL } \\ & \text { RECIPIFNPS } \end{aligned}$	intal cnat	$\begin{aligned} & \text { DEDCENP } \\ & \text { PNBAI } \\ & \text { PARGRAM } \end{aligned}$	$\begin{aligned} & \text { np } \\ & \text { cnsp } \end{aligned}$	MIIMAEQ NF AECIPIFNT：	y nf intal DECIPIFNTA	intal cnst	$\begin{gathered} \text { Demefni } \\ \text { mnial } \\ \text { pmnanam } \end{gathered}$	$\begin{aligned} & \text { nf } \\ & \text { coar } \end{aligned}$
TUPAL	202194n	100	$2213 n 90334$		Inn	2433397	100	P2Asi24542		100
Tutal tnelime										
－no lfan	67331	3	12103607		3	AAO46	1	734日ロ日号		1
1－4．000	511544	21	5681ABM74		89	519161	21	574n3nost		25
$0.005-7.500$	557096	33	570A11A25		84	96nasi	73	49247988		24
T．501－10．0nn	267530	11	2175093n7		10	277646	11	；4，23n7s		18
10．651－18．non	207317	\wedge	20090384 A		－	211016	－	20sa．．ant		－
12．0n1－19．0no	$247 c+6$	10	210409173		10	259340	10	2230223A8		10
15．001－20．000	10928n	13	2349An 120		10	124330	17	2PIn8A59		10
20．001－25．000	16467n	η	－0966541		4	14094.	6	767588 A		1
25．0n1－80．000	67109	1	28063111		1	06103	7	19614403		1
10．0nO IJA MOAE	27973	1	0912200		n	16230	1	6866416		n

BEST COPY AV天illable

COMPARISON OF PELL AEARDS FOR THE 1982-83 OROGRAM YEAR UNDER

FUL' AND FIVE DATA ELEMENT FORMULAE USING ERROR FREE DATA

Full Formula

increased or decreased.

- Table 14 indicates that most students whose awards increased are clustered in the middle of the award range; those receiving a smaller award ($\$ 500$) under the full formula are most likely to receive a smaller award under the reduced formula. The neediest students, those receiving the highest awards, are least likely to have their awards decrease signficiantly. Relatively few applicants gain or lose extremely large amounts (the upper right and lower left of Table 14).
- Of those students whose awards increased, 72 percent increased by less than $\$ 600$, 22 percent increased by $\$ 600-\$ 1,200$ and 6 percent by more than $\$ 1,200$.
- Those gaining less than $\$ 600$ had a mean AGI of $\$ 13,000$ and mean net assets of $\$ 34,000$; those gaining between $\$ 600$ and $\$ 1,200$ had a mean AGI of $\$ 14,000$ and mean net assets of $\$ 57,000$ and those gaining over $\$ 1,200$ had a mean AGI of $\$ 10,000$ and mean net assets of $\$ 90,000$.
- Of those whose awards decreased, slightly less than 98 percent decreased less than $\$ 600$, about 2 percent decreased between $\$ 600$ and $\$ 1,200$ and less than . 1 percent decreased more than $\$ 1,200$.
- Those students losing less than $\$ 600$ had a mean $\mathbf{A G I}$ of almost $\$ 17,000$ and mean net assets of $\$ 12,000$; those losing between $\$ 600$ and $\$ 1,200$ had a mean AGI of $\$ 14,000$ and mean net assets of $\$ 6,000$; those losing more than $\$ 1,200$ had a mean AGI of about $\$ 12,000$ and mean net assets of $\$ 3,000$.

The following data summarize the percentage of Pell Grant recipients who gain, lose, and stay the same (within $\$ 50$) by specific demographic and financial characteristics under the five data element formula when compared with the current formula using error free data in both runs.

Characteristics	Percentage Who Receive a Smaller Award	Percentage Who Receive the Same Award $(+\$ 50)$	Percentage Whu Receive a Larger Award
c All Applicants	18	72	10
- Dependent Students with Family Size 4 and Under	22	64	15
- Dependent Students with Family Size 5 and Over	20	66	14
- Independent Students	13	85	3
- Families with 1 in Postsecondary Education	17	74	9

Characteristics	Percentage Who Receive a Smaller Award	Percentage Who Receive the Same Award \qquad	Percentage Who Receive a Larger Award
- Families with more than 1 in Postsecondary Education	22	53	14
- Dependent Student with Net Home Value under $\$ 10,000$	26	64	10
- Dependent Student with Net Home Value over $\$ 10,000$	18	65	17
- Dependent Students with Family Investments under $\$ 10,000$	22	64	14
- Dependent Students with Fa.nily Investments Over $\$ 10,000$	12	69	19
- Dependent Students with Family Business/Farm Value Under $\$ 10,000$	21	65	14
- Dependent Students with Family Business/Farm Value Over \$10,000	16	60	24
- Families with No Nontaxable Income	19	72	9
- Families with Some Nontaxable Income	18	71	11
- Dependent Studenis with No Extraordinary Family Medical/Denial Expenses	18	70	12
- Dependent Students with Any Extraordinary Medical/ Dental Expenses	22	62	15
- Student c.irolled Full-Time	18	71	11
- Student Enrolled Less Than Full-Time	15	79	6

From this table we can conclude that:

- Almost three-quarters of all applicants would receive the same award under the reduced formula as under the full formula.
- The vast majority (85 percent) of independent students are unaffected by data element reduction.
- Students who fare better than average under data element reduction as expected are those from families with higher home equity, larger investments, businesses, or farms. These wealth elements are not considered in the reduced data element formula.
- Students enrolled less than full-time, reflecting a high proportion of independent students, are less likely to be affected by data element reduction than are full-time students.

What Are the Characteristics Of Newly Eligible Recipients?

- An estimated 162,000 applicants who were ineligible under the full formula would become eligible under the reduced formula.
- Approximately 46 percent of these newly eligible recipients would receive $\$ 600$ or less, 36 percent between $\$ 601$ and $\$ 1,200$ and 18 percent more than $\$ 1,200$.
- Newly eligible receipients who would receive an award of less than $\$ 600$ had a mean AGI of $\$ 19,000$ and mean net assets of $\$ 58,000$; those who would receive between $\$ 600$ and $\$ 1,200$ had a mean AGI of $15,0 n \mathrm{n}$ and mean net assets of $\$ 67,000$; those who would receive over $\$ 1,200$ had a mean AGI of $\$ 10,000$ and mean net assets of $\$ 95,000$.

What Are The Characteristics of Students Who Lose Eligibility?

- An estimated 151,000 students who were eligible under the full formula would lose eligibility under the reduced formula.
- Of those 151,000 who lose eligibility, 92 percent lose awards of less than $\$ 600$, slightly less than 8 percent lose awards between $\$ 600$ and $\$ 1,200$ and less than 1 percent lose awards of over $\$ 1,200$.
- Virtually all of the neediest students, those receiving maximum awards, remain eligible.
- Those students who lost less than $\$ 600$ had a mean AGI of $\$ 22,000$ and mean net assets of $\$ 16,000$. Those losing between $\$ 600$ and $\$ 1,200$ had a mean AGI of $\$ 19,000$ and mean net assets of $\$ 9,000$. Those losing in excess of $\$ 1,200$ had a mean $A G I$ of $\$ 17,000$ and mean net assets of $\$ 6,000$.

FINDINGS

The simulations presented in the prior sections of this chapter result in several outcomes. The first of these is a more thorough understanding of the budgetary and distributional effects of reducing the number of data elements that are used to calculate Pell eligibility and awards to five.

The second outcome is the development of a thorough description of the comparative effects of data element reduction controlling for error. Trese comparative budgetary and distributional effects can be expressed on several levels. The data indicate the following general findings:

- The greatest differences in the impact of data element reductior, using the two data bases are evident at the aggregate level including program costs and number of recipients. Results are fairly similar across many dimensions on a more detailed level.
- Use of an error free data base in simulating the effects of data element reduction dampens the increase in recipients ind slightly increases the budgetary impact.

More specifically, a comparison of the two simulations indicates the following:

- The error free five element formula with tax rate adjustments results in a level of recipients that is 142,000 students less than the standard simulation.
- The baseline budget for the error free simulation is $\$ 215$ million dollars less than the baseline budget for the standard simulation ($\$ 2.48$ billion).
- The net increase in program costs for an error free reduced formula without tax rate adjustments ($\$ 149$ million) is slightly larger than for the standard simulation of a reduced formula without tax rate adjustments ($\$ 130$ million, see Appendix D, Tables D-1 and D-2).
- Program costs for an error free simulation of a five element formula without tax rate adjustinent are equal to the baseline program costs of about $\$ 2.48$ billion, suggesting that when er ${ }^{\prime} \gg$ is eliminated, no increase in taxation rates is necessary. (See Appendix D, Table D-2.)
- The average award in the error free simulations is unchanged under the reduced formula, while the average award drops slightly in the stardard simulation.

On a more detailed level the simulations produce different results on the following dimensions:

- More students receiving low awards (\$500 or less) continue to receive such awards under the standard simulat ons.
- More students receive lower increases (\$600 or less) 'נnder the error free simulation.

Differences on other dimensions between the simulations are minimal (e.g., within 2 to 3 percentage points) and mixed.

CONCLUSION

This chapter has presented the results of two simulations of reducing tie number of data elements in the Pell need analysis formula to five. These simulations have advanced general understanding of the effects of data element reduction on an aggregate and an individual level.

The second of these simulations was conducted with a data base from which error has been eliminated. This simulation permitted modeling the joint effects of eliminating error as well as reducing the number of data elements in the Pell formulae for the first time. A comparison of these simulations has permitted a better understanding of the implication of error on the prevalent assumptions concerning data element reduction and the differences relating to specific effects.

A word of caution should be offered concerning the interpretation of the findings. These findings are subject to the same caveats concerning the static nature of the data base discussed in the Introduction. Perhaps a more important caveat however, relates to the analyses. We have designed these analyses as an evaluation not as a forecast of likely policy outcomes. An example of this difference is evident in the assumptions underlying the imputation of error to the data base and the error free simulation. We assume in this imputation and simulation that all error found in Pell QC Stage III is eliminated--even from the remaining data elements. Clearly, this is an unlikely assumption for a policy forecast. However, it is fundamental to our analysis from a research perspective and $i:$ as produced valuable results.

DESCRIPTION OF THE MODEL AND DATA BASE

The program-wide simulations of full and five element formulae conducted ior this report have been produced from the official ED simulation model (the applicantbased model) with which the Pell Grant Branch, DPPD, produced the data tapes for analysis.

The applicant-based model is a micro-model of the Pell Grant Program designed to simulate for ED policymakers changes in awards and recipients under different Pell program parameters. The model uses a weighted sample of approximately 160,000 actual Pell applicants. This data base was used both in the program-wide simulation and the assessinent of individual data elements.

The model computes a Student Aid Index, or eligibility index for each applicant using the Fell Grant family contribution schedule. It applies an imputed cost of attendance and enrollment status for each applicant and computes an expected award. Finally, the model applies a "show up rate" or estimation of the number of eligible applicarts who will submit Student Aid Reports to postsecondary institutions and receive Pell Grants. The sample of applicants is weighted to produce estimates for the population of applicants and recipients.

