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Abstract

Despite known shortcomings of the procedure, exploratory

factor analysis of dichotomous test items has been limited, until

recently, to unweighted analyses of matrices of tetrachoric

correlations. Superior methods have begun to appear in the

literature, in professional symposia, and in computer programs.

This paper places these developments in a unified framework, from

a review of the classical common factor model for measured

variables through generalized least squares and marginal maximum

likelihod solutions for dichotomous data. Further extensions of

the model are also reported as work in progress.

Key words: binary variables, categorical data,

contingency tables, covariance structures,

factor analysis, item res)or,:a theory,

latent structure, tetrachoric correlations
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Recent Developments in the Factor

Analysis of Categorical Variables

1. Introduction

Under classical Thurstonian factor analysis (Thurstore,

1947), values of p measured variables are modeled as linear

functions of some smaller number of m continuous latent variables,

the "factors" that account for the correlations among r..e observed

variables. The usual objectives in factor analysis are to

determine the number of factors that provide a satisfactory fit to

the observed correlation matrix and to estimate the regression

coefficients of the observed variables on the factors--all this,

it is hoped, leading to a more parsimonious and meaningful

explication of the patterns of interrelationship among the

observed variables.

Recent interest in item response theoretical (IRT) methods of

constructing and scoring tests (see, for example, Hambleton &

Cook, 1977; Lord, 1980; Wright & Stone, 1979) has led to a renewed

interest in the extension of classical factor analysis to

'4chotomous test items. In the extension, the measured variables

of the classical formulation now play the role of latent response

processes to each of the items; a correct response is observed

only when the response process variable arising in the

confrontation of a given examinee with a given item exceeds a

latent threshold characterizing the item. (Modifications will
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also be introduced to account for the possibility of random correct

responses, as can occur when the test directions encourage

examinees to guess on multiplechoice items.) While it is certain

that not only the unidimensional models posited in most

applications of IRT but the multidimensional models of factor

analysts are strictly incorrect in any given application, a number

of benefits may accrue nonetheless. It is not unreasonable to

summarize into a single score, responses to a set of items fairly

well explained by a single dominant factor, for example; but the

appearance of clusters of items separating clearly into multiple

factors suggests a need to consider reporting separate subtests

scores.
1

Early work along these lines proceeded by first obtaining the

matrix of tetrachoric correlations among the test responses, an

approximation of the correlation matrix among the latent response

proceses among the various items under the assumption that they

follow a multivariate normal distribution. Those attempts ran into

difficulties, due to the occasional values of +1 and 1 that

result, the fact that matrices of sample tetrachorics are not

necessarily positive definite, the lack of statistical tests for

the number of factors, and the failure to account for the chance

successes that occur with multiplechoice items.

This paper reviews some recent work in factor analysis of

categorical variables. Emphasis is on the generalized least

7
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squares (GLS) solu,:ion developed by Christoffersson (1975) and

Muthee (1978) and the maximum likelihood approach introduced by

Bock and Aitkin (1981). The section on maximum likelihood

solution and its extensions draws upon recent work reporter in a

symposium at the 1984 meeting of the Psychometric Society,

including papers by Bock (1984), Gibbons (1984a), Muraki (1984),

and MuthO (1984a). We focus for the most part on extensions of

the classical model, especially the normal case, for convenience

of presentation. Many of the recent developments have taken

place within this context, and it provides a unified framework of

exposition against which other models may be introduced in

contrast.

Section 2 provides a brief review of factor analysis of

measured variables, setting up notation and formulas in this more

familiar context. Section 3 introduces the common factor model

for dichotomous items. Sections 4 and 5 discuss estimation of

factor loadings from matrices of tetrachoric correlations,

unweighted (ULS) and weighted (GLS) respectively. Section 6

discusses a full information solution based on the method of

maximum likelihood. Finally, section 7 outlines a number of

extensions to the basic model currently under investiga tion.

These include Bayesian priors on unique variances, confirmatory

factor analysis, comparisons of factor structures between groups,
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and relaxation of assumptions about r:Isponee functions and

popualtion distributions.

2. Factor Analysis of Measured Variables

Factor analysis, at its heart, is a method of data explanation

through modelfitting. The matrix of covariances or correlations

among a large number of variables y = (yi,...,yp) is the object

of analysis; it is hypothesized that the interrelationships

among the variables can be accounted for by a linear multiple

regression model, with the y's as dependent variables. The

distinguishing feature of factor analysis is that the predictors,

6 'm (81,
' m

) are not observed but must be inferred from the

data. In this section, we review the basic models and procedures

associated with factcr analysis of measured variables. (For

readable introductions to the concepts of factor analysis, see

Harman (1976), JOreskog (1979), and Lawley & Maxwell (1971).)

2.1 The Common Factor Model

The classical factor analysis model for measured variables

assumes an mdimensional latent variable 8 = (81,...,8m) in a

population of examinees. Without loss of generality, 8 is assumed

to have mean O. Observations on a random sample of N examinees,

however, consist not of values of 8 but of values of p manifest

variables y = (yi,...,y ), where p > m. It is assumed that y

depends stochastically upon 8 through the following system of

linear equations:
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7

(2.1)

A is typically referred to as the matrix of factor loadings. Let

represent the covariance matrix of 0 and let f represent the

covariance matrix of the residuals e. The covariance matrix E of y

is then given by

E AAA' + T
MI.*/

Under the Thurstonian model, the residuals are assumed to be

uncorrelated, and the factor loadings and the factor covariance

matrix account entirely for the linear relationships among the

manifest variables. The elements of the diagonal matrix T are

typically referred to as the unique variances of the y's.

10
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After incorporating constraints necessary to make the to-l_el

identified (see Section 2.2), it is possible to fit a given E with

respect to A and T without additional assumptions about the

distributions of y, e, or e (see for example, Harman (1976) and

Thurstone (1947)). In order to facilitate the transition to the

discrete case, however, we shall introduce some distributional

assumptions and restrict consideration to statistical estimation

procedures. Suppose the residuals in Equation 2.1 are also assumed

to fellow a multivariate normal distribution; e MVN(0,T). The

The distribution of y, conditional on e, or for a specified

examinee with 6 0 may be inferred as

(y16 A,T) MVN(A6 T) .

This is the conditional distribution of y.

