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Research on aptitude tests has changed considerably in the last decade.
The infusion of cognitive psychology into aptitude research has revitalized the

field. Research on the cognitive components of aptitude (Carroll, 1976; Pel-
legrino & Glaser, 1979; R. Sternberg, 1977), as well as the cognitive correlates
of aptitude (Hunt, Lunneborg, & Lewis, 1975), not only has changed the content
of aptitude theory but also has influenced the type of data that is deemed rele-

vant.

Cognitive psychology differs markedly from psychometrics on the role of the

stimulus in task performance. Cognitive psychology experiments often employ
within-subjects factorial designs in which stimuli are systematically manipu-

lated to represent different levels of theoretical variables. Other theoretical
variables that could influence performance are either held constant over the set

or counterbalanced to eliminate bias. These experiments are like psychological
tests in that many problems of a single task type are presented. However, the

goal is to decompose the stimulus factors in the task that influence perfor-

mance.

Cognitive component analysis of aptitude seeks to decompose the factors

that influence performance on aptitude test items. A wide variety of the item

types that appear on popular tests have been studied experimentally. For exam-

ple, linear syllogisms (Sternberg & Weil, 1981), series completions (Butter-
field, in press), and spatial problems (Pellegrino, Mumaw, & Cantony, in press),
as well as many other item types, have been studied in recent research on cogni
tive components. The factors that have been identified on these tasks include
the processes, strategies, and knowledge stores that underlie performance.

Cognitive component decomposition of aptitude offers a new approach to psy-

chological measurement. This approach is test design, in which the qualities

64 that are measured by a test are operationalized by the design of the test stimu-

r._INC.)

li. That is, just like an experimenter who designs tasks to test hypotheses, an
item writer manipulates the stimulus features of an item to represent specified

l' theoretical construes. Test design may be applied to many substantive areas
and linked directly to psychometrics (see Embretson, in press-b).

kJ
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The test design approach involves qualitatively different assumptions about
the nature of construct validation research. Traditionally, the construct va-

lidity of a measure is assessed through the relationship of individual differ-
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ences on the test to other measures. Recently, Embretson (in press-a) has elab-
orated on two separate goals in construct validation research-construct repre-
sentation and nomothetic span. Embretson (in press-a) hypothesized that the
shift of psychological research to structuralism permits construct representa-
tion to be studied separately from nomothetic span. In Embretson's (in press-a)
conceptualization of construct validity, construct representation is assessed
from task decomposition data, while nomothetic span is assessed from individual
differences data. That is, the theoretical constructs that are represented in
performance may be studied independently from the utility'of the test as a mea-
sure of individual differences. Thus, the construct validity of the test de-
pends, in part, on the represe .ation of the underlying constructs in the item
task.

The goal of the current paper is to present three latent trait models that
can be used for test design. Estimating the parameters for these models depends
on applying a method for task decomposition. Thus, prior to presenting the la-
tent trait models, two methods for task decomposition will be presented, along
with examples that illustrate their relevance for test design. Then, the three
latent trait models will be presented. These are (1) the linear logistic latent
trait model (Fischer, 1973); (2) the multicomponent latent trait model (Whitely,
1980d); and (3) the general component latent trait model (Whitely, 1980a). The
latter is a generalization that includes the other two models. Last, the need
for more complex latent trait models to fully assess the important cognitive
components of aptitude will be examined. That is, the potential contribution of
metacomponent latent trait models to test validity will be explored.

Methods for Task Decomposition

Methods for task decomposition are a major tool in contemporary research on
cognitive components. The methods that are applied to decompose tasks may also
be applied to the design for test stimuli. Two popular methods for task decom-
position are (1) the method of complexity factors and (2) the method of sub-
tasks. An example of how task decomposition methods can be used for test design
will be presented for each method.

In the method of complexity factors, each item is manipulated and/or scored
on one or more factors that represent the item's position on underlying theoret-
ical variables. This method has been applied to attitude and personality items
(Cliff, 1977; Cliff, Bradley, & Girard, 1973), as well as to a wide variety of
cognitive tasks, such as linear syllogisms, geometric analogies, series comple-
tion problems, and spatial rotation items.

