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Abstract

Generalizabilit} theory is based upon analysis of

variance (ANOVA) and requires estimation of variance

componerts for the ANOVA design under consideration in

order to c ite either G (Generalizability) or D

(Decision) coefficients (Cardinet, Tourneur, & Allal,

1976). Estimation of variance components has a number

of alternative methods available using SAS, BMDP, and ad

hoc procedures. This study examines the effect of these

methods on coefficients for a large sample of subjects

under complex designs. Suggestions are made concerning

equal and unequal situations.
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ESTIMATION OF VARIANCE COMPONENTS

USING COMPUTER PACKAGES

Introduction

The theory of generalizability of behavioral and

mental measurements depends upon the estimation of

variances for var .ous facets in the design under

consideration. For example, the simplest

generalizability (reliability) coefficient or

g-coefficient based upon a subje ;t -by -item design is

estimated using the intrar.lass correlation. This

statistic estimates the ratio of subject variance to

subject plus error variance, but it is not the only

statistic that can be computed to estimate that ratio.

Several statisticians have derived alternate methods for

variance components estimation, including Hemmerle and

Hartley (1973) for maximum likelihood; Hartley, Rao, and

LaMotte (1978) for the MIVQUEO method; Caylor, Lucas,

and Anderson '1970) for the adjusted sum of squares

method, and various quasi -F procedures of an ad hoc

nature. Consequently, it is not known presently how

estimated g-statistics vary in magnitude by use of

various estimation procedures. Recently, Bell (1985)

examined several procedures within SAS and concluded

that MIVQUEO was the most useful and efficient.
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Although other statistical packages were not

considered, nor were components calculated from

unbalanced data, software problems concerning the

estimation of variance components were brought to light.

This paper answers some of the questions raised by Bell

and suggestions are given concerning unequal n

situations.

Theoretical Framework. The theory of

generalizability due to Cronbach, Gleser, Handa, and

Rajaratnam (1972) was used as the definitive work for

all designs employed. Intraclass correlation

coefficients were calculated from the variance

components based upon developments by Cardinet,

Tourneur, and Allai (1976). The resulting

g- coefficient.s were computed according to Rentz's (1980)

rules for calculation.

METHOD

The Wechsler Adult Intelligence Scale-Revised

national standardization sample provided the data base

(Wechsler, 1981). It consists of 1880 subjects

stratified by age, gender, race, occupation, education,

urban-rural residence, and region of the U.S. In

addition, several other variables were available, such

as birthplace, handedness, and birth order. These

variables provide great variety for the construction of
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complex factoral designs. Three designs were used to

investigate variance component estimation and resultant

g-coefficients. The three designs were : (a) a two-

factor subject x item design, 1,1)) a three-factor subject

x item x age design, and (c) a four-factor subject x

item x age x gender design. These designs allowed

estimation of both within and between subect effects.

Variance components and the resultant g-

coefficients for the intraclass correlations were

computed and calculated using the BMDP program 8V and

SAS. BMDP8V uses the Cornfield and Tukey (1956)

formulas to estimate variance components. The new SAS

Version 5 procedure VARCOMP has four estimation methods:

(a) TYPE1, (b) MIVQUEO, (c) ML, and (d) REML (SAS,

1985b). The TYPEl method computes the Type 1 sum of

squares for each effect (factor) and then solves the

resulting system of equations (Gaylor, Lucas, &

Anderson, 1970). The MIVQUEO method uses a technique

similar to the TYPEl method except that the ri 1M

effects are adjusted only for the fixed effects. This

method affords a considerable timing advantage over the

TYPEl method (SAS, 1985b). The MIVQUEO method is based

on the Hartley, Rao, and LaMotte (197-) technique

designed to produce estimates that are locally best

quadratic unbiased estimates. The ML (maximum-likelihood)

6
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method computes maximum-likelihood estimates of the

variance components by using initial MIVQUEO estimates

and the W-transformation developed by Hemmerle and

Hartley (1973). This procedure then iterates until the

log-likelihood objective is satisfied or coverges. The

REML (restricted maximium-likelihood) method is similar

to the ML method except that the likelihood is separated

into two parts; fixed effects and random effects

(Patterson & Thompson, i97i). Initial MIVQUEO estimates

are iterated until convergence is met for the random

effects part only.

Five random samples were selected from the WAIS-R

data rase (N=1880) to examine the stability of the

estimates and to have both balanced and unbalanced

designs. The WAIS-R standardization sample was randomly

divided into four subsamples (N=470 each). These four

subsamples allowed both equal and unequal cell sizes

according to the number of factors investigated to

examine the effects of unequal cell sizes on estimates

of the variance components, g-coefficients, computation

time, and memory required for computation. A fifth

subsample (N=360) was created by randomly sampling so

that there would be equal cell sizes for the two-,

three-, and four-factor designs.

7
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RESULTS

Although most results were obtained for the two-

factor solutions, no ML or REML solutions were obtained

for the three- and four-factor designs. The time

required for ML and REML solutions under SAS for both

equal and unequal sample size designs became

prohibitively expensive (over 6 minutes executed c.p.u.

and over 15 minutes calculated c.p.u.). Bell (1985)

also found the VARCOMP procedure (methods of TYPE1 and

ML) and the GLM procedure within SAS to be prohibited by

requiring large (over 5 minutes c.p.u. time) amounts of

time and memory which are expensive.

