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Building a Test Using Items

that Requite More than One Skill

to Determine a Correct Answer

Many, if not all, test items require more than one skill to

determine the correct answer. For example, many mathematics

problems require some verbal skill to determine what is required

by the problem and mathematical skill to solve the problem. Even

vocabulary items might require knowledge in several content

domains to determine the correct answer choice. Yet, tests are

constructed regularly from items that require more than one skill

and examinees are rank ordered on the scores that are a function

of combinations of these skills. The more complex the function of

the skills required to relate the skills to the total score on the

test, the more difficult is the task of interpreting the score.

With the development of item response theory (IRT) (Birnbaum,

1968; Rasch, 1960; Lord, 1980), the problEt- of analyzing the

results of tests composed of items chat requite more than one

skill for a correct response became more critical because most 'RI'

models assume that the construct being measured is

unidimensional. However, the concept of unidimensionality

required by IRT is not the same as the commonly held conception of

unidimensionality. The IRT definition states that a test is

unidimensional if all persons with the sam,e estimate of ability
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ha?e the same probability of a correct response for each item.

This definition does not require that the estimate of ability be a

function of a single psychological trait or construct. As an

alternative, each item could require the same combination of

traits or constructs. Thus, from as IRT perspective, a test would

be unidimensional even though the items were very complex in terms

of the skills required for solution as long as all of the items

required the same combination of skills.

This paper formalizes the above concept of unidimensionality

by considering the relationship between a description of a set of

test items in a multidimensional latent space and their

performan:e when considered as a unidimensional test. Based upon

the theory presented, sets of items that will function as

unidimensional tests can easily be identified using the results of

a multidimensional IRT analysis. This approach will be

demonstrated using items from a mathematics achievement test.

4
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Theoretical Background

The basic assumption underlying the approacn taken in this

paper is that each test item is best at measuring a specific

combination of skills. One test item may require a lot of

mathematical computation skill and only a little verbal reasoning

skill, while another item may require just the opposite

combination. The particular combination of skills required for

the solution of an item can be determined by computing the

multidimensional item difficulty (MID) of the item (Reckase,

1985). This statistic indicates the combination of skills that

form a multidimensional space for which the test item provides the

best discrimination.

MID is described by two pieces of information: the direction

from the origin of the multidimensional space to the point in the

space where the item is most discriminating, and the distance from

the origin to that point. For example, suppose that the

relationship between the skills in a twodimensional space and the

probability of a correct response on a test item is given by the

surface shown in Figure la. This item is most discriminating in a

direction of 34.7° from the 0
1

axis. The distance to the most

discriminating point in that direction is 1.58 units. This

information is shown graphically in Figure lb.
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Insert Figure 1 about here

If the relationship between the skills in the

multidimensional space and the probability of correct response to

a test item can be represented by the multidime sional extension

of the twcparameter logistic (M2PL) model, the MID information

can be obtained from the equation presented in Reckase (1985). If

the M2PL model is given in the form

a'.. 8. + d.
1 1 1

P (x1j. . = 1 1 a., d., 0j ) e
'..

(1)
1 1 a 0. + d.

1+ e 1 j 1

wriere x-
1j

is the 0, 1 score on item i by person ..j,

na.
1

is a vector of discrimination parameters, (i1, 9--i2,

9-'in)9

d
1
is a scalar value related to the item difficulty,

and 8. is a vector of ability parameters, then the direction of
J

the item in terms of direction cosines is

cos aik =

a.
ik

n

E a?
ik

k=1

6

1/2

(2)
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D.
1

n
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(3)

where n is the number of dimensions. For the example given in

Figure 1, ail = 1.3, ail = .9, di = -1.0,

cos ail
1=.822,cosa.2

=.569, and D. ,, 1.58.
-1

When items have the same direction of maximum discrimination

in the multidimensional space, lines of equal probability on the

item characteristics surfaces will be parallel to each other.

This implies that regions can be defined in the space such that

all persons in the region have the same probabilities of correct

response to all the items. If all persons in one of these "iso-

probability" regions are assigned the same ability estimate, the

set of items meet the def'nition of unidimensionality given by

Lord and Novick (1968). Thus, a set of items with the same

direction will function as if they were unidimensional even though

they may require more than one skill to obtain a correct

solution. Items that have different directions will form a

multidimensional set from the IRT perspective.