The Peil Grant Branch, DPPD, has produced several program-wide simulations of the 1982-83 academic year for this analysis. The baseline simulations, which replicate the 1982-83 year, have the following characteristics:

- The 1981-82 data base aged to represent 1982-83 appllcant data
- 1982-83 Pell Grant Program parameters
- $\quad \$ 1,800$ legislative maximum award $/ \$ 1,800$ maximum award
- "Taxation rates" on discretionary income of 11, 13, 18, and 25 percent for dependent students increasing by income levels; 25 percent for married independent applicants and 33 percent for single independent applicants with a family size of one
- Resource protection of $\$ 25,000$ for home and an additional $\$ 25,000$ for other investments
- All awards were reduced by about 6 percent to reflect validation savings. Therefore, the effective maximum award is less than \$1700 and the minimum award is less than $\$ 100$.
- A participation or no show rate j+ratified by income, was applied to all applicants to estimate the number of eligible recipients who actually receive Pell Grants. This accurately estimates the number of recipients, but reduces the overall number of applicants below actual levels.

TECHNICAL APPENDIXB

IMPUTAT!ON OF STAGE II ERROR PATTERNS TO THE ED API'LICANT DATA BASE

This appendix describes the statistical techniques used to assign "best values"* to the applicant file. The purpose of the assignment procedure was to make possible a statistical simulation of the effects of program error rates on alternative eligibility formula. Statistical procedures used to assign bes values were designed to reproduce the patterns of reporting errors discovered in Stage III of the Pell Grant Quality Control Project. This appendix consists of two parts: general approach and imputation procedures.

GENERAL APPROACH

The selection of a procedure with which to most accurately impute best values to the ED applicant data base received much attention and thought, and several approaches were conr ijered and rejected before finally selecting a suitable approach. The objective of the seisction prucess was to maximize the accuracy of the imputation. In order to do 'o it would be necessary to capture those characteristics that were the greatesi predictors of the probability and level of error for any single data element reported value (zero/non-zero), dependency status, income, and error on certain other variables. The approach:es considered included:

- Statistical matching
- Regression
- Simultaneous interactions
- "Cold decking"/ratio estimation
- "Cold deciking"/regression

One of the most promising and yet straightforward approaches considered was statistical matching. Statistical matching is similar in approach to the commonly used

[^10]procedure of exact matching, which matcnes records from one source with rscords from another source using identifiers, such as social security nuintier, thic* ensble the linkage of data from two discrete sources. Statistical matching links records frum one data source with a second, similar scurce by minimizing a specified distance function. (Radner, et al., 1980) Etatistical matching is widely used in the preparation, manipulation, and analysis of large scale data bases, for example Census surveys. (Radner, 1983) Matching is of ten used to impute or assign missing data values to cases on one data base (a recipient) by searching a second data base (a donor) and identifying a donor case that is closest to the case (a recipient) across specified dimensions (e.g., other data values or characteristics) and assigns the vaid of the item from the donor to the recipient case.

Two types of matching are commonly recognized. The first is unconstrained matching, which places no restrictions on the number of records that are matched from the recipient to the donor file. (Okner, .972) This approach has several weaknesses, which resulted in our rejecting it as an acceptable approach.

With unconsirained matching both the mean and standard deviation of the estimated variables in the recipient file may differ from the corresponding statistics in the donor file. Unconstrained statistical matching has the advantage of permitting the closest possible match for each recipient record, but at the cost of increasing the sample variance of estimators involving the estimated sriables. An unconstrained match amounts to taking a simple random sample with replacement of the records in the donor file. Thus, the distributions of the imputed va sables added to the recipient file are distributions of the selected sample ratiner than the distributions as bserved in the recipient file. (Rogers, 1984) For these reasons, we r :jected unconsirained matching as an approach to error imputation.

The second type of statistical matching, constrained matching, held more promise as a method. (Barr and Turner, 1980) Constrained matching ensures that each donor file record is matched with a recipient file record by duplication of recipient file records, if necessary. The advantages of a constrained match are that the multivariate distribution of the imputed variables identically match the distribution in

[^11]the donor file as do the mean and standard deviation. A disadvantage includes the limitation that matched pairs (from both files) potentially differ more with resper: to common values than an unconstrained match. The most significant disadvantages are that procedures that minimize the differences between paired cases require considerable computer time, particularly for large data sets, and potentially result in an expanded data set. (Rogers, 1984) This Dosed serious time, resource, and computational problems, and led to the rejection of this approach.

Another approach to imputation considered was regression. Regression would allow extrapolation of error data beyond the resipient file, a key issue since the applicant file contains data values in excess of the recipient file (e.g., AGI). This, however, was rejected because it would assign a small amount of error to all cases and would not capture the incidence of error and the full impact of this error on individual eligibility and awards.

A procedure of mapping the simultaneous interactions of all errors was considered. This would precisely replicate the error patterns including the level and interaction among errors. It was not considered feasible, since the complexity would have outstripped the computer resources and quickly exhausted the degrees of freedom on the Stage III filc. Allowing interaction among the 18 variables, zero and non-zero repor ted value, error and no error, yields over 68 billion (4^{18}) combinations.

Thus, we considered and adopted a "cold decking" process for cases without dependency status error that stratified the Stage III file on reported value (asro/nonzero), dependency status and income. The probability of error was computed for each stratum. The issue of estimating best values was more difficult. We considered a ratio estimator that, not unlike a regression coefficient, would permit extrapolation of best values beyond the range of recipient reported values. The ratio estimator had two flaws. First, and perhaps most serious, a ratio estimator is inappropriate and ineffective with zero reported values (since zero multiplied by anything is zero), and error patterns were highly dependent on reported ' alue (zero/non-zeru).

The ratio estimator also li:aited the prediction of best value of a single variable to the reported value of that variable and could not account for simultaniety of errors. Because of these limitations we replaced the ratio estimator with multivariate regression models, although we continued to use a "cold decking" procedure stratified
in income, reported values, arid dependency status. This multivariate regression allowed us to control for the simultaniety of related errors as well as zero/non zero reported values. This is described below.

The cold decking technique employed to assign an application to an error status is curre.itly used by Vital Statistics for estimating out-of-wealock birth rates, by NCES in its primary and secondary school surveys, and by NCHS for its fetal surveys. Formal statistical analyses of the cold-deck approach can be found in Schaible (1979), Brewer (1979) and Oh and Scheuren (1981).

Under the cold-deck approach the applicant file was first stratified into eight groups:

- Dependent students with total farnily incomes up to $\$ 8,000$
- Dependent students with total family incomes between $\$ \$ 0$ and $\$ 15,000$
- Dependent students with total family inccmes between $\$ 15,000$ and $\$ 20,000$
- Dependent students with total family incomes over $\$ 20,000$
- Independent students with incomes up to $\$ 2,000$
- Independent siudents with incomes between $\$ 2,000$ and $\$ 4,000$
- Independent students with incomes between $\$ 4,000$ and $\$ 8,000$
- Independent students with incomes over $\$ 8,000$

Probabilities for various combinations of error patterns for each strata were estimated from Stage III verified stident data. A pattern was defined by the presence or absence of error on each of 18 verified application items.

The patterns were found to depend on whether the reported value was zero. Each variable was subset into zero and non-zero subgroups. For each varıable within a stratum there are then four possible events:

- Reported value zero, no error
- Reported value zero, error
- Reported value not zero, no error 71
- Reported value not zero, error

As previously discussed, allowing interaction among the 18 variables, which would exactly reproduce the Stage III error patterns including simultaniety, yields over 68 billion $\left(4^{18}\right)$ possible error patterns for each stratum. To reduce the complexity of the error patterns, several assumptions were made based on simultaneous error patterns found in Stage III data. The presence of error on adjusted gross income, nontaxable income, and net home value were assumed to be dependent of each other, but independent of the presence of error on all other data items. Similar relationships were assumed for family size and number in college and for dependent student's income and dependent student's assets. Thie presence of error on the remaining 11 data $i+e m s$ was assumed to be independent of the presence of error on all other data iterns. Thus, the number of error patterns within each stratum was reduced to 140 $\left(4^{3}+\left(2 \times 4^{2}\right)+(11 \times 4)\right)$.

Error patterns were assigned to applications with probabilities proportional to their occurrence within the stri.ta. For every variable in the pattern assigned that contained no error, the reported value was assumed to be the best value. For variables assigned to an error status the best value was computed as a linear function of the reported value and other variables shown in Stage III to be predictive error values. The formula used was:

$$
T=A_{i}+B+E_{i}
$$

where:
T is a $n \times 1$ vector imputed best (true) values
B is a pxl vector of coefficients associated with app ${ }^{\prime}$ 'ation variables and an intercept term and estimated using OLS procedures with Stage III data
A_{i} is a nxp matrix of application values predictive of true values and including the reported value on the variable being imputed
E_{i} is a $n \times 1$ vector of random, normal deviates with an expectation of \mathcal{O} and a variance equal to the observed residual variance from the Stage III data.

A separate equation was estimated for each of the 18 variables to be imputed in each of the 8 strata for a possible total of 144 equations. Strata were collapsed for some variables due to small degrees of freedom.

Given assumptions of linearity within the parameters, a normal distribution of errors and $E(B /$ Recipients $)=E(B / a p p l i c a n t s)$ then Ericson (1969), Royall (1972) ..2d Cochran (1977) have shown that $A_{i} B$ is the maximum likelihood estimate of T within a stratum. We added E to $A_{i} B$ to repioduce the observed within strata variance while preserving the unbiased expectation of T_{i};

Because $E\left(E_{\dot{j}}\right)=O$ and given the assumptions above;
$E\left(A_{i} B\right)=T i$
Therefore $E\left(A_{1} B+E_{i}\right)=T_{i}$

Regression mode's for family size and number in college did not provide sufficient predictive results. The joint distribution of best family size and best number in college conditioned on reported dependency status, reported family size, and reported number in college was determined for the recipient data base. This distribution was then imputed to the applicant data base. The following example illustrates this procedure for a selected combination of dependency status, reported family size, and reported number in college.

Dependent Students Reporting Family Size of Four and Two Enrolled in Postsecondary Education

Distribution of Best Values

Number in College				
2	2.4	1.2	0	3.6
3	13.7	4.7	1.2	19.6
4	8.3	59.6	. 6	63.5
5	. 6	5.9	0	6.5
6	0	. 6	. 6	1.2
7	0	0	. 6	. 6
Total	25	72	3	100

Whenever a student on the applicant file reports as dependent with a family size of four a d two in college, best family size and best number in college were assigned using the probabilities given in the cells of the table. Similar distributions were determined and used for each combination cf reported dependency status, family size, and number in college.

73

The cold-deck procedures described above are inappropriate for determining eligibility for applicants that repori they are independent but who are, in fact, dependent. For such dependency status "switchers" it is necessary to impute all parental income data. The imputations must recreate a pattern of relationships between all imputed variables. To this end, for independent to dependent switchers, we employed a "hot-deck" imputation procedure.

In the hot-deck approach each switcher has a separately chosen set of family income variables imputed from among the "donor" values from dependent student applications. The hot-deck approach is currently in use in the Current Population Survey, Socia! Security Benefit Estimates, various Department of Energy Surveys, and is being tested on IRS Statistics of Income 1040 Series. Good theoretical discussions of hot-deck imputations can be found in Oh and Scheuren (1980), Welniah and Coder (1980), Chapman (1976) and Ernst (1980).

Hot-deck imputations were conducted using a two stage process. First, a probability of dependency status switch was calculated. For each applicant a switching status (yes or no) was assigned with a probability proportional to the switching rate.

