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Introduction

Research on inteiligent tutoring serves two goals. The obvious goal is to develop systems
for automating education. Private human tutors are very effective (Bloom, 1984), and it would
be nice to be able to deliver this effectiveness without incurring the high cost of human
tutors. However, a tacond and equally important goal is t0 explore epistemologicai issues
concerning the nature of the knowledge that is being tutored and how that knowledge can
be learned. We take it as an axiom that a tutor will be effective to the extent that it

embodies correct decisions on thess epistemological issuas.

We chose Inteliigent tutoring as a domain for testing out the ACT® theory of cognition
(Anderson, 1983). it was a theory that made claims about the organization and acquisition
of complex cognitive sk'ils. The only way to adequately test the sufficiency of the theory was
to interface it with the acquisition of realistically compiex skills by large populations of
students. When we read the Intelligent Tutoring book edited by Sleeman and Brown (1982)
it became apparent that the authors in it were explicitly or implicitly performing such tests of

theones of cognition and that is was an appropriate methdology for testing the ACT* theory.

The ACT® theory has been used to consuuctl performance models of how students
actually execute the skills that are to be tutored and learning models of how these skills are
acquired. The performance mode! is used in a a paradigm we call model tracing, n whiCh
we try to follow in real time the cognitive states that the student goes through in soiving a
problem. Our instruction is predicated on the assumption that when we interrupt students
we correctly understand their internal states. The learning model is used to infer a
student's knowledge state by tracing the student's performance across probiems. This
knowledge tracing (as opposed to problem-state tracing) can be used to disambiguate

alternative interpretations of student behavior and for selecting probiems to optimize learning.

We are currently working on tutors for beginning LISP programming (Reiser. Arderson, &

Farrell, 1985), for generation of proofs in high school geometry (Anderson, Boyle, & Yost,
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1985). and for soOiving algebraic manipulation and word problems (Lewis. Mison, & Anderson.
in press). These domains were selected because they involve the acquisition of well-defined
skills and we can catch students at the point where they are iust beginning to learn the
skill. Cur LISP tutor currently teaches a successful university-leval courss, and our geometry
tutor is in the midst of its first demonstration in the high schoois--an apparently successful
demonstration. We believe that these tutors owe their success to the cognitive principles
from which they were derved. However, it is not the case that the cognitive principies have
remained unchanged in the face of thase applications. In fact, we have found raasons to
reject certain assuiaptions of the ACT* cognitive architecture and are working with a rew
architecture called PUPS (for PenUitimate Production System). So, even at this early stage
of our endeavor, we have seen a fair'y profitable flow of influence back and forth between

the theory and the application.

This paper has three maijor sections. The first describes the cognitive theory that serves
as the basis for our tutoring endeavours. The second section describes the model-tracing
methodology and how it derives from our cognitive theory. The third saction discusses the

issues that arise in implementing the modei-tracing methodology.

The Cognitive Theory
The Performance Theory

In both the PUPS theory and its ACT predecessor, a fundamental thec .al distinction
was made between declarative and procedural knowledge. This distinction borrowed its labei
from the distinction in Al a decade ago (e.g.. Winograd, 1975) but has been fundamentally
transformed to be a psychoiogical distinction. Declarative knowiedge is distinguished by the

fact that the hhuman system can encode it quickly and without commitment to how it will be

used. Declarative knowiedge is what is deposited in human memory wher someone is toid
something, as in instruction or reading a text. Procedural knowiedge on the other hand can
only be acquired through the use of the declarative knowiedge, often atier trial and error

practice, and is further characterized by the fact that it embodies the knowledge in a highly
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efficient and use-specific way. In the theory, procedural knowledge derives as a by-product
of the interpretative use of declarative knowledge. In fact. we use the term kncwledge

compilation to refer to the learning process which creates the procedural knowlodge.
Procedural Knowledge: Productions

In the ACT* theory, procedural knowiedge is represented by a set of production rules
that define the expert skill. Our goai in tutoring is basicaily to create experiences that will
cause students to acquire such production rules. It wouid be worthwhile to examine some
exampies of productions that are used in our three domains of tutoring-i.e.,LISP, geometry,
and algebra. Below aie "Englishified” versions of a couple of the productions that are
used in the LISP tutor:

iF  the goal is to merge the elements of list and lis2 into a list
THEN use append and set as subgoals to code list ang lis2

iF  the goal is to code a function on a list structure
and that fu..ction must inspect every atom of the list structure
and the list structure is arbitrarily compiex
THEN  try car-cdr recursion and set as subgoals
1. to figure out the recursive relation for car-cdr recursion
2. to figure out the terminating cases when the argument
is nil or an atom

The first is a production that recognizes the relevence of a basic LISP function and the
second is one that recognizes the 2pplicability of a recursive programming technique. These
and approximately S00 more production rules model an ideal student writing basic LISP code
to soive problems that wouid appear in an introductory LISF textbook. These productions all
have this goal decomposition character of starting with some programming goal and
decomposing it into subgoals until goais ara rea~hed which can be achieved with direct
code. For an extensive discussion of a model of beginning LISP programming see
Anderson. Farrell, and Sauers (1984).

The character of the production rules underlying the geumetry tutor are somewhat

different. Below are two examples from the approximately 300 in that system:

IF  the goal is to prove AXYZ 2 AUYW




and XYW are colinear
and UYZ are colinear
THEN conclude £XYZ = LUYW because of vertical angles

IF the goal is o prove AXYZ = AUVW
and XY = UV
and YZ = VW

THEN  set a subgoal to prove £XYZ

"e

ZUVW 8o SAS can be used.

The first production makes a forward inference from what is known about a probiem
while the second makes a backward inference from what is to be proved. A proof is
completed when a line of subgcais from the to-be-proven statement makes contact with a
line of forward inferences from the givens of the problem. The production rules for forward
and backward inference are contextualiy constrained. That is, they not only make reference
to the informadon necessary for application of the rule but aiso to other information about
the proot which is predictive of the aptness of tnat inference. Thus for instance, the first
ruile not only makes reference to the collinearity information which is logically necessary for
application of the vertical angle rule; it also makes reference to the fact that these angles

are corresponding parts of to-be-proven-congruent triangies. For more discussion of the

nature of the ideal student modei in geomstry read /Anderson (1981) and Anderson. Boyle.

and Yost (1985).

The production system for the algebra tutor is again somewhat different in character
from the production systems for LISP or geometry. Below are three of the production rules
invoived in modeliing the ideal student’s knowledge of distribution:

IF  the equation to be soived contains a Subexpression of the form
"num{exp1 + exp2)”
THEN set as a subgoal to distribute num over (exp1 + exp2)

IF  the goal is to distribute num1 over exp
and "num2 var” is the first term in exp
THEN  write "num3 var,” where num3 is the product of num1 and num2
and set a subgoal to distribute num1 over the rest of exp

IF  the goal is to distribute num1 over "+ num2”
THEN  write "+ num3.” where num3 is the product of aum1 and num2
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Thase rules would be invoked . for instance. there were an expression of the form
..3(5x + 2).. somewhe/2 in the equation to be solved. The first rule recognizes the

applicability of distribution; the second writes out “15x." and the third writes out ” + 6"

The aljebra rules highlight the issue of grain size which is also an issue for other
production systems. We could have compacted all three of these rues into a single
produciion ru'e which recognized and applied distribution to the equation in one fell sSwoop
(as, for instance, Sleeman, 1982, does). On the othar hand, we could have broken each of
these steps into multipile substeps. For instancs, note that we do not modei thp process of
calculating the product of num1 and num3 into a set of substeps as it might well be
implemented cogritively. Our decision about the levei at which to mocel the student was
determined by pedagogical considerations Students entering the aigebra course have their
multiplication skils wsiliearnsd and do not need to be tutored on thess. In contrast,
students do have proniems with the subcomponents of distribution and so we need to

separate these out for purposes of separate tutoring.

