
A

DOCUMENT RESUME

ED 265 177 TM 860 024

AUTHOR Pirolli, Peter L.; Anderson, John R.
TITLE The Role of Mental Models in Learning to Program.
SPONS AGENCY Office of Naval Research, Arlington, Va. Personnel

and Training Research Programs Office.
PUB DATE Nov 84
CONTRACT N00014-84-K-0064
NOTE 21p.; Paper presented at the Annual Meeting of the

Psychonomic Society (25th, San Antonio, TX, November
1-3, 1984).

PUB TYPE Speeches/Conference Papers (150) -- Reports -
Research /Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Cognitive Structures; *Computer Assisted Instruction;

*Computer Science Education; Computer Simulation;
Higher Education; Hypothesis Testing; Learning
Theories; *Models; *Problem Solving; *Programing

IDENTIFIERS *GRAPES Production System Model; LISP Programing
Language; *Recursive Programing; SIMPLE Programing
Language

ABSTRACT
This study reports two experiments which indicate

that the processes of providing subjects with insightful
representations of example programs ant guiding subjects through an
"ideal" problem solving strategy facilitate learning. A production
system model (GRAPES) has been developed that simulates
problem-solving and learning in the domain of writing recursive
functions. In the first experiment, a mental model of recursion that
employed the given representation (structure model) was contrasted
with a model of recursion that emphasized how recursive functions are
evaluated (evaluation model). Two groups of subjects were tested
using these models, and, in the training phase, both groups reached
the same level of proficiency. However; data suggest that the
structure model group reached this level in a more efficient manner,
having learned a general strategy for structuring their code very
early on in the training phase. In the second experiment, members of
the GRAPES research group implemented and tested a computer-based
system for tutoring LISP. Students of a LISP programming course were
divided into two groups, one that interacted with the LISP tutor and
another that worked in a standard LISP environment. Overall
performance for students interacting with the LISP tutor was superior
to those who did not interact with the tutor. (Author/LMO)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

***********************************************************************



N-

r-4

O
LLE

The
in

Role of Mental Models
Learning to Program

Peter L. Pirolli
and

John R. Anderson

Department of Psychology
Carnegie-Mellon University

Pittsburgh. PA 15213

Presented at the Twenty-fifth Annual Meeting of Ps'cncnomic Society. San Antonio. TX
November 1984. This research was supported oy the Personnel ana Training Research
Programs. Psychological Services -Division Office of Naval Research. under Contract No
N00014-84-K-0064 to John Anderson and ov an IBM Research Fellowship to Peter Pirolli

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EOU ATIONAL RESOURCES INFORMATION
CENTER IERICI

This document has been reproduced as
recerveo from the person or organization
originating it
Minor changes have been made to improve

reproduction quality.

Points of view or opinions stated in this docu

ment do not necessarily represent official NIE
position or policy.

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

kk..

TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)."



1

Abstract

A production system moael (GRAPES) has been developed that simulates problem-

solving and learning in the domain of writing recursive functions. Protocol analyses and

simulations by the model suggest that students typically use representations of example

program solutions to guide tier problem-solving on initial recursion problems This process

of problem-solving by analogy to examples leads to acquisition of new production rules that

generalize across example and target problem features Two experiments are reported

which indicate that providing subjects with insightful representations of example programs

and guiding subject through an "ideal" problem-solving strategy facilitates learning

Mental Models in Programming



2 Mental Models in Programming

The Role of Mental Models in Learning to i rogram

Over the past few years the GRAPES research project at Carnegie-Mellon has

concerned itself with specifying a detailed process model of the development of problem-

solving skill in programming (Anderson, Farrell. & Sauers, 1984: Anderson. Pirolli. & Farrell.

in press: Piro lli & Anderson. in press; Our theory of problem-solving and learning of

programming was developed in the context of the GRAPES production system (see Sauers &

Farrell. 1982. for details) which was designed to emulate certain aspects of the ACT' theory

of cognitive architecture (Anderson. 1983). In this paper. we present some of our findings

for a subset of programming, namely learning to program recursive functions. We will focus

on four issues: (a) the process of writing programs by analogy to examples. (b) the

formation of generalizations from analogy processes. (c) which representations (i.e., mental

models) of program examples facilitate learning, and (d) how guided use of such mental

models in problem-solving facilitates learning.

