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Meta-analysis is a technique for combining the summary statistics from

previously conducted research studies. Pioneered by Gene V Glass (1976)

meta - analysis gives not only an indication of the direction of the results of

the studies, but provides an index of the magnitude of the effect as well.

Meta-analyses are reported in terms of mean effect size, ES. There are two

types of effect sizes. An experimen. feet size is the mean of the experi-

mental group minus the mean of the conLrol group divided by the standard

deviation,

ES
S '

X

7
E

7C

while a correlational effect size is simply a correlation coefficient,

ES = r.

Meta-analysis has been further refined by Hedges (1983), who has been developing

techniques for using effect sizes as data points and then fitting regression

models. The focus of this paper, however, will be the use of correlation

coefficients in meta-analyses and the effect of the violation of the assumption

of independence in these analyses.

independence

A necessary assumption for the results of statistical analyses to be tenable

is independence. All inferential statistical techniques require independence of

observations. By independence is meant that the probability of including one

subject or data point will in no way affect the probability of including any other

subject or data point. Another way of defining independence is to say that 1:he

value of a variable for a subject is not predictable from the value of a variable

for any other subject.

So far independence has been defined in reference to primary studies performed

by researchers who draw a random sample of subjects, measure the subjects on
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variables of interest, and calculate statistics from the mean' -ed data using

their hypothesized models. The meta-analysts, on the other hand, draw a sample

of studies usually from journal articles, record the numerous statistics

reported in each study, and calculate a statistic based on effect sizes or a

meta-statistic from a data set of simple statistics. When jumping from the

level of individual studies to combinatory techniques, studies parallel subjects

and simple statistics parallel observations on variables. In the framework of

combinatory methodology, then, independence means that the value of any statistic

which is included should in no way be predictable from the value of any other

included statistic.

The typical study which is chosen for inclusion in a meta- analysis, however,

will yield more than one effect size or simple statistic. When the meta-analyst

uses all the statistics available in a particular study to calculate the mean

effect size, the assumption of independence is violated. Landman and Dawes (1982)

outline five ways in which the assumption of independence can be violated in meta-

analyses. These five types of violations are as follows:

"1) Multiple measures from the same subjects, . . .

2) Measures taken at multiple points in time from the
same subjects, . . .

3) Nonindependence of scores within a single outcome
measure, . . .

4) Nonindependence of studies within a single article, .

and
5) Nonindependent samples across articles" (pp. 506-507).

Kraemer (1983) specifically provides the caveat that "only one effect size

per study can be used to ensure independence" (p. 99) in meta-analyses. This

means that ne ratio of effect sizes to studies in a meta-analysis should be

one in order to avoid violating this assumption. However, even a cursory review

of published meta-analyses reveals that the assumption of independence is, in

fact, seldom met.
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Purpose

The purpose of this study was to determine the effect of the violation

cf the assumption of independence on the distribution of r and the distribution

of Fisher's Z. In this Monte Carlo simulation the following four parameters were

used with the values specified:

N - the sample size within a study (20, 50, 100),

p - the number of predictors (1, 2, 3, 5),

rho(i) - the population intercorrelation among predictors

;0, .3, .7),

rho(p) - the population correlation between predictors and

criterion (0, .3, .7).

Predictor and criterion variables were generated to conform to all possible

combinations of the parameters specified above and then correlated. The main

parameter of interest was rho(i), since it was the index of nonindependence when

it assumed a nonzero value in the multiple predictor cases. When only one predictor

was used or when the intercorrelation among predictors, rho(i), equaled zero, then

the assumption of independence was not violated.

Method

In this study dependent and independent correlations were generated between

criterion and predictor variables. The values of the parameter p, the number

of predictors, were one, two, three, and five, and path diagrams for each case

appear in Figures 1 through 4 respectively. In these diagrams the G variables

are the common generating variables used along with error to form the X variables

or predictors, which are in turn combined along with error to produce the Y or

criterion variables. The arrows between variables indicate the relationship

among the endogenous variables. The associated lower case letters are the

standardized regression coefficients for path analysis. The arrows which are not



4

_ ,2

Figure 1. Path diagram for the oLe predictor case.
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Figure 2. Path diagram for the two predictor case.
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Figure 3. Path diagram for the three predictor case.
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Fioure 4. Path diagram for the five predictor case.
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connected indicate exogenous variation, and those coefficients are given as well.