Figure 1 presents an example of a geometric analogy (Whitely & Schneider,
1981) that represents the method of complexity factors. Two processing events
have been indicated as having major influence on task difficulty (Mulholland,
Pellegrino, & Glaser, 1980; Whitely & Schneider, 1981). These are (1) encoding
complexity, which depends on the number of elements in the A term in the analogy
and (2) transformational complexity, which depends on the number of transforma-
tions that are required to convert A to B. In Figure 1 the A term contains two
elements (the triangle and the line) and the A to B conversion requires three
transformations (a shape change of the external element, an increase in the num-

3
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ber of internal elements and a 900 rotation of the internal elements). Whitely
and Schneider (1981) found that two different types of transformation had op-
posing influence on item difficulty. Distortions (change in shape or number)
were positively related to accuracy, while displacements (rotations) were nega-
tively related to accuracy.

Figure 1

A Geometric Analogy, Similar to an Item
on the Cognitive Abilities Test

Stem

A ---> B

Alternatives

A
C

DI D2 D3 D4 D5

These findings indicate that the test developer can control item difficulty
by systematically varying the number of elements and the number and type of
transformations in the item stimuli. An easy item would have one or two ele-
ments and a distortion transformation. A difficult item would have several ele-
ments and one or more displacement transformations. Thus, the test developer

can fashion items to achieve desired levels of difficulty.

In contrast to the method of complexity factors, the method of subtask re-
sponses requires the theoretical variables to be identified from a series of
subtasks that have been constructed from the items. Table 1 presents a verbal

analogy item that is similar to items on the verbal section of the Cognitive
Abilities Test. The total item, as presented on the test, is given at the top.
Twv components that have been supported by previous experimental research on
verbal analogies are Rule Construction and Response Evaluation (Pellegrino &
Glaser, 1979; Whitely, 1980c; Whitely & Barnes, 1979). These are represented by
the two subtasks in Table 1. Notice that although Response Evaluation is se-
quentially dependent on Rule Construction, supplying the rule in the subtask
makes possible independent assessment of these components. Thus, for each item,

examinees respond to the total item as well as to the subtasks that represent
processing components.

By using the psychometric models to be described below, item difficulty on
the components underlying the subtasks can be calibrated on a common scale.
Figure 2 presents a scatterplot of the item parameters on the two components.
It can be seen that item difficulty on the two components is not highly related.
Thus, it is possible to design tests that reflect predominantly the influence of
one component or the other. For example, items that are easy on Response Evalu-
ation but difficult on Image Construction would measure abilities on the latter.
The test developer could select the items in the lower right corner to meet this

specification.

4
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Table 1
Subtask Set for Verbal Analogy Components

Total Item
Cat : Tiger :: Dog :

(a) Lion (b) Wolf (c) Bark (d) Puppy (e) Horse

Rule Construction
Cat : Tiger :: Dog :

Rule ?
Response Evaluation

Cat : Tiger :: Dog
(a) Lion (b) Wolf (c) Bark (d) Puppy (e) Horse

Rule: A large or wild canine

Figure 2
Scattergram of Image Construction Difficulty by Response
Evaluation Difficulty for 45 Verbal Classification Items
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Desiderata for Psychometrics for Test Design

The indices that are derived from classical test theory or latent trait
theory do not reflect the stimulus properties of a test item with respect to
specified factors. There are several desiderata for test theory models that can
be applied to test design. First, the method must be capable of testing hypoth-
eses about the specification factors. Obviously, a viable specification system
is one that is highly related to item difficulty. However, hypothesis testing

5
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about the factors in items is also crucial to establishing a theory of the item

task. An item specification system is implicitly a theory of the task so that

it should be evaluated by the hypothesis-testing methods that are applied to
other theories. Second, the model must have parameters to describe the diffi-
culty of the items on the underlying factors. The unidimensional latent trait

models that are popular in test development do not have this property, since the
items are calibrated for only one dimension --the largest common factor in the

items. A model that allows designation of the difficulty factors according to
an a priori specification is required. Third, measurements of persons must be

included in the model. The need for person measurements is self-evident, since
the goal of aptitude testing is to measure individual differences. Fourth, the

model should specify the relationship between the item parameters and the person
abilities. Optimally, the test design approach involves selecting from a cali-
brated item bank for a certain measurement goal. It is essential that the in-
fluence of item parameters on person abilities is well specified in the model.