Recursive functions are ones that are defined in terms of themselves A standard

example of recursion in mathematics is the factorial function. f(n) = n x f(n-1). or n > 0

(called the recursive case because It involves the recursive call f(n-1)). and f(0) = 1 (called

the base or terminating case) The computation of factorial is carried out by suspending

the calculation of n x f(n-11 until f(n-i) is carried out. which in turn requires that (n-4,1 x

f(n-21 be suspended until f(n-2) is carried out and so on until f(0) is reached Despite the

formal simplicity and elegance of recursive functions. we have observed that many students

have great difficulty learning to code such functions. This difficulty seems to be due in large

part to the unfamiliarity of recursion to most students 'Anderson et al in press) While

there are many everyday conceptual analogs to other programming constructs such as

iteration (e g.. cashiers processing customers' there are few if any simple everyday

conceptual analogs to recursion
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3 Mental Models in Programming

So how do students learn the unfamiliar procedure of generating recursive programs')

Our hypothesis is that the primary means available to students is learning from examples.

By this we mean two things. First. students solve initial problems by modifying the solutions

of examples they are given. Second. learning mechanisms summarize solutions to these

initial problems into new problem-solving operators which can apply to future problems.

An "Ideal" Strategy for Coding Recursion

Before discussing how novices program recursion. we present what is arguably the

ideal strategy for coding recursive functions. This strategy is based on protocol analyses of

expert programmers (see Anderson et al . In oress) Figure 1 presents a hierarchical goal

tree - presenting the problem-solving goals our GRAPES simulation swill step through in

executing this general strategy Each box in Figure 1 represents a programming goal.

Arrows show the decomposition of goals into subgoals. The strategy depicted in Figure 1

involves (a) refining the semantics and coding the terminating cases of the function and (b)

refining the semantics and coding the recursive cases. This latter step involves a set of

subgoals for (a) characterizing the result of a recursive call (e.g.. f(n-1) for the factorial

function), (b) characterizing the result of the function (e g.. fin)) and (c) determining the

relationship between (a) and (b) (e.g.. f(n) = n x fin -11)

It is noteworthy that most standard texts on programming do not give any instruction

that that suggests this general strategy for coding recursive functions. Typically. texts

describe how recursive functions work, give lots of examples and may offer general

considerations ;e g.. 'start ,./ith the easiest cases ) A lack of instruction in coding strategy

.s one of the many hurdles that students face in learning about the unfamiliar procedure of

recursion (Anderson et al In press)
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a Mental Models in Programming

Writing Recursive Functions
by Analogy to Examples

Our GRAPES model of learning to program recursion is largely based on protocol

analyses of six novices. A ubiquitous phenomenon among these subjects is me use of

recursive program examples to guide solutions to the first recursion problems encountered

Our GRAPES model of problem-solving by analogy to examples consists of a set of

production rules which. (a) establish a partial match of the current problem features to those

of the example and (b) map features of the example solution to solution steps in the 'current

problem. This approach to analogy shares many common features with other recent theories

of problem-solving by analogy (Carbonell. 1983: Gick & Holyoak. 1980. 1983.. Holyoak in

press)

To illustrate this process more concretely. we will briefly consider portions of a

GRAPES simulation of a subject (SS) solving her first recursion problem. SS was learning

from Siklossy s (1976) text "Let's Talk LISP". Her first problem was to write SETDIFF. a

function that takes two lists and returns all the members of the first list that are not in the

second list Her solution was heavily guided by a recursion example that immediately

preceded the SETDIFF problem in the text. This example was iNTERSECTION1 a function

that takes two lists and returns all elements that occur in both lists The iNTERSECTION1

example consisted of four conditional clauses The logic of the function s presented in

Figure 2* If the first set is empty then return the empty set if the second set is empty tnen

return the empty set: if the first member of the first set is a 'member of the second set

'hen return a Set consisting of the first member acJaea 'o me result of a recursvie call to

iNTERSECTION1 otherwise lust return the result of the recursive cat;

SS clearly stated that she was using the INTERSECTION 1 conditional clauses as a

guide for the SETDIFF solution SS's protocol suggested that sne used a nierarcnical
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represention of the INTERSECTION1 conditional clauses (see Figure 31. Our GRAPES model

when presented with tne goal to write SETDIFF and the representation of INTERSECTION1

illustrated in Figure 3 performs the same basic problem-solving steps as subject SS. A

portion of the goal tree developed by GRAPES in solving SETDIFF is presented in Figure 4.