Assuming further that 6 - MVN(0,0), we may derive the

marginal distribution of y, or the distribution of y from an

(2.2)

examinee selected at random, by integrating Equation 2.2 over the

examines population:

p(yjA,T = I p(yle ,A ,1') p(9 NI)) de (2.3)

Since both densities under the integral are normal, the
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integration can be carrici out explicitly. We find that

y MVN(0,E) (2.4)

where again

E a A0A1 + T (2.5)

2.2 Parameter Estimation

The likelihood function for the responses of a random sample

of N examinees under Equation 2.4 is given by

N
exp(-yiE-Iyi/2)

L(y
'

.'.
'

y
N
1A,O,f) a n

ial (21)P/210 1/2
(2.6)

Maximizing Equation 2.6 with respect to the parameter matrices

A, 0, and Y proceeds by taking the log of Equation 2.6,

differentiating with respect to each parameter, equating the

results to zero, then finding parameter values that satisfy these

so-called likelihood equations. Unique estimates of the parameters

do not exist, however, unless additional side restrictions are

imposed along with Equation 2.6 in order to set the scales and

12
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orientations of the latent e's. It is typical to require that

0 = I, the identify matrix of order m, and, in maximum
m

likelihood estimation, that A'T IA be diag(

The maximum likelihood (ML) estimation procedure described in

the preceeding paragraph takes the form of minimizing a fitting

function that is proportional to the log likelihood, namely

F = - [trCE
-1

S) - loglE Sil
I,

2
(2.7)

where S is the observed correlation matrix among the y's. It is

important to note that the product over N examinees that appears

it the likelihood simplifies down to expressions that involve only

a summary of the response vectors, in terms of the observed

covariance matrix. In other words, fully efficient estimates of

A and T can be obtained by utilizing oily the p(p + 1)/2 elements

of S, and that no information is lost by collapsing over the

response patterns of N examinees, no matte:: how large N may be

compared to p(p + 1)/2.

For later reference, we also mention two additional methods

of estimating A and T. Both proceed by making the fitted E, or

the function of A, 0, and V given in Equation 2.5, close to S in

some sense. Let 'o' denote the "matrix stacking" operator, which

13
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rewrites a matrix X = (x
1
x
2

x
.m

) as the column vector
.

'

(x'
1

x'
2

x')'. The fitting methods are unweishted least squares".n
(ULS), which minimizes

F = (S° - E ° )'(S° - E°) (2.8)

or the component-by-component sums of squared differences between

the elements of S and E; and generalized least squares (GLS), which

minimizes

(S°
o 1 o o

F (S - E (S ) ,

or the sums of squared differences between elements of S and I.

but weL4,ed in a matter than takes into account the precision and

the possibility of correlated errors in the estimation of S .
eV

In principle, the correct weight matrix required for a rigorous

GLS solution isW=ExEwherexrepresents the Kronecker or

direct product of matrices. In practice, the consistent estimator

S x S is used.

For formal justification and computational details on each of

three fitting methods, the reader is referred to Anderson (1959),

Browne (1'2,4/1977), JOreskog (1967, 1977), Joreskog and

14
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Goldberger (1972), and Lawley and Maxwell (1971). We merely

mention a number of properties that are relevant to our

presentation:

1. All three methods provide consistent estimates of A and T
ea,

under the assumptions noted at the beginning of this

section.

2. Both ML and GLS require positive definite matrices S;

ULS does not.

3. ML and GLS provide large-sample chi-square tests of

model fit. Moreover, the difference between the chi-

squares of nested models (e.g., a three-factor model

versus a two-factor model) itself follows a chi-square

distribution, with degrees of freedom equal to the

number of additional parameters estimated in the less

restrictive model, when the more restrictive model is

correct. Thus, rigorous tests for the number of factors

are available.

2.3 Rotation of a Solution

The solution provided by any of these procedures is

unique but determined in part by the arbitrary imposition of

rotational constraints; I.e., AT
-1

A' I in GLS and ML, AA' . I

in ULS, and a I in all three. It is easily seen that infinitely

many other solutions for A and (I) would combine through

Equation 2.5 to produce the same E. Let A be a square matrix of

15
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full rank m, with normalized columns. If E = A4A' + T, then it is

also ,:rue that E = Alit*A*' + f, where A* = AA and 4* =a 14A' -1.

Various choices of A, though leaving the factor solution essentially

unchanged in terms of model fit, can produce patterns of factor

loadings that are easier to scan visually or to interpret

substantively. The process of obtaining values of A* and 4* is

called factor rotation. Attention may be restricted to those A's

that keep off-diagonal elements of 4 at zero (orthogonal rotations)

or those that do not (oblique rotations). (See Harman (1976) and

Thurstone (1947) for lucid explanations of rotation.)

2.4 Heywood Cases

It is possible to construct correlation matrices that conform to

the common factor model, but for which one or more unique variances

take the value of zero (Heywood, 1931). Zero uniquenesses correspond

to measured variables falling completely within the factor space,

or being explained perfectly by the latent variables, without

measurement error at all. Negative uniquenesses are not defined

within the usual context. Solutions with nonpositive uniqueness

not generally palatable in practice.

Two approaches to dealing with these so-call6d Heywood

solutions have been proposed in the literature. One ts to allow

such solutions, with the nonpositive uniqueness taken as a possible

warning of model misfit (J6reskog & SOrbom, 1980). In exploratory

factor analysis, a Heywood solution may indicate that one is
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attempting to fit a model with too many (or, occasionally, too few)

factors, that one or more factors are poorly identified by the

current set of observed variables, or, if sample size is small,

that unfavorable sampling fluctuations have occurred. Appropriate

remedies would be to fit a simpler model or to obtain data on

additional variables and/or subjects. A second approach is to

constrain estimation to solutions with only positive (or possibly

only nonnegative) unique variances. This may be done by imposing

upon unique variances either arbitary constraints (e.g.,

Christoffersson, 1975, p. 9) or formal Bayesian prior distributions

(e.g., Lee, 1981; Martin & McDonald, 1975).

3. A Common Factor Model for Dichotomous Data

In this section we outline the extension of the multiple

factor model to dichotomies data. Attention is focused upon

dichotomies which are reasonably considered to have arisen from a

continuous latent process, but through observational constraints

produce only dichotomous responses. Examples of this type would

include right/wrong responses to test items, for/against votes on a

referendum, and satisfied/dissatisfied judgments about a product.

The model is also relaxed to allow for a fixed rate of "false

positive" responses, as might occur when examinees can respond

correctly to test items through lucky guesses as well as through the

aptitude of interest.
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There is no impediment to computing Pearson produce moment

correlations among dichotomous variables ("phi coefficients," as

they are called in this special case), and it might seem natural

to apply the methods of the previous section to fit factor analytic

models to correlation matrices so obtained. Several writers,

however, have demonsttated dangers inherent in such an undertaking.

One problem is that the values of phi coefficients

depend not only upon the strength of relationship among variables,

but upon the means of the individual variables as well (Carroll,

1945, 1983). In the limiting case of two dichotomous variables with

a perfect Guttman ordering, the value of the correlation obtained by

Pearson's formula depends solely upon the means of the two variables

and attains the value of 1 only when both variables have equal

means.