Component Latent Trait Models

This section presents three component latent trait models that can be used
to test hypotheses about construct representation and to assess factors for test
design. These are (1) the linear logistic latent trait model, (2) the multicom-
ponent latent trait model, and (3) the general component latent trait model.
The latter, a generalization of the other two, can handle more complex data
auout cognitive processes.

The Linear Logistic Latent Trait Model

The model. The linear logistic latent trait model (LLTM) is a unidimen-
sional model in which components are identified from item scores on complexity
factors that are postulated to determine item difficulty. To understand how
components are identified, consider the geometric analogy presented in Figure 1,
which is similar to items on the nonverbal section of the Cognitive Abilities
Test. A recent study (Whitely & Schneider, 1981) compared three cognitive mod-
els of geometric analogies, using the LLTM. All three models specify complexity
factors in processing the item that influence response difficulty.

The scores of the items on the complexity factors identify the components
in an LLTM. The model can be examined by considering three equations. The

first equation is the mathematical model for task processes. Here, a linear
model of the complexity factors, cim, multiplied by their difficulty, nm, pre-
dicts item difficulty, bt.

bi = Ec
im

n
m
+ d ,

m [1]

where

cim = the complexity of factor m in item i;

nm = the difficulty of complexity factor m; and

d = a normalization constant.
The second equation presents the latent trait model for individual differences,

6
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which isthe Rant latent trait model,

e

(6
j
-b )

P(x =116 b )

I e

where ei - ability for person" and bi J.' difficulty for item i.

Equation 3 combines these two models to give the LLTM as follows:

(64-(icimnm d))

P(x =110 ,n
m

e
=d)

(6 -(Ec n + d))
l + e

j m im m

If the number of complexity factors equals the number of items, and each
item contains only one complexity factor, then the LLTM is equivalent to the
Rasch latent trait model. When the number of nm is less than the number of

items, the LLTM is a linearly constrained model of item difficulty.

[21

[31

A major advantage of the LLTM is the possibility of comparing alternative
models of item difficulty by X2 difference tests based on the log likelihood of
the data, given the model. For example, the fit of any restricted model of the
task components can be compared to the fit of the Rasch model, which can be re-
garded as a saturated model of item difficulty. Further, if alternative models
of task components are hierarchically nested, then direct comparisons between
the models are also possible. Thus, hypothesis testing to establish a valid
model of the task complexity factors is an important capability of the LLTM.

Another important aspect of the model is that of parameters describing each
item by component complexity rather than Just item difficulty. These parameters
can be useful in item banking, so that the contribution of a processing complex-
ity factor to each item is systemically specified. Notice, however, that the
model is unidimensional, since only one ability parameter is specified for each
person.

Estimation. Fischer (1973) derived conditional maximum likelihood estima-
tors for the it parameters of the LLTM, nm. Although conditional maximum

likelihood estimators are statistically superior to unconditional estimators for
several reasons (Fischer, 1981), they are impractical for large sets (I > 60).
Thus, unconditional maximum likelihood estimators are useful for LLTM item pa-
rameters.

The first derivative of the log likelihood function for unconditional maxi-
mum likelihood estimation is

e

-(6i -abi
j

ij

7

[41
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Thissen (1981) has shown that the first derivative of the log likelihood func-
tion L for the LLTM with respect to nm may be obtained from

aL
E c

anm
abi] (5]

Combining Equation 4 with Equation 5 gives the first derivative of the uncondi-
tional log likelihood function with respect to nm

aL =Ec Ex -1+ e-(ei -1
an
m

hu ij

where b* is defined as in Equation 1.