An implication is that the production rules that we use in the algebra tutor. and indeed
i}l the other tutors, represent only upper levels of the skill. These .productions set subgoals
which are met by other productions ana are typically accomplished in our systems by calls
to LISP code. These include such things as the actual typing cf answers into the
computer. The assumption is that such productions. below the level that we are modelling.

are well-learned.

While the production systems for the different domains do have some features in
common, they aiso have rather different overall structures. Our |earning theory would predict
that the different task structures of the different domains produce different organizations of
the production rules. Generating LISP code is a design activity and lends itseif to a probliem
decomposition structure. The search character of generating geometry proofs produces an

opporturiistic Structure in which there can be large switches of attention among parts of the

proof. The linear structure of the algebra equations and the aigorithmic character of
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algebra equation solving produces the symbol substitution character of the algebraic ruies.
One of the major functions of a tutor for a particular domain should be to communicate the

ideal problem-solving structure of that domain.
Declarative Knowledge: PUPS Structures

Knowiedge is not originally encoded by students in such use-specific production form but
rather is encoded deciaratively in what we have come to call PUPS structures. PUPS
Structures are basically schema-like structures which are distinguished by the fact that they
hava certain special siots which prove critical to ther interpretive application in probiem-
solving. These include the function siot which serves to indicai® the function of the entity
represented by the structure, tha form siot which indicates its form, and the precondition
siot which states any preconditions that must be satisfiea for that form to achieve that
function. To iliustrate such structures let us consider how an ideal student might encode
the foliowing fragment of text from the second edition of Winston and Horn (1984), p.24:

The value returned by car is the first element cf the list given as its argument.

(CAR '(FAST COMPUTERS ARE NICE))
FAST

This Winston and Horn example 1s interesting because it contains a nice juxtaposition of
some abstract instruction with a specific example. However. the PUPS encodings of the two
(given below) are basically structurally iscmorphic. The abstract encoding of car contains a
prerequisite pointer to StruCture that indicates how car is to be used. The example
structure has the same form as structure, except that an argument is specified. Two other
PUPS structures encode that argument and the value returned by the example cail.

car ISA:  function
FUNCTION:  (implements first)
FORM: (text car)
PRECONDIT JN: (type structure)

structure ISA:  lisp-code
FUNCTION:  (calculate (first arg))
FORM:  (list car arg)

example ISA: lisp-code

10




FUNCTION: (illustrate car)
(caiculate (first lis))
FORM:  (list car lis)

lis ISA: list
FUNCTION: (argument-in exampie)
(hold (fast computers are nice))
FORM: (list ‘(fast computors are nice))

fast ISA: atom
FUNCTION: (value-of examp!y)
(firgt lis)
FORM: (text fast)

The structures above represant the outcome of successful encoding of the text: however,
it should ba stressed that there is a iot of room for incorrsct encoding. Incorrect encoding
of text into PUPS structures is what goes by the name of “misunderstanding”. Clearly, a
critical issue for learning is correct interpretation of the instruction. One problem with
virtually ail instructional material is that it omits many things that the student needs to know
in order to perform the tasks. and the student is left to figure them out by trial and error
experimertation. One of the pavoffs in developing an ideai student modei, even before it is
used in tutoring, is that it provides a cognitive analysis of what the student really needs to
know. Instruction can then be designed to communicate that. In our work we have found
that instructional materials designed to communicate all the information in the ideal model
(and not waste prose communicating non-information) are more effective than standard texts
even without a .utor. This emphasis on 2conomy and focus in instruction has been
confirmed by a number of other researchers (Carroll, 1985; Reder. Charney, & Morgan. in

press).

However, we believe that it is not possible to avoid all or even most misintergretations.
In communicating unfamiliar material there i3 the inevitable difficuity of the student being
weak on the key concepts. For instance, we have never observei any student to go from
reading any textbook on LISP to practicing that knowiedge without errors. One important

role for a tutor is to monitor for these errors of misunderstanding and correct them as they

show up in the performance of a task.




interpretive Use of Declarative Knowledge

We assume that the declarative PUPS-structures illustrated above are deposited in
memory essentially as the product of language comprehension. It is important that the
necessary Structures get encoded correctly, but this is by no means the end State of the
leaining process. These structures do not directly lead to any performance and it is
necessary to interpret them to get performance. This interpretive process is of high demand
cognitively and is a major cause of slips in performance (Anderson & Jeffries, 1985;
Norman, 1981). !t is important to crea.> productions like the ones in the idcal model which

will automaticaily apply the knowledge.

There is essentially a double loop of inefficiency promoted by interpretive use of
declarative knowiedge. The inner loop involves the analogice application of the declarative
knowiedge encoded in PUPS-structures to a new domain to produce a step of probiem
solution. It is costly in terms of the amount of information tnat must be heid in working
memory to compute this analogy. So, for instance, a student might go through a prolonged
effort trying to map the generai statement of the side-angle-side postulate to a specific
problem (Anderson, 1982). The outer loop invoives a search through the problem space
defined by these steps for a problem solution. So. for instance. a Student might search
through all the postulates for proving the angles congruent. side-side-side. side-angle-side.
etc. While it is not possible to entirely avoid searcn, the productions in the idea! model
have features built into them that greatly cut down on this search. The example
productions we dispiayed earlisr for geometry illustrate this in that they included heuristic

tests that checked for likelihood that a rule of inference would contribute to a final proof.

Analogy

To illustrate the analogy process, suppose the student has the goal of getting the first

element of the list (A B C). This is represented by the PUPS structures below:

goal ISA:  liso-code
FUNCTION: (calculate (first lis2))
FORM: ?
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lis2 ISA: list
FUNCTION: (hold @b
FORM: ? '

As is typicaily the case in the PUPS representation of a problem-solving situation we
have PUPS structures with tunctions represented but forms empty. The goal is to create
forms that satisfy the functional specification. Both of these forms can be caiculated by
analogy to the earlier PUPS structures created from comprehension of the Winston and Horn
instruction.  Using example as the source for lhe analogy and gosl as the ‘arget, PUPS

creates the following analogy:.
function(source).form(scurce): function(target).?

iis from the example is mapped to lis2 from the target and the specification (LIST CAR
lis2) is created for the form siot. A similar analogy between lis and lis2 ieads to the
description (LIST '(A B C)) for the form siot of lis2. This constitutes a solution to he

problem.
Knowiedge Compilation

What we have just cescribed is a solution by analogy for a specific example problem
This analogy process is costly in terms of computing the mapping. It will aiso only work
when there is an example at hand. Knowledge .ompilation tries to analyze the essence of
this solution and produce a production rule that can produce this solution at will. Basically,
it does this by looking at the situation before and the situation after and creating a
production rule that maps one onto the other. Essential to knowiedge compilaticn is
diagnnsing what was critical in the before situation and what is critical in the snlution. This
depends or. ihe semantics of the PUPS structure. The resuit of the compilation process for
this example is