The following algorith derived by Knapp and Swoyer (1967) was used to

generate correlated vectors of numbers:

Y = aX + 1/1 - a2Z

where X = a vector of randomly chosen numbers from the standard normal distribution,

Z = another vector of randomly chosen numbers from the standard normal

distribution, and

a = the desired correlation between X and Y.

In the unique one predictor case, the intercorrelation among predictors

could not be varied since only one predictor was present. Therefore, independence

exists in this case. Here the X1 vector was set equal to G, a vector of randomly

chosen standard normal deviates, so the path coefficient between G and X1 is one.

The path coefficient between X1 and Y, a, was set equal to the population correlation

between predictors and criterion, rho(p). Since a = rho(p), the error coef'icient
. r

for Y was i 1 - a2 or 71 - rho(p)2. The Y vector was then created as follows:

Y = aXl + %/1 a2Z

where Z = a vector of randomly chosen numbers from the standard normal distribution.

The vectors for X1 and Y were then correlated.

A different procedure was used for data generation in the multiple predictor

cases. In Figure 2, path coefficients a = b and c = d. In Figure 3, a = b = c

andd=e= f. In Figure 4,a.b=c=d=eandf.g=h.i. j. In these

three diagrams the correlations between any two predictors is equal to the product

of the path coefficients connecting those two predictors with the generating variable

or the quantity, a2, since all the coefficients between generating variables and

predictors are equal. For the correlation between two predictors to equal rho(i),

r-the path coefficient, a, was set equal to 7 rho(i). Then all the X vectors were

generated as follows:
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X(1) raG +1'1 - a2(1)

Where X(i) = a vector of values for
a predictor and i

assumes incremental values

for vectors from one to p, the number or predictors,

a = rho(i) = the population
intercorrelation among predictors,

Z(i) = a vector of randomly
chosen standard normal deviates and i assumes

incremental values for vectors from one to p, number of predictors.

The following points concern the generation of the Y vectors. First it
should be noted that each Y is a linear combination of the p predictors plus
error. The weight of that combination is c in Figure 2, d in Figure 3, and
f in Figure 4. Second, it should be noted that correlation coefficients can be
reconstructed from the standardized regression coefficients in a path diagram.
In Figure 2, the co-relations between the two predictors and the criterion can be
reconstructed as follows:

ryXx = c + abd,

ryX
x

= d + bac,

but since c = d, and a = b -;'rho(i), the correlation between Y and any predictor,

X(1), can be written as follows:

r = c + /)(i)c = c(1 + /3(i)).yx.
1

Also since r
yx

is an estimate of rho(p), that value can be substituted into the
equation so that it can be solved for c as follows:

P (P) = c(1 /2(i))

c = P(p)
1 + Ig(i)

In Figure 3 in parallel fashion, the correlations between the three predictors
and the criterion can be reconstructed as follows:
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ryx = d + abe + acf,

e + bcf + bad,yx2

r = f + cbe + cad,yx3

but since a = b c =1 rho(i), and d = e = f, the correlation between Y and any
preuictor, X(i), can be written as follows:

r
yx

= d + r(i)d = d(1 + 2(i)).

Also since r
yx

is an estimate of rho(p), that value can be substituted into the
equation so that it can be solved for d as follows:

(p) = d(1 +

d=
1 + 2

.

In Figure 4 the last obvious parallel exists. The correlations between the
five predictors and the criterion can be reconstructed as follows:

r = f + abg + ach + adi + acj,Yxl

r = g + baf + bch + bdi + bej,yx2

r = h + caf + cbg + cdi + cej,yx3

r = i + daf + dbg dch + dej,Yx4

r = j + eaf + ebg + ech + edi ,Yx5

but since a= b=c =d=e = -irho(i), and f =g=h=i = j, the correlation

between Y and any predictor, X(i), can be written as follows:

r
yx = f +,o(i)f +p(i)f +,-2(i)f

+;)(i)1= f(1 + 4,)(i)).