Multicom onent Latent Trait Model

[6]

The model. The multicomponent latent trait model (MLTM) is a multidimen-
sional model in which components are identified from subtasks that represent the
processing components in item solving. Like many information processing models
for complex tasks (e.g., Hunt, 1976), it is assumed that information from sever-
al component events is required to solve the item. The relationship between the
component events may be either (1) independent, where the processing or outcome
of one event does not influence any other event, or (2) sequentially dependent,
where information from a component event provides prerequisite information for
processing on later events.

A MLTM uses subtask data to identify the components. The mathematical mod-
el of processes in the MLTM links the component responses to the total item.
Equation 7 presents a mathematical model for independent components in which the
response probability for the total item is the product of the component likeli-
hood:

P(x
ijT

=1) = a
k
11P(x =1) + g [1-10(x =1)] .

where

[7]

P(x
i4T

=1) = the probability that the composite task is correct for person
ion item i,

P(x
i4k

=1) = the probability that the subtask for component k is correct
for person 1 on item i,

a = the probability that an item is solved when the component
information is available, and

g = the probability of solving an Item when the component infor-
mation is not available.

Unlike the original MLTM, the model includes parameters for application of
the component information, a, which represents metacomponent or executive func-
tioning, and for an alternative method for solving the item, such as guessing
or rote association to the stem. Other mathematical models are possible (e.g.,
Whitely, 1980d), but all models relate the component likelihoods to the full
in likelihood.

8
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As for the LLTM, the latent trait model for individual differences is the
1-parameter logistic latent trait model, as presented in Equation 2. However,
in the MLTM the latent trait models are given for component subtask vsponses
rather than for the total item. The MLTM specifies that responses to the sub-
tasks depend on the ability of person j on component k and the difficulty of
item i on component k, as follows:

(0 k -b . )

P(x
ijk

=118
jk'

b
ik

) - e
-b ) 'jk ik

[8]

where Ojk = the ability of person i. on component k and bik = the difficulty of

item i on component k. The LLTM, in contrast, is a latent trait model for re-
sponses to the totai-item and does not model component responses.

The full model, presented in Equation 9, combines the latent trait model
with the mathematical model. It can be seen that the total item response is
conditional on K component abilities as well as on K component item difficul-
ties.

(8
jk

b
ik

)

P(xijT=1191,bi) = (a -g)1 e
g [9](e

jk
-b

ik

)4.

where 2j = the vector of k component abilitieb for person .1 and bi = the vector

of k and component difficulties for item i.

Although typical test data (with the notable exception of linked items with
a common stem) only occasionally assess subtask responses, there are several
reasons why it may be useful to obtain such data as part of test development.
First, the various processing components from which information is required for
item solution are theoretically distinct. Experimental cognitive research has
supported the independence of components within a task by additive factor (S.
Sternberg, 1969) or subtractive factor (Pachella, 1974) modeling methods. Sec-
ond, if the components are sufficiently elementary, they should generalize
across tasks and possibly account for differential patterns of correlations in
performance on separate types of items (Carroll, 1974). Third, individual dif-
ferences on different components correlate only moderately and show differential
validity in predicting performance on other tasks (R. Sternberg, 1977; Whitely,
1981). Fourth, component difficulties are sometimes not highly correlated in
item sets, so that it is possible to select items of the same type that measure
different component abilities. Consider for example, a two-component item, such
as presented in Table 1. If items are so easy on one component that nearly
everyone has a high probability of executing it correctly, then it can be shown
that the likelihood of correctly answering the items is well described by the
regression of the response likelihoods on the other component ability (Whitely,
1981).

9
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The relationship of the MLTM parameters to the joint response to the compo-
nents, C

i'
and the total item T, is explicated more completely by considering

the probability sample space. There are 21°4 posSible response patterns. Table
2 shows the eight response patterns for a two-component item, along with an ex-
pression for the probability of the pattern from the MLTM. It can be seen that
the a and parameters link the component response to, the total item, while the
other symbols represent the probability of the component response patterns,
which vary systematically over persons and items, according to the 1-parameter
logistic latent trait model.