In order to test this theory, a set of items that require

more than one skill for a correct response was analyzed using an

approach based on the M2PL model and the MID statistics. Tnis

7
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analysis and the results are described in the next two sections of

this paper.

Analysis of the ACT Mathematics Usage Test

The procedure to be followed to determine whether selecting

items on the basis of the MID would yield unidimunsional subsets

of items was to analyze a test to estimate the parameters of the

M2PL model, compute the MID estimates for each item, sort the

items according to direction, and then analyze the item sets using

the three-parameter logistic (3PL) model. The results of the 3PL

analysis would then be studied to determine whether they supported

the conclusion that unidimensioaal item sets had been formed.

The test data used for these analyses were obtained from an

administration of the ACT Mathematics Usage Test in February

1983. A systematic sample of responses from 1,000 students was

selected from the total number of students who took the test at

that time. The ACT Assessment Mathematics Usage Test is a 40

item, multiple choice measure of general achievement in high

school mathematics. A more complete description of the test is

given in Figure 2.

Insert Figure 2 about here

8
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The estimates of the M2PL item parameters for the items on

the test were determined using the MAXLOG program (McKinley &

Reckase, 1983). This program estimates the parameters using a

joint maximum likelihood procedure. For this demonst- ,zion, a

two-dimensional solution was used so that the results could be

readily represented graphically. The results of this analysis are

given in Table 1.

Insert Tal,le 1 about here

The parameter estimates from the M2PL model were used to

compute the direction and distance for each of the items on the

test. These statistics are also presented in Table 1. The

directions and distances for the items are represented as vectors

in Figure 3. Because of the overlap of the vectors near the

origin, the items located within ±.5 on each dimension are shown

in Figure 3b while the rest of the items are shown in Figure 3a.

Insert Figure 3 about here

Four sets of items were selected from the 40 items on the ACT

Mathematics Usage Test for this study. Set 1 included all items

within 10° of the 10° direction from Dimension 1. Set 2 included

all items within 10° of the 45° direction from Dimension 1. Set 3

9
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included all items within 10° of the 70° directLon from Dimension

1. Set 4 included items that were approximately evenly spaced

between 00 and 90° from Dimension 1. Set 4 was included as a part

of this study to serve as a basis for comparison for the other

item sets since it is a truly multidimensional item set. An

example item from each of Sets 1, 2, and 3 is given in Figure 4.

Insert Figure 4 about here

Table 2 presents a summary of these four sets of items. The

mean and standard deviation of the directions for each item set is

given in the table along with the number of items in each set.

Each item set is shown graphically in Figure 5. Note that item

Sets 2 and 4 have about the same mean direction, but Set 4 has a

much larger standard deviation.

Insert Table 2 about here

Insert Figure 5 about here

Figures 6a, 6b, 6c, and 6d show the characteristics of the

four item sets in another way. The figures show the amount of

10
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information provided by each item set in directions tnat are

incremented by 10°. Item Set 1 provides most of its information

in a direction parallel to Dimensioc 1. Item Set 2 provides mo,,t

information at a 45° angle. This angle is equivalent to an

equally weighted composite of abilities. Item Set 3 provides most

information in a direction slightly clockwise from 90°. Thus, the

information tends to be concentrated along Dimension 2. The

amount of information provided by item Set 4 varies with the

position in the 8-space. In the region around (0,-3) the

information is greatest parallel to Dimension 1. At (2,1) the

information is greatest along Dimension 2. At (-1,1) the

information is spread over all directions. This information

structure supports the multidimensional nature of this set of

items.

Insert Figure 6 about here

Each of these four item sets was analyzed using the LOG1ST 5

(Wingersky, Barton, & Lord, 1982) 3PL estimation program. There

was some concern about using LOGIST for this purpose since some of

the item sets are fairly small (Set 3 has eight items). However,

the estimates of the parameters for all four item sets seem to

have converged properly, so the results of the program were used

11
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in the study. Still, the small number of items should be

considered when interpreting the results.

For each of the item sets, the item parameter estimates were

us2d to test the goodness of fit of the 3PL model to the data and

to obtain ability parameter estimate;. The ability parameter

estimates were then correlated to determine whether they matched

the pattern predicted by the average direction of the item set in

the 0-space. The a-parameter estimates were compared to the slope

of the item characteristic surface in the average direction of

item set.