Again r
yx estimates rho(p) so with the appropriate

substitutions the solution
for f is as follows:
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,2(p) = f(1 + 4/'(i)),

f = /7(P)
1 + 42(1) .

So far in generating the Y variables in the two, three, and five predictor

cases, the weights of the combinat",ons, c, d, and f, respectively, 'have solutions.

But in each case a weight for the error term 's needed. In the Knapp and Swoyer

algorith, the value a
2
can be viewed as r

2
, the amount of .ariance accounted for,

so 1 - a2 is the amount of variance not accounted for and /1 - a2 is the weight of

the error vector, Z.

In the three multiple predictor cases studied here, formulas for the R
2

values

are given below:

R2 = + c (c) = 2c ( p) ,y.12 yxl yx
2

R
2

= d + d + d/2 = 3d/-7(1)),y.123
Yx1 Yx2 Y x3

R
2

y12345 = ft, + f + f + f/.0 + f = 5f/9 (0) .
yx1 yx

2
yx

3 .4 x5

The Y variables were generated as follows:

Y = c(X1 + X2) +1/1 - 2cAl(p)Z,

Y = d(X1 + X2 + X3) +11 - 3dr%(p)Z,

Y = f( X1 + X2 + X3 + X4 + X5) + - 5f ,.9(p)Z.

Correlations between the criterion variables and each of the predictors were then

calculated in the multiple predictor cases

The number of replications was chosen by solving for nr in the formula for

the standard error of the mean of the correlation coefficient given below:
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The value for 07 was arbitrarily set at .01, which was deemed sufficientlyr

small for precision in this study. In this formula, /9 is the population

correlation, rho(p), and was set equal to zero. .The symbol, ns, is the sample

size and was set equal to 20. Substituting these values into the equation

allowed n
r

, tne number of replications, to assume the largest value that would

be possible among the values For paramete-s, rho(p) and ns, that were chosen for

this study. The solution for nr, the number of replications, was 500.

For each combination of N, p, rho(i), and rho(p) and for all r and Z

distributions, the means, medians, and standard deviations were calculated.
Results

The means, medians, and standard deviations of the correlation coefficients
for all values of rho(i), rho(p), and the number of predictors, p, when N=20

appear in Table 1. The same information when N = 50 and N = 100 appears in

Tables 2 and 3 respectively.

The mewls, medians, and standard deviations of the Fisher's Z transformation
of the correlation

coefficients for all values of rho(i), rho(p), and the

number of predictors, p, when n = 20 appear in Table 4. The same information

whorl N = 50 and N = 100 appears in Tables 5 and 6 reepectively.

Inspection of these tables shows that when the population correlation

coefficient, rho(p), equals zero both the mean of r and the median of r hover

around that value and neither is consistently higher or lower than the other.

However, when rho(p) assumes a nonzero value the median of r is usually larger

than mean r. This is because r is a biased statistic and its distribution is

negatively skewed when rho(p) is positive. This ordering of the mean and the

median when rho(p) is not zero does not occur in the Fisher's Z distibut:on.

As N increases both the mean of r and the mean of Z are better estimators
of the parameter rho(p). This follows from the Central Limit Theorem. Both
the median of

r and the median of Z tend to be better estimators of the population
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Table 1

Means, Medians, and Standard Deviations for Correlation Coefficients

When N = 20

P rho(p)

rho(i)

1-

0

Md
r

SD
r

r

.3

Md
r

SD
r

r

.7

Md
r

SD
r

1
a

0 .015 .007 .230

.3 .294 .322 .206

.7 .690 .706 .126

2 0 .002 .011 .225 -.004 -.007 .223 .002 -.004 .234

.3 .300 .316 .214 .296 .299 .208 .297 .311 .209

.7 .683 .693 .129 .692 .714 .125 .695 .710 .117

3 0 .001 .003 .230 -.009 -.013 .233 .002 -.007 .228

.3 .295 .313 .213 .289 .305 .214 .295 .316 .211

.7 b .686 .703 .126 .687 .703 .126

5 0 -.002 -.004 .233 ^08 .007 .227 .004 .000 .221

.293 .309 .21E / .320 ,208 .292 .303 .202

.7 b b
.694 .714 .120

e

, th one predictor nonzero rho(i) values are undefined.