A second problem is that the value of a dichotomous variable

is bounded, implying that its regression on any continuous latent

variable with Infinite range cannot be linear (McDonald & Ahlawat,

1974). If applied directly to correlations from dichotomous

variables, the linear factor analysis model is given by Equation

2.1 is misspecified from the start and pc ntially misleading

because the best linear approximation to a true curvilinear

relationship will depend on the region in which the data are most

informative. In other words, the estimated linear relationship

will depend upon the mean of the binary variable.
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A third problem is illustrated in Mooijaart's (1983)

approximation of the covariance among two discretized variables

(e.g., a phi coefficient) in terms of a factor model for underlying

continuous variables and functions of the observed discrete

variables. In the special cases of either (a) all low factor

loadings in the underlying model or (b) all discrete variables

having means near .5, a factor model with the same number of

factors but rescaled loadings will provide a good fit to the phi

coefficients. In general, however, the expression for phi

coefficients is augmented by terms that depend on the skewness of

the discrete variables, which, with binary variables, is a direct

function of their means values. Additional factors may be required

to fit the phi matrix when these additional terms are large and

their patterns are unfavorable.

When binary variables are produced by dichotomizing continuous

variables, then, the choice of cutting points materially affects

the values of the expected phi coefficients. Factor analyses of

phi coefficients of binary variables produced by the 'Jame

underlying correlational structure but dichotomized at different

points can conform to factor models with different structures and

possibly different numbers of factors. For these reasons, we shall

not discuss the analysis of phi coefficients, but rather confine

our attention to models and methods under which strength of

relationship and mean level are not confounded.

19
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As in the classical model, we posit m latent variables 8. In

the case of p > m observed responses (e.g., to a p-item test), we

also posit the corresponding structure on p "response process"

variables y

Y
j

ga X
j1

6
1
+ A

jm
em + vj ( 3.1 )

where v is a residual, the density of which will be specified

presently. In contrast to factor analysis of measurement

variables, however, we do not observe y directly. Instead, we

observe a vector of dichotomous variables x (x
1

... x
p
) with

values deL-ermined in the following manner:

1 if yj > 1,
Xi 0 i

0 if yi < y

where yj is a "glue associated with item j--its "threshold"

parameter. (The model will be relaxed in a following section to

allow for the possibility of random poditive responses.) Let

F denote (Y1,...,Y ).

20
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Suppose that the residuals v are distributed as N(0,a
2

)

and are independent over items and examinees. We shall denote the

diagonal matrix (01,...,a2), or the vector of unique variances,

as T. The conditional probability of a correct response from

examinee i to item j is then given as

v E
js

e
si

1
P(x

ij
= 118

1

2
) a I exp[ - - ( )

2
] dv

2w a Yj
aj

J

y - E A
js

8
si

= F(
a
j

F
j
(8 ) . (3.2)

Equation 3.2 will be recognized as a multivariate generalization

of the two-parameter normal item response model (Lawley, 1943,

1944; Lord, 1952). Connections between the two models are

explored in Lord and Novick (1968, Chapter 24).

Suppose it is further assumed that 8 distributes MVN(0,0 in

in a population of interest. As in the classical model, it

follows that the marginal distribution of y is MVN(0,E), where

again E + T. The fact that neither 8 nor y are observed

introduces indeterminacies of scale and orientation into the

21
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model; we shall begin to resolve them by specifying 0 = I
m

and

E = 1 for each j. This implies that

and

19

E =AA TT (3.3)

o
2

= 1 - E A
2

is

or, in matrix notation,

T = I - diag(AA') .

Let xi = (xii,...,xip) be the vector of 0/1 responses from

examinee i in a randomly selected sample of size N. The marginal

likelihood of the data is given by

N

L((x
1

x
N

= R I p(x I6,A,r)f(6) de".
1=1 6

1-4
=fl IflF.(6)

xi
ij El -F(6)] Jf(6) de

1=1 6 j

(3.4)
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where f(e) represents the standard MVN density function. Equation
Oa

3.4 can also be written as a product over s distinct response

patterns x2, observed with frequencies rx, as

s 1x
L = II { f II F (e )

x
Xj

[ 1 F (e )]
Xj

f(e) de)
rl

X=1 (3 j
i i

(3.5)

where s 4 min(N,2P). In contrast to the solution in which y's

are observed directly, (3.5) cannot be collapsed further.

This fact has important implications for parameter

estimation. It can be known a priori, for example, that the

information about E contained in observed values of y from one

million examinees to 100 items can be summarized without loss as

a covariance matrix with just 5500 elements. If responses are to

100 dichotomous items, however, a total of 21 00 distinct response

patterns are possible; even allowing for the fact that tunny of

these patterns will not occur in any given sample, hundreds of

thousands of distinct pieces of data must be maintained to produce

fully efficient estimates of A and f. To put it another way,

the information in all cells of the 2P contingency table of

responses to all items is required for fully efficient estimation

of parameters in the factor model.

23
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3.2 Accounting for Random Correct Responses

For the purposes of test analysis and construction, a

useful extension the model described above is to account for

the correct responses that result from correct guesses to

multiple-choice items. Under these circumstances, the

probabilities of correct response from even examinees of very low

ability do not approach the value of zero implied by Equation 3.2.

Failure to take these effects into account can produce analyses

that are misleading a& to not only the elements of A and r but as
4.0

to the number of factors needed to account for the data (Carroll,

1983).

It is possible to allow for chance success on item j at the

rate of g by taking

F
J
(6) s gj + (1 - g )F*(6) ,

where F;(6) is the function of Ai and Yj given in Equation 3.2,

which accounts for the rate of success produced by the latent

factors of interest. No further revisions are required in

Equations 3.3-3.5, although the following sections will consider

implications of this extension for estimation procedures.
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4. AnUnitighted Least Squares Solution

Under the model of Section 3 for binary responses that arise

from the dichotomization of underlying MVN response process

variables, without the possibility of false positive responses due

to guessing effects, it is possible to write the expectation of

proportions of correct response to a given item j as

P = I f(z) dz

Yj

(4.1)

and the proportion of persons responding correctly co both items

j and k as

P
jk

= I I f(z z
2
la
jk

) dz
1

dz
2

,

Y
j
Yk

(4.2)

where f denotes a standard normal density function, univariate or

bivariate as appropriate, and ajk denotes the correlation among

response process variables yj and yk. Denoting the expected

proportion of examinees answering item j correctly but item k

incorrectly as Pji, and defining P3k and Pjk analogously, we

could write expressions similar to Equation 4.2 for each. (Pjk,

PIk, Pji, and p3i are the expected proportions of response in a

two-by-two contingency table.)

25
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From the observed proportion pj, may be estimated via

Equation 4.1 by

; F
-1

(p )
'

where F
1
is the inverse of the cumulative standard normal

distribution. Given estimates of and and the four entries

in the two-by-two table of joint response frequencies, it is

possible to estimate a
jk

via Equation 4.2. The resulting value

is called the sample tetrachoric correlation coefficient

(Pearson, 1900); efficient computing approximations 12re given by

Divgi (1979). Let S* be the matrix of (sample) tetrachoric

correlations among a set of p test iteme, with responses generated

in accordance with the no-guessing model of Section 3.