Results

Goodness of Fit

The 3PL item parameter estimates and the results of Bock's

(1972) goodness of fit chi-square test for each item set are

presented in Table 3. Notice that Secs 1 and 2 were fit very well

by the 3PL model. If a .01 level of significance is used to

reject the hypothesis of fit to compensate for the large sample

size and the multiple significance tests, no items are rejected

for Set 1 and three items are rejected for Set 2. Item Sets 3 and

4 showed serious deviations from fit. In both cases the 3PL model

was rejected for most of the items in the itiem sets.

12
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Insert Table 3 about here

Ability Estimates

For each of the sets of items, an al _lity estimate was

computed for each person. A number-correct score was also

computed for each item set as an alternative ability estimate,

since the IRT-based estimates could be unstable for the small item

sets. The estimates for the two dimensions in the

multidimensional latent space were also obtained from the MAXLOG

program. The intercorrelations between these ability estimates

are given in Table 4.

Insert Table 4 about here

A comparison of the correlations between the ability

estimates obtained from the first three item sets shows that the

ranking of these correlations is exactly what would be expected

based on the orientation of those item sets in the

multidimensional space. A simplex pattern is evident with the

item sets that have adjacent directions having the higher

correlations. This is true for both the raw scores aid the 0-

estimates.

13
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The correlations between the estimates from the first three

item sets and the dimensions of the multidimensional space also

have the predicted pattern of relationships. Estimates from Set 1

correlate most highly with Dimension 1, Set 3 correlates most

highly with Dimension 2, but at a lower level than Set 1 with

Dimension 1, and Set 2 correlates with both dimensions. The raw

scores have higher rorrelations with the dimensions than the 6-

estimates suggesting possible estimation problems occurring in he

application of LOGIST to the small item sets.

The ability estimates from Set 4 correlate with the estimates

from the other three sets, as they should since Set 4 tends to

measure in all directions in the space. One anomaly in the

correlations with the Set 4 estimates is present, however. The

Set 4 estimates correlated .50 with Dimension 1 and only .08 with

Dimension 2. A possible explanation of this result might be that

the items measuring Dimension 2 in Set 4 were fairly difficult and

did not differentiate among individuals in the sample (see Figure

4d). Further research will be needed to check this hypothesis.

Item Discrimination

If the unidimensional ability estimate scale obtained from

LOGIST is a linear function of the dimensions in the ability

space, then the a-parameter estimates from the unidimensional

analysis should be related to the slope of the item response

surface along the unidimensional scale. To determine if this were
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so, the correlation was computed between the a-parameter estimates

and the slope estimates for each item in the average direction for

each item set. These correlations are given in Table 5 along with

the correlation with the a-parameter estimates from the

multidimensional model.

Inser,: Table 5 about here

Only for Set 1 was the correlation between the a-parameter

estimates and the slope estimates higher than the correlation with

the M2PL a-parameter estimates. This implies that either the

unidimensional scale is not a linear function of the dimensions in

the multidimensional space, the estimates of the parameters are

unstable, or the M2PL model is inappropriate.

To further probe the discrimination of the items in the sets,

the average point-biserial correlation between the item responses

in a set and the score on the item set minus the item in question

was computed. These average correlations are given in Table 6.

For the first two item sets, the mean point-biserial was

significantly higher than for the last two sets. Set 4 would be

expected to have a lower average discrimination because it is very

heterogenous in content. Set 3, however, should have a higher

average point-biserial. The observed findings could be a result

of the difficulty of Set 3. The items in that set have an average

15
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p-value of .28. This is substantially harder than the ocher

sets. This set of items appears to be too difficult for many of

the examinees in the sample.

Insert Table 6 about here

Discussion

The purpose of this paper has been to demonstrate the

relationship between the concept of unidimensionality and

direction of an item in a multidimensional space. The basic

premise is that if items that measure in the same direction are

combined to form a test, that test will meet the IRT requirements

of unidimensionality. This will be true even if the items

measuring in the same direction measure more than one

psychological construct.