Second, for each applicant assigned to a switching status a donor was selected from dependent applicants. The donor and recipient were matched by random selection with replacement. A similar approach was used for dependent to independent switchers.

IMPUTATION/ASSIGNMENT PROCEDURES

The accurate imputation of Stage III error to the applicant data base required systematic attention to numerous important details which occurred in three separate phases. First, ana!ysis of the frequency, simultaniety, and level of errot on the Stage III data base was recessary. Second, development of imputation software was required. Lastly, tests for goodness of fit were required to assess the accuracy of the imputation. Each of these phases is treated in the following sections of this appendix.

Analysis of Stage III Recipient Data

Data from the Stage III study were analyzed to determine the distribution of errors. This analysis involved three steps. The first step determined which cases had dependency status error. The second step determined which students had error in each variable. The third determined the degree of error for each variable.

Dependency Status Error. Dependency status error presented a unique problem and therefore was handled separately from all other errors. The following table summarizes the frequency of the two types of dependency status error found in the Stage III data.

Characteristics

Percentage of Cases
\qquad with Dependericy Status Error

- Students reporting as independent, unmarried, and living alone
16.9\%

Students reporting as independent and married or family size greater than one

- Students reporting as dependent .6\%

These error rates were later imputed to the applicant file.

Cases selected as Jependency switchers were handled differently than all other cases. Reported data and "best" data are unrelated for switchers. For example, students who report as independent report their own adjusted gross income. The "best" adjusted gross income for a student who switches to dependent is his parents' adjusted gross income which was not reported.

For each applicant selected as a switcher, a switcher (in the same direction) was randomly selected from the Stage III data base with replacement. The best values from the "donor" were tien mapped onto the applicant record. No additional imputation procedures were m p puired for dependency status switchers.

P-esence or Absence of Error. For each variable, probability tables giving error rates conditioned on strata and zero/non-zero reported values were produced. These
error rates were later used to impute error to applicants. As stated earlier, the presence or absence of error was assumed to be interdependent for some variables. Joint distr:butions of error were determined for these variables, again conditioned on strata and zero/non-zero reported values.

Degree of Error. For all but three of the eighteen variables, regression equations were determined to explain the degree of error. Student marital status was treated as a dichotomous variable (married/not married). Thus, if a case is determined to have an error in student marital status, the best value is the complement of the reported value.

Family size and number in college are discrete variables for which regression equations with sufficient prediction ability could not be deternined. Instead, the joint distribution of best values for family size and number in college conditioned on respective reported values was determined. This joint distribution, given in Table C-1 of Appendix C,'s later imputed to the applicant file.

Regression equations using Ordinary Least Squares (OLS) estimation were determined for each of the fifteen remaining variables within each stratum. Strata were collapsed for some variables to ensure sufficient degrees of freedom. For each variable, only Stage III cases with error in that variable were used in estimating the regression equations. The dependent variable in each regression was the computed best value. All explanatory variables were reported values or functions of reported values. In general, income and asset variables along with the reported value were used to explain the best values.
"Dummy" variables were used to explain the effects of zero reported values in the explanatory variables on best values. For each variable, a "dummy" variable was assigned. The "dummy" takes on the value zero when the variable it describes was zero, and a value of one otherwise.

Table C-2 of Appendix C lists the regression equations determined by OLS for each variable. Variables were stratified as shown in the table. Dependency status is given at the top of the page. The equations are grouped by dependent variable. Rows and columns represent income levels and explanatory variables, respectively. Each
cell contains the OLS estimator for the regression coefficient for its respective income level and explanatory variable.

The column labeled "INTERCEPT" gives the OLS estimate of the best value when all other explanatory variables are zero. The column labeled "R-SQUARE" (R^{2}) gives a measure of how well the equation explains the variance in the dependent variable. R^{2} is the ratio of variance explained by the regression equation to the total variance. An R^{2} of one would indicate a perfect fit of the data to the equation. A zero R^{2} would indicate that the equation explains none of the variance.

Imputation Software

The Statistical Analysis System (SAS) was used for all imputation software. The statistical procedures and file management capabilities of SAS were conducive to the imputation process.

Dependency Switchers. The first step in the production of software was to separate the Stage III data base into three separate files:

- Independent to dependent switchers
- Dependent to independent switchers
- Nonswitchers

Abstract

A SAS program was written to compare reported dependency status to best dependency status for each Stage III Pell recipient and to place each case into the appropriate file. This program also used the SAS procedure "FREQ" to produce a table giving the ratcis of dependency status errors. These rates were then used to produce code to select switchers for the imputation of dependency status error.

The switcher program stratifies applicants into three groups using reported values: dependents, unmarried independent living alone, and all other independents. The program then generates a random number from a uniform distribution between 0 and $I(U(0,1))$ for each case. If this rancom number is less than or equal to the corresponding error rate, the case is selected as a switcher. If a case is not selecteo' as a switcher the best dependency status is the reported dependency status. Fo:
switchers, the best dependency status is the complement of the reported dependency status.

The program then assigns best values to switchers. Switchers are divided into two groups: independent to dependent and dependent to independent. The Stage III records within each of the two switcher files are arbitrarily numbered 1 through n, where n is the number of cases in the file. A random integer J is generated from a $\mathrm{U}(\mathrm{l}, \mathrm{n})$ distribution for each switcher. The applicant switcher is then assigned all best values from the Jth record on the appropriate Stage III switcher file. The imputation process is then complete for switchers.

Error Rates. Secondly the file containing nonswitchers was input to FREQ to produce tables of error rates for each variable. These rates were stratified by rep̣orted dependency status, income, and reported zero/not zero. The FREQ procedure also produced a disk file containing error rates for each variable within each stratum. The disk file of error rates was then input to a code generator (written in SAS) which produced the software to impute error rates.

The error rate imputation software determines to which stratum each case belongs and assigns the appropriate error rate for each variable. The program then generates a random number from a $U(0,1)$ distribution. If the random number is less than or equal to the error rate the case is chosen to receive error. Otherwise, no error is assigned to the case for that variable. For each case not selected to receive error on a particular variable, the reported value is taken as the best value and the imputation process is complete for that variabl- within the case.

Best Values. The SAS procedure REG was used to obtain regression equations for each variable within each stratum. The REG procedure produced tables giving estimated regression coefficients and other statistics for each variable from the Stage III data base. Only those cases in error for a variable were used in determining the regression equation for that variable. The tables allowed us to make decisions about which strat? (if any) to collapse to ensure sufficient degrees of freedom. After redefining .e strata, REG was run again on the Stage III data. This iteration of REG produced both tables and a disk file containing regression coefficients for each variable within each stratum. The regression equations are given in Table C-2 of

Appendix C. The coefficients on the disk file were run through a code generator which produced the best value imputation software.

The best value imputation software assigned each applicant a regression equation for each variable for which the applicant was selected to have error. The equation assigned was dependent upon the applicant's stratum. The best value was then computed as the sum of the products of all regression coefficients with corresponding reported or "dummy" values. The concept of dummy variables was discussed earlier. For those cases not selected for error, the best value was set to the reported value.

Final Merge. The applicant switchers and nonswitchers with best values replacing reported values were merged onto one file using SAS. This new file was formatted identically to the original applicant file so as to be compatible with ED's applicant based model.

Software Validation

Several measures were taken to ensure quality in imputation software. All code was manually re-riewed by the programmer and by other analysts. Code generators were used to reduce the probability of syntax errors. Code produced from generators was thoroughly checked. Imputation software was tested on Stage III data before using on applicant data base.

Testing of Dependency Status Software. The Stage III data base was treated as if it contained applicant data and svas input to the dependency status software. The frequency of imputed dependency status error was then compared with the frequency of actual dependency status error. The best values mapped to the switchers were compared to the "donor" values. These measures ensured that the dependency status software was logically correct and produced imputed data stochastically consistent with the original dependency status data.

Testing of Error Rate Imputation Software. The Stage III file was again treated as if it contained applicant data to test the error rate imputation software. Imputed error rates were compared to actual error rates. The results confirmed that the imputation software yielded error rates consistent with actual error rates.

Testing of Best Value Software. Similarly the Stage III data was used to test the best value software. Mean imputed best values were compared by stratum to mean actual best values. Table C-3 of Appendix C displays the results of this comparisun. These results confirm the validity of the best value software.

Testing of the Final Merge. To ensure that the final data tape created from the imputation process was compatible with ED's model extensive checks were performed. The imputed data base was compared to the original applicant data base record by record to verify that the two data sets were identically sorted. Fields containing variables not affected by the imputation process were compared between the original and the imputed data base. Ranges of all items on the imputed data base were compared to the ranges of respective items on the original file. Hexadecimal dumps from both files were compared. All of these tests ensured the compatibility of our data base to ED's model.

Imputation of Error to Applicant Data Base

The applicant data base was run through the programs described in the Imputation Software section. These programs replaced existing data items with imputed data. Dependency status error was assigned first. Cases selected as switchers received best values from Stage III "r' ors" and were separated into a new file. Error rates were imputed next. Applicants were selected to have error at the rate of observed error in the Stage III data base for each variable. Best values were then assigned to these cases chosen to have error. Best values were computed by substituting reported values into regression equations obtained from Stage III data. Finally applicant switchers and nonswitchers were merged producing a file of imputed data.

Goodness of Fit Tests

The Stage III data base and the imputed applicant data base were compared to ensure that the distribution of error on the applicant file approximated the distribution of error on the Stage III file. Means of imputed and best values are displayed in Tabie C-3 of Appendix C. After having submitted our imputed data base to ED for recalculation of award, we found a savings of $\$ 215$ million when error is eliminated from the applicant data base. This is comparable to the Pell QC. Stage III study which estimated a savings of $\$ 220$ million.

REFERENCES

Barr, R.S. and Turner, J.S. (1980) "Merging the 1977 Statistics of Income and the March -1978 Curreni Population Survey." Prepared for the Office of Tax Analysis, Washington, D.C., U.S. Department of the Treasury.

Brewer, K. R. (1979) "Discussion." Symposium on Incomplete Data: Preliminary Proceedings U.S. DHEW 219-224.
Chapman, D. W. (1976) "A Survey of Nonresponse Imputation Procedures." American Statistical Association, Procsedings of the Section on Social Statistics 245 251.

Cochran, W. G. (1977) Sampling Techniques. New York, John Wiley.
Ericson, W. A. (1969) "Subjective Bayesian Models in Sampling Finite Populations, I." Journal of the Royal Statistical Society Ser. 13, 31, 195-234.

Errit, L. R. (1980) "Variance of the Mean for Several Hot-Deck Imputation Procedures." American Statistical Association, Proceedings of the Section on Survey Research Methods.

Oh, H. L. and Scheuren, F. J. (1980) "Estimating the Variance Impact of Missing CPS Income Data." American Statistical Association, Proceedings of the Section on Survey Research Methods.

Oh, H. L. and Scheuren F. J. (1981) "Weighting Adjustments for Unit Nonresponse." Panel on Incomplete Data, National Academy of Sciences.

Okner, B.A. (1972) "Constructing a New Data Base From Existing Microdata Sets: The 1966 Merge File." Annals of Economic and Social Measurement, 1, 325-342.

Radner, D.B. (1983). "Adjusted Estimates of the Size Distribution of Family Money Income." Journal of Business and Economic Statistics, 1, 136-146.
Radner, D.B., Allen, R., Gonzalez, M.E., Jabine, T.B., and Muller H.J. (1980) "Report on Exact and Statistical Matching Techniques." Statistical Policy Working Paper 5, U.S. Department of Commerce, Washington, D.C., U.S. Government Printing Office.