4.1 Unweighted Analysis of S*

Now S* is an estimate of S, the correlation matrix among the

latent y's, which has the common factor model given in Equation

3.3. Standard procedures for factor analysis of measured variables

(Section 2) may be employed, then, to estimate A. Before

proceeding, however, two points require attention. First, the

samAe tetrachoric takes a value of -1 or +1 when either p-j-k or

p
jk

is zero. This problem is remedied in practice by adding a

small number to each cell in the two-by-two contingency table for

2b
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each pair of items--in effect, placing a mild Dirichl't prior

distribution on the joint proportions of response as in Fienberg

and Holland (1970). Second, unlike a true correlation matrix or

even a sample correlation matrix, S* is not necessarily positive

definite. This fact typically rules out analysis by ML or GLS,

leaving ULS. That is, A is estimated by minimizing the quantity

"
E E (S* - E )

2
.

j
j j<k

jk jk

4.2 Advantages. A Disadvantages of the ULS Solution

The advantages of ULS solutions for factor models for

dichotomous v,-4nbles are first, its superiority over factor

analysis of rhi coefficients, and second, its relative economy;

solutions in the measured variables case generally require far

less computation than the methods specifically designed for the

categorical data, as outlined in subsequent sections of this

presentation.

The disadvantages of this solution can be classified into two

categories. The first category arises in the attempt to compute S.
AI

Extreme values will be poorly determined, and those that would

have been *1 or -1 take va'.ues that depend on the choice of an ad

hoc remedy. And because estimation error is introduced in t%e

production of S*, the statistical theory for obtaining ULS
AI

standard errors (Browne, 1974/1977) does not hold. The second

27
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category arises from the fact that unlike the case of normally

distributed measured variables, summarization of dichotomous

variables in terms of a covariance matrix does not retain all the

information abouZ their joint relationships. Only the information

in the one-way marginals (percents-correct) and two-way marginals

is used. Computational efficiency is thus achieved at the

sacrifice of information.

4.3 Adjustments When Guec4.ing Is Present

The preceding discussion considered the case in which

responses were determined solely through 8, not accounting for the

possibility of chance successes. The same solution can be carried

out when chance successes do occur, at ,prespecified rates gj to

each of the items, if the observed proportions and joint

proportions are adjusted appropriately. Carroll (1945) and

Samejima (in Green at al., 1982, p. 28) g.ve formulas for this

purpose. Jensema's (1976) expression for adjusted percents

correct and Sa.dejima's expressions for joint proportions are shown

below. Observed values are indicated by asterisks; the adjusted

values are subsequently used in Equations 4.1 and 4.2.

Pj (1?* g )/i

- *

P P (g /i )P*- (g /g )P + (g g /i i
jk jk kkjk j jjk jkjk jk
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P (i )1P- (g /i ijk k jk j j k jk

Pik -1Pik (gkiiiik)Pli

-
k

*
P--
jk

(g
j
g )

-1
P--
jk

where gj a 1 - gj and gk - 1 - gk. These adjustments can

produce proportions above 1 or below 0. Ad hoc remedies, such

as the imposition of arbitrary floors and ceilings on either

proportions or values of gj are then required before the

estimation of the factor model can begin.

5. Generalized Least Squares Solutions

Section 4 presented formulas for the expected values of pj,

or item proportions correct, and pjk, or joint item proportions,

in terms of the parameters of the extended common factor model

(possibly after adjustment for prespecified rates of chance

success, as it Section 4.3). ULS estimations proceeds from these

formulas alone, minimizing a quantity that measures the similarity

between the data (sample percents correct and sample tetrachoric

correlations, the latter computed from sample joint proportions)

and a fitted facsimile of the data in terms of the parameters.

The similarity is judged by sum of the squared differences,

29
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element by element, with each element weighted equally. More

efficient use of data can be made by taking into account the

varying magnitudes and interrelationships of sampling error among

Cne elements. One approach by which this objective can be

achieved is generalized least squares (GL:).

5.1 Christoffersson's Solution

Let P * (P
1
,P

2'
...,P

p'
P
11

..... P
jk

,...), with 1 4 k < j 4 p,

be the vector of the expected values of Pj and Pjk, modeled as

functions of A and r, and let p be the corresponding vector of

observed values. When the model is correct, the quantity e

p P will follow a multivariate normal distribution in large

samples with expection 0 and covariance matrix E .

e

Christoffersson (1975, Appendix 2) derives an expression for a

consistent estimator S of E , and implements a GLS solution for
.e .e

the parameters of the factor model by minimizing

F * (p - P)'S1(p - P) .

The solution thus obtained provides consistent parameter estimates.

A number of additional features of Christoffersson's solution

also merit- comment at this point.

First, his expressions for the elements of Se include not

only pj and pjk, terms from one-way and two-way margins of the 2P
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raw data table, but also terms from the three- and four-way

margins; that is, joint proportions correct for items taken three

and four at a time. This means that the GLS solution is using

more information than the ULS solution, but by ignoring yet higher

level interactions, still not all of the information available.

(As discussed in Section 6.2, the loss may be negligible.)

Second, statistical tests of model fit are available.

Asymptotically F follows a chi-square distribution, with degrees

of freedom equal to p(p + 1)/2 minus the number of parameters in

A an,' r estimated in the model (as in previous section, certain

restrictions in A are required to eliminate linear and rotational

indeterminacies). This test is not usually of interest so much

for itself--the model is not expected to fit but for comparisons

between models with different numbers of factors. The difference

between the chi-squares for an m factor and an m + 1 factor

solution for the same data also follows a chi-square distribution

in large samples when the m factor model is correct, with degrees

of freedom equal to the number of additional parameters estimated

in the less restrictive solution. Indeed, the test of most interest

in educational and psychological applications is typically the

comparison of the one- and two-factor solutions.

Third, standard errors of estimation are also available. In

large samples, the covariance matrix of estimation errors of the

free elements of A and r is approximated by the inverse of the

31
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matrix of second derivatives of F with respect to these parameters.

Standard errors for individual parameters are square roots of the

corresponding diagonal elements. In exploratory work, these

standard errors are not of major interest. They apply to the

parameters only as estimated, not to rotated solutions. They prove

more interesting by way of contrast to those obtained in the full

information maximum likelihood solution described in the next

section.

Fourth and finally, computation requirements are considerably

heavier than those of the as solution. Solution is iterative,

requiring the numerical solution of integral° of the form of

Equations 4.' and 4.2 in each cycle. Further comment on this

point follows a discussion of Muthen's GLS solution,

asymptotically equivalent to Christoffersson's but somewhat

less burdensome.