b
This combination would generate data which are undefined.
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Table 2

Means, Medians, and Standard Ceviations for Correlation Coefficients

When N = 50

P rho(p)

rho(i)

F

0

Mdr
r SD

r
T

.3

Mdr S Dr F

.7

Md
r

SD
r

1
a

0 .001 -.001 .141

.3 .303 .305 .128

.7 .697 .705 .073

2 0 .005 .000 .142" --.001 -,D03 .140 .004 .005 .149

.3 .294 .307 .132 .300 .305 .131 .304 .305 .130

.7 .697 .705 .075 .694 .703 .076 .696 .703 .069

3 0 .002 .001 .139 .007 .003 .145 .001 -.002 .142

.3 '94 ,301 .130 .295 .300 .130 .295 .300 .136

.7 b .696 .703 .075 .694 .700 .076

5 0 -.002 -.001 .143 -.006 -.009 .144 -.005 -.007 .141

.3 .299 .303 .129 .300 .305 .129 .295 .300 .128

.7 b b .699 .705 .071

a
With one predictor nonzero rho(i) values are undefined.

bThis combination would generate data which are undefined.
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Table 3

Means, Medians, and Standard Deviations for Correlation
Coefficients

When N = 100

P rho(p)

rho(i)

i:
0

Md
r

S0
r

r

.3

Md
r

SDI, r

.7

Md
r

SD
_r

la 0 .008 .005 .108

.3 .299 .303 .091

.7 .698 ,701 .053

2 0 .004 .003 .099 -.008 -.009 .101 .009 .012 .097
.3 .297 .303 .091 .304 .308 .091 .303 .303 .088
.7 .700 .704 .051 .699 .703 .053 .699 703 .048

3 0 -.005 -.009 .098 .002 .002 .102 -.001 .000 .097
.3 .301 .305 .092 .302 .305 .092 .300 .302 .088
.7 b .698 .701 .050 .695 .699 .050

5 0 -.002 -.002 .099 .003 .001 .100 -.003 -.002 .100
.3 .295 .298 .093 .296 .302 .093 .302 .306 .094
.7 b b

.699 .702 .051

aWith one predictor nonzero rho(i) values are undefined.

bThis combination would generate data which are undefined.
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Table 4

Means, Medians, and Standard Deviations for Fisher's Z Transformation

of the Correlation Coefficients When N = 20

rho(i)

0 .3 .7

p rho(p) /- Md SD 7- Md SD 7z z z z
mc

12

SD

la

2

3

5 r

0

3

.7

.016

.317

.885

.007

.334

.879

.243

.233

.237

0 .002 .011 .238 -.004 -.007 ,235 .002 -.004 .247

.3 .327 .327 .246 .321 .309 .240 .323 .321 .242

.7 .873 .864 .242 .890 .895 .241 .893 .887 .230

0 .001 .003 .244 -.009 -.013 .246 .002 -.007 .241

.3 ,321 .324 .244 .313 .315 .244 .321 .327 .242

.7 b .879 .874 .242 .880 .073 .241

0 -.002 -.004 .246 .009 .007 .240 .004 -.001 .233

3 .319 .319 .248 .334 .33'. .240 .316 .313 .231

.7 b b
.891 .895 .229

15

"With one predictor nonzero rho(i) values are undefined.

b
This combination would generate data which are undefined.
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Table 5

Means, Medians, u tandard Deviations for Fisher's Z Transformation

of the Correlation Coefficients When N = 50

P rho(p)

rho(i)

7

0

Md
z

SD
z

Z

.3

Md
z

SD
z

1

a
0 .001 -.001 .144

.3 .319 .315 .144

.7 .876 .877 .144

2 0 .005 .000 .145 -.001--.003 .142

.3 .309 .317 .146 .316 .315 .147

.7 .877 .877 .145 .870 .873 .147

3 0 .002 .001 .141 .007 .003 .148

.3 .309 .310 .146 .310 .310 .145

.7 b .874 .874 .145

5 0 -.002 -.001 .146 -.006 -.009 .147

.3 .315 .313 .145 .316 .315 .145

.7 b b

.7

I Md SD
i z

.004

.:20

.873

.001

.311

.870

-.005

.310

.878

.005 .152

.315 .146

.873 .136

-.002 .145

.309 .152

.867 .149

-.007 .144

.310 .143

.877 .141

a
With one predictor nonzero rho(i) values are undefined.