GRAPES first performed a partial match of INTERSECTION1 and SETDIFF' both are

recursive functions and take two sets. Next. GRAPES mapped the conditional clauses of

INTERSECTION1 onto code for SETDIFF.

The code for INTERSECTION1 and SETDIFF differs in many respects and several

solution mappings made by SS failed on first attempt Problem-solving by analogy is not a

straightforward copying of code and often requires search for the right example

representations to map from example to target problem.

Generalization from Problem-Solving by Analogy

The GRAPES model learns by creating new production rules based on problem-solving

experience using the mechanisms of knowledge compilation (Anderson. 1982 Anderson.

Farrell. and Sauers. 1984 Neves & Anderson. 1981). Essentially. knowledge compilation

creates production rules that summarize several problem-solvino steps and that no longer

make reference to example information. The interaction between these learning mechanisms

and proolemsolvmg by analogy is illustrated in Figure 5 f example features f. f,. .
;

are matched to features f , '. f,'... . fn of the target problem and example solution

components s.. s2. .. s, are mapped to target solution steps s, . s: s, . then GRAPES

,vill learn a new production rule of he form IF features f1 & f2' & ... & fn' THEN

perform s1' & s2' & ... & sn'

One of the productions learned by our GRAPES simulation of SS for example is

Cl IF the goal is to code a recursive function on wo sets SET 1 and SET2
THEN code a conditional structure
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6 Mental Models in Programming

and set subgoals to code four conditional clauses
1. when SET1 is empty
2. when SET2 is empty
3. when the first element

of SET1 is a member of SET2
4. the else case.

Production rule Cl is a compilation of the problem-solving steps outlined in Figure 4. It

essentially states that a recursive function taking two sets should be coded by four

conditional clauses Our protocol analyses and simulations of subsequent recursion problems

coded by SS (see Anderson et al.. in press: Pirolli & Anderson. in press) suggest that SS

had learned Cl. Production Cl can be used successfully to code some. but by no means

all. recursive functions. This production sets up a plan that has little in common with the

strategy outlined in Figure 1. To a large extent. SS's difficulties with later recursion

problems can be traced to her mapping of a poor representation of INTERSECTION1 onto

her SETDIFF solution (see Anderson et al.. in press: Pirolli & Anderson. in press). In the

next section we outline how altering subjects representions of program examples can

facilitate learning to program recursion

The Effects of Mental Models of Programs
on Learning Recursion

Our protocol analysis and simulations of novices indicate that the particular example

representations used by students in problem-solving oy analogy have a large impact on the

early learning of programming recursion :( students would only use the 'right"

representations in analogy then we would expect to see rapid learning What are the

"right" representations'? Our hypothesis is that the -ight representation encodes the oroolem

in terms of the gierai concepts neeaea to define me general strategy for coding recursion

(see Figure 1) Such a representation ..ould encode recursive functions as consisting of

terminating cases and recursive cases The representation .could also rave to include the

notion that the results of recursive cases .e g nnt, are obtained by assuming that he
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results of recursive calls (e 9.. l(n-11) can be found.

Mental Models in Programming

In a recent experiment. we tested our hypothesis that providing students with the

above representations would facilitate learning. We contrasted a mental model of recursion

that employed the above representation (structure model) with a model of recursion :hat

emphasized how recursive functions are evaluated (evaluation model). As noted before. this

evaluation model corresponds to the standard model taught in programming texts.

Two groups of subjects learned the basic functions. predicates. conditional structures

and definitional syntax of a LISP-like language called SIMPLE (Shrager & Pirolli. 1983). All

programming tasks centered on manipulating a stored database of 18 entries in a book

library. The entries in this database could be identified by a number (id number), a key

word (title). and could be categorized as science. religion, or fiction books. All recursion

problems came from a space of 16 functions characterized by four dimensions with two

values on each dimension Each function could: (a) take a list of titles or an id number as

input. (b) return a list of science or non-science items. (c) return the output list with items

!n the same or the reverse of the order they are encountered in recursion. (d) skip items

that are the opposite of what is being collected or return the current accumulated result

when first encountering an opposite

One group of subjects (structure group. N = 101 was presented with instruction

emphasizing the structure model of recursion. This instruction included the following

description:

A recursive function definition consists of two components: (1) A

definition of one or more terminating conditional statements in which .a

simple answer is returned. (2) A definition of one or more recursive

cases in which the answer to the current problem is solved by assuming

9
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that the answer to a simpler version of the problem can be found.