5.2 Muth4n's Solution

Muth4n's (1978) GLS solution bears more resemblance to the

ULS solution of the preceding section, as well as the solutions

for measured variables; the fitting function again produces

estimates that in the appropriate sense make a fitted correlation

matrix similar to an observed one. Whereas Christoffersson

minimizes residuals in terms of the P's in Equation 5.1, Muthen

minimizes

32
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(5.2)

where = ( 2) with E
1 F.,' S2

(012'""ajk"") , and s

being the sample estimates of the quantities, i.e., the sample

thresholds and sample tetrachorics--where S6 is a consistent

estimator of the covariance matrix of 6 = - s. Mallen obtains

an expression for S6 from Christoffersson's expression for Se by

"linearizing" the model; that is, by approximating the complex

relationship between g and P by the initial terms of a Taylor

series expansion. Integrals of the form of Equations 4.1 and 4.2

need then be evaluated only once. These procedures have been

incorporated into the computer program LISCOMP (Muthen, 1985).

Muthen's solution shares many of the other characteristics

of Christoffersson's, notably use of three- and four-way marginal

information, consistent estimates, standard errors, and tests of

fit. And although Muthen's solution is faster, practical

limitations arise from the same source, namely, the magnitud2 of

the matrix S . These effects are illustrated in Table 1.
.e

Computing requirements under the GLS solution increase

proportionally to m and with the fourth power of p. About 25

items seems to be an upper limit with current machinery.

Insert Table 1 about here
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Muthen notes that in many cases, ULS estimates are reasonable

approximations to GLS estimates. The superiority of GLS, through

its use of three- and four-way joint proportions, becomes more

evident au one attempts to extract more from the data, so to

speak; that is, with other features held constant, in solutions

with fewer examinees, fewer items, or more factors.

6. A Maximum Likelihood Solution

The preceding sections have considered ULS and GLS

estimation of the parameters of a common factor model for

dichotomous responses. These ce "limited information" solutions,

in that they utlilize only information in lower order margins of

the full 2P contingency table that summarizes all responses, and

therefore all available information, for estimation. In this

section, we review a full information solution, namely the

marginal maximum liklihood (ML) estimation introduced by Bock and

Aitkin (1981). (The Bock-Aitkin procedure extends on an earlier

solution given by Bock and Lieberman (1970) for the one-

dimensional case.) The following discussion is based on this

approach, which has been implemented in the TESTFACT computer

program (Wilson, Wood, & Gibbons, 1983).

6.1 The Marginal Probabilitl of a Response Pattern

Assume again the common factor model for dichotomous items

given in Section 3, initially without the possibility of chance
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success; that is, we posit m latent variables 6 and p > m

observed binary variables xj that take the values 1 or 0 in the

following manner:

where

1 if yij y

xij
0 if yij < y

y
ij xjleil

+ +
jm

6
im

+ v
j

32

(6.1)

(6.2)

The residual terms vj are independent over items and examinees,

and follow N(0,0j2 ) distributions, where

a
2
= 1 -E A

2

j k
jk

Recalling Equation 3.2, this implies that

y
j
- E A

jk
6
ik

P(x
ij

= 116) = F(
a

F
j
(6 )
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where F is the cumulative standard normal alstribution. It is further

assumed that 6 - MVN(0,1
m
), from which it follows that y MVN(0,E)

where

E -AA' +T (6.4)

It was shown that under these assumptions, the probability

of a typical response pattern xi = (x11,x12 ..... xs,p) is given by

x 1-x
Rd

P P(x x ) = f I F (6)
tj

[1 - F.(0)] f(6) de ... de
j . . 1 m

-do j

I L (e)f(e) de

(We recall that the possibility of chance successes at fixed

rates gj may be incorporated at this point by replacing Fj(6)

above with F*(6) = g + (1 - g )F (6).) This integral can be

approximated to any desired degree of accuracy by m-dimensional

Gauss-Hermite quadrature (Stroud & Sechrest, 1966):

q q q

P
x

= E ... E E Lx(X) A(X, ) A(Xk ) ... A(X, ) ,

k
m

k
2

k
1

.1` K1 2
mm

36



Recent Developments

34

where in'.egration over real mrspace has been replaced by summation

over a finite grid of q
m
quadrature points Xk - (Xk , Xk ).

1

Because it has been assumed that the dimensions of 8 are orthogonal_

in the population of interest, the weight assigned to each point

is the product of the weights associated with each coordinate X, .

t

6.2 Estimation Procedures

Consider the responses of a random sample of N examinees.

Under the assumptions given above, it follows that the counts rx

of distinct response terns follow a multinomial distribution

given by

r r
P(rIA.r) =

r
1

! r
2

N!
P

r
s

! 1 P2

r2

Ps
(6.5)

The full information maximum likelihood solution given by Bock

and Aitkin (1981) maximizes Equation 6.5 with respect to the

elements of A and T.

It proves convenient computationally to rewrite the argument

of the normal probability function in Equation 6.3 in terms of

slopes ajk and intercepts cj as follows:

-(Y
j

- E A 0
ik

)/0
j

c
j

+ E a
jk ikjk
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From maximum likelihood estimates of a's and c's, maximum

likelihood estimates of Y's and X's are obtained as

where

A A A A

y -c /d and A
jk

. a
jk

/d
j

adsd . (1 + E a
js

)
1/2

35

Estimation proceeds by finding those values of a and c which

maximize Equation 6.5. This is done by taking the first

derivatives of the logarithm of the likelihood function Equation

6.5 with respect to each parameter in turn, setting them to

zero, and solving with respect to a and c. The interested reader

is referred to Bock and Aitkin for details of the solution. The

essence of the approach, however, can be seen in the form of the

likelihood equations. For a typical parameter uj from item j

(either a slope or an intercept), we have

q q
0

k

E E
F (%)(1 - F

j
(X01 auj

m
k

1

rik - NkFJ(Xk) aFj(!k)

(6.6)

auj ci ,... cp
11 apm
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where

tit

E L (X )A(X. ) A(X ) E r P(X. lx A,r)
Pt t k K .1 X K

(6.7)

is approximately proportional to the population density in the

region of quadrature point and

r
t

r
jk

x4t 1Lt(Xk) A(X. ) A(Xk )
2..1 ". Kl

xjt r P(X,Ix (6.8)

is approximately proportional to the probability of a correct

response to item j from examinees with 6's in this region. (An

application of Bayes theorem will be recognized in Equations 6.7

and 6.8, yielding the posterior probability of ability Xk given

xt, conditional on A and I%)

Solution of these equations is iterative, since the terms r
jk

and Nk depend on the parameters a and c themselves t'retugh

L (X
k
). In a variation of an EM algorithm (Dempster, Laird, &

Rubin, 1977), Bock and Aitkin proceed in cycles with two steps each:
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E-step: Using provisional estimates at and ct, evaluate

Equations 6.7 and 6.8. These are the expected

values of the population densities and item

proportions correct in the regions of the

quadrature points, conditional on the data and

a
t
and c

t
.