Rodgers, W.L. (1984) "An Evaluation of Statistical Matching." Journal of Business and Economic Statistics, Volume 2, No. 1, January 1984.

Rodgers, W.L. and DeVol, E. (1982). "An Evaluation of Statistical Matchıng." Unpublished report submitted to Income Survey Development Program. Department of Health and Human Services, Ann Arbor, Michigan, Institute for Social Research, The University of Michigan.

Royall, R. M. (1970) "On Finite Population Sampling Theory Under Certain Linear Regression Models." Biometrika, 57, 377-387
Schaible, W. L. (1979) "Estimation of Finite Population Totals from Incomplete Sample Data: Prediction Approaches." Symposium on Incomplete Data: Preliminary Proceedings DHEW 170-187.

TECHNICAL APPENDIXC

82

JOINT DISTRIBUTION OF "BEST" FAMILY SIZE AND "BEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES

DEPSNDENY BPUOEHPS

$\begin{aligned} & \text { 'gcept } \\ & \text { PAMg6y A.2E } \end{aligned}$	ineapl - in college	grage ill actual pencemp	BP. de Ilf impuped pencenp	asplicanp - Denen
8	1	90,ipla	91. 9075	
8	2	1.7149	2.0908	
3	1	-9080	4.4843	
3	2	0,9069	0.0000	
6	1	1.1180	0.5780	

$\begin{aligned} & \text { 'acgit } \\ & \text { PAMILY B8E } \end{aligned}$	13Esp1 - IN 5ULLEE	stage ill actual meneent	spage ils ymaupe - EREENT	APDLEANT - Renent
2	1	490891	10	
8	2	40,0438	20	
3	1	-. 5278	10	

lscepl
 pamiby 822

19ERP!

- in college
gpact 181 AEpuAL plecent

2	1
2	2
3	1
1	2
1	1
1	8
5	1
0	1
0	2
6	1
10	1

11,1800	12.0507
0.1110	0.3060
98,7456	97.1549
1,3520	1.0381
3,5293	$3 \mathrm{mm62}$
0.7036	1.0381
1.7851	1.7301
0.4637	0.3000
0.3382	0.3000
0.3434	0.3 -40
0,3691	0.3460
0.3182	0.3000

spael ifi impupeo Deneent

apmlicanf impupt peneenp
16,797
0.588
74.292
1.209
3,438
0.780
1.631
0.720
0.430
0.132
0.272
0.308

$\begin{aligned} & \text { 'BEBPI } \\ & \text { PAMEY EgE } \end{aligned}$	```1889P - IN COLLEE```	RTABE III AETUAL PEREENY	spabe ill DEREEMP	impupeo	ADOLIEANT - EnCEN:	Impupe
2	i	14.7019		13.6842		14.315
2	2	-.3y43		0.4737		- 5331
3	1	9.4905		8.4211		- 100
3	2	-4.9328		63.1590		S 5173
8	3	2,0429		1.0520		2,137
0	2	2,2031		2.1053		1,060
4	3	2,1328		2.1093		1,76
5	1	$1,0254$		$0,0000$		1.118
5	2	1.0251		0.0000		0.694

JOINT DISTRIBUTİ*N OF EBEST" FAMILY SIZE AND MBEST NUMBER IN COLLECE BY RESPECTIVE REPORTED VAR.UES

achanted pambly ajzea
atportio in collegei

2
8
3
3
3
5
5

ETEEE III ACPUAL DEAEET

$$
\begin{array}{r}
1.0909 \\
097329 \\
19.9934 \\
0.9183 \\
91.4899 \\
0.2050 \\
0.3019 \\
0.9039 \\
0.9845
\end{array}
$$

SPAOE IT: IMPUPEO PERESi

$$
\begin{array}{r}
1.9839 \\
0.7143 \\
10.9857 \\
0.9143 \\
90.0000 \\
2.8571 \\
0.0914 \\
0.9143 \\
0.3591
\end{array}
$$

APDLIEANP PMPUPED DEDEENP

$$
\begin{array}{r}
0,9332 \\
0,0998 \\
10,1919 \\
0,4810 \\
91,0639 \\
4,3710 \\
4,4925 \\
0,8911 \\
0.0978
\end{array}
$$

REPORPE IN COLLEEEE

18c8P1

- 8LEP'

Bamiby il2E

- IN CCI.LEOE

SPAEE III ACPUAL PEREENP

PTABE III IMFUPEO DEREENP

$\begin{aligned} & 1,2898 \\ & 1,208 \end{aligned}$
13.3541
1246
1097
, 5
0.5859
$\begin{aligned} & 0.3990 \\ & 0.6319 \end{aligned}$

$$
\begin{array}{r}
1 .: 903 \\
2.3810 \\
15.1902 \\
3.5716 \\
0.5952 \\
9.1499 \\
50.9400 \\
0.0000 \\
1.1909 \\
7.1429 \\
1.1905 \\
0.9998 \\
0.5052
\end{array}
$$

ADPL:E』NP IMPUPED EPRCENP

$\begin{aligned} & 8,4251 \\ & 1,3404 \end{aligned}$
3.98
8.6075
0,1884
0,4138
$\begin{aligned} & 5,1740 \\ & 0,5115 \end{aligned}$

1.3444
\{3:9.437
c, 8519
1,1100
50.7304

0,0284
0,138
5.0786
0.5353
0.0430

REPORED PAMILY EXEREA REPORTED - IN COLLEEES

```
18E871 PAMIG EI2E IN COLLEE
```


DPABE III ARPUAG penesmp

ATABE III V DUPEO peneeny

ADDGIEANP IMPUPED PERETNP

2.9418	4.5400
8.8235	2,9800
0.0000	2,8305
20.1900	22.3417
2.9412	10.635
2.9412	A, 1810
0.0235	9,1085
30.2353	30,0059
0.8235	3,4048
0.0800	3.0046

REPORPE PAMBLY EIEESA
REPORPD IN COLLEBES

19EB71
pamsly 8128

- acepi
- Im COLLESE

SPABE III ACPIIAL - PREEN:
\$TABE 18 \$ 8 MDUPED peneenf

IPDLIEANP IMDUPEE pencenp
100.00 C

100
100

JOINT DISTRIBUTION OF GBEST＂FAMILY SIZE AND ＂BEST＂NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES
 depenotnf spudempe

nedonted pamily eszens REPORTED in callegeas

PEBPI
PAMIGY al8E
＇seapi

apace ill depual peneent

7.0537
696
016
98
1
149
15

STABE III IMPUPEO PEREENP

$$
\begin{array}{r}
0.9387 \\
6.7039 \\
22.0050 \\
1.1193 \\
63.0872 \\
4.2093 \\
0.0000 \\
1.9587
\end{array}
$$

ADPLIEANP IMPUPEO FETEENP
1.9826
7.9797
18,9648
1.9648
04.9111
2.8270
0.9729
0.9408

NEPORPCO PAMILY EIZES NEPCNPED IN COLLESLE

19espi
PAMIGY B18E

18E8TI
＊8N COLbREE

AFABE IIS AEPUAL penesnt

GPAEE IIS IMPUPED penesni

$$
\begin{array}{r}
2.5974 \\
1.2987 \\
12.3397 \\
11.0390 \\
5.0442 \\
56.0935 \\
0.9755 \\
2.5974 \\
0.0494 \\
0.0494
\end{array}
$$

APPLIEANP IMPUPED －DEENP
3.7819 0.6104
11.3025
14.1930

506059
0.5094

1,2150
1,4351
1.7950

REPORPED PAMBLY ABZES NEPORTED IN COLLEEES

18c8p1
pamiby 818 共
＇EEST：
－in college

STAPR 1 II AEPUAL MEnceif

SPABE III IMPUPEO PEREENP

APOLIEAMP IMPUPED Deneenf

2	1	3.6209
3	1	34.840
3	2	3.9448
．	1	3，3989
－	2	13.0051
－	3	1,0361
4	1	1.9509
5	1	3.3812
5	2	14，2421
5	3	43.9319
5	4	1.7028
－	3	3.5927
9	1	1.7897

3.1037
0.0356

3,7006
3.4595
13.1939

1．5183
2，1460
3.1843
14.8108
03.3508

1，5183
3.5079
1.5907

198871
Pamiby 832
＇EEAP！
－IN COLLEBE

SPABE III AEPUAL PEREENP

BPABE II8 IMDUTEO pereEnf

ADMLIEANP IMDUTEG opmeenp
0.0090
59.5956
11.11111
0.0000
0.0000
31.3333
$0 \cdot 2083$
29.2083

31,9093
13.1707
-2083
9．3171

JOINT DISTRIBUTION OF BEST FAMILY SIZE AND "BEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES
 oEPENOENP EfUDEnfe

1geapi
-amily lize

18E8!

- IN COLLEE

2	1
3	1
4	1
5	1
5	3
0	1
0	2
7	1
7	2
10	1
10	1

SPABE III AEPUAL - CREENT

SPABE III TMPUPEO pencent

$$
\begin{array}{r}
2.1279 \\
0.0000 \\
0.5100 \\
18.0851 \\
1.0638 \\
0.0383 \\
3.1915 \\
3.1915 \\
2.1277 \\
1.0638 \\
0.0000
\end{array}
$$

ADPGIEANF IMPUPEO Deneenf

$$
\begin{aligned}
& 2.5941 \\
& 2.2380 \\
& \text { 10,7833 } \\
& 19.9808 \\
& 0.9164 \\
& \text { 54.0.706 } \\
& 1.9003 \\
& \text { 3,7440 } \\
& 1.0173 \\
& 1.1053 \\
& 0.9010
\end{aligned}
$$

REPORTE FAMII.Y AI2RA
NEDORPD IN COLLEEAS

18E8P1
FAMIGY 812E

18EPT

- IN COLLEE

sface ill acpual Dencent

$$
\begin{aligned}
& 2.2002 \\
& \text { 1.1200 } \\
& 3.1201 \\
& 5.2011 \\
& \text { 11,5371 } \\
& \text { 12,0095 } \\
& \text {. } 2034 \\
& \text { 52,7071 } \\
& \text { 3,3015 } \\
& \text { 1,2408 } \\
& 1.1200
\end{aligned}
$$

apace ili impuped pencent

$$
\begin{array}{r}
5.3743 \\
2.1505 \\
4.3011 \\
3.8298 \\
11.8200 \\
7.3800 \\
5.3763 \\
53.7634 \\
5.3763 \\
0.0000 \\
1.0753
\end{array}
$$

ADPLIEANP IMPUPED Dencent

$$
\begin{aligned}
& 2: 4893 \\
& 0.9588 \\
& 3,2713 \\
& 447941 \\
& 1195623 \\
& 11.9315 \\
& 0.4016 \\
& 53,6379 \\
& 3.2909 \\
& 0.9306 \\
& 0.9890
\end{aligned}
$$

neonfeo in colleses

-seapi		'resti
PAMIGY	812E	- In Collee

3	1
3	2
4	1
1	3
3	1
3	2
3	3
6	1
0	2
0	3
0	2

SPACL III ACPUAL DEREEMP
spact ill impupeo -gneenf
0.0000
0.0000
5.4505
0.0000
0.0000
18.1818
10.9018
1.8108
3.6301
48.0909
1.8182
0.0 .100