IF  the goal is to get the first element of =list
THEN type (car =list)

The knowiedge compilation prccess that produced this has to know about the

13




correspondences computed in caiculating the analogy. Thus, this learning mechamsm has

built into it knowledge of how PUPS structures are interpreted in 1naiogy.
Search

A second thing knowiedge compilation will do is eliminate some of the relatively blind
search that characterizes early problem soiving. Consider the diagram in Figure 1. which
shows a problem that appears early in the geometry problem sequence. The student is
given that two sides of the triangies are congruent and must try to prove that the triangies
are congruent. At this point the student has only learmed of the side-side-side and side-
angle-side postulates for proving triangies congruent. One student, not atypical, was
observed to (1) try side;angle-side but fail beccuse there is not an angle congruence; (2) try
side-side-side bt fail because only two sides are givan as congruent; (3) asply the definition
of congruenca that the measure of AD is equal to the measure of CD; (4) Apply the
reflaxive rule to infer AD is congruent to itself: and, (5) finally, spplying the refiexive rule, to
infer that BD is congruent to itself. This iast step was the key one that aliowed the
student to immediately apply ths SSS rule to achieve his goal. It seemed that the subject

engaged in a random search of legal operators untii he came across one that was useful.

Insert Figure 1 about here

Knowiege compilation creates rules that skip over the steps that were not relevant to the
final solution and try to produce a ruie that connects key features in the original situation

with the ultimately ussful operator. The rule that shouid be produced in this case is:

IF e goal is 10 infer AXYZ 2 AUYZ
THEN infer YZ = YZ because of the refiexive property of congruence

Note "his ruie is not specific (0 the solution of this probiem by SSS nor to the fact that
there are aiready two sides proven congruent. This is what we noted of our subject: He
emerged from this episode with a tendency to infer the shared side of two triangles is

congruent to itseif whenever he set as his goal to prove these triangles congruent.

14
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This geometry example illustrates the general features of learning from search: |If the
student applies a number of ooerators and some of the operators prove successful--in the
geometry example a number of inferences have been applied and one has proven part of
the final proot --the Student can encode in deciarative Structures how the operators achieved
their successful function and this information can be compiled into new production rules. it
is critical that the students properly encode their experience and this is again where tutors
can be critical--by assuring the proper encoding of the experiz~ce. So for instance, in the
reflexive case discussed above, if the student represented the function of the rule as
establishing side-side-side he wouid have created too specific a rule. On the other hand. it
he represented it as just makirg a legal inference he would have created too general a

rule.
Strengthening

in addition to knowledge compiation, there is a simpie strengthening of declarative and
procedural knowledge with use. As knowledge becomes strengthened it comes to be
applied more raoidly and reliably. There is ample empirical evidence for such a simpie
learning process in humans aithough its exact nature is in some dispute (Anderson. 1982).
The major implication of a strengthening-like procoss'for tutoring concerns the introduction of
new knowledge. As the execution of acquired knowledge becomes mure proficient there s

more capacity left over t0 properly process the new knowledge.
Other Learning Mechanisms?

An important characteristic of this model is what it does not contain. Uniike the ACT
line of learning theories there are no inductive learning mechanisms that automatically
compare the cusrrent situation with past situations and try to form generalizations and
discriminations about when rules will and will not apply. This is not to say that Subjects do
nct engage sometimes in inductive behavior as a conscious problem-solving activity-they
certainly do. Rather the claim is that there is not an automatic learning mechanism of the

status of compilation and strengthening. Generalizations and discriminations are declarative

15
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knowledge structures produced by r.oblem solving productions rather than productions
produced by automatic learning mechanisms. There is a fair amount of evidence that
people are aware of their inductivea generalizations and discriminations (Lewis & Anderson,

1985: Dulany, Carison, & Dewey, 1984).

This has major implications for instruction. Ratner than leaving students to induce
generalizations and discriminations from carefully juxtaposed exampies, which would have
been the padagogicai implication of ACT, one should simply tell the student what the critical
features are. Thus, if 2 student is overusing the vertical angie inference he shouid be toid
the circumstance under which he wants to use it. This is not to argue that examples are
not important, but they should be annotated with information about what they are supposed

to illugtrate.

Converting Theory to Tutoring: Modal Tracing

This theory of knowledge acquisition is radical in the juxtaposition of its simplicity and its

claim to completeness. Tc review, iearning in the theory involves:

1. Acquisition of new declarative knowiedge by the processing of experience through

existing productions (eg. for language comprehension).

2. Application of declarative knowledge to new situatioris (i.e.. situations for which

productions do not exist) by means of analogy and pure search.

3. Compilation of domain-gpecific productions,

4. Strengthening of declarative and procedurai knowledge.

Probably there i littie controversy that these things (or something very similar to them)
are involved in knowledge acquisition, but the issue is whether these assumptions are

sufficient to account for aill knowledge acquisition. The question is how do we put that
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theory to test. As argued in detail elsewhere (Anderson. in preparation) the tutoring work 1S
a methodology for testing the thenry. Since the design of the tutors is based on the
theoretical analysis, the success of the tutors is one test of the theory. Moreover, one can
ask whether the course of learning displayed with the tutor is in detail as predicted by the

theary.

The simplicity of the underlying theory maps onto a rather straight forward tutoring
methodology that we call model tracing. The basic idea is to use the iearning modei to
trace the student’'s knowledge state across problems and to use the performance modei to
trace the student's problem state within a probiem. Problems and accompanying instruction
are selected to practice the student on productions that are diagnosed as weak or missing
in the student's knowiedge state. InStruction is generated that the student shouid be abie
to inap onto the solution of a problem to enable the student to correctly interpret that
solution. Given this structuring of the leaming situation, we trust the automatic learing

mecranisms in (1){4) above to move the student forward on an optimal learning trajectory.

First, we will give some examples of this modei-tracing methodology. Then, we will

discuss some issues in implementing it.
The LISP Tutor

The LISP tutor 1 based on our earlier efforts to model learning to program in LISP
(Anderson, Farrell, & Sauers, 1984). Table 1 contains a dialog with a student coding a
recursive function to calculate factorial. This does not present the tutor as it really appears.
Instead, it shows a "teletype” version of the tutor where the interaction is linearized. In the
actual tutor the interaction involves updates to various windows. In the teietype version the
tutor's output is given in normail type while the student’s input is shown in bold characters.
These listings present “snapshots” of the interaction; each time the student produces a
response, we have listed his input along with the tutor's response (numbered for
convenience). The total code as it appears on the screen is sShown, aithough the Sstudent

has added only what Is different from the previous code (shown in boidface type). For
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instance. in line 2 he has added "zero” as an extension of "(defun fact (n) (cond ((.”

Insert Table 1 about here

In the first line, when the subject typed “(defun”, the template
(defun <name> <parameters> <body>)
appeared. The terms in <-> angle brackets denote pieces of code the student will supply.
The subject then fillea in the <name> siot and the <parameters> siot and had started to
fil in the <body> siot. Note that at ail points, parentheses are balanced and Syntax is
checked. The motivation here is to remove from the student some of the cognitive '~ad
required for checking low-level syntax and to enabie the student to focus on the conceptual

levels.