Estimation. No estimators were developed in Whitely (1980d) for the MLTM.
However, given a probability space such as specified in Table 2, the likelihood
of any response pattern is given by

P(xkocT)mr[gxT(1-g)1 -11
intxk xk 1 -xk

k

where

xk = vector of responses of person l to components for item i,

xT = response of person j to total item i, and

P = P (x
ijk

=110
jk

b
ik

).xk

Notice that the entry of the parameters a and IL into the likelihood depends on
the value of mkxk and that mkxk equals 1.0 only if all component outcomes are
correct. Note also that a contributes to the log likelihood only if all the
components are executed correctly, whileji contributes when at least one compo-
nent is incorrect. This pattern is specified in Table 2.

[ 10 ]

The likelihood of the data set can be obtained by multiplying the response
likelihoods over persons and items. Since neither a nor vary over persons or
items, it can be concluded immediately from well-known theorems on the binomial
distribution that their maximum likelihood estimators are the relative frequen-
cies

EE (Rx ) xm
ji k k 1

a =
EE Rx

and

k k

EE (1 - Rx ) xm
k k 1

g "a [12]
ES (1 - )

Ji k k

Thus, a is given by the relative frequency of correctly answering the item when
all comp-nents are executed correctly, whileji is given by the relative frequen-
cy of correctly answering the total item when at least one component is executed
incorrectly.

10
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Table 2
Frequencies and Conditional Probabilities for
Joint Response Patterns on Verbal Analogies

C1 C2 T f P(xT llxk)

1 1 1 1864 .84

1 1 0 351

0 1 1 518

o 1 0 518

1 0 1 84

1 0 0 101

0 0 1 87

0 0 0 221

P = P(xijk=110 jk,bik)
xk

(e
jk

b
ik

)

P =
xk

1

(ejk-bik)

P (xr=1)=aRk P

xk

+ g [1-Rk P
xk

]

.16

.50

.50

.45

.45

.28

.72

Notation

a P P
X
1
X
2

(1-a) P P

xl x2

g Q P
xl x2

(1-g) Q P
x1 x2

g P Q
X1 X2

(1-g) P Q
xi x2

g QxiQx2

(1-g) QxlQx2

xr 1-Rx x Rx

P(xkocr)qg (1-g) k k a Ao. -a) k k[Tip xk()

k xk xk
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The required derivative of the log likelihood for unconditional maximum
likelihood estimation of the item parameters b is

(e
jk

- b
ik

ik j

E[X
ijk

- (1 + e [13]

Setting the derivative to zero leads to the well-known equations for uncon-
ditional maximum likelihood estimation of the 1-parameter logistic latent trait
model (cf. Lord & Novick, 1968). As for other exponential families of distribu-
tions, estimation equations for the latent trait model can be obtained by equat-
ing the observed sufficient statistics with their expectancies, given the param-
eters (Andersen, 1980). In the current development, however, estimation re-
quires I equations for each of K components of the MLTM. Notice that the item
parameters for each component bik involve only the responses to the relevant

subtask data, xijk. It can be seen that unconditional maximum likelihood esti-

mators may be obtained independently from each subtask to maximize the lc-g like-
lihood of the joint response pattern xk, xT.

A General Multifactor Latent Trait Model

The model. The preceding developments have shown that the LLTM and the
MLTM differ substantially in component identification. LLTMs estimate difficul-
ty of complexity factors that are related to item difficulty, while MLTMs esti-
mate item and person parameters for component outcomes. The different methods
of component identification make possible a meaningful unification of these two
models.

Consider the verbal analogy that is presented in Table 1. This analogy was
presented previously with the MLTM. Although the Response Evaluation component
is identical to the previous example, the Rule Construction component is postu-
lated to be influenced by the several processing complexity factors, cif, that

are listed in Table 3. These factors concern the difficulty of inferring the
target relationship (i.e., Fist: Clench). The factors cill and cin are the

ease of inferring the target relationship in the initial encoding of the rela-
tional pair and in the context of the unmatched term "Teeth," respectively.
Previous research on analogies (R. Sternberg, 1977) as well as research in memo-
ry organization (Reitman, 1965) suggest that relational span is also positively
related to item solving, since extraneous relationships can interfere with solv-
ing the analogy. In the current example, the factors cill and cin are measured

by the mean number of relationships that are educed between the word pair when
presented alone and in the context of the unmatched term, respectively. The
factors ci14 to c

ill represent the relative frequency of various types of con-

text effects in inferring the target relationship (i.e., selecting or combining
initial relationships, inferring new relationships, and so forth).