Two examples were then discussed in the context of this description. The first was a

non-programming example from mathematics' xn = X x X "'1. for n > 0. and X° = 1.

The second example was a SIMPLE function. SORT. which sorted an input list of book titles

such that all science books were at the beginning of the list. In order to insure that

subjects did not use the actual code of this example to analogize from. we removed the

SORT code from view (leaving the general description of recursion and the mathematical

example at subjects' disposal).

The second group (evaluation group. N =9) received a set of instructions paraphrased

from a LISP text that emphasized the evaluation model of recursion, These instructions

included the following description.

A recursive function is one which uses itself in its own definition.

Such a function solves a complicated problem by handing a simpler

version of the problem to a copy of itself. This process may be

repeated. When a function copy solves a simpler problem, the answer is

substituted back into a more complex copy.

The evaluation group was presented with the same examples as the structure group

(definitions of Xn and the SIMPLE program SORT). however these were discussed in the

context of how they worked by showing traces and exolanations of sequences of recursive

calls Both groups of subjects had to first write four recursive functions correctly .vith

feedback for errors (training phase) from Me space* of 16 functions outiinea oreviously

When they reachea the criterion of 'Doing able to generate all four recursive functions

without error they then moved to the transfer phase 'n this phase they attempted to write

all 16 functions with no feedback

As predicted. structure group subjects took significantly !ess time to correctly write their

10



9 Mental Models in Programming

first four functions in the training phase (M = 57 4 min) than evaluation group subjects (M

= 85.3 min). Interestingly. the groups did not differ in either time to write functions or

number of incorrectly coded functions in the transfer phase We take this as evidence for

the notion that in the training phase both groups teached the same level of proficiency.

However. our data suggests that the structure group got to this state in a more efficient

manner because they had learned a general strategy for structuring their code very early on

in the training phase

Further Facilitation of Learning Recursion:
Stepping Students through the "Ideal" Model

The SIMPLE expenment illustrates the advantages of having an insightful mental model

of recursion to guide problem-solving by analogy. However. as we mentioned with reference

to subject SS's performance mapping a representation of an example program is not a

straightforward process. Further verbal specification of how to think about programs is

usually open to misunderstanding on a student's part. Our GRAPES learning theory predicts

that a more direct approach to teaching programming involves guiding the student's problem-

solving steps along correct solution pants during the act of program writing itself (An.derson.

Boyle. Farrell. & Reiser. 1984). Not only must students have an insightful mental model

they must be stepped through appropriate use of the model in problem-solving. In the

context of learning recursion. this involves stepping the student through the general strategy

outlined in Figure 1.

Recently members of the GRAPES research group. Implemented and tested a

computerbased system tor tutoring LISP At me near: of this LISP tutor is a GRAPES

production system model of "ideal" strategies for solving programming problems The LISP

= 4 7.a.,e.1 E.a :
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10 Mental Models in Programming

tutor uses this moael to determine if a students programming behavior is on a correct

solution path. and to generate tutorial interventions (see Anderson. Boyle. Farrell & Reiser

1984 for details of 7..:3 system).

Figure 6 presents a view of the LISP tutor on a terminal screen. The student types

code directly into the middle window. Queries and explanations from the LISP tutor appear

in the top window. As the student types code to solve a programming problem. the tutor

compares the code to it's internal GRAPES model. For the most part, if the student is on

a correct solution path, the tutor remains silent. At critical design points (for example.