In order to demonstrate this method for forming sets of items

that are unidimensional in the IRT sense, a form of the ACT

Mathematics Usage Test was analyzed using the multidimensional

extension of the two-parameter logistic model to determine the

direction for each item using the multidimensional difficulty

formulated by Reckase (1985). Using the direction, three

unidimensional set of items were formed and one multidimensional

item set. The performance of 1,000 examinees on these item sets

was analyzed using LOCIST 5 to determine the fit of the three-

16
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parameter logistic model to the data and the relationship of the

unidimensional ability estimates and item parameter estimates to

the multidimensional counterparts.

The results of the analyses showed that two of the three

unidimensional item sets yielded responses that were consistent

with a unidimensionality assumption: the sets were fit well by a

unidimensional model, the correlations with each other and the

dimensions of the space had the predicted pattern, and

discrimination statistics suggested a homogeneous item set.

Item Set 3 did not fit the pattern. However, this item set

was both short and difficult. The results for that set could

possibly be explained by these factors. The multidimensional item

set yielded results that matched the predicted characteristics.

Overall, the results presented in this paper strongly support

the conception of unidimensionality suggested by a common

direction in the multidimensional space for a set of items and the

use of multidimensional difficulty statistics in forming

unidimensional item sets.

Further research is still needed, however. The M2PL model,

which does not have a lower asymptote parameter, was used in this

paper. A multidimensional model with a lower asymptote parameter

is needed for use with multiple choice items. Estimation

procedures for the parameters of such a model are available in

programs like TESTFACT (Wilson, Wood & Gibbons, 1984),

17
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but their usefulness for computing multidimensional difficulty has

not yet been determined.

The sample size requirements for multidimensional estimation

also need to be determined and the sensitivity of the

unidimensional procedures to spread in direction needs to be

studied. Still, the use of multidimensional difficulty to form

unidimensional item sets seems to be a very promising procedure.

18
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Table 1

Item Parameters, Directions and Distances for the Items in the

ACT Assessment Mathematics Usage Test

Item

Number

a
11 ail

d.
1

cos a.
11

cos a
1 2 ail

a.
1 2

D.
1

1 1.81 .86 1.46 .90 .43 25 65 -.73

2 1.22 .02 .17 1.00 .G2 1 89 -.14

3 1.57 .36 .67 .97 .22 13 77 -.42

4 .71 .53 .44 .80 .60 37 53 -.50

5 .86 .19 .10 .98 .21 12 78 -.11

6 1.72 .18 .44 .99 .10 6 86 -.25

7 1.86 .29 .38 .99 .]5 9 81 -.20

8 1.33 .34 .69 .97 .25 14 76 -.50

9 1.19 1.57 .17 .60 .80 53 37 -.09

10 2.00 .00 .38 1.00 .00 0 On -.19

11 .87 .00 .03 1.00 .00 0 90 -.03

12 2.00 .98 .91 .90 .44 26 64 -.41

13 1.00 .89 -.49 .75 .66 42 48 .37

14 1.22 .14 .54 .99 .11 7 83 -.44

(table continues)

21
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Item

Number

ail
a
12

D,cos ail cos ail ail
II a12 1 1

15 1.27 .47 .29 .94 .35 20 70 -.21

16 1.35 1.15 -.21 .76 .65 40 50 .12

17 1.06 .45 .08 .92 .39 23 67 -.07

18 1.92 .00 .12 1.00 .00 0 90 -.06

19 .96 .22 -.30 .97 .22 13 77 .30

20 1.20 .12 -.28 .99 .10 6 84 .23

21 1.41 .04 -.21 .99 .03 2 88 .15

22 1.54 1.79 .02 .65 .76 49 41 -.01

23 .54 .23 -.69 .92 .39 23 67 1.18

24 1.53 .48 -.83 .95 .30 17 73 .52

25 .72 .55 -.56 .79 .61 37 53 .62

26 .51 .65 -.49 .62 .79 52 38 .59

27 1.66 1.72 -.38 .69 .72 46 44 .16

28 .69 .19 -.68 .96 .27 15 75 .95

29 .88 1.12 -.91 .62 .79 52 38 .64

30 .68 1.21 -1.08 .49 .87 61 29 .78

31 .24 1.14 -.95 .21 .98 78 12 .82

(table continues)