ADPLIEANT IMDUPED meneent
1.8892
1.9132
3.4635
:. 1002
2.3300
15.9050

- 0080

1,8808
4,0489
49.181

2,3300
5.1008
2.01511

NEDORYE E IN COLLEEES

5
5
5
6
6
siAGE ill aepual

DEREENP

0.0317
 0.6317
 13.9471
 7.1191
 C-4 15, 0819
 15.7190
 43.3109

8TABE III ImeUPEO DEREENP

ADDLIEANP IMEUPED Demernf
0.0000
14.2857
21.4280
7.142θ
0.0000
7.1489
50.0000

JOINT DISTRIBUTION OF MBEST" FAMILY SIZE AND "BEST" NUMBER IN COLLEGE BY RESPECTIVE
 REPORTED VAlUES
 oependerm apudente

nemonpeo
nespi iecsit
PAMILY SI2t

- in college

3 5 6 6 7 6

1
1
1
2
1
2
1
aeponied

1esepi
Pamlby 3128
'eEsp

- in eollege

3	1
4	1
5	1
5	2
6	1
6	2
6	3
1	1
7	2
10	1
10	2

SPAEE If1 AEPUAL DEAEENP

5.640
3.000
. 6747
1

PYACL il: impupeo - EREENP

$$
\begin{array}{r}
2.7778 \\
11.1111 \\
2.7798 \\
10.6067 \\
10.6667 \\
33.3333 \\
6.3333 \\
0.3333
\end{array}
$$

ADDLIEANF IMDUPEO DEECENP
©. 7520
7.5635
10.1005
3.1675
34.3050
15.0373
. .1302

PAMPY sizEs neponito an colllezez

BPABE 111 AEPUAL DEREENF

291495
2.1109
0.0453
-.2743
15,4872
2,0047
2.0347

1,8762
53.6712
2.1890
2.1475
2.0047

SPACE 111 IMPUPED PEDEENT

$$
\begin{array}{r}
0.0816 \\
2.0408 \\
8.1033 \\
0.0810 \\
0.1038 \\
2.0408 \\
0.0000 \\
0.0000 \\
05.3061 \\
2.0408 \\
2.0408 \\
2.0408
\end{array}
$$

APOLIEANP IMDUPEO nemesnf

1,9086
7.7501
74
2.2409
1.0538
1.5986
0922
2
1.0538

arponfen '8Esp'
18etif
Pamily size

- in colleeg
apace ili aEpual PENEENP

24817

5.0094

2,6408
15.4480
10.7545

0,6044
40.3323

2,6958
3.0737

1Page 118 IMPUPEO peneent

ADPLIEANF IMDUPEO pencent
2.3230
9.9204
3.3196
14.4412
8.8496
. .0752
51.5469
2.433

TABLE C-1

JOINT DISTRIBUTION OF "BEST" FAMILY SIZE AND "BEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES

depenoent ifuotnfe

18E8T -8EBT
Fam\& 8 82E

- IN COLLEEE

1	3
7	3

BTAOE III ACPUAL DEREENT

IPABE III IMPUPEO peneenf

00
0
40

ADPLEANT IMPUPED pereenf
39.3008
18.8818
18.2587

9
$-$
STACE 188 AEPUAL pencent

19ABL I: IMPUPEO pereenp
100.000

100

NEPORPE IN COLLEEAG

- BEETV IEEAPI

PAMSLY EIE

* IN COLLEEE

STABE II: AEPUAL PEREENP

EPAEL III IMPHPEO penesmp

ADPLIEANP IMDUPEO nencenf

100,000

APPLPEANP IMPUPEO - EREENT
100.000

JOINT DISTRIBUTION OF GBEST" FAMILY SIZE AND "BEST" NUMDER IN COLLEGE BY RESPECTIVE REPORTED VALUES

ORPEMDENP ETUOENPE

18esp:
-AMILY 882

18cepi

- IN COLLEE
$\begin{array}{cc}0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 2 \\ 0 & 1 \\ 10 & 2\end{array}$
gPaBE SII AEPUAL PEREENT
96200
2183902
36.6746
10.3181
1546198
4.9450
5.4269

SPABE I8I EMPUPEO PEREENT

$$
\begin{array}{r}
0.0000 \\
21.0520 \\
15.7849 \\
21.0980 \\
31.5989 \\
5.2032 \\
5.2632
\end{array}
$$

aDolicant impupeo penermp

$$
5 i 250
$$

59.250
24.1330
34.9450

11,0036
15,1140
0.1112
0.7158

IEEEPI	IEEAPI
CAMILY EIZE	IN COLEEE

space ifs mefual peneent

siane ili impupeo peneenf

APPLIEANP IMDUPED peneent

- nepanice f
'sesti
Pambly 3222
18espi
- IN EULLEE

3	1
5	1
5	1
6	3
7	2
7	3
8	3

PPACE 1 IT AETUAG prResmf

$$
\begin{aligned}
& 6: 9080 \\
& 6,9140 \\
& 6,9919 \\
& 6.9919 \\
& 13.5987 \\
& 1884840 \\
& 37.4902
\end{aligned}
$$

gPage I\& IMPUPED penesmp

$$
\begin{array}{r}
0.0000 \\
7.1420 \\
14.2859 \\
0.0000 \\
21.4880 \\
10.2857 \\
12.0571
\end{array}
$$

ADPLIEANP IMDUPEO DEDEEAP

$$
90051
$$

0.1245
7.1106
5.5336

12,0182
22.1340
30.5395

JOINT DISTRIBUTION OF MBEST* FAMILY SIZE AND GEEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES
dependenf spuoents
DEPORPE PAMILY EIZES DEPORPED IN GOLLEEEI

```
18E8P! 18Efi'
vam|ly II2E In COLbEe&
```


SPABE III AEPUAL pencent

IPABE III SMPUPED pereent
9.4060
7.4330
8,3089
7.0480
30.0630
8.3046
30.8630
9.6923
9.6923
7.0923
9.0923 38.4615
7.0923
23.0769

ADPLIEANP IMPUPEO - eqeenf
0.5393
0.7640
9.4159
9.6404
32.5843
-. 511^{6}
28.5343

18E8T1
-amily size

18e891 - IN EOLLEE

1
1
1

8pase iff hepual penegnf
14.0232
10.1431
14.1051
57.0005

MEPOMPED IN COLLEEA8
sPage 1 I! IMPUPEO penernp

$$
\begin{aligned}
& 14.2857 \\
& 10.2897 \\
& 20.9710 \\
& 42.0591
\end{aligned}
$$

depanfeo
'essf:
19E3P1
pamily size

- in collese

9	1
7	3
0	3
1	3
1	4

STAGE 188 AEPUAL
STAGE
peneg
18.7004
20.3073
18.7804
219111
20.1008

SPAGE III IMPUPED ofreent

$$
\begin{array}{r}
0 \\
00 \\
0 \\
20 \\
20
\end{array}
$$

ADPLIEANY IMPUPED - RECEP

12:3350
11.3960

14,5299
01.5385

APOGICANP IMPUPED Denemp
19.2971
21.2851
22.4000

17,2091
19.6787

APDLIEANP IMPUPEO Denernf

27:9862
25.2074
49.1800

18EEPI
Family size
10Espi

- in collebe

2
3
\square

STABE 88: AEPUAL peneenf
24.9702
24.0080
51.0218

PTAGE III IMAUPEO nenernf

$$
\begin{array}{r}
50 \\
0 \\
50
\end{array}
$$

Pamsly gizeno neponte e in collegess

EPABE 181 AEPUAL pencent

5
100.000
SPAgE III IMPUPED
PEREENY pereenf 100

APOLIEANP IMPUPED pereemp

TABLE C-1

JOINT DISTKIBUTICN OF "BEST" FAMILY SIZE AND -BEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES
depenolif afuocnis

$\begin{aligned} & \text { IBEBYI } \\ & \text { PAM\&LY Si2E } \end{aligned}$	iseat' - in collese	sface lif AGPuAL DEREENT	spage ill impuped PEREENP	APPLICAMP DEREENT	impureo
-	1	33.3713	100		4845375
10	1	16.6189	100		50.4425
-					
$\begin{aligned} & \text { 1sespi } \\ & \text { PAMPLY s12E } \end{aligned}$	$\begin{aligned} & \text { IeEBP' } \\ & \text { IN COLLEEE } \end{aligned}$	bfage ill acpual pencent	sfage lif impupeo pracent	applicany DEREENP	IMPUPEO
$1{ }^{3}$	8	$\begin{aligned} & 33.5819 \\ & 66.5058 \end{aligned}$	$\begin{array}{r} 0.000 \\ 100.000 \end{array}$		$\begin{aligned} & 20.2420 \\ & 75.9590 \end{aligned}$

TABLE C-1

JOINT DISTRIBUTION OF MBEST" FABILY SIZE AND
"BEST" NUMBER IN COLLEGE BY RESPECTIVE.
REPORTED VALUES
depenoent afuarnts

lagsi lacapt
pamgly size a in eollege
spage ils atpual - eneent

$\begin{aligned} & \text { lgegit } \\ & \text { PAMSLY s82E } \end{aligned}$	1 日espi - in eollege	spage ils aepual Deneent	spage ils impuied - EREENT	applieant Deneent	Impured
5	1	32,5810	60.6009		34,3750
9	1	35,3415	33.3333		al, 6409
11		32.0975	0.0000		23.9563

spage ill impuied EREENT

$$
\begin{array}{r}
60.0069 \\
33.3333 \\
0.0000
\end{array}
$$

amplicant zmpuped deneent
44.3750

41,6069
23.9563

REDORED IM COLLEEEE

$\begin{aligned} & \text { Igesi } \\ & \text { PAMILY sizE } \end{aligned}$	```ICEPT! IN COLLEEE```	epage 811 IEPUAL PEREENT	ETARE 118 gMPUPED plreEnp	APDLIEANT IMPUPED DEREENP
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	2	$\begin{aligned} & 32,0975 \\ & 67.0527 \end{aligned}$	$\begin{array}{r} 0.000 \\ 100.000 \end{array}$	$\begin{aligned} & 33.3333 \\ & 66.6667 \end{aligned}$

MEPORTED PAMELY SIEEAII
REPORED IN COLLEESS

$\begin{aligned} & \text { 18ESY' } \\ & \text { PAMILY size } \end{aligned}$	Isespi - IN cOLLEE	siace ili atpual prneenf	sfage ilf impufeo peneent	$\begin{aligned} & \text { applicing } \\ & \text { oereent } \end{aligned}$	8MPUPEO
11	3	4nis4 51.8520	100		$\begin{aligned} & 50.0000 \\ & 50.0000 \end{aligned}$

JOINT DISTRIBUTION OF \#EST" FAMILY SIZE AND "OEST" NUMPER IN COLIEGE BY RESPECTIVE REPORTED VALUES
inderpendemp spudenfs
neponted pamily sizesi neponfed in colleotai

spact ils atpual percent

$$
\begin{aligned}
& 00.2305 \\
& 1.5120 \\
& 0.2335 \\
& 0.0103 \\
& 0.2335 \\
& 0.7004 \\
& 0.2335 \\
& 0.2335
\end{aligned}
$$

09.9335
2.2181
0.1848
0.9248
0.0000
0.1818
0.1048
0.3699
apolicant qMPupto peneenf
-0.5089
1,6828
0.2092
0.6792 0.1958
0.5999
0.2200
0.144
neponpto pamily sizEas