M-step: Taking the r4k's and Nk's as known, solve
J

Equations 6.6 with respect to the parameters

to obtain a
t+1

and c
t+1

.

Solving the so-called likelihood equations in this manner

yields saddle points cr relative extrema of Equation 6.5. Whether

they are relative maxima can be determined by examining values of

the likelihood function in the region around the solution.

Whether a relative maximum is unique can be studied by iterating

from a number of different starting values.

As with the GLS solution, the ML solution provides for standard

errors of estimation and statistical tests of fit. The covariance

matrix of estimation errors of the parameters is given by the

negative inverse of the matrix of expected second derivatives of the

log likelihood function; this may be approximated by the matrix of

second derivatives at the ML solution. Standard errors are obtained

as the square roots of the appropriate diagonal elements. For a

model with m factors, the likelihood ratio chi-square approximation

for a test against a general multinomial distribution is given by

40
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G
2

.1 2 E riz(log NPL/r1)

with degrees of freedom equal to 2P ;A + 1) + m(m !)/2.

This value reflects the number of cells in the full contingency

table layout for the data, less the number of parameters estimated

plus the number of constraints imposed to effect identification.

Because the expected number of examinees per cell will usually be

small for more than, say, 10 items, the approximation to the chi

square distribution may be unreliable. Comparison of G
2

for

nested models such an an m factor model versus m + 1 factor model,

however, is more robust under these circumotances.

A comparison of the standard errcts for estimated parameters

obtained from GLS and ML provides a measure of a loss of

informatio in GLS when joint information for more than four

items at a time is neglected. Comparicono reported by Gibbons

(1984a) indicate the differences are slight; not only standard

errors comparable within .01 were found for a data set amenable

to solution by both ?IL and GLS, but simnel parameter estimates

and chisquare values weee obtained.

6.3 ML Versus GLS

Given that both ML and GLS provide standard errors, tests of

fit, and comparable and consisent parameter estimates, it might

be asked whether one method is to be preferred over the other.
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The answer is yes, at least with present computing machinery; the

computational algorithms of ML and GLS present clear and distinct

advantages of one sclution over the other under appropriate

circumstances. As noted in the previous section, the demands of

GLS increase linearly with the number of factors but with the

fourth power of the number of items. The numerical integration

over the factor awe required in ML, on the other hand, implies

geometric increases in computation with the number of factors,

although the item by item computations required in the Mr.stepe

increase only linearly with the number of items. The practical

implications are these: ML is preferable for long tests with few

factors; GLS is preferable for short tests with many factors; both

are acceptable for ehort tests and few factors; and at present,

neither is very good for long tests and many factors. (Bock

(1984) quantifies the current meaning of the phrase -many factors"

saying that with 60 items, 1-3 factor models are quite reasonable

with ML, 4 factors are possible, and 5 is about as :such as

currently feasible.)

7. Further Exteisions of the Models

The preceding sections of this review ',lave considered the

extension of classical factor analysis to dichotomous variables,

concentrating on the basic models and on estimation procedures.

In this final section, we briefly survey a number of additional

directions in which these models may be further extended, and

direct the reader to work in progress in these areas.

42



Recent Developments

40

7.1 Polytomous Responses

Discussion thus far has concentrated on analyses of

dichotomous data. Data received in the form of ratings on

a -point ordinal scales can also be addressed in much the same

manner, if it is reasonable to suppose that the data arise from

cut points on underlying continuous normal variables. Let the

probability of a response in a category less than or equal to

category k be given by

1 1 8

y - A
js

e
is

E

F (6) ul I expE - 2 ( )
2
1 dy

Jk - a
j

Y
jk

of

and F (8) is defined as 0 and F (8) is defined as 1.
jo j,nj

Then the probability of a response in category k is given by

P(xij kb8) F
jk

(e) F
bk-1

(6) .

Under this model, either of two approaches toward parameter

estimation can be taken. Under ULS or GLS, one first estimates

the correlations among supposed underlying MVN variables y; these

are called the sample polychoric correlations (Olsson, Drasgow, &

Dorans, 1982). From this point estimation proceeds as in the

dichotomous case. Such solutions are provided in iiireskog and
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Siirbom's (1984) LISREL program and Muthen's (1985) LISCOMP. Under

ML, solutions are available for both the unidimensional case

(Muraki, 1983, and Thissen, 1984) and the multidimensional case

(Muraki, 1985). In principle, all of the extensions mentioned in

the following sections are applicable to polytomous response data.

7.2 Simultaneous Estimation of Asymptotes

The marginal probability of a sample of response patterns

was given in Section 3 as

x 1-x

P = II r il F (0)
ij
[l -F(e)] ij f(9) de

ii j

where the item response functions F.(9) were given by either

y r x
js is

1
F (e) = I exp[ - ( )2] dy

/271 Y
2

j j

the cumulative normal distribution, or by

F*(o) = n + (1 g )F (e) ,

with gj a fixed constant indicating a possibly nonzero lower

asymptote for the probability of a correct response from even

44
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examinees with low values of 6 in every component. Under ULS and

GLS estimation, use of Equation 7.3 rather than Equation 7.2 led to

adjustments of the observed proportions and pairw.se proportions

of correct responses to items. Under ML estimation, the adjustment

for chance correct responses need not be limited to fixed values

g ; In principle there is no reason that Equation 7.1 cannot be

maximized with respect to the g's as well as the a's and c's. One

simply includes additional likelihood equations, one for each
gi

(or only one if it is desired to estimate a common g for all

items) of the form given as Equation 6.6. This possibility is

currently under investigation by Bock and Muraki (1984).

Preliminary results reported by Muraki (1984) with fixed

asymptotca indicate caution may be required in interpreting the

results of such an endeavor. Muraki examined simulated responses

to 25 items from a randomly generated sample of 1000 subjects from

a standard normal population, with the true item response model

having one dimension and including an asymptote of .20 for all

items. In a preliminary analysis, a onefactor item response model

with estimated lower asymptotes was fit to the data using the BILOG

'.:omputer program (Mislevy and Bock, 1982) in order to obtain values

of g which could be input to common factor runs. Four factor

models were fit to these data by means of the ML solution in the

TESTFACT program:
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1. One factor, g's fixed at zero.

2. One factor, g's fixed at nonzero preliminary estimates.

3. Two factors, g's fixed at zero.

4. Two factors, g's fixed at nonzero preliminary estimates.

It was found that models 2 and 3 both provided a good fit to the

data, as well as model 4.

This finding suggests that the likelihood surface of a more

general model that includes both 2 and 3, namely a two-factor

model in which asymptotes are also estimated, is nearly equally

high in regions around at least two possible parameter vectors, and

may even exhibit relative maxima at these points. This finding is

not disturbing from a data-analytic point of view; it is not

prisitf to have obtained a good fit from model 3, even though it

was not the model under which the data were generated, in view of

the fact that more parameters were estimated. Practical

considerations give one pause, however; two solutions (2 and 3)

from the plausible general model (4) both explain the data nearly

equally well, but have quite different implications for action.