22
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Item

Number

ail ail di cos a
il

cos ail ail ail
D.
1

32 .51 1.21 -1.00 .39 .92 67 23 .76

33 .76 .59 -.96 .79 .61 38 52 1.00

34 .01 1.94 -1.92 .01 1.00 90 0 .99

35 .39 1.77 -1.57 .22 .98 78 12 .87

36 .76 .99 -1.36 .61 .79 52 38 1.09

37 .49 1.10 -.8i .41 .91 66 24 .67

38 .29 1.10 -.99 .25 .97 75 15 .87

39 .48 1.0C -1.56 .43 .90 64 26 1.41

40 .42 .75 -1.61 .49 .87 61 29 1.87

23
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Table 2

Characteristics of Each Item Set

Average Standard Deviation Number

Item Set P Direction of Direction of Items

1 .51 7.0 ).7 14

2 .41 45.3 6.6 11

3 .28 68.8 7.2 8

4 .43 43.8 29.0 9
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Table 3

3PL Item Parameter Estimates and Goodness of Fit Statistics

for the Four Item Sets.

Item Item Parameter Estimates Goodness of Fit Statistics

Set Number a b c x 2 P

1

2

3

5

6

7

8

10

11

14

18

19

20

21

28

.65

.89

.52

1.05

1.63

.67

1.43

.43

.73

.95

.92

1.35

1.06

1.70

.12

-.25

.22

-.14

.12

-.39

-.18

.33

-.24

-.03

.97

.68

.45

1.33

.14

.13

.14

.08

.18

.14

.00

.14

.14

.03

.23

.21

.14

.24

7.75

6.58

13.65

12.35

6.70

5.16

9.01

10.20

13.99

10.30

6.11

10.08

3.45

12.54

.36

.47

.06

.09

.46

.64

.25

.18

.05

.17

.53

.18

.84

.08

25

(table continues)
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Item Item Parameter Estimates Goodness of Fit Statistics

Set Numoer a b c X2 P

2

4

9

13

16

22

25

26

27

29

33

36

.31

.74

1.51

1.66

1.61

1.20

.58

1.44

1.20

1.59

.70

-2.01

-.57

.65

.16

-.03

1.12

1.23

.18

.81

1.20

1.28

.00

.00

.20

.13

.11

".26

.23

.09

.13

.19

.07

80.38

37.94

9.65

16.09

28.61

10.63

11.87

15.90

10.58

8.95

14.47

.00

.00

.21

.02

.00

.16

.11

.03

.16

.26

.04

(table continues)
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Item Item Parameter Estimates Goodness of Fit Scatistics

Set Number a b c 2
X P

30 1.66 .42 .10 51.87 .00

31 .27 .28 .00 79.68 .00

32 .29 .33 .00 55.65 .00

3 35 1.82 .90 .16 42.52 .00

37 .57 -.05 .00 54.95 .00

38 .88 .97 .20 70.25 .00

39 1.33 1.40 _16 21.56 .00

40 2.00 1.85 .18 13.07 .07

(table continues)

27
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Item Item Parameter Estimates Goodness of Fit Statistics

Set Number a b c X2 P

2 .39 -.74 .00 66.86 .00

3 1.22 -.74 .00 94.40 .00

4 .43 1.17 .00 21.12 .00

13 2.00 .72 .20 24.31 .00

4 17 1.13 .56 .30 32.10 .00

26 1.19 .89 .21 2/.29 .00

30 1.51 1.18 .17 24.39 .00

34 2.00 1.71 .16 11.49 .12

38 2.00 1.50 .23 9.10 .25

Note: All x2 statistics have seven degrees of freedom.
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Table 4

Correlations between Ability Estimates

Ability

Estimate 1 2 3 4 5 6 7 8 9 10

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Raw Score 1

Raw Score 2

Raw Score 3

Raw Score 4

Theta 1

Theta 2

Theta 3

Theta 4

Dim 1

Dim 2

61 43

61

64

78

64

78

42

26

46

35

68

35

53

28

23

37

62

34

13

29

50

48

26

66

43

47

21

92

62

35

61

75

37

20

50

05

61

74

50

-03

42

46

08

-04

Note: Correlations are presented without the leading decimal

point. Extreme theta estimates (8 > 3, 8 < -3) have been

deleted.
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Table 5

Correlations between the Unidimensional a-Parameter Estimates and

the Slope and the Multidimensional a-Parameter Estimates

Item Multidimensional

a-Parameters

Set Slope al
a2

1 .35 .31 .10

2 .46 .58 .35

3 .11 .31 .06

4 .59 -.48 .78
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Table 6

Mean Item Discrimination Values for Each Item Set

Item Average Standard Deviation

Set r pt.bis rpt.bis

1 .39 .08

.40 .09

3 .32 .04

4 .29 .05
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Figure Captions

Figure I. Item response surface and difficulty vector for an item

with parameters ail = 1.3, ail = .9, and di = -1.0.