1asery
pamity 0128

10espi

- IN SOLLEE

1	1
2	1
2	2
3	1
3	2

BPAEE IIE AETUAL mencent

SYAEE III IMPUPEO Peneent

0.7809	0.7912
03.0236	03.5105
0.109	1.0406
0.7703	5.4045
0.5725	0.5405

applicant gmpupto Demeent

31,1251
4.0114

0,8640
0.529
nepgnte pamily sizea meponted an colletaz
cossit
PAMILY size

10851

- In collese
bpage 1 II sepual peneent

1
1
8
8
13.0005
19.0508
03.9023
3.4343
spape ils impuped pencent

APDLIEANF IMPUPED -EDEENT

$$
\begin{aligned}
& 12.9273 \\
& 10.3036 \\
& 7.2929 \\
& 3.6304
\end{aligned}
$$

ilia331
10.1811
-6.1019
3.2641
9.3

JOINT DISTRIBUTION OF MBESTV FAMILY SIZE AND "BEST" NUMBER IN COLLEGE BY RESPECTIVE REPORTED VALUES

INOEPENDENT IPUOENPS

- AESPI
- IN COLLEER

1	1
2	1
3	1
3	2
3	1

SPAGE III AEPUAL DEREENT

APSAE III IMPUPED Deneent

2.1775	2.8779
1.5056	0.0000
11.2017	v2.0030
1,6401	1.4380
2.7636	2.0777
0.0314	0.0000

1acepi

- IN COLLEGE
spage ill Impupeo perény

3.4331	c
0.9675	12
24.2904	81
52,3596	48
3.7015	0
7.3010	-

- EEDORPED PAMELY Ez2LES
leser.
pamily $81 z 8$
'arspi
- IN COLLE8

1 2 3 2
 1 3 3 1

ETABE III ACPUAL DEREENP

15,1299
179814
49.5240
16.7567

STADE 188 8MPUPED PEAEENP
16.6067
33.3333
50.0000

APELIEANF IMPUTED DEREENT
2.0462
1.3390

11,3541
1,4009
3.0416
0.7183
'seapi
Pamily size

2	1
2	2
3	1
3	2
1	1
1	2

NEPAPE IN COLLEEEA

OPAGE 188 ACPUAL DEngent
 PAMILY 882RES

 34.3316.9675
24.2904
32.3546
3.7015
7.3080

RePORPE IN COLLEEES
ADPLIEANP IMDUPEO DEAEENT

$$
\begin{array}{r}
3 i 9805 \\
6,4921 \\
239018 \\
30,8123 \\
0.5891 \\
0.1235
\end{array}
$$

APPLIEANP IMPUTEO Deneent

TABLE C-I

JOINT DISTRIBUTION OF MEST- FAMHLY SIZE AND BEST" NUMOER IN COLLEGE BY RESPECTIVE REPORTED YALUES

inorpendent efudenfi

$\begin{aligned} & \text { IBEBP! } \\ & \text { DAMSLY 182E } \end{aligned}$	1 AESP1 IN COLLEE	EPAGE III AEPUAL MEEENT	sfage ili impuped PEneENT	APDLIEANP DEDEENP	IMDUPED
1	1	291590	2.2072		2,3301
2	1	1.0728	0.0006		1.0201
3	1	4,6898	9.8944		0.7183
4	1	03.3795	74.0517		02,405
1	2	9,6492	11.2300		5.1894
5	1	2.1508	3.3708		2.5149
0	1	1.1483	0.0000		1.0081

JOINT DISTRIBUTION OF "BEST" FRMILY SIZE AND MBEST" NUMBER IN COLLEGE BY RESPECTIVE RLPORTED VALUES

independent apudenps

18eap:
18cept

- In COLLEA
-amiby 8 82
$\begin{array}{ll}3 & 1 \\ 3 & 1 \\ 5 & 1\end{array}$

SPABL II: AEPUAL PEAEENT

6.1935	$\$.2300$
6.1959	15.6250
9.81820	65.6230
12.4205	12.5000

sPABE 18: IMPUPEO penernt

SPAEE 181 ACPUAL STAGE III IMDUPEO PEREENP

$$
12.350
$$

12:3543
22.6851
10.0808
36.7291

1espl	1seap'
pamsly	- IN COLL

8
5
5

1
1
2
2 - A1M 182

$$
04.0410
$$

11.1111
22.2322
21.2222 Denernp

ADPLIEANF IMPUPEO peneenp
0.0332
5.7483
95.2104
12.0181

12.3503	41.4141
224.851	11.1111
10.0808	22.2282
34.9298	28.2222

$\begin{array}{ll}\text { IBEAPI } & \text { isegpi } \\ \text { Pamily asze }\end{array}$
$\begin{array}{ll}0 & 1 \\ 0 & 2 \\ 5 & 3 \\ 3 & 6 \\ 0 & 2\end{array}$

PTAEE 181 AEPUAL - EREENT

10.0054
15.2194

33,0995
18,4683
10.9870

SPAQE 181 IMDUFEO - EneEnt
16.0667
0.6000
16.6667
33.3333
33.3333

ADDLIEANP IMDUPEO penernf
$11 ; 7500$
2242422
1049113
58.0050

ADPLICANP IMPUPEO - encent
15.8289
10.91000
35.3010
17.1322
16.7110

'segp!
Pam\&
P82
18Esp1

- IN EOLLEE

SPABE II: AEPUAL PEREENT

3
100.000

CPABL III IMDUPED - Ene Enf

AMPLIEANP IMOUPED pencent

100
100.000

TABLE C-1

JOINT DISTRIBUTION OF "BESTP FAMILY SIZE AND "BEST" NUMBER IN COLI.EGE BY RESPECTIVE REPORTED VALUES

inorpendenf spuornis

6
spage lil atpual wencenp

$$
\begin{aligned}
& 0,0012 \\
& \text { 80,8403 } \\
& \text { 8.4024 }
\end{aligned}
$$

3PABE 181 IMPUPED PREENT

$$
\begin{aligned}
& 23.0709 \\
& 70.0231 \\
& 0.0000
\end{aligned}
$$

APPLICANP IMPUPED dencent

$$
\begin{array}{r}
0.1327 \\
86.008 j \\
\hline .7092
\end{array}
$$

$\begin{aligned} & \text { '8EAPD } \\ & \text { PAMILY OS2E } \end{aligned}$	$\begin{aligned} & \text { Iegap! } \\ & \text { in colleat } \end{aligned}$	bpase ils actual percent	giage ils impuped PERENT	applicant Dencent	IMPupico
-	1	$\begin{aligned} & 30.0375 \\ & 05.3085 \end{aligned}$	$\begin{aligned} & 33.3333 \\ & 06.0067 \end{aligned}$		$\begin{aligned} & 31,9007 \\ & 08: 7003 \end{aligned}$
$\begin{aligned} & \text { lgeapl } \\ & \text { PAMILY } 812 E \end{aligned}$	18Esp1 - in soulese	gpage ill actual. pencent	gPage ili impupeo Deneent	APDLEAKT Deneent	Impupeo
	1	20.9080 70.0312	40		$\begin{aligned} & 28.9015 \\ & 77.0115 \end{aligned}$

-3EATI Pambly size	18Esp1 - in college	spage ill acpual pereenf	spage ils qumute PEREEMP	andlicant impupto bencenf
7	2	100.000	100	100.000

space ilf atpual egneenf
spage ill immupe pencent

> 17.1510
> 52.8406
applicant impuped pereenf

48,1481
51.8519

1-gesp
Pamily pize
'bespl

- IN EOLLEE

5
spact lil acpual percent

$$
\begin{aligned}
& \text { 48.574! } \\
& 51.0259
\end{aligned}
$$

sPaEE Ill IMPUPED PEREENT
apmlieant impuped pencent

44ias4a
55.5356

TABLE C－2

REGRESSION EQUATIONS USED FOR IMPUTATION OF BEST YALUES TO APPLICANT DATA BASE

Dependent Students

tNEOME LEVEL	0：． 1	$\begin{aligned} & \text { Alım } \\ & (\Delta G I) \end{aligned}$	NTMPAE lveOme	$\begin{aligned} & \text { raxes } \\ & 0410 \end{aligned}$	numer （voupar ines）	
4＊P0 30.000	1．783123	－3034	9．24025	－．94970	－19a2．a	－PnR．a
18．000 19 319.1900	1.9112472	－15473	00.10031	－0．57325	－2n3．9	14．
815.000 TJ 381．000	w．shabos	－101！9	－n． 1185	0.23109	10．0．	ップ！
Ove9 380．000	J．975i43	；	00.00004	－0．00200	－2＇A．＂	－0ヶ2．
incout level	ver mime vatIE	filmay $\begin{aligned} & \text {（vep mane val．le）}\end{aligned}$	$\begin{aligned} & \text { WEP } \\ & \text { usisis } \end{aligned}$	$\begin{aligned} & \text { Drimep } \\ & \text { (agseis) } \end{aligned}$	）inferesen	－09r．uer
UP in 8A， 900	9．79379	-202.44	9.0032219	－20＊．2n		9.2094
10.000 19 $\$ 15.000$	－1．19092	2198.11	7．0n44707	40．7n	a latal．a	
115，000 99 120.000	－n．unj19	1329.12	9.700080	842．33	3 lutnl．	n．tasal
juen seoguvo	－0．08939	420．19	0.000 .555	－52．n0	－ $19 \mathrm{mm.2}$	－．90na

income leveb	1.1	$\begin{aligned} & \text { nicuny } \\ & \text { cAFSI } \end{aligned}$	vontix ivenme	$\begin{aligned} & \text { FA~FIV } \\ & \text { size } \end{aligned}$	
Jorg ra ， 000	－rirame 25	－150．1	0.91794	36.078	
Ga．ugu im sis．uno	A．fuelt	－9，${ }^{\text {and．}}$	ก．asaso	111.40 A	
sis．unc P？B20．nun	\therefore－00198	－4428．0	9．29459	un．ors	
Jves izn．jus	$0 \cdot 1.15731$	＂．	r．aluee	a．044	
tvejue revel	1．．．uer	－${ }^{\text {Pr }}$	9 crus	prifurfor	0－901．105
J in satocs	－119．35	－ 0.612420	－3n？．9n	2420．58	1.1000
	199．94	．．．．n95al	－440．29	1697.34	1－and
315．231） T （20．0011	1－95．72		1201．21	Qn 1.79	$\therefore \rightarrow 020$
jueoser．vun	5193．11	$\bullet \cdot 002381$	39.4 .9	－40．9	－12

	iverine lstel	$\cdots 1$	（．．．．．＂	ust mrius．	－	
			1aril	141．＇16	1．EI－rue	6， 6
	uerisentis	－．21＋1	2935	n．penasa		－1A30－
	stivuc ij its．sun	－2usas	－7639	U．1890？		－）${ }^{\text {anca }}$
			11709	1．91capm		－10128
	T．EP S29．uns	\therefore ， 0 2n？	－37445	9．0333n0		－11！
	IVCuna level	$\begin{aligned} & \text { ¿Ef } \\ & \text { Assets } \end{aligned}$	$\begin{aligned} & \text { MuMy } \\ & \text { coqseta) } \end{aligned}$	lvicarear	Qesruap	
			11401．0	1330n：4	＇．192m	
	$8.000 \text { iU } 15,170$	$\therefore 12252$	1950.9	－130．0	9．3034	
	$\$ 15.900 \text { if } 52 v .1 \text {..n }$ suen 120.075	$\begin{aligned} & \therefore 13227 \\ & -.11395 \end{aligned}$	$\begin{array}{r} 14108.9 \\ 5781.0 \end{array}$	1014，	cuita 0.3419	
ERIC	aven b2jents			34590．9 DL	$\begin{aligned} & \text { u.3 } \\ & \text { COPY } \end{aligned}$	AlLA