Scores for each item on the complexity factors were obtained from other
research studies on analogies (Embretson & Curtright, 1981). However, it is

12
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Table 3
Complexity Factors in Analogical Reasoning Components

Rule Construction Component
Fist:Clench::Teeth:
Rule?

cites = the complexity of factor m for component k on item i

c
ill

= inference elicitation, the probability that the target
relationship is educed from initial word pair

ci12 = relational network span, the number of relationships educed

c
i13

= inference contextualization, the probability that the target
relationship is educed in context of all three stem stimuli

c
ilT

- c
i17

= type of contextualization effect

Response Evaluation Component
Fist:Clench::Teeth:
(1) Pull (2) Gnaw S

Rule: Angry reaction done with "teeth."

important to note that in this example the complexity factors have effects on
the component information outcomes rather than on the total it response.

Equation 14 presents a model that specifies both processing complexity fac-

tors and processing component outcomes.

I

(A -(c
k m imk

n
'mk + dk))

P(x =110 n d) = H e 1

E

ijT -P-se-
(0 -(E )k jk mcimkn + d

mk dk))

[14]

As for the MLTM the probability of the correct response to the intact _tem
is conditional on a vector of component abilities, 0i, and component item diffi-

culties. However, item difficulty for each component nm is determined by a lin-

ear model of the complexity factors for the component cikm.

Equation 14 is a general multifactor latent trait model (GLTM) for response
predsses. If only one information outcome is measured for the item (i.e., the
response to the intact ties,. item), then the model is identical to the LLTM. In

this case, complexity factors would be scored for the total item. The parame-
ters a and IL drop out of the model, since the response to the total item would
be given by response to the single component outcome that is observed. If no

complexity factors postulated for each component outcome, but several component
outcomes are observed, then the model is MUM. In this case, the Rasch model is
specified for each component. However, for tasks with multiple information out-
comes and processing complexity factors that influence these outcomes, the full
model can be utilized.

13
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Estimation. The likelihood of the joint response pattern, xk, xT, given

the parameters of the model, is given by Equation 10, except that the component
likelihoods are given by the LLTM for the component as follows:

P s P( x

xk

Ojk,nmk,dk) [15]

The estimators Pf a and z. for the GLTM are the same as for MLTM, as given

in Equation 11 and Equation 12. Since item difficult, is linearly constrained

within a component for the LLTM, the first derivative of the log likelihood

function with respect to nmk is required for unconditonal maximum likelihood

estimation of the items. Using the development given above for LLTM, it can be

seen that the first symbolic partial derivative with respect to nmk in GLTM is

3L
E c

-(64 Tr]
(1 + e- [16]

3n
mk

imk ijk

A Fortran program, MULTICOMP (Whitely & Nieh, 1981) is available to estimate the

parameters of the GLTM.

Future Directions: Metacomponent Latent Trait Models?

The component models that were presented above do not fully reflect the
complexity of the information processes that are involved in task performance.
Metacomponent variables that determine when to execute component processes and
which processes to execute have great impact on problem solving. For example,

problem-solving strategies are an important concept in problem-solving theory

(Davis, 1973; Newell & Simon, 1978). Similarly, problem-solving strategies have

long been thought to be major aspects of individual differences in intelligence,
particularly for those theories of intelligence that emphasize adaptability
(Pintner, 1921; R. Sternberg, 1979; Woodrow, 1921). Thus, on theoretical

grounds, a complete model of information processing on intelligence test items
should include strategy variables.

The MLTH.that is presented in Table 2 postulates that individuals have
equal likelihoods of applying the various strategies. That is, the strategy

application parameter a, and the parameter for successful application of other
strategies, b.do not vary over persons or items. As suggested above, this as-

sumption is unwarranted on both theoretical and empirical grounds, since meta-
components are known to influence task performance. Thus, to fully represent
processing,, the strategy application parameters need to vary over persons or

items.