designing the recursive cases of a recursive program) the tutor will intervene. presenting

examples. queries and explanations to guide the student through a program design. In

addition to the "ideal" models for program solutions. the LISP tutor also knows about

common mistakes made by students and the underlying causes of those mistakes. When

such student "bugs" are recognized. the tutor intervenes by asking questions or giving

explanations that lead back to the correct solution path

In a recent test of the LISP tutor. students of a LISP programming course were

divided into two groups. one that interacted with the LISP tutor (N = 10) another that worked

in a standard LISP environment ( N = 101 Members of these groups were matched on prior

programming experience grades on a prerequisite PASCAL course and SAT scores Both

groups received the same texts lectures. and solved tile same problems in a test of

programming skill (coding. debugging. and evaluating LISP functions) presented Immediately

orior to learning recursion there was no significant difference ,n test scores

The; recursion section of this course consisted of 18 prcolems having a Nice range of

Jifficulty The text used by both grouos for recursion emphasized the structure mode! of

ecursion outlined in the oievious section HOweier overall oertormance 'or students

12
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.nteracting .vith the LISP tutor was superior to those Nho did not interact with the tutor

The LISP tutor group took significantly less time (M = 5.76 hours) to code the 18 recursion

problems than the non-tutored group (M = 9.01 hours). Further. the LISP tutor group

scored higher on a test of coding. debugging. and evaluating recursive functions. (114 = 7 60

out of a possible 14 points) than the non-tutored group (M = 4.78). Although all students

were instructed with an insightful mental model of recursion, those who were guided in using

this model in problem-solving achieved a higher level of programming proficiency and got to

that state in less time.

Summary

Our analysis of learning recursion suggests the following conclusiops:

1. Because recursion is a novel and difficult concept. subjects typically use
representations of example solutions to guide their solutions for the initial
recursion problems they encounter.

2. Problem-solving by analogy leads to the learning of new production rules that
generalize across the example and target solutions.

3. Learning recursion can be facilitated by instructing students in a mental model of
recursion that emphasizes the key concepts necessary for a general strategy for
coding recursive functions Students use this model to represent example
solutions map this representation onto a target prob' :m. and knowledge
compilation summarizes this mapping into new productions that generate the
general strategy for coding recursion.

4 Learning recursion can be further facilitated by guiding students directly along
the correct solution path predicted by the GRAPES model of the general strategy
for coding recursion.
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Figure 1: The hierarchical goal tree for a
general strategy for a large subset of recursive functions Eacn box is a

programming goal Arrows point from goals to subgoals. Each subgoai of a
goal must be satisfied for a goal to be satisfied
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Figure 2: The logic of the conditional structures of
the INTERSECTION1 and SETDIFF functions. Each arrow points from a

condition to an action of a conditional clause.

INTERSECTION1 (SET1, SET2) IS
SET1 empty -,

SET2 empty --->

First of ________>
SET1 in SET2

ELSE

SETDIFF (SET1. SET2) IS
SET1 empty ----It

Recursive step

Add first of SET1
to recursive step

SET2 empty _______.) SET1

First of ____ Add first of SET1
SET1 in SET2 to recursive step

ELSE ._______) Recursive step
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Figure 3: A portion of the hierarchical representation of the
INTERSECTIONI example used oy SS in solving SETDIFF

has-arguments

"(null set2)"
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Figure 4: A portion of the hierarchical goal produced by GRAPES in simulating
SS's solution of SETDIFF by analogy to INTERSECTION 1
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Figure 5: Problem-solving by analogy involves (a) establishing a partial
match of example features f to target problem features f' and (b)

mapping example solution components s to target problem solution steps
si'. Learning mechanisms compile such problem-solving into new

productions that generalize across example and target.

SOLVE
Target

MATCH
Example tr)

target

MATCH
fl to f1'

MATCH
f2 to f2'

MATCH
fn to fn'

MAP
Example to

target

MAP
sl to sl'

MAP
s2 to s2'

MAP
s3 to s3'
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Figure 6: A typical screen from the LISP tutor

In examples A and 13 what do you have to do to get the result
of fact called with n?
PRESS: IF YOU WANT TO:
1. Multiply n by one less than n. i

2. Multiply n by fact of one less than n.
3. Add n to the result of fact called with one less than n.
4. Have the tutor choose.
Menu Choice: 2

CODE FOR fact

(defun fact (n) .

(cond ((zerop n) -t)
<RECURSIVE-CASE >))

EXAMPLES

. fact (n) fact (n-1)
A. (fact 1) = 1 (fact 0) = 1

B. (fact 3) = 6 (fact 2) = 2