TABLE C－2

REGRESSION EQUATIONS USED FOR IMPUTATION OP BEST YALUES TO APPLICANT DATA BASE

Dependent Students

DEDEMENP VAMIGALETAXFS EAIO

ineame LEvil	461	$\begin{aligned} & \text { qumbr } \\ & \text { (AGET) } \end{aligned}$	$\begin{gathered} \text { Paxes } \\ \text { oap } \end{gathered}$	$\begin{aligned} & \text { OUMAY } \\ & \text { (TAXX) } \end{aligned}$		$\begin{aligned} & \text { nimwin } \\ & \text { ivnatict lvel } \end{aligned}$
＇je 1088.000	－3．003003	－A0． 1	0.233493	－an io	－r．jn9441	109．64
88，000 15 \＄15．000	U，090349	$-1^{7} .1$	－0．002217	－319，	C． 112300	－19A．An
185．000 P0 120.000	$+109611$	－1894．2	c．090413	－172，	＂．15n771	－ 24.4 .9
Jusi 820．000	0.037072	U．J	0.093484	－2504．5	－n．00nnes	＂隹， 10
INCOMS LEVEL	vET MUME value		$\begin{aligned} & \text { WFP } \\ & \text { ASSETS } \end{aligned}$	$\begin{aligned} & \text { nummy } \\ & \text { (assefs) } \end{aligned}$	PHPEEFEP	P Q－Enlate
UP10 s8．000	－4．005409	－100．00	n．nn78227	7.45	＜0atas	2 a．ja8a
\＄8．000 P0 815．000	－6．691970	－3．11	－n．0049nne	12 met	c＊m．3n	－${ }^{\text {a }}$ 2132
815.000 P9 220.000	－0．01795	296．AB	n．0031149	－149．86	1340.12	$20.0 n 10$
94E1880．000	0.012032	－717．43	n．nnsas28	1150．23	1200．94	a 0.0 atu

INCCNE LEVEL		AG？		$\text { NE }{ }^{\circ}$ －SVFP
u＊P9 84．0）u	1.012925	n． $84004 ?$	－0921．？	－n．712142
36．00．9 P11 15．190	9．094．109	1．13039n	241,2	－n．nlotam
15， 1500 P．sion，inn	n．701206	－．7011	－5141．1	－n．9n704，
UuEt s29．00u	，70月AAm	3．3！070）	n． 3	＂．Crs7ar
¢NETME LEdEL			PNPEOCEE	$0 \cdot 39140 F$
	(Assepor)	＇gring．ond．		
リ＊P9 8． 0000	190．0	－40 31	12520．1	，110\％
\＄4．703 P．9 1150n．jo	－105a．n	－u1？	$0 \cdot 109.7$	1．4300
115．000 P1 520．300	$1+90.0$	－10121	90119．7	c，4AE？
urem 13＞．03v	1244.7	－190？	11811.7	1．na4p

TABLE C-2

REGRESSTON EQUATIONS USED FOR IMPUTATION of best values to applicant data base

Dependent Students

¢venue tevel.	P.19194	A Pi	$\begin{aligned} & \text { numut } \\ & \text { cafifi } \end{aligned}$	$\begin{aligned} & \text { EF } \\ & \text { HAFPQ } \end{aligned}$
16\% LEvFlS	1.432329	0.000995	-9A.BAn	
tvenue I Evel	$\begin{aligned} & \text { vimut } \\ & \text { cassers) } \end{aligned}$	(TUTP!um)	tarewper	- -s71.40E
atb bevets	190.002	-90\%.me	3A3:435	1.4384

1.9

TABIE C－2

REGRESSION EQUATIONS USED FOR IMPUTATION of best values to applicaint data base

Dependent Sudents

twersur Level	－ECTEAL DEPIAL	Arit	$\begin{aligned} & \text { ', imur } \\ & \text { (AGT) } \end{aligned}$	$\begin{aligned} & \text { Mé } \\ & \text { asecta } \end{aligned}$
u＊ij in．onu	？．nsedua	－0．3130n	229.97	－－）Mr8as
	9.061059	0.014330	－35a．4？	－－nctiosan
T19，nut P7 ：20．uns	0.040148	$0.0110 n 2$	1月8．0n	－ngonstat
giver seo．jou	r．950a00	－1．0nguna	n， 0 n	－n．nongar
fagriat level．	$\begin{aligned} & \text { Mumay } \\ & \text { (Agsefg) } \end{aligned}$	njump （ufnieal）	infeurept	Q－sti．，40e
U－「ク 8R．unu	－2．33．02	－205．09	－38．89	$n .402 n$
sa．100 ic 115．0．19	30.01	－ 70.57	99n．as	n． 30 AK
19．900 「7 P2u．000	40a．n土	－ 119.35	－3n9．72	\cdots aucas
UVE E Eu．ong	119.20	－967．29	12世．7\％	？．404

incume levei．	$\begin{aligned} & \text { En.ip itinval } \\ & \text { S'IE. PEC. } \end{aligned}$	461	$\begin{aligned} & \text { numury } \\ & \text { earipil } \end{aligned}$	$\begin{aligned} & \text { AFP } \\ & \text { APEEPA } \end{aligned}$
U® 9\％ 84.90	＇．007735	n．010as）	－237．20	－n．onsasas
3A．tilo ir 315，ion	$9.20355 ?$	n．こnフ3a＞2	－210．al	\because andnasen
urea lig．unu	「．2931）	no．）254＞2n	84.17	＂．nnsi＞en
INEIMMR LEVEL	$\begin{aligned} & \text { जMOV } \\ & \text { MTAETS } \end{aligned}$		Prepeet	W－3．6．48F
	－3．14．49	－031．34	1237．74	1．4？70
sabuju ir sis．osen	－4a．0）	－807．07	119a，4d	9.1302
－vee blagno	－5A $1 . ? 5$	－n13．00	1129．13	9.3100

1）i

TABLE C－2

REGRESSTON EQUATIONS USED FOR IMPUTA TION OF BEST VALUES TO RPPLICANT DATA BASE

Dependent Students

IMCOME LEVEL	6A9M 4＊ actlurs 3	46^{\top}	$\begin{aligned} & \text { n!usuy } \\ & \text { (AGI) } \end{aligned}$	NT ${ }^{+1}$ ASEET
1／P）sm．onu	9．201549	0.0270536	209.32	$1.111043 n$
se．U0U P\％sis．1）u		1.0201546	290．03	＂，102909n
318．900 7180.201	1．0n3590	6． 1 dnasas	n．00	9．4328494
uvél \＄2．0．90u	n．39011	－n．nntsasn	－a0a． 01	n．np3e98
INPOME LEVEL	numur	niamy	INPEREEP	Q－3DIARE
	（aserss）	（casm）		
UP P5 3n．30u	329.23	678.457	－24．91	＂． 24.9
$54.000 \text { in } 15.000$	014.00	－61．0n9	－320．30	9.4009
$115, \operatorname{3n} 0>720,10 .$	$-\infty 01.21$	$42 m .07 \mathrm{~m}$	-511.13	$1.40 n 1$
Oven s80．091	－42n．30	009．38？	192．02	0.2101

IFEEUCEAT JAOIAALEENET IHVESTMENT VALUE

NET
IVESTWEDIT
VALIE

A！il

（AGt）
417

VALIE

```
j) Fi=1*,000
$14,0%% F7 $2.},90!
.Jvea B>i.9n0
$15.000 P9 t20.1')
```

1. $m^{m n+0}$
$1,0 n j e \theta \quad$ v. 32327
$"$ omif3 n.igin?

n.10718
-2050.2

- A.00の289
ค. 15951 (
AEEPSI (INVESTMENTI

- 343n.!

14EIme 6EVEL	$\begin{aligned} & \text { NFP MJICESS } \\ & \text { FAWE JAL'It } \end{aligned}$	$4 H_{0} 1$	$\begin{aligned} & \text { nilamy } \\ & \text { PATil } \end{aligned}$	$\begin{aligned} & \text { AF } \\ & \text { ASFPG } \end{aligned}$
uD Pil $\$ 15.090$ 	$\begin{aligned} & \therefore \theta+0 \text { it } \\ & \text { i. andu } \end{aligned}$	$\begin{array}{r} 0.0,75 \\ 1.2723 \end{array}$	$\begin{aligned} & -1549.5 \\ & 33459.1 \end{aligned}$	
t NCCME Levtl	$\begin{aligned} & \text { finny } \\ & \text { cisetas } \end{aligned}$	Aummy P4IS，FIWm VAIUE）	TAPEAEEP	H－sない里
リ＊ 9715.90 m	－	－3nnna	ne730	－ 0 ¢ 22
nvec sts．00s	0	－1721m	－2nnin	A．5nnd

192

TABLE C－2

REGRESSION EQUATIONS USED FOR IMPUTATION OF BEST VALUES TO APPLICANT DATA BASE

Independent Students

tMeOme level	－GI	$\begin{aligned} & \text { numer } \\ & \text { lAEI) } \end{aligned}$	$\begin{aligned} & \text { NJATAIE } \\ & \text { INCOME } \end{aligned}$	$\begin{aligned} & \text { rays } \\ & 0.10 \end{aligned}$	Al心－1
J0 TO 12.010	A．an933	－324n． 2	2．1302m	4.22102	－1019．0
\＄2．000 1）\＄8．000	－n．n54io	1433.9	－n． 1000°	1．52232	－ 3 An． 8
A.000 risa,gon	9.71572	$-1231,3$	$n .38502$	1.41700	－A1？．0
JUER 88，000	$1 . n 0132$	$.4612 .0$	0．19610	n．23140	－nnの．a
TVEAME ：EVEL	の11mも	yer	Sumer	IvTFurE®	O－SII．40E
	$(P A X)$	A SSETS	Passetsi		
J．PU \＆ 2.000	－774．59	：． 35909	－0i0．05	0180.62	9．2319
32.000 is B10．000	1314.99	$\text {). } 9997 \mathrm{ml}$	－577．00	1202.64	$00^{410} 0$
sa.000 ril 6a,900	352.04	9.213957	－322．28	$2 n 7 \pi .1^{n}$	n．85nm－
JYEA SE，Von	－409．do	－n． 024300	－206．47	2930．00	n．ters

INETAE GEVEL	Aft		mintax Pveñe	$\begin{aligned} & \text { FAmILY } \\ & \text { CIZE } \end{aligned}$	
10 TJ 22.000	J． 32000	．903．	0.98930	195． 30	
12，000 17 14．000	－1， 19.973	－410．9	$9.9 n n 01$	－314．d3	
84．voul？84．d0？	0.10297	220.5	1．72100	191．05	
Juen shodris	－．．．uçat	－1124．0	1.11940	－1n？．8n	
INEIME LEVEL		0.89	numer		Ques．1906
	Papray inel	－995P3	（A9sETg）		
10 rn（2，）n！	－91．61	$\cdots 1139044$	－9A3．09	1280.86	9．2480
8P．uvn 55 8．s．inn	50.00	$\therefore 1171750$	00.33	190100	9.7801
－4．0）	124．91	1． 10.1000	－192．57	1223.11	n． 9004
JvE日＊＊．0，	－69．91	－1）． 3174200	－319．13	4222．4	n．9．98