Although the student has some difficuity with the syntax cf the conditional tests in lines
1 and 2, he basically codes the terminating case for the factorial function correctly.
Tyoically, we find students have little difficuity with terminatinQ cases but have great difficuity
with recursive cases. The dialogue after line 3 illustrates how the tutor guides the student
through a design of the recursive function. Basically. it leads the student to construct a
couple of examples of the relationgship between fact (n) and fact (n-1) and then gets the
student to identify the general relationship. Figure 2 shows the screen image at a cntcal

point in the design of this function.

Insert Figure 2 about here

The dialogue after this point shows two errors that Students make in defining recursive

functions. The first, in line 4, is to cail the function directly without combining the recursive

call with other eilements. The second, in line 6, is to call the function recursively with the

same argument rather than a simpler one.

After the student finishes coding ‘he function he goes to the LISP window and
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experiments. He is required to trace the function, an4 the recursive calls embed and then
unravel. Figure 3 shows the screen image at this point with the code on ton and the trace

below 1.

Insert Figure 3 about here

This example illustrates a number of teatures of our tutoring methodology.

1. The tutor constantly monitors the student's problem-solving and provides direction

whenever the studen: wanders off one of the correct soiution paths.

2. The tutor tries to provide help with both the overt parts of the problem soiution
and the planning. However, to address the planning a mechanism had to be
introduced in the intsrface (in this case menus) to allow the student to

communicate the steps of planning.

3. The interface tries to eliminate aspects like syntax checking, which are irrelevant

to the problem-solving skill being tutored.

4. The interface is highly reactive in that it makes some response to every symbol

the student enters.

It is interesting to note the contrast between the LISP tutor and the PROUST system of
Johnson and Soioway (1984). That system provided feedback only on residual errors in the
program and does nut try to guide the student in the actual coding One technical
consequence is the PROUST system has to deal with disentangling muitipie bugs. Since
the LISP tutor only corrects errors immediately, the code never -ontains more than one bug

at a time.




The Geometry Tutor

The geometry tutor is simiarly baset on our earlier work studying geometry problem-

solving (Anderson, 1981, 1982, 1983a). Figure 4 illustrates how the probiem is initially

At the top of the figure is the statement the student is trying to

presented to a student.

prove. At the bottom are the givens of the problem. In the upper ieft corner is the

The system prompts the student to select a set of statements with & mouse.

diagram.
Then the system prompts the student to enter a rule of geometric inference that takes these
statements as premises. When the student has done 30, the system prompts the student to
type in the conclusion that follows from the rule. The screen is updated with each step 1o
indicate where the student is. The sequence of premise, rule of inference, and conciusion
completes a single step of inference. Figure 5 illustrates the screen at thu point where the
student has decided to apply definition of bisector to the premise JK bisects <XJY but has
not yet entered the conciusion. A menu has been brought up at the left of the screen to
enable the entry of the conclusion. It contains the relations and symbois of Mtw. By
pointing to symbois in the menu and to symbois :n the diagram, the student can form the
new statement LXJK = ZJKY. We find it useful to have the student actually point to the

diagram to make sure the student knows the referernce of the abstract siatements.

Insert Figures 4 and 5 about here

Figure 6 shows the geometry diagram at a still later point. The Student has compieted
the bisector inference and added a plausible transitivity inference but one that proves not to
be part of the final proof. At this point the student begins to fiail and has tried a series of
ilegal applications of rules, the most recent being application of angle-side-angie (ASA) to
the premises LEJX = LEJY and LEXJ 3 LEXK. The tutor points out that ASA requires
three premises, and 80 it clearly is inappropriate. Since the student is having s0 much
difficulty, the tutor points the student to the key step in solving this problem: To prove
AEJY = AEKX one will have to prove AEJY = AEJX and AEJX = AEKY and then apply

transitivity. To explain this step the tutor is going to introduce the student to a step of
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backward inference. The tutor has boxed the conclusion and will step the student through
how transitivity of the two trnangie congruences will enable the conclusion to be proven

The siwdent then will have the task of proving the two triangie congruences.

Insert Figure 6 about here

Figure 7 shows the state of t® diagram at a still later point where the student has
proven one of the triangie congruences while the other remains to be proven. It nicely
illustrates how students c: mix inferencing forward from the givens and reasoning

backwards from the conclus ns.

bR

RS A

Insert Figure 7 about here

Figure 8 shows the compieted proo* in which there is a graph structure connecting tne
givens 10 the to-be-proven statement. Students find such representations of proof solutions
onlightening in two ways. First, it enables them to appreciate how inferences combine to
yield a proof, something they tend not to get from the traditional two column formalism.

Second, the search inherent in proof generation is explicity represented. So. for instance.
students can immediately identify inferences. such as the angle transitiity inference. which

are off the main path.

Insert Figure 8 about here

The Aigebra Tutor

The algebra tutor (Lewis. Miison, & Anderson, in press) is a more recent endeavor of
ours and doeg not have the prior history of domain Study. It refiects an attempt to see i
how well the methodology that we have developed transfers to a new domain. Figure 9

shows the initiai interface that we have deveioped for the aigebra tutor.

Insart Figure 9 about here

e
+ F
o
. 4 . e
el ew ._-MM



18

We have tui ed the cnmputer's high resolution display into a sort of notebook/scratch-
pad/blackboard which is used to echo tutoring interactione and store a record of the user's
intermediate work. This cedign zllows the mouse to be used as the prnmary input device by

sensitizing regions on the screes to button activity on the mouse.

At the current time we have the foillowing windows:

e The Tutoring \vindow (made to resemble a blackboard): where tutorial
interactions are printed.

o The Scratch-Pad: a key-pads ‘or generating aigebraic expressions which are
needed for responses to the tutoring interactions.

The Current Equation Window: Always displays the current state of the equation
transtormation process.

The History Window {made to resemble a notebook): a trace of the prcdiem
solving is recorded for on-ine review and later printing by the student.

Our goal was to make ths interactions with the interface as easy as pencil and paper.
When generating responses to the tutorial dialog, students need not type anything on the
keyboard. in fact, in most cases, the response can generated by pointing to parts of the
existing expressions in the current equation window. By using pointing insiead of requiring
<tudents to regonerate compiete expressions when only part might be changed. we can
eliminate a good number of slips in the early stages of learning algebra. Accidently
dropping a negative sign or forgetling to hnng down a term are common errors when
moving from one equation to the newly transformed equation. By having students point to
expressions and having the system bring down tie un-transformed parts of the equation
intact, we can minimize the chance that these low ievel errors would interfere with the goal

of the lesson, e.g., practicing the distributive iaw in equation solving.
Summarizing the Model-Tracing Methodology

The most distinctive feature of the modei-tracing methodology is how ciogely it Sticks to
} the target task it is supposed to be tutoring. Deciarative instruction takes the form of

| commented sxamples of correct problem-solving and . omments on ihe student's probiem
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solution. This is the kind of instruction that we believe can be effectively turned into
procedures. Tha major activity of the tutor is monitoring students’ problem solving. We
attempt to create highly interactive interfaces that quickly let the students know when therr
solutions deviate from idea. so'ution behavior and just where they deviate. This kind of
instructional environment has a highly nrocedural flavor and contrasts with the more abstract
and declarative instruction in some tutoring efforts (e.g.. Collins. Warnock. and Passafuime,
1975). This reflects fundamental differences about tha nature of the knowiedge to be

communicated and about how that knowiedge is communicated.