Without careful examination, the decision of whether or not to

split the items into two different tests might depend on the

starting values that one might happen to supply to the iterative

solution. One must conclude, not surprisingly, that model fitting

alone, without consideration of the nature of the data and the

properties of the models being used, should not be the sole guide

to test construction decisions.
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7.3 yesian Prior Distributi,ns

As noted in Section 2, the occasional appearance of Heywood

solutions, or occurrences of zero or negative unique variances,

has led various researchers to incorporate Bayesian prior

distributions on these parameter (Lee, 1981; Martin & McDonald,

1975). Under the ML solution presented in Section 6, unique

variances do not appear as parameters to be estimated; their values

are implied through values of the a's through

2

2 =1E
a4

2
1 + ais

(7.4)

Under these circumstances, a Heywood solution takes the appearance

of one or more a's becoming infinite. To a,id this problem, it

might seem appropriate at first blush to impose prior distributions

on the a's. The difficulty arises, however, when comparing the fit

of competing models, that the strengths of the priors imposed on

different solutions may vary as a function of the number of

parameters being estimated.

A more satisfactory solution, developed by Mislevy and Bock

and reported in Bock (1984), is to impose prior distributions on

a's implicitly, by imposing them on unique variances and inferring

the implied distributions on the joint distribution of a's through

4 7



Recent Developments

45

Equations 7.4. Independent beta distributions on unique variances

are proposed, with parameters (r,1) where 1 < r < 2. This

distribution takes the form

P(n) B1(r,l)wr-1 (7.5)

where B(r,1) represents the beta function. A choice of r near 1

results in a prior distribution that runs nearly flat across the

unit inverval, but drops suddenly and steeply to zero as w

approaches zero. This is tantamount to saying that one knows

little about the value of the unique variance, except that it is

not zero or rllgative. Substituting the expression Equation 7.4

into Equation 7.5, we have a joint prior distribution for the

slope parameters of item j:

-1
a2

s ir-1
P(a

J
B (r,1)(1 - E

'

s I + ajs

(7.6)

Multiplying the marginal likelihood function Equation 6.5 by the

prior distribution Equation 7.6 on a's yields an expression

proportional to the posterior distribution of the a's and c's,

with a diffuse prior distribution on c's implicit. The result
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is then maximized as in the straight maximum likelihood solution,

except the maxima are now modal points of the posterior.

By similar methods, prior distributions could also be

introduced for A, 4, and, when included in the model, the guessing

parameter g. A fully Bayesian approach would allow for the

incorporation of prior knowledge about items and hypotheses about

their interrelationships. While such a treatment has yet to appear,

the stage has been well set; the marginal maximum likelihooe

solution described in Section 5 provides a satisfactory starting

point for dealing with Lhe likelihood term, and experience with

foams and procedures for prior distributions gained is the measured

variables case (e.g., Lee, 1982; and Martin & McDonald, 1975)

appears readily transferrable.

7.4 Relaxation of Distribntional Assumptions

The usual factor analytic formulation for discrete variables

assumes normal distributions for both the response functions (or

conditional distributions of y given 0), and for the distributions

of 8. These assumptions are motivated by convenience; the marginal

distribution resulting from the mixture (Equation 2.3) is itself

normal, simplifying to expressions of the type shown as Equation 2.4

and 2.5. There is no reason, however, not to consider other

distributional forms. Use of the logistic function for the

conditional distribution, for example, leads in the onedimensional

case to certain item response models considered in Lord and Novick

4
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(1968). Bartholomew (1980) suggests a model in which both f(y18)

and g(8) are logistic; i.e.,

and

P(x
ij

gm lie) . [1 + exp(c
j
+ E a

ij ik
)1

< xl,...,8m < xm) II [1 + exp(xx 80]-1

Due to the similarities in the shapes of the logistic and normal

distributions, results from this logit factor model can be expected

to agree well with results from the normal model discussed in the

preceeding sections. Computations appear simpler under the logit

model in the onedimensional case, bit simpler under the normal in

the multivariate case.

More restraints than are actually needed to obtain an

identified model are still being imposed, however (see Bartholomew,

1980, 1984, 1985). Indeed, if the response functions are

sufficiently flexible, the distribution e can be arbitrarily

specified within broad limits. Suppose that the marginal

distribution of response y is given as

p(y) = I f(yI0) g(8) de

50



Recent Developments

48

where g is the continuous distribution of the latent variable 6.
IMP

Let g* be any other density over the same latent space that can be

obtained by suitable stretching, expanding, or rotation. That is,

g*(6) h(g(6)), where h is continuous and strictly increasing

in all components. Define f* by f*(y16) f(y1h
1
(e)). Then

P(Y) f f(yle) g(e) de
e
IMP

f f*(yle) g*(e) de
e

This result suggests three ways by which distributional

assumptions in the normal model for categorical variables might be

relaxed.

First, one might wish to maintain the normal linear regression

model for the response functLms, but allow the 6 distribution to

to take forms other than the standard normal. The idea here would

be to maintain response functions similar in form to IRT models

contemplated for subsequent use, but avoid distortions in A due

to additional and unnecessary assumptions about the shape of the

population distributions. Bock and Aitkin (1981) mention this

possibility, and methods for estimating latent distributions that

could be incorporated into the ML solution are found in Mislevy

(1984).
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Second, one might chooae to relax even further by fixing the e

population distribution in some tractible manner- -e.g., uniform

density on the unit interval--but allowing very flaxible or even

nonparameteric forms for the response functions. The idea here

would be to obtain more detailed diagnostic information about items,

such as the presence of non-monotonic response functions. Work

along these lines has been begun in the unidimensional case by

Winsberg, Thissen, and Wainer (1982), who fit spline functions to

item response data. Again, these extensions can be incorporated

into the ML solution in a straightforward manner.

Third, one can specify the form of f(x I e ) to achieve desired

properties. The next subsection considers a line of work with

this motivation.

7.6 Foundations of Factor Analysis

In a more general setting that includes the factor analysis

of categorical variables, Bartholomew (1980, 1984, 1985) began by

considering implications for the conditional distribution h(61x)

(what one knows about the latent variables after having observed

the manifest variables) imposed by the choice of the form of

f(x16). He shows that if (i) conditional or local independence

is satisfied, i.e.,

p
f(x16) -

Jfi(xj12)-1
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so that the m latent variables account completely for

relationships among the p manifest variables, and (ii) each

f (x le) belongs to the exponential family, i.e.,

fj(xj19) = Fj(xj)0j(9) exp{ E [ E ujk(xj)] ,k(!)) (7.7)
k j

with the special restriction that

uj (x ) + a u (x )
k j jk jk j j

then there exists an mdimensional sufficient statistic X for e,

in the form of m functions of the p responses in x:

Xk = E ajkuj(xj) .