A metacomponent latent trait model would include strategy application pa-

rameters for persons or items. However, estimation of these parameters will be

complex. Returning to Table 2, it should be obvious that the symbolic partial
derivative with respect to a, for example, will not be simple if variability for

either person's or items is included in the model. That is, the estimation of

such parameters will depend on the outcome of the other parameters, ej and bi.

14
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The parameter a can only be estimated from response patterns in which both com-
ponents are correct, as in the first two response patterns in Table 2. Not only
will the estimation algorithm necessarily be complex, but also estimation error
will vary as a function of the other component re 3onses. For example, for per-
sons with few accurate component outcomes, the a ear meter will not be estimated
reliably, since little information about the parameter will be available.

An obvious question at this point is the potential utility of developing
the estimators for the more complex metacomponent models. Two questions about
metacomponent parameters need to be addressed: (1) Do items and persons vary in
propensity for applying the various components? and (2) Do individual differ-
ences in metacomponents contribute to the criterion- related validity of an apti-
tude test? To answer these questions, data from two studies on verbal aptitude
(Whitely, 1980, 1982) were reanalyzed to include the metacomponent parameters.

A reanalysis of data originally collected by Whitely (1980) shows the vari-
ability among items and persons in two metacomponents that could be estimated
with the latent trait moddl in Table 2. These are application of the ruler.
oriented strategy, a, and application of other strategies, such as guessing, EL.
Figure 3 shows frequency distributions of the a parameters for two item types,
verbal analogies, and verbal clas7ifications. In this analysis, a was computed
as the conditional probability that examinees would solve the total item when
the component information was available. Admittedly, this estimator of a is
crude, but it does provide at least some indication of its nature. It can be
seen in Figure 3a that the parameter values tend to be high on both it types
but that examinees vary widely on the parameter. It is not clear to what extent
this distribution reflects differing degrees of accuracy of estimating a for
individuals.

Figure 3b shows the distribution of the parameter for examinees, computed
as the conditional probability of solving the total item, given that the compo-
nent information is not available. It can be seen that this value centers
around .50 for both item types and that individuals vary widely in these values.
Thus, for both strategy application and guessing, some individual differences
are indicated. Figure 4 and Figure 5 present stem and leaf distributions of a
and IL parameters, respectively, for items. As for individuals, considerable
variability is indicated.

A second study (Whitely, 1982) contains data on the contribution of meta-
component variables to test validity. The Whitely study examines the relation-
ship of individual differences in strategy application to a major criterion for
aptitude test validity, educational achievement. In this study, data on the
achievement of 99 parochial high school students were collected, in addition to
their performance on an analogical reasoning test and on several subtasks that
represented components and metacomponents in solving analogies.

The contribution of strategy application parameters (i.e., a) and other
strategies (a) were examined in separate analyses. In the Whitely (1982) analy-
ses, individual differences in strategy application were examined for two strat-
egies that led to analogy solving. There were (1) a rule-oriented strategy and
(2) a response elimination strategy. The contribution of the strategy applies-

15



Figure 3

Frequency Distribution of Application (a) and Guessing (a)
Probabilities for Examinees on Two Item Types
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1

Figure 4

Stem and Leaf Distribution of Application (a)
Probabilities for Two Item Types

Verbal Analogies

1.000

Verbal Classifications

006 028 039

030 029 .950 003 030

028 024 021 019 011 010 001 .900 002 011 016 021 023 042 043

033 032 025 022 018 017 014 009 002 .850 005 017 018 024 027 038

026 020 015 013 007 005 004 .800 004 009 013 015 019 026

034 016 003 .750 029 031 034 036 040

036 .700 008 035

027 023 .650 012 032 044

.600 014 033 045

006 .550 020 022

037 031 012 .500 025

.450 010

.400 041

.350

.300

.250 037

.200

.150

.100

.050

0.000

tion parameter to test validity was examined by structural equation models
(JOreskog, 1974).