Implementing the Model-Tracing Methodology

A major prerequisite to implementing a modei-tracing tutor is to create all the production
rules that will be involved in the tracing. A significant subtask here is adding an adequate
set of buggy rules to the student model in order to be able to account for the errors we
see. In our experience the best we have been able to do is to account for about 80% of
the errors—the remaining being just too infrequent and too removed from the correct answer
to yield to any analysis. One approach to coding tne systematic errors has been simply to
observe the errors students make with our tutor, try to understand their origin, and code the
inferred buggy productions one by one into .he system. In more recent work such as in
our algebra tutor we are trying to generate these er:=: ~- - principled basis something like
in the notable work on subtraction (Brown & Burton. 1978; Brown & VanlLehn. 1980) and on

algebra (Matz. 1982).

Given a production set which can model the range of behaviors we see in our students,
our tutor design then can be decomposed into three largely independent modules. There is
the studemt module which can trace the student’s behavior through its non-deterministic set
of production rules. There is the pedagogical module which embodies the rules for
interacting with the student, for problem selection, and for updating the student model. The
separation between student model and pedagogical model is similar to the separation of

instruction from the instruction in a number of tutoring systems, including Brown, Burton, and

V.
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DeKleer (1982) and Clancey (1982). Finally, there is the interface which has the
responsibility for interacting with the student. As a software angineering issue, these three
components can be developed separately with the pedagugical module responsible for
interaction- geiting interpretations ar- predictions from the student module and making
requests to the interface for interaction. While each module is compiex, dividing a major
software project to three independent components is a major step in the direction of
tractability. Much of the subsequent discussion wil be organized around issues invoiving

each of the componen's.
The Student Module

The basic responsibility of the student model is to0 deliver t0 the tutor an interpretation of
a piece of vehavior in ‘erms of the various sequences of proluction rules that might have
produced that piece of behavior. The obvious methodology for doing that is to run our non-
deterministic student mode! forward and see what paths produce matching behavior. While
there are compiexities and efficiencies that have been added to this basic insight this is the
core idea. The rest of the discussion of the student modei is concerned with issuer raised

in trying to implement this core idea.

Nondeterminacy in the production sequence i a major source of problems in
implementing the model-tracing methodology. We face nondeterminacy whenever multiple
productions in the student module produce the same output. (For instance, in the aigebra
tutor the student says he wants to apply distribution, and there are muitipie possible
distributions in the equation.) A special case of this is when productions produce no overt
output as when a student is doing some mental calculating or pianning. What to do in the
case of such pianning nondeterminacy is an interesting question. The set of potential paths
can expiode exponentially as the simulation goes through unseen steps of cognition. Also,
the ootential for actually effectively tutoring these steps is weakened the greater the distance
between the mental mistake and the feedback on that decision. Therefors, one is naturally

tempted to query the student as to wha( he is thinking-that is, to force an assaciation of
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some output with the mental steps. On the other hand, it 1s difficult to design an interface
which can trace planning in a way that does not put an undue burden on the student.
Students often resent even giving vocalized answers to the question “what 2re you thinking
about” and there is reason to believe such simultaneous report generation may interfere with
the problem-solving (Ericsson and Simon, 1984). The interaction in the LISP tutor trace in
which the tutor tqies to work through the recursive plan for factorial is one instance of our
effort at tracing planning. While we have some evidence that such interactions heip,
students report that they do not like being slowed down by having to go through menu
interactions. In the aigebra iutor students are oncouraged to use the scraen interface to

work out mental calculations. This seems t0 be working out fairly well.

Another example of the problem created by non-ce’erminancy is that misunderstandings
and siips can often produce the identical behavior. For instance, students can confuse
CONS and LIST in programming either because they really do not understand the difference
or as a result of a momentary lapse (Anderson & Jeffries, 1985). The student mode: must
be capable of delivering both interpretations to the tutor, (eaving to. the tutor the task of
assessing the relative probability of the two interpretations and deciding what remedial action

should be taken.

A major complication we face when we try to trace a student's problem-solving s that
running a production-system in real time can create serious problems. 3Students will not sit
still as a system muddies for minutes trying to figure out what the student is doing. They
will not pace their problem-solving to assist the diagnosis program. Interestingly, our
observation has been that human tutors have problems with real-time diagnosis and one of

the dimensions on which human tors become hetter with experience is real-time diagnosis.

Production systems, for all their advantages, are by and large not the most efficient way
to solve problems. Analysis has typically shown that their computation time tends to be

spent in patiern matching. The inherent computational problems of production Systems are

exacerbated in tutoring for a rnumber of reasons:

25



B P

22

(1) The grain size of modeling is often smaller than would be necessary in expert-system
applications. and the complexity of the production patterns required to expose the source of :

student confusions is often considerabie. -4

(2) The system has to consider encugh productions at any point to be abie to recognize

S N

all next steps that a student might produce. This contrasts with many applications where it

X

is sufficient to find a production that will generate a single next step.

(3) Often it is not clear which of a number of solution paths a student is on and the
production system has to become non-deterministic to enable a number of paths to be

traced until disambiguating information is encountered.

The production systems we have nproduced have all invoivad ‘variations on the RETE

algorithm developed by Forgy (1982) for pattern-matching which has supported many of the

st .- . . . e g .
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OPS line of production systems. However, we have not had good success with simply using

OPS as our expert system because the pattern-matching for each domair has special

E
E
B
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constraints upon which we have had to try to optimize. Anderson, Boyle, and Yost (1985)

contains a discussion of this issue for the domain of geometry.

A major issue in designing the pattern matcher for a dgmain 1S to decide how much
detail of the actual problem should be represented. For instance. if one was developing ai
algebra tuici it is useful to have different representations for to the following two expressions
during the early stages of teaching factoring:

2AB + 4A
2BA + 4A

There is evidence that the first expression can be more easily factored into 2A(B + 2) than
can the second expression: Commutativity of multiplication is not automatic in many
students, and the common factor of 2A might not be seen in the second expression above.
On the other hand, when we ook at students who have masiered aigebra and are learning
calculus, it is no longer necessary to represent the distinction between these two forms.

This means that in calculus we can use certain "canonicalizations” that simplify the pattern
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matching and reduce the number of productions.

The computational cost acsociatea with implementing such production systems has a
gpace as weil as a time dimension. The r ‘ber of productions can be on the order of
thousands to tutor a domain and the RETE aigorithm can be space expensive storing partial

products of pattern matching.

Ot course, it is an open question just how efficient in time and space we can make our
production system implementations. (n their current form they are just within the threshold
of acceptability, which is to say students are barely satisfied with the performance of a
mashine like a DandyTiger with over three meg of memory. However, there are reasons for
us not to be satisfied with this performance. In the first place sucit machines are still a
good deal beyond the range of sconomc feasibility. Secondly, efficiency issues impact on
the range of topics we h: ‘die. This manifests i‘seif in a number of ways:

(1) Problems tend- to become more costly as they become larger even if the larger
problems involve the s~me deinq kncwiedge. Therefore, there is a artificial size limit on

the problems we tutor students on.

(2) Progress into tmore advanced topics is as much limited by dealing with the added
computaticnal burden posed by these topics as with adeguately understanding and modeiling

the domain.

