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Marginal maximum likelihood equations for estimating the item parameters in

the 1 and 2parameter normal ogive item response models were introduced by Bock

and Aitkin (1981). The iterative solution of these equations bears strong re
semblence to the EM algorithm of Dempster, Laird, and Rubin (1977). Over the

past year, similar procedures have been implemented in the BILOG computer pro

gram (Bock & Mislevy, 1982) for estimating item parameters in the 1, 2, and

3parameter logistic ogive models. Extensions of the original Bock and Aitkin
solution include the simultaneous characterization of the latent population dis
tribution and the incorporation of Bayes priors on item parameters, so that
Bayes modal rather than maximum likelihood estimates may be obtained.

The purpose of this paper is to review the basic elements of the EM ap
proach to estimating item parameters and to illustrate its use with one simulat

ed and one real data set. The examples bring into focus a topi; of occasional
discussion in psychometric circles, namely, the degree to which item parameters

in the 3parameter model can be recovered.

An EM Algorithm for Estimating Item Parameters

The 3parameter logistic ogive item response model for dichotomous test
items, of which the 1 and 2parameter models may be considered special cases,
expresses the probability that person i will respond correctly to item 1 as
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where
xij, the item response, is 1 if correct and 0 if incorrect;

T(x) is the cumulative logistic function; 1/[1 + exp( x)];
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Gj is the lower asymptote, often called the guessing parameter
of item 1, identically zero in the 1- and 2-parameter
models;

Aj is the slope of item!, a constant over items in the 1-
pa:mmeter model;

Bj is the thredhold of item 1.;

C equal to -AjBj, is the item intercept, introduced

because estimation equations for the intercepts are simpler
than those for item thresholds; and

ei is the ability of person i.

Given observed responses xij from N persons to n items, item parameters may

be estimated. The main problem arising in this endeavor is that except in the
1-parameter model, the person parameters cannot be eliminated from the maximum
likelihood estimation equations of the item parameters. In the presence of the
so-called "nuisance" pare:deters, the standard results of maximum likelihood the-
ory (e.g., consistency) do not apply.

A Solution Whet. Ability Is Known

Estimation of item parameters would be straightforward if person ability
values were known rather than implied by item responses. This is essentially
the case that obtains in the bioassay setting, where the researcher controls the
level cf treatment dosage to each experimental unit, observes the proportion of
units exhibiting the targeted response at each dosage level, then estimates an
hypothesized underlying logistic or normal response function. In anticipation

of the EM solution for item parameters, likelihood equations are presented for a
logit regression problem that parallels the psychometric problem.

Suppose that, as in the bioassay setting, responses to each of n test items
are observed from groups of persons at each of g specified points along the
ability scale. Let Nik be the number of responses to item 1 from persons with

ability Xk and let Rik be the number of these responses that are correct. Un-

der the usual assumption of local independence, the total likelihood of a col-
lection of observations of this type is as follows:
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where

Pjk = Gj + (1 -Gj) 'V(AjXk + Cj) .

The likelihood equations for the item parameters are the first derivatives of
the log of Equation 2, equated to zero:
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If the vector of zeros that solves these equations is unique and if the matrix
of second derivatives of the log of Equation 2 is positive definite when evalu-
ated at these values, then these values are the maximum likelihood estimates of

the item parameters. The second derivatives are
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The solution of the likelihood equations may be accomplished by Newton-Raphson
iterations, carried out item by item. The t + lth iteration is
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where all first and second derivatives are evaluated at the stage t estimates of
the item parameters.

An Earlier Approach to the Problem

In the bioassay setting, where the criterion (dosage level) is known, the
preceding solution is correct. One approach to the psychometric setting, where
the criterion (ability) is not known, is to replace the unknown ability parame-
ters with provisional estimates. This approach is employed by computer programs
such as LOGOG (Kolakowski & Bock, 1973), LOGIST (Wood, Wingersky, & Lord, 1977),
and BICAL (Wright & Mead, 1978). LOGOG, for example, employs for the 2-paramet-
er model an algorithm similar to one outlined below:

1. Use persons' logits of percent correct as provisional ability esti-
mates,

2. Standardize provisional ability estimates.
3. On the basis of provisional ability estimates, form groups of persons

with apparently similar abilities.
4. Assuming all persons in a group have the same true ability--the mean of

their provisional estimatessolve Equations 4 and 5 to estimate item
parameters.

5. Using provisional item parameter estimates, re-estimate person abili-
ties.

6. Return to Step 2.
Cycles of this type were repeated until convergence was attainedwhich, it was
learned, became less likely as the number of items and/or persons decreased. A
major problem is the unreliability of the estimates of person ability when the
number of items was small; in such cases, person ability estimates were a poor
substitute for the true values.