：HCIME GFVEL	－ 0.1	のハーワ		＂है		
		(: il)	VA: IE	ATAETQ	PASQETA	
J0 17800．0）	－4．0311	20535．：	1．00100	－n．0809	－5024．0	
6．1．0．s 1 10．6A）	－．．9850	3．57．0	1．70305	－ 10010	－9a90．a	
Jvew ba，刀u．	1．3404	c95．＂	1．30854	9.10105	－134．9．7	3011．n5 n．3）n9

$$
1+3
$$

BEST COPv AVAILABLE

table C－2

REGRESSION EQUATIONS USED FOR IMPUTATION OF BEST VALUES TO APPLICANT DATA BASE

Independent Students

114

＇FOGALEAPVADIAHIEETIIPPII，

PIPPilv PAFGEEB
－$-9+1845$
ALLFども・
1．15450
24．3416 n．4219

TABLE C-2

REGRESSION EQUATIOFIS USED FOR IMPUTATION OF BEST VALUES TO APPLICANT DATA BASE

Independent Sudents

TABLE C－2

REGRESSITN EQUATIONS USED FOR IMPUTATION of best values to applicant data base

Independent Students

P＊CUME LEVEL	gnicatrinai mir．vef．	Arif		$\begin{aligned} & \because E \% \\ & \text { 49eret } \end{aligned}$
	า．：28904	0.74010	－373．3	－1． 2052
	$\checkmark .177079$	－ $0.6359 n$	19AR．A	－1．2111
＇IvFA Statou	－ 1.030327	1．1705	－A75a．	－9．184
tverme Lesel	＇100\％	nuruy	IAPERCEP	H－an：lant
	（198P）	1431		
U＊1 13．1．1	－217．00	－1412．9	23Ma ${ }^{\text {an }}$	$\cdots .13 \pm 4$
13．7）0 P1．4．，M．	208．？	－ $\begin{aligned} & 1.1\end{aligned}$	4949	＂．？90：
	1305．4\％	－2a7n．a	4550．：	1．${ }^{\text {d }}$（a

ElいCATlいまal
VA WE．FFIPG

4 P

1．．＇OMA94d
テールーロ （A98E S
n． $00900+2$
のוルuy
（va）
－いのローク2
022.320

$\begin{aligned} & \text { Dlimery } \\ & \text { (Arit) } \end{aligned}$	$\begin{aligned} & \text { VFY } \\ & \text { ASQPG } \end{aligned}$
1400．29	
PAPEPRFEP	Hespliame
470.617	－． 9741

196

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STAGE TE AND APPLICANT DATA BASES

Dependent Students

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STAGE III AND APPLICANT DATA BASES

Deperdent Students

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VAlUES FROM THE STAGE IE AND APPLICANT DATA BASES

Dependent Students

TABLE Co

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STAGE In AND APPLICANT DATA BASES

Dependent Students

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STAGE II AND APPLICANT DATA BASES

Independent Students

IWCIOME LEVEL	Qlars 111日e..intell	$\begin{aligned} & \text { srape III } \\ & \text { hf.st } \end{aligned}$	sPace Ill impliven	applirant deppilifen	APPLICANY IMPIITE
S2.0ne UN LESS 32.001 - se.nnn 84,001 - An.0ne OVER S4,000	$\begin{array}{r} 010.0 \\ 1726.3 \\ 3092 . \\ 10103.9 \end{array}$	$\begin{array}{r} 989.3 \\ 1795.8 \\ \text { g979.3 } \\ \text { 10nny.n } \end{array}$	$\begin{array}{r} 961.0 \\ 1793.0 \\ 3079.5 \\ 10009.1 \end{array}$	$\begin{array}{r} 27 n . ? \\ \text { i552.8 } \\ 10 n 5.3 \\ 193 n 9.1 \end{array}$	$\begin{array}{r} 101.9 \\ 1068.9 \\ 1113.9 \\ 19998.9 \end{array}$
Imerime level	RIACE III atelinitn	$\begin{aligned} & \text { efasp ili } \\ & \text { megt } \end{aligned}$	etabe iti IMPIIFEn	APPLPCANT mepniten	APPLICANY impure
	$\begin{aligned} & 102.74 \\ & 1045.07 \\ & 1021.18 \\ & 1172.69 \end{aligned}$	$\begin{aligned} & 365.26 \\ & 1818.12 \\ & 1000.07 \\ & 1510.02 \end{aligned}$	$\begin{aligned} & 369.99 \\ & 1216.97 \\ & 18 n 8.27 \\ & 1513.38 \end{aligned}$	$\begin{aligned} & 2 n 7: 96 \\ & 1301.82 \\ & 1018.91 \\ & 1367.54 \end{aligned}$	$\begin{aligned} & 990.38 \\ & \text { is81.n1 } \\ & \text { i994.ne } \\ & \text { isss. } \end{aligned}$
IMcume Level	arane ili REPNRTM	$\begin{aligned} & \text { spane ili } \\ & \text { negt } \end{aligned}$	grase ili impuren	applif.amp GFPOPRE	APPLICAMT TMPIIEE
24.000 UM LESs 00.001 - Bn.ONn oven 8n.000	$\begin{aligned} & 300.96 \\ & 1732.94 \\ & 3>06.04 \end{aligned}$	$\begin{aligned} & 940 . n 1 \\ & 1126.30 \\ & 3320 . R 1 \end{aligned}$	$\begin{array}{r} 099.20 \\ 1929.90 \\ 3989.30 \end{array}$	$\begin{aligned} & \text { anajige } \\ & \text { I2naige } \\ & \text { onan.inn } \end{aligned}$	$\begin{aligned} & 58 h_{i} \\ & \text { is80. } \\ & 0670.30 \end{aligned}$
fa itfmatares paio					
IMCOME Level	stage ili me PIm TED	$\begin{aligned} & \text { stage III } \\ & \text { af: } 07 \end{aligned}$	stape ill IMPUREN	APPLICANY mFenimen	applicant impuren
OA.OUO UN LFAR oven 10,040	$\begin{array}{r} 26.767 \\ 380.059 \end{array}$	$\begin{array}{r} 20.30 n \\ 343.2040 \end{array}$	$\begin{array}{r} 29 . n 90 \\ \text { sas.7an } \end{array}$	$\begin{array}{r} 98.69 \\ 2132.35 \end{array}$	$\begin{array}{r} 58.67 \\ 2036.01 \end{array}$
ERIC		111			

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STAGE III AND APPLICANT DATA BASES

Independent Students

DATA ITFMAROUUAF'S FABNEO PNCIM

InCome level	niane lil MEDOATEN	$\begin{aligned} & \text { ArAOE III } \\ & \text { nEAf } \end{aligned}$	SIACE III I4PIIR	APPLICANT pepmerpo	aPPLICANT IMPUREO
abl levele	1043.60	1136.75	1156.32	1009.38	-32A.22

Income livil	sfant III Wepinigh	$\begin{aligned} & \text { Efage Iti } \\ & \text { negi } \end{aligned}$	stagf 111 IMPIIRE	APPLICANT mFPDEPET	applicamt Impureo
Abb' levele	$0 \cdot .185$	02. 3650	90:0223	-45.239	064.990
beta ilemacash a					
IMCume Levil	-19a. 111 WFDiNifll	$\begin{aligned} & \text { siar.f til } \\ & \text { MFsi } \end{aligned}$	arafir ill IMPIIEN	ADDI ICANT WFPIISTEN	APDL PTAMT implifed
22,0nn IH IF49	1990.14	$17 n \cdot 23 n$	178.n79	10n.n71	133.021
82,0nl - 19.non	159.715	150.0n9	$198.95 A$ 169.049	179.101 $191.3 A 6$	133.036 208.635
10.001 - 30.800 nven snogot	294.0n7	296.516	250.n23	-nvonna	- AO.0.t

TABLE C-3

MEAN VALUES OF BEST, IMPUTED, AND REPORTED VALUES FROM THE STACE II AND APPLICANT DATA BASES

Independent Students

AEPENDIXD

$$
114
$$

ERIC
'TABLE D-1

COMPARISON OP NUMBER OF RECIPIENTS AND PROGRAM COSTS FOR THE 1982-83 PELL PROCRAM YEAR UNDER THE
 FULL AND FIVE DATA ELEMENT PORMULAE USING STANDARD REPORTED DATA WITHOUT TAXATION RATE ADJUSTMENTS

Pull Pertmela
eorimareo

Pive Eloment Parmela
Fgitmated rimplisen frefrifn amann
prorfin \boldsymbol{n} prial monepam cons MIIMAF IIF IfF Intal -EPIPIENIS WFTPIPNTS

Piral

8498905
100 20006sile
140
Inの
Thisal Tmpimp

115

116
BESI COPY AVALLABLE

TABLE D-2

COMPARESON OP NUMAER OP RECIPTRNTS AND PROGRAM COSTS
 FOR TITE 1982-B3 PELL PROCRAM YEAR UNDER THE PULL AND FIVE DATA ELEMENT PORMULAE USING ERROR PREE DATA TITHOUT TAXATION RATE ADJUSTMENTS

Pull Formula
Pive Element Pormula

[^0]: **)
 *
 *
 Reproductions supplied by EDRS are the best that can be made * from the original document.

[^1]: ${ }^{1}$ Compilation of Quality Control Findings: Information on Policy Options, March 1983.
 ${ }^{2}$ Title IV Quality Control Policy Option: Preliminary Analysis of a Simulated Five Data Element Pel! Grant Eligibility Formula, September 1984.

[^2]: ${ }^{3}$ Quality in the Pell Grant Delivery System, Volume 2, Corrective Actions, April 1984, pp. 4-8 through 4-13.

[^3]: ${ }^{4}$ Technical Appendix A contains descriptions of the ED model, applicant data base, and the full and five element formulae simulations.

[^4]: ${ }^{5}$ Two exceptions are Farnily Size and Marital Status which affect multiple formula elements.

[^5]: ${ }_{2}^{1}$ Baseline Budget is $\$ 2,488$ million.
 ${ }^{2}$ The Pell formula no longer contains social security education benefits. It is not possible in this analysis to estimate with any accuracy the impact of eliminating this data element from different formulae. However, the effects are not likely to çhallenge the findings of this analysis.
 ${ }^{3}$ Difference due to rounding.

[^6]: ${ }^{6}$ The range selected for most data elements was the 90 th and 95 th percentile. This measures the maximum impact of the data element on the award while avoiding biasing the measure by including outliers. For several data items (elementary and secondary tuition, net business/farm equity, net investment equity and veteran's educational benefits) the values between the 90 th and 95 th percentile were zero, consequently we measured award changes for values between the 95 th and 99 th percentile.

[^7]: ${ }^{1}$ All values are in the 90 th to 95 th percentile range unless otherwise noted.
 ${ }^{2}$ These values are in the 95 th to 99 th percentile range because the value of the 90 th percentile was zero.

[^8]: Prospective items; evaluation in future years.

[^9]: ${ }^{7}$ More information conceraing the effects of taxation rates can be obtained by consulting The Pell Grant Formula, 1982-83, U.S. Department of Education, Office of Stucient Financial Aszistance.

[^10]: ""Best values," as used in this context, refers to application data values that have been determined to be correct through a variety of data collection techniques used in the Pell Grant Quality Control project.

[^11]: *The reader is cautioned not to confuse the concept of donor and recipient used here with the Pell Grant Recipient file and the Pell Grant Applicant file.