(3) The actual tutoring interactions become limited by the need to reduce non-
determinacy. For instance, some of our tutors force a particular interpretation of the
g udent’'s bshavior on { @ student, rather than waiting untii the student generates enough of

the soiution to eliminate the ambiguity.
Compiling the Model-Tracing

it one loo¥s at all possible seguencas of productions that can be generated in any of

our modeis, one finds that it defines a problem-space of finite cardinality. That cardinality
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can be quite large but often simply because we are looking at different permutations of
independent or nearly independent steps in a problem solution. This suggests that if we
are clever in our representation of th¢ problem space we need not dynamically simulate the
student in order to interpret him. Rather. we can generate beforehand the problem-sp2ce

just use the studsnt's behavior during problem soling to trace through this pre-
compieted problem space. Given the cost of real-time simulation with a production system,
this seems that it might be a worthwhile step. (In fact, we obtained a 50% performance
improvement in our LISP tutor by a partial implementation of this step.)

There are other advantagcs to having the compiete probiemn space compiled in advance
of the actual tutoring session. This makes it easy for the tutor to look ahead and see
where a step in the problem solutio~ will iead. Ofte:; a production rule will be favored by
the ideal model but in fact not lead to a solution. For instance, there are geometry
problems where even experts make certain inferences which do not end up as part of the
final proof. It is the sort of heuristic inference which 9 times out of 10 is good but not in
this case. If the tutor recommended dead-end steps just because the ideal model makes
them, the student would quickly loose faith in the tutor. Human tutors aiso tend to look

ahead to make sure that their recommenda.ions lead somewhere.
The Pedagogical Module

One interesting observation about this framework is tihat it is possibie to decouple the
pedagogical strategy from the domain knowiedge. Domain knowiedge resides in both the
student model and the interface. It is the pedagogical module that relates the two together
and which controls the interaction. This module does not really requireé any domain
expertise buiit into it. It is concernad with (1) what productions can acply in the Student
model, not the internal semantics of the prodﬁcﬂona; (2) what responses the student
generates and whether these responses match what the productions would generats, not
what these responscs mean; and, (3) what MMaI dialogue templatss are attached to the

productions, not what these dialogues mean.
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We are in fact working on a new PUPS-based tutor which is trying to implement this
realization in the limited domain of tutors for three programming languages-LiSP. ADA. and
Prolog. We have built student modeis for different programming domains independent of
tutoring strategy and have buiit different tutors to impiement variations on tutoring Strategy
independent of domain. Specific tutors can be generateu by crossing the tutorial module

with the domain module without tuning one to another.

There are thgoretical reasons for believing that we can create domain-free tutoring
strategies and that the optimal tutoring strategy will be domain free. Basically, our theory of
human skill acquisition ieads us to believe that the basic learning principies are domain free.
The optimal tutoring strategy would simply optimize the functioning of these learning

principles.

However, in our current running systems we have buiit a separate tutor for each domain.
While it is not the case that the tutoring strategies they implement are identical, they are
quite similar and we have claimed publicaily that they are attempts to embody a Strategy
based on the *~T iearning theory (Anderson, Boyle, Farrell, & Reisar, in press). However,
in retrospect it is becoming clear that some of the features of these strategies were
determined by issues of technical feasibility in a way that they need nct have been. It s
useful to idantify what the features of the common tutoring strategy are and what the
variations on the strategy couid be it will become clear that. when we look at any
dimension of tutoring, there are conflicting considerations as to what the optimal choice

should be.
(1) immediacy of Feedback.

The policy on immediacy of fesdback is well-liustrated by the LISP tutor. The LISP
tutor ingists that the student stay on a correct path and immediately flags errors. This
minimizes problems of indeterminacy. There are a number of reasons for desiring

immediacy of feedback besides this technical one. First, there is ample psychclogical
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evidence that feedback on an error is effective tn the degree that is given in close proximity
to the error. The basic reason for this is that it is easier for the student to analyze his
mental state thay led to the error and make appropriate correction. Second, immediate
feedback makes learning more efficient because it avoids iong episodes in which the student
stumbies through incorrect solutions. Third, it tends to avoid the extreme frustration that

builds up as the student struggies unsuccessfully in an error state.
Howevai, we have discovered a number of probiems with the use of immediate feedback:

(a) The feedback has to be carefully designed to force the student to think. If at ail
possibla, the feedback should be such tl-lat the student is forced to caiculate the correct
answer rather than just being given the answer (Anderson, Kulhavy, & Andre, 1972). It is
important to lsarning that the student go through the thought processes that generate the
answer rather than copy the answer from the feedback.

(o) Sometimes students wouid have noticed the error and corrected it if we just gave

them a litle more time. Self-correction is preferable when it would happen spontanecusly.

(c) Students can find immediate correction annoying. This is particularly true of more
axperienced students. Thus, novice programmers generally liked the immediate feedback
feature of our LISP tutor whereas experienced programmers did not. While our goal i1s not
to produce positive affective response, it probably does have some impact on learning

outcome.

(d) Often it Is difficult to explain why a student's choice is wrong at the point at which
the errur is first manifested because thers is not enough context. To consider a simple
example, compare a student who is going to geneiate (append (list x) y) where (cons x y)
is better. it is much easier to explain the choice after the complete code has been
gererzied rather than after (append.... has been typed.

There is no reason why the modei-tracing paradigm commits ug to immediate feedback,
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although as noted there are psychological reasons for choosing it. One of the variations we
would like to explore with our PUPS-tutor is a system that gives feedback after “complete”

expressions like (append (list x) y). This will enable the student some opportunity for self

correction if the correction occurs before the expression is compiete and provide a larger

context for instruction. On the other hand the distancs between error and feedback will still
be limited. We have aiso thought about varying the amount of code we would take in

before instruction as a function of experience.
(2) Sensitivity to Student History.

By and large we have used what we have called a “gener'~" student model in our
tutoring. At each point in time we are prepared to process ail the production rules that we
have seen any student use, correct or buggy. If students make an error we give the same
feedbach independent of their history. The only place we show sensitivity to student history
is in presenting remedial problems to students who are having difficulties. It is relatively
easy to implement a generic student modei, and the question is whether there is any reason

to go through the compiexity of tailoring the model to the student.

There is one aspect of this generic student model which derives from our theory of skill
acquisiticn and another aspect which does not. The aspect that is theoretically justified s
the belief that there are not different types of students who will find different aspects of a
problem differentially hard. That is, our theory does not expect individual differences in
learning, beyond some overall difference in ability or motivation. The theory implies that all
people learn in basically the same way. Of course, it is an open question whether there is
empirical evidence for tha theory on this score. In our own research it does appear that
students differ only In a single dimension of how well they iearn. Despite valiant searches
we have yet to find evidence that one set of productions cluster together as difficuit for one
group of students while a different cluster of productions are difficult for another group of

students.
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The aspect of use of a generic model that does not derire from the theory s the
assumption that past history of use with a rule implies nothing about the interpretation of a
current error. We have evidence that different subjects continue to have trouble with
specific different rules. (This is to be contrasted with & trait view that says there i3 a non-
singieton set of productions that a number of subjects will have difficuity with). If the
student has had a past history of success on a rule it is more likety that error refiects a
slip, rather than some fundamental misunderstanding. Currently, our tutors treat all errors as
4 it they refiected fundamental misconceptions and offers detailed expianation, but the better

respons? sometimes would be simply to point the error out.
(3) Problem Sequence

The existing tutors impiement a mastery model for controling selection of probiems to
present to the student. They maintain an assessment of the student's performance on
various rules and have knowiedge of what probiems exercise what rules. They will not let
the student move on to problems involving new rules until the student is above a threshold
of compeisnce on the current ruies. If the student has not demonstrated mastery, the tutor
will select additional problems from the current set which exercise rules on which the

student is weak.