It was hoped by the present authors that the new

SAS Version 5 might reduce the time and memory

requirements using the new REML method in the VARCOMP

procedure or the new REPEATED statement in the GLM

procedure. The GLM REPEATED statement was investigated

using the two-factor equal cell size subsample (N :360)

and it required over 3 minutes c.p.u. and over 2000k of

memory. The REML method also used large amounts of time

and memory.

The time (in c.p.u.) and memory requirements for

the different methods and procedures are shown in Table

1. For the MIVQUEO and TYPEi methods, more time and

memory was needed as the number of factors increased.

S
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Also, less time was needed for the equal cell size

sample (EQSAM) than for the other four samples for each

design (two-, three-, and four-factors). This should be

true regardless of balanced versus unbalanced designs

because there were less subjects in EQSAM compared to

the other four subsamples.

The BMDP program 8V provided the most efficient

estimates with balanced data. Interestingly, t'sie BMDP8V

program was even more efficient when accessed through

SAS (SAS, 1985a). This finding was important because

the data must be sorted carefully for data entry to be

used in PMDP8V according to slowest and fastest moving

Indexes or levels of factors (Dixon, 1985). The data

can be sorted easily with the SORT procedure prior to

the BMDP procedure in SAS. Also this finding allows

for the analysis of SAS structured data sets.

Table 2 shows the estimated g-coefficients for the

various procedures and methods, samples, and designs.

For the two-factor solutions there was no variation to

the third decimal place across procedures for EQSAM.

The estimates varied from .908 to .93i across all five

random samples. Since reliability estimates are often

reported to two decimal places, the .9i to .93

difference is negligible.

The three-factor solutions provided estimates that

9
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were very close to the two-factor solutions. These

estimates varied from g-coefficients of .907 to .935.

Although these estimates varied a little more ttan the

two-factor solutions, the estimates were very similar

across procedures and samples.

The four-factor solutions revealed more variation

across procedures and samples than either the two- or

three-factor solutions. This was due in large part to

the MIVQUEO method consistently estimating larger error

variances. The procedures varied from .920 to .926 for

EQSAM, but varied from .890 to .937 across all five

random samples. Even these variations may not represent

substantial differences in terms of efficiency or

precision.

CONCLUSIONS

The major results of this study supplement Bell's

(1985) results. For typical, large test data sets it

will be extremely expensive to estimate g-coefficients

if TYPE 1, ML, or REML methods of SAS's VARCOMP

procedure are used to compute variance components.

BMDP, while restricted to equal cell size designs, was

efficient in its computations and required fractions of

the time and memory used by those three methods. For

many situations unbalanced designs will occur, however,

with excessive loss of information accompanying

10
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balancing. This situation can be assessed by using the

MiVGUE0 method of SkS's VARCCMP procedure for the

unequal cell size sample and then comparing, these

estimates with BMDP8V estimates of the reduced, talanced,

equal cell size sample. It is unlikely that these two

methods will give drastically different estimates for

simple designs (two- or three-factors), but different

estimates couli result for designs with many factors and

many levels.

It was anticipated that the new SAS Version 5 woul

help meet the need for efficient ccmpulation of within

and between subject effects with the REPEATED stateme

of the GLM procedure. This has lowered the cost for

repeated measures analysis, but is not efficient a

applied to the calculation of variance components

Type 1 expected mean squares for general!zabilit

theory.
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Average Region
620 K
1120 K
2000 K

C.P.U.

Method Factors :

2 :

3 :

4 :

Average C.P.U.
2.1 (1.4)*
3.0 (1.9)
3.7 (3.3)

MIVQUEO

TYPEI 2 :

3 :

4
:

33.6 (15.6)
56.6 (34.1)
91.3 (72.7)

620 K
1270 K
20t)0 K

REML 2 :

3 '.

4 ',

over 360
over 360
over 360

3000 K
3000 K
3000 K

ML 2 ',

3 ',

4
, '

over 360
over 360
over 360

3000 K
3000 K
3000 K

BMDP 2
,

,

3 ',

4 .

,

1.2
1.5
1.9

600 K
600 K
600 K

SASBMDP 2 ',

3 '
.

4 ',

0.4
0.8
0.8

600 K
600 K
600 K

* NOTE: Equal cell size sample (EQSAM) requirements
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Table 2

Estimates

Solutions

Two Three Four

G-coefficient

Procedure

Two-factor

EQSAM One
BMDP .927
SASBMDP .927 ----
MIVQUEO .927 .908 .914 .927 .931
TYPE1 . .927 .908 .914 .927 .931
ML : .927
REML : .927 ---- ____

Three-factor Solutions

Procedure : EQSAM One Two Three Four
BMDP : .927 ---- ---- ----
SASBMDP : .927 ----
MIVQUEO : .927 .907 .915 .928 .935
TYPE1

: .927 .908 .915 .928 . .4'5

Four-factor Solutions

Procedure : EQSAM One : Two Tnree Four
BMDP : .926
SASBMDF : .926
MIVQUEO : .920 .906 : .890 .925 .934
TYPE1

: .926 .907 .912 .926 .934
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