If each f, is normal, Poisson, or binomial, then each u (x ) is

proportional to xj. In the normal case introduced in Section 3,

the sufficient statistics are given by

X A'T
1
x

Equivalently,
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HX + v

where E 0 AT-1A and v is a .andom vector of independent

standardized variables. The sufficient statistics may thus be

thought of as a weighted average of the latent variables of

interest and residuals, the latter of which contain variation

specific to individual variables and random error.

Attention is focused upon estimable linear combinations of

observed variables, which contain all the information in the data

about the latent variables. Bartholomew points out that these

statistics remain unchanged with monotonic transformations of any

coordinate of the latent distribution. It may be inferred that in

the absence of additional external reasons to specify the exact

form of the latent marginal distribution g or the conditional

distribution f, factor analysis models provide at best ordinal

information within dimensions about persons' values on latent

variables. The margial orderings are not invariant with respect

to rotation, so even ordinal information is cnnditional on the

arbitrary specification of orientation wherever m > 1.

The dependence of factor analytic solutions upon such

arbitrary choices as scaling and orientation of coordinates has

long been a source of dissatisfaction with analytic procedures.

A degree of specification on the form of f sufficient to eliminate
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these indeterminacies in case of binary variables is found in

Stegelmann's (1983) multidimensional Reach model. In its general

form,

fj(xj12) ,= + exp( - E ajs(es - n3)])-1 (7.8)

whey: the a
js

take prespecified values of i or 0.

A submodel of Equation 7.7, Equation. 7.8 leads to sufficient

statistics of the form

X' - ( E a
j1

x
j
,...,E a

jm
x
j

)

Note that since the a's are prespecified these are functions of

data alone--not of parameters to be estimated. Rotational

indeterminacy is eliminated by th, fixed valued of the factor

loadings. Scaling indecerm4lecy is eliminated by Reach's

requirement of "specific objectivity," i.e., that the marginal

likElihood h(xln) be expressed in a form in which the person

parameter ( can be separated from the item parameters n as

follows:
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h(x1n) . I f(x18,n)g(8) d8
MO -

- [Prob(x1X,n)] x [ I p(xle,n)g(e) del .

ao ee
8

The only transformations to f and g that maintaiu this property

are linear; hence, interval-scaled measurement is assured--at

the cost of very strict assumptions about the form of f and the

value of a.

7.7 Confirmatory Factor Analysis, Multiple ,Group Solutions, and

Structural Equations Modeling

The focus of this review has bean on exploratory factor

analysis; it is not known a priori how many factors are required

to explain the data, much less their composition and

interrelationships. Hypotheses about such matter, may be

entertained, however, and it proves useful to be able to fit

common factor models under which certain parameter elements

(factor loadings, unique variances, factor variances and

covariances) are set to predetermined values or constrained to

equal one ancner. By comparing chi-square indices of fit of

competing models, one could then test hypotheses suggested by the

content of the observed variables in light of psychological or

sociological theories. J6reskog (1969) describes maximum

likelihood procedures by which this may be accomplished in the
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setting of measured variables. Similar procedures have been

developed for the setting of categorical variables by Gibbons

(1984b), using ML, and by Mntheh (1978), using GLS.

Gibbons (1984a) and Muthe'n and Christoffersson (1981), again

working with ML and GLS respectively, perform confirmatory factor

analysis over several examinee populations simultaneously. This

work is also an extension of procedures developed by Jgreskog

(1971) and Sarbom (1974) for measured variables. The interest

here is in testing hypotheses about whether certain features of a

common factor model can be taken as invariant across populations;

e.g., whether factor loadings of items can be construed as

invariant, suggesting a similar framework for approaching a

questionnaire, while factor distributions and unique variances

differ from one group to the next, suggesting varying population

distributions and measurement precision.

Muthen (1979, 1984b) has extended Jareskng's work in yet

another area, namely that of 'odeling structural relationships

among latent variables (Jgreskog, 1974, 1977; Jareskng & Sarbom,

1984). Not only are latent variables e posited to account for

interrelationships among manifest variables, but relationships in

the form of linear regression functions may be posited among

latent variables. Analyses may consider several populations

simultaneously, thus allowing for a wide variety of hypotheses
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about the relationships of variables within and between groups to

be studied.

8. Conclusion

Factor analyses of dichotomous data were first undertaken as

a diagnostic tool in test construction. Deficiencies in available

methods of analysis, mainly unoeighted least squares factor

analysis of phi coefficients or tetrachoric correlations,

prevented these attempts from fulfulling their objectives

satisfactorily. In particular, these problems included

computational inaccuracies, failure of requisite assumptions, and

lack of rigorous statistical i-oundation. Recent developments of

generalized least squares (GLS) and maximum likmlihood (ML)

procedures have overcome these problems, albeit at the cost of

heavier computational burden.

The developments reviewed here were intended to provide a

conceptual framework and rigorous estimation procedures for the

factor analysis of categorical data. They foreshadow two likely

directions of future development.

The first is the extension beyond factor analysis; the

models, concepts, and estimation procedures are clearly applicable

to a much broader class of problems involving categorical data.

Muth4U's models for structural equations among latent variables

for categorical observations, and Gibbon's (1981) longitudinal

models for time-structured categorical data are cases in point.

5

e
JAI
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The second stems from Muraki's analysis of factor analytic

models in which guessing parameters are also estimated (Section

7.2). It gives one pause to realize that two models, distinct

beyond rotation and holding different implications for test

construction, offer nearly equally good fit to a given data set.

The limitations of purely exploratory factor analyses in the

classical tradition, when applied to categorical data--even after

conceptual and estimation problems have been resolved--are

apparent. Continued development can be expected, therefore, along

lines that allow the researcher to incorporate prior information

and scientific hypotheses into the process at the stage of

modeling, rather than interpreting results from a minimally

restrictive model. Initial efforts along this line from the

sampling statistics perspective are exemplified by the

confirmatory and structural equations models discussed in Section

7.7, and may be contemplated from the Bayesian perspect1. by the

approach sketched in erection 7.
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Footnote

1The exploratory nature of this use of factor analytic models,

and the implicit expectation of subsequent use of item response

models of similar forms, must be stressed here. That one

unidimensional model of r specified parametric form will not fit

a data set does not preclltde the possibility that another

unidimensional model of a different form will. If the question

is whether the data can be explained in terms of...Liza unidimensional

monotonic latent variable model, with conditional independence,

including ones quite different from the familiar and convenient IRT

models in current use, then the nonparametric approach found in

Rosenbaum (1984) is more appropriate.
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Table 1

Numbers of Elements in GLS Factor Analysis

Number of
variables

Number of elements in
matrix of tetrachor'c
correlations

Number of elements in
error covariance matrix

5 45

10 45 990

20 190 17,995

40 780 303,810

60 1/70 1,565,565

80 3160 4,991,220

100 4950 12,248,775
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