While such a mastery policy for probiem sequence may seem reasonable and there is
evidence in the educational iterature for its effectiveness (Bloom, 1984), it is interesting 10
inquire as to its underlying psychological rationalization. Why not go onto new problems
while the student is weak on current knowledge and teach both the new knowiedge and the
old weak knowledge in context of the new probiems. Fundamentaily, it rests on a beief in
an optimal learning load-that if we overioad a student with too many things to iearn, he wiil
iearn none of them well. On the other hand, students are advanced to new material at
some point when furthér training on the old material could have improvad their performance
even maore. So there is a countervailing assumption about diminishing returns--that at some

point the gain in improving performance on oid ruies is not equal to gain in iearning new
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rules.
Our choice about exactly where to set the mastery ievel has been entirely ad hoc. |In Z
the ACT and PUPS theories working-memory !oad affects learning and problems pose less ;%
load as they become better iearned. However, these processes are not specified in a way 3
that enables us to define an optimal next problem. The issue of problem sequence and i
mastery leveis remains to be worked out in a model tracing paradigm. i
(4} Declarative Instruction g

A student's first introduction to the knowiedge require¢ to soive a class of problems is g
typically not from the tutor; rather it is declarative instruct.n typically in textbook or lecture 5
format. How should this declarative instruction be formulated to make it maximally heipful in ff

ieaming the skili? Given our analysis of learning by analogy, instruction shouid take the

AT

form of examples appropriate for mapping into problem solutions. Given our PUPS

kO

structures, it is not enough thai the student simply have the form siots of these structures

N

properly represented; it is critical for successful learning that the student have properly
represented the function of these structures and any prerequisites to these structures
achieving their functions. For example. Pirolli and Anderson (1985) showed that. while ali
students iearn recursive programming by analogy to existing programs, what determines how
well they learn is how well they represent how these programs achieve their function.
Bagsically, students often understand an example only superficially and thus emerge from
analogy with mischaracterizations of the range of problems for which the structures in the

example are appropriate.

in our efforts to create textual instruction to go along with our tutors, we have focused
on the issue of giving good examples for purposes of mapping and trying to assure that the
student achieves the right encoding of the example. Indeed, we are producing a LISP
textbook (Anderson, Corbett, Reiser, in press) which consists mainly of c..efully crafted

exampies with explanation aimed at promoting the right encoding.
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The iInterface

One might have thought that given the discussion above, the description of tutoring
would be compiets. We have stated how it models a student and how it uses that model
to achieve pedagogical goais. However, this discussion is abstract and leaves compietely
unspecified what the siudent actually experiences, which is the computer interface. We
have learned that design of the interface can make or break the effectiveness of the tutor.

Below are just a few examples:

1. Early in the history of the LISP tutor we had a system in which the student entered
code in a buffer and then dispatched the contents of that buffer to appear in a code
window. The students wers aiways getting co.fused about what code they should be
entering. We changed this to a system where one typed the new code right into the oid
code and all of these confusions dis' ypeared.

2. An early version of the aigebra tutor had a system where students entered a next
equation, the tutor figured out what steps they engaged in, and tried to give appropriate
feedback and point them back to the right track. The probiem was that the students’ error
might wall have been at some intermediate step that the students were no longer fixated
upon {(e.g., adding two fractions as part of moving a number across the equation sign). |t
was very difficult to communicate to the student what the problem was. We introduced the
system described earlier in this paper in which the student actually stepped through the
microsteps of the trangformation in a reiatively painless way with the system. The tutor

could flag the errors as they occurrad and these miscommunications disappearedi.

3. We used to have our students type in geometry statements through a typical
keyboard. Given the rather special syntax of geometry statements, students would often enter
basically correct statements in syntactically incorrect form. When the system toid them it
could not understand what they meant, they doubted their understanding of the problem and

often regressed. We replaced this with a system that allowed them to use a mouse to
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enter statements by pointing to a menu of geometry expressions. We also introduced a real
time parser which flagged them as soon as they entered a term which would make their

expression syntactically illegal. Again our difficulties disappeared.

4. The graphical structure we use to represent geometry statements (Figures 4-8) seems
to be the key to enabling students to understand the structure of a proof even though it is
essentially isomorphic in logical structure to a linear proof. The graphical structures make

explicit the logical relationship they would have to infer.

5. In all of our tutors it seems critical to spend considerable time fashioning the English
to make it as brief and as understandable as possible. If students face great masses of

hard-to-understand prose, they will simply not process the message.

6. Performance on the LISP tutor improved when we introduced a facility to bring up
the problem statement at any point in time, and when there is room on the screen, the
problem statement is automatically displayed. Performance in the geomeiry tutor improved

when we introduced a facillity for bringing up statements of geometry postuiates at will.

7. One of the major disadvantages of all of our t‘utors compared to human tutors :3 that.
at least so far. they use only the visual medium. This means that students riust move their
eyes from the problem to process the textual instruction In contrast. with a human tutor.
the student can listen to the tutor while continuing to look at the the probiem and even

have parts of the problem emphasized through the tutor's pointing.
These observations iliustrate two general points about interface design for tutors:

(a) it is important to have a system that makes it clear to a student where he or she is

in the problem solution and where their errors ars (Observations 1, 2, and 3)

(b) It is important to minimize working memory and processing load involved in the

problem solving (Observations 4, 5, 8, and 7).
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While one wants an interface with these properties, it is important that the interface iiself
be easy to learn and use. One does not want the task of dealing with the interface to
come to dominate learning the subject material. An easy interface is one that minimizes the
number of things to be leamed and minimizes the number of actions (e.g., keystrokes,
mousaeclicks) that the student has to perform to communicate to the tutor. its learnability is
enhanced if it is as congruent with past experience as possible. It should aiso have a
structure that is as congruent as possible with the problem structure. Finally, the actions

should be as internally consistent as possible.

Conclusions

What we have described is a theoretical framework for our tutoring work and some
experiences based on that framework. Both the tutors and the theory are evolving objects
and so it is not the case that the current embodiments of our tutors refiect all of the
current insights of our theory. Still there is an approximation here, and it is worthwhile to
ask to what degree has our tutoring experience been successful and to what degree “has

our tutoring experience confirmed the theory.

The first observation is that Student3 do seem to '2arn from the tutors. We think this 18
quite a remarkable fact and not something that we had really believed would work so well
when we set out to build these tutors. We have taken cognitive modeis of the information-
processing, embedded them in instructional systems, and nothing has fallen apart. They can
embody Substantial amounts of matesial, can be developed in feasible time. run within

cceptable bounds of efficiency, and are robust in their behavior. While we have no truly
satisfactory evaiuations of the tutors they seem to be better than solving problems with rn
tutor and students claim to enjoy working with them. This feasibility demonstration gQives

some credence to the generai theoretical framework in which the tutors ware built.