b
This combination would generate data which are undefined.
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Table 6

Means, Medians, and Standard Deviations for Fisher's Z Transformation

of the C:Drrelation Coefficients When N = 100

p rho(p)

rho(i)

7

0

Mdz SDz 7

.3

Mdz SDz 7 Mdz SDz

1
a

0 .008 .005 .111)

.3 .311 .313 .101

.7 .870 .869 .102

2 0 .004 .003 .101 -.008 -.009 .102 .009 .012 .098

.3 .309 .312 .100 .317 .318 .101 .316 .313 .098

.7 .874 .875 .100 .873 .872 .104 .872 .874 .094

3 0 -.005 -.009 .099 .002 .002 .103 -.001 .000 .098

1
., .313 .315 .102 .315 .315 .103 .313 .312 .097

.7 b .870 .869 .097 .863 .865 .097

5 0 -.002 -.002 .100 .003 .001 .101 -.003 -.002 .101

.3 .308 .308 .103 .309 .311 .102 .315 .316 .105

.7 b b .871 .872 .100

a
With one predictor nonzero rho(i) values are undefined.

b
This combination would generate data which are undefined.
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parameter, rho(p), as N increases as Both the mean and the median are con-

sistent estimators. It should be rerE-bered here that when r equals zero, Fisher's

Z also equals zero. However, when r is .3, Z is .31; and when r is .7, Z is .867.

Inspection of the tables shows teat there is no discernible trend in mean r,

mean Z, median r, and median Z over levels of rho(i) or levels of p. This seems

to indicate that nonindependence of data does not affect the estimation of

the population parameter, rho(p). Th's is, of course, only for the case when the

same parameter is being estimated by e'l the data,

When evaluating the standard deviations they should be referenced to the

known expected values in the cases when independence is not violated. For the r

distribution, the standard error of r :an be found by substituting the values

for the parameters used in this study into the following formula:

C
r
.1(1 - P(p)2)2

Therefore, the standard error of r when rho(p) is 0 and N is 20 is approximately

.224. The standard error of r when rr3(p) is .3 and N is 20 is approximately .204.

The standard error of r when rho(p) .7 and N is 20 is approximately .114. When

rho(p) is 0 and N is 50 the standard irror of r is approximately .141. When rho(p)

is .3 and N is 50 the standard error et r is approximately .129. When rho(p) is .7

and N is 50 the standard deviation is approximately .072. The standard error of r

when rho(p) is 0 and N is 100 is .1. The standard error of r when rho(p) is .3

and N is 100 is approximately .091. Finally, the standard error of r when rho (p) is

.7 and N is 100 is approximately .052.

Inspection of Tables 1, 2, and 3 shows that all the standard deviations are

close to their expected values. The largest deviation of the standard deviation

from its expected value was .015 anc that was in an independent case. This

deviation is of no practical concern. There is some improvement as N increases

20
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hecause standard deviations are consistent estimators, but there are no apparent

changes over levels of rho(i) or p.

For the Fisher's Z distribution, the values of the standard deviations can

be found by substituting the values for the parameter used in this study into

the following formula:

C7-z = 1

r ..

N - 3

The-efore, the standa-d error of Z when N is 20 is approximately .243. The

standard error of Z when N is 50 is appr imately .146. Finally, the standard

error of Z when N is 100 is approximately .102.

Again inspection of Tables 4, 5, and 6 shows tat all the standard deviations

are very close to their expected values. There is some improvement in the estimates

as N increases, but there are no apparentchanges-over
either levels of rho(i) Or P.

Co.cl..sioo

The general conclusion, then, is that nonindependence does oot affect the

estimation of either the measures of central tendency or toe standard deviations

for correlation coefficients and for Fisher's Z transformation of the correlation

coefficients whet the same population paremeter is being estimated.
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