In these models, individual differences in both applying and performing the
components of the strategies were measured as independent variables. The depen-
dent variables included performance on the analogical reasoning test as well as

scores on eight area achievement testa. For both the rule-oriented strategy and
the response elimination strategy, it was found that adding strategy application
to the strategy performance variables significantly increased prediction of both
analogical reasoning and achievement. The differences that were obtained by
adding the strategy application variables to the covariance models were highly
significant for both the rule-oriented (X 65.57, 1< .01) and the response
elimination strategy (X2 65.57,2 < .01). For both strategies the application

18
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Figure 5

Stem and Leaf Distribution of Guessing (0)

Probabilities for Two Item Types
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variable was significantly related to analogical reasoning (t = 7.58 and 2.07,

respectively, for the rule-oriented and response elimination strategies), show-

ing that strategy application is an important metacomponent for individual dif-

ferences in analogical reasoning.

Table 4 presents data on the contribution of the application parameters to

the prediction of achievement in several areas. Indices that are comparable to

multiple regression analyses were obtained from the structural equation analy-

ses. For each of the strategies and for the two strategies combined with a
guessing strategy, Table 4 shows the F value for the application metacomponent
and its incremental contribution to explaining variance of each achievement

test, as well as the proportion of variance explained. The application meta -

component for the rule-oriented strategy significantly contributed to the valid-

.19



- 312 -

ity for predicting Mathematics and Sources. The application metacomponent for
the response elimination strategy significantly increased prediction for several
achievement areas, including Reading Comprehension, Vocabulary, Language Use,
Spelling, Social Science, Science, and Sources.

Table S
Contribution of Metacomponent and Strategy

Parameters to Predicting Achievement

Strategy
and

Achievement
Area

Specification
Accuracy

Multiple R

Contribution of
Metacomponent

Reduction of
F
8
Error (LR2)

Rule-Oriented Strategy
Reading Comprehension .67 .28 .01

Vocabulary .50 .02 .01

Language Use .67 2.01 .02
Spelling .38 .05 .00
Mathematics .52 4.84* .06
Social Science .51 1.48 .02
Science .74 .01 .00
Source .66 9.18** .09

Response Elimination Strategy
Reading Comprehension .71 5.42* .05
Vocabulary .66 14.21** .14
Language Use .73 6.81* .06
Spelling .52 8.35** .11
Mathematics .50 .55 .0]

Social Science .57 8.58** .10
Science .77 5.71* .04
Source .71 17.64** .15

Guessing Strategy
Reading Comprehension .60 9.93** .19
Vocabulary .63 8.44** .09
Language Use .58 5.50* .07
Spelling .48 .05 .00
Mathematics .69 2.61 .03
Social Science .60 6.80* .08
Science .71 15.20** .14
Source .68 10.02** .10

<.05.

<.01.

Table 4 also shows that adding the parameter to the rule- oriented strate-
gy and the response elimination strategy. significantly increased the prediction
of achievement in several areas. Thus, these data support the potential of in-
dividual differences in metacomponent variables as an important aspect of test
validity. The metacomponent variables increased the prediction of achievement
over the simple component performance variables.
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The main conclusion to be drawn from these studies is that metacomponent
latent trait models are needed to estimate more fully the processing abilities

that underlie aptitude. Although the estimation of the metacomponent parameters
will be complex, even the crude estimators that were used in the studies de-
scribed above show clear contributions to aptitude test validity.

Conclusions

This paper has presented latent trait models that can be used for test de-

sign in the context of a theory about the variables that underlie task perfor-
mance. Examples of methods for decomposing and testing hypotheses about the

theoretical variables in task performance were given. The methods can be used

to determine the processing components that are involved in item performance.

Three component latent trait models for underlying theoretical variables
were described along with their maximum likelihood estimators. The item parame-
ters can be used for item banking, according to the influence of the underlying
processing variables on item difficulty. Such estimators permit the test devel-

oper to choose items that represent specified information processing demands for
the examinee. That is, the test developer can select items that are difficult
on some processes, but easy on others. In this manner, what is measured by an
aptitude test can be explicitly designed by specifying difficulty levels in the
underlying processing components.

The need for metacomponent latent trait models was also considered. It was

shown that both items and persons vary on metacomponent parameters and that
these parameters are important for the predictive validity of an aptitude test.
Thus, metacomponent latent trait models should provide a better estimate of the
abilities that are involved in test performance.
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