It is a separate question of whethsr the students behave and learn with the tutors as

the theory would predict. This is a difficuit question tc assess because the theory is
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probabilistic and does not specify in advance probabilities such as the probability of
evcoding a production: rathar these probabilities would have to be estimated from the data
It is also difficult because the theory makes predictions only given students' encodings of
the instruction and of the problem. and students clearly do vary in how they encode this
information. Nonetheless. what analyses we have done do seem to confirm the theory.
Figure 10 presents an analysis of some daia from the LISP tutor that monitors time to type
in code corresponding to the firing of individual productions. So for instance typing "(cons”
coiresponds to the firing of a production that recognizes the applicability of the CONS
function. We have put in times associated with the firing of productions isarned in legssons
1, 2, and 3. We have plotted averages for ail the productions introduced in a lesson but
these averages are typical of individual productions (Anderson, in press). What these times
include is somewhat comp! - becauss they inciude a lot of iow-level interactions with the
tutor. However, they shoulc refiect the learning of the production or productions associated

with the execution of the code. Thess learning curves have just the shape we woulid

predict. There is a big drop from first application of a broduction to second as the .

knowledge is compiled into production form and gradual speed-up after that as the

production rules become strengthened.

Insert Figure 10 about here

Another observation is th2: the knowledge acquired does seem to have the appropnate
range. For instance, in the geometry tutor sStudents can apply new combinations of the
inference rules that they have learned to solve a new problem as long as the contextual
heuristics that recommend the application of these rules are ones they have aiready
encountered. On the other hand if they are presented with a problem that can be soived

by the knowledge they have been taught, but which requires applying a new contextual

heuristic to see the applicability of that rule, they experience great difficuity.
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Table 1

Define the function fact. It takes a number argument, n and comoutes the factorial of r. which is the
resuit of muitipiying n x n-1 x n-2 ... x 1. For instance. (fact 3) = 3 x 2 x 1 = 6 By definition, the
factoriai of 0 is 1.

1. (defun fast (n)
(cond /‘equal) <ACTION>,
<RECURSIVE-CASE >))
{ assume that you are trying to test if the number argumer is equd’ to the number
zero. There is a special function for testing equivalence to zer¢ (ry to use that function

instead of EQUAL.

What code can you wr:is to test if the condition for tei.ninating case is true? Trv writing
a predicate.

2. (cefun fact (n)
(cond ((zero <ACTION:.)
<RECURSIVE-CASE >))

Did you mean zerop (y or n)? y

3. (defun fact (n)
(cond ((zerop n) 1)

< RECURSIVE-CASE > )

Is the vaiue of fact in the recursive cases calculated by
PRESS: IF YOU WANT TO:

1 Calling faci recursivaly with n.

2 Muitiplying » by fact of n minus 1.

3 Getting 1 2 ... n and then multiplying the results.
4 have the tutor choose

Menu choice: 3

That is a reasonable way to think of doing factorials but it is not a pian for a recursive
function. Since you seem to be having trouble with the recursive cases let us work through
some examples and figure out the conditions and actions for each of these cases.

The recursive relationship is the reiationship betweer fact cailed
with n and fact called with;

PRESS: IF YOU WANT TC:
1 n minus 1
2 n equal to 9

T
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3 n plus 1
4 have the tutor choose
Menu choice: 1

We will congsider some concraete exampies. We will characterize the recursive relationship
between fact cailed with 1 and fact calied with 0

What is the vaiue of (fact 1)?
Answer: 1

What is the vailue of (fact 0)?
Angswer: 1

EXAMPLES
fact (n) met (n - 1)
A. (fact 1) = 1 (fact 0) = 1

We will consider some more concrete examples. We will characterize the recursive
relationship between fact called with 3 and fact called with 2
What is the value of (fact 3)?

Answer: 6
What is the value of (fact 2)?
Answer: 2
EXAMPLES
fact (n) fact (n - 1)

A (fact 1) = 1 (fact 0) = 1
B. (fact 3) = 6 (fact 2) = 2

Since there is only one recursive case characterized by he examples you have just
worked out, the condiiion in this case can “e just coded as T. We will just {ccus on
characterizing the action in this case.

in exampies A and B what do you have to do to get the resuit of
fact cailled with n?

PRESS: IF YOU WANT TO:

1 Multiply n by one iess than n.

2 Multiply n by fact of one less than n.

3 Add n to the resuit of fact calied with one less than n.
4 have the tutor choose

Menu choice: 2

We have now worked through a series of exampies that .”.strate the recursive relation

42
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We will now return to the goal of trying to produce LISP code that specificies the recursive

relation

(defun fact (n)
(cond ((zerop n) 1)
(t (fact )))

You will have to use fact at some point but right now you want to muitiply.

(defun fact (n)
(cond ((zerop n) 1)
(t (times <NUM> <NUM2>)))

What do you want to do first?

PRESS: IF YOU WANT TO:

1 Write code to get the number argument

2 Write code to get the recursive pan
Menu choice: 1

(defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact n)))),

You cannot just code n at this point. What you want to do is subtract one from n. =

(defun fact (n)
{(cond ((zerop n) 1)
(t (times n (fact (ditference )))

Difference would work in this case but it is more appropriate to use the function SUB1 i

when you are subtracting 1 from a number

(defun fact (n)
(cond ((zerop n) 1)
(t (nmes n (fact (subt m)))))»

- YOU ARE DONE. TYPE NEXT TO GO ON AFTER -~
- TESTING THE FUNCTIONS YOU HAVE DEFINED ---

THE LISP V/INDOW

= >(lrace fact)

(tact)

=> (fact 3)

1 <E-ter> fact (3)
|2 <Enter> fact (2)

| 3 <kEnter> fact (1)
| |4 <Enter> fact (0)

o
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I 14 <EXIT> fact 1 .
i 3 <EXIT> fact 1
(2 <EXIT> fact 2

1 <EXIT> fact 6

6
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Figure 1

Figure 2
Figure 3
Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
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Figure Captions

A problem that occurs early in the problem sequence used with the
geometry tutor.

The screen configuration before ling 4 in Table 1.
The screen configuration at the end of the dialogue in Table 1.
An initial screen configuration with the geometry tutor.

The screen configuration atter the student has selected the premises and
the rule and is about 10 enter the conclusion.

The student has just tried t0 apply ASA to the two premises ZLEJX =
LEJY, LEXJ = LEXK

ne student has succeeded in proving one of the two requisite triangie
corgruences.

Th? proof of the problem is now compiete.

Tre aigebra tutor's interface. The tutoring window is at the top. Below
is the current equation. The notebook below keeps a history of the
problem solution.

Piot of learning data from the LISP tutor. Time i3 plotted to code symbol
corresponding to the firing of productions that were introduced in the ‘first.
second, and third lessons.
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in examples A and B what do you have to do to get the result

of fact called with n?

PRESS: IF YOU WANT TO:

1. Multiply n by one less than n.

2. Multipiy = by fact of one less than n.
3 Add n to e result of fact called with one less than n.
4. Have the tutor choose.
Menu Choice: 2

CODE FOR lact

(defun fact (n)
(cond ((zerop n) 1)
<RECURSIVE-CASE >))

EXAMPLES

fact (n) fact (n-1)
A. (fact 1) = 1 (fact 0) = 1
B (fact 3) = 6 (fact 2) = 2
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- YOU ARE DONE. TYPE NEXT TO GO ON AFTER
- TESTING THE FUNCT'ONS YOU HWAVE DEFINED - -

(defun fact (n)
(cond ((zerop n) 1)
(t (times n (fact (subi n))))))

THE UISP WINDOW

=> (trace fact)
(tact)

=> (lact 3)

1 <Enter> fact (3)
|2 <Enter> fact (2)

| 3 <Enter> fact (1)
| |4 <Enter> fact (0)
| |4 <EXIT> fact 1
| 3 <EXIT> fact 1
|2 <EXIT> fact 2
1 <EXIT> fact 6
6
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