Figure 2. Content specifications for the ACT Mathematics Usage

Test.

Figure 3. Multidimensional difficulty vectors for the ACT

Mathematics Usage Test, Form 24B.

Figure 4. Example test items from Sets 1, 2, and 3.

Figure 5. Multidimensional item difficulty vectors for item Sets

1, 2, 3, and 4.

Figure 6. Information plots for each of the four item sets.
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FIGURE 2

ACT MATHEMATICS USAGE TEST

Description of the test. The Mathematics Usage Test is a 40-item, 50-minute test that measures the students'
mathematical reasoning ability. It emphasizes the solution of practical quantitative problems that are
encountered in many postsecondary curricula and includes a sampling of mathematical techniques covered in
high school courses. The test emphasizes quantitative reasoning, rather than memorizatirn of formulas,
knowledge of techniques, or computational skill. Each item in the test poses a question with five alternative
answers, the list of which may be "None of the above."

Content of the test. In general, the mathematical skills required for the test involve proficiencies emphasized in
high school plane geometry and first- and second-year algebra. Six types of content are included in the test.
These categories and the approximate proportion of the test devoted to each are given below.

Mathematics Content Area Proportion of Test Number of Items

a. Arithmetic and Algebraic Operations .10 4
b. Arithmetic and Algebraic Reasoning .35 14
c. Geometry .20 8
d. Intermediate Algebra .20 8
e. Number and Numeration Concepts .10 4
f. Advanced Topics .05 2

Total 1.00 40

a. Arithmetic and Algebraic Operations. The items in this category explicitly descnbe operations to be
performed by the student. The operations include manipulating and simplifying expressions containing
arithmetic or algebraic fractions, performing basic operations in polynomials, solving linear equations in one
unknown, and performing operations on signed numbers.

b. Arithmetic and Algebraic Reasoning. These word problems present practical situations in which algebraic
and/or arithmetic reasoning is required. The problems require the student to interpret the question and either
to solve the problem or to find an approach to its solution.

c. Geometry. The items in this category cover such topics as measurement of lines and plane surfaces, properties
of polygons, the Pythagorean theorem, and relationships involving circles. Both formal and applied problems
are included.

d. Intermediate Algebra. The items in this category cover such topics as dependence and variation of quantities
related by specific formulas, arithmetic and geometric series, simultaneous equations, inequalities, exponents,
radicals graphs of equations, and quadratic equations.

e. Number and Numeration Concepts. The items in this category cover such topics as rational and irrational
numbers, set properties and operations, scientific notation, prime and composite numbers, numeration
systems with bases other than 10, and absolute value.

f. Advanced Topics. The items in this category cover such topics as trigonometric functions, permuiaticns and
combinations, probability, statistics, and logic Only simple applications of the skills implied by these topics
are tested.
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: 1

10. A bread recipe calls for 2 cup of butter and 3 ji cups
of flour. Using this recipe to make enough bread for a
party, John will need 1 2 cups of butter. How many
cups of flour will he need?

F.

G. 5-1-

H. -1-127

J. 9-1-

t 2
27. Which of the following equations expresses the relation-

ship shown in the table below?

x 0 2 4 6 8 10

y 4 7 10 13 16 19

A. y = 2x
B. y= x + 4
C. y= x + 9
D. 2y= 3x+ 4
E. 2y = 3x + 8

t 3
35. In the figure below, MNIIOP and a, b, c, d, e, f, and g

are the measures, in degrees, of their respective angles.
Which of the following statements is NOT necessarily
true?

M

0

A. b = 180° d c
B. e = 180' - d c
C. a = 180° - c
D. f = 180° g
E. g = 181 - f

36
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