Key Elements of the Bock-Aitkin Approach

An alternative does exist, however--an alternative that derives from long-
standing procedures in the statistical literature it general and from an honora-
ble tradition in psychometrics in particular (e.g., Kelley's paradox). The idea
is this: Suppose that persons can be thought of as a random sample from a popu-
lation in which ability is distributed in accordance with a distribution g(e).
Although each person's response vector xi may not contain very much information

about that person, it contains information about 3. Taken together, the data of
all persons may be sufficient to produce a fairly good characterization of 1,
which, in turn, may be used to condition and improve the inference about any
individual person.

Now if a is a smooth distribution with finite moments, it may be approxi-
mated to any desired degree of accuracy by a discrete distribution over a finite
number of points, i.e., a histogram. Let Xk, for k = 1, ..., q, be the points

and let A(Xk) be the densities at those points. By Bayes theorem, the posterior

density of 6, given the response vector of person i is obtained as

p(15ilei.xk) A(Xk)
k=1, ...,q [16]

P(Xkli) E P(sil6i=Xs) A(Xs)

5
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Application to the estimation of item parameters is accomplished in the

algorithm outlined below:
1. Using provisional estimates of item parameters, compute via Equation 1

the likelihood of each person's response pat.ern at each of the points,

namely, P(xilXk).

2. Using given values (Bock & Aitkin, 1981) or provisional estimates (see
below) of the densities A(Xk) at each of the points, compute via Equa-

tion 16 the posterior probability that the ability of person i is Xk.

3. (E-Step) Pseudo-counts of numbers of items attempted and number of
items correct are then obtained by effectively distributing the data
from each person over the points in proportion to the likelihood of
his/her being there as follows:

N
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where d
ij

is 1 if person i was presented item j and 0 if not.

4. (M-step) The maximum likelihood equations for the item parameters,
Equations 4 through 6, are then solved with respect to the pseudo-
counts.

5. Unless item parameters are unchanged from the previous cycle, return to

Step 1.

Bock and Aitkin (1981) showed that for given g, this procedure provides
item parameter estimates that solve the marginal maximum likelihood equation

P(datalitem parameters) = 11 P(xi)
i

= f H P(x 10) g(0) dO
0 i

[19]

The problem with the "nuisance" ability parameters has been solved by inte-
grating over their range, rather than by replacing them with estimates as in
LOGOG or conditioning them away as is possible with the 1-parameter model only.
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As a result, the unreliability in the ability estimate for a person has been

ameliorated. Rather than basing the estimation of item parameters on a larger
number of unreliable person ability estimates, they have been based on the much
more stable estimates of population densities at various points along the abili-
ty scale and expected proportions of correct response at those points.

Extensions of the Bock-Aitkin Approach

The basic approach to estimating item parameters outlined above was shown
by Bock and Aitkin to be a maximum likelihood solution under the conditions of
(1) the 1- and 2-parameter normal ogive model, (2) all persons being adminis-
tered the same set of items, and (3) the weights A(Xk) remaining fixed through-

out the solution, i.e., persons were in effect assumed to be a random sample
from a known distribution. (By comparing item parameter estimates obtained with
different priors on ability, this latter assumption was shown to be relatively
unimportant; the item parameters varied little in the examples shown.) Since the
publication of the article, progress has continued in the investigation of this
approach. A number of extensions have been incorporated into the HUG program.

Extension to the 3-parameter model. Along with the change to the logistic
rather than to the normal ogive response curve, the.provision for obtaining item
parameter estimates in the 3-parameter model has been included. It is known

that item parameter estimation in this model has been problematic. Certain im-
provement is achieved in the EM approach by the use of the estimation of provi-
sional densities and probabilities at selected points rather than of person
abilities, since proper estimates always exist for the former but not necessari-
ly for the latter in the 3-parameter model. Difficulties remain, however, from

another source: The matrix of second derivatives of the log likelihood function

is often poorly conditioned in the 3-parameter model. The inversion of this
matrix, required in the Newton-Raphson solution of Equations 4 through 6, can

become unstable. This practical problem at least partly motivates the extension
discussed immediately below.

Prior distributions on item parameters. In order to provide for stable and
"reasonable" item parameter estimates in the 3-parameter model and in all models
for small samples of persons, provision has been made for the incorporation of
prior distributions on item parameters. For lower asymptotes, beta priors are

employed; for slopes, log-normal; for intercepts, normal. (Priors are rarely
necessary for intercepts; provision is made to facilitate linking studies, since
the prior distribution of a given parameter may be based on a previous estimate

and its standard error). The program provides Bayes modal estimates rather than
maximum likelihood estimates when priors are used. Un,orrelated priors are as-
sumed, thereby effecting a modification of the first dcLivatives Equations 4
through 6 by a so-called "penalty" function and the addition to the second
double derivatives Equations 9, 12, and 14 of an augmenting term. The terms

added to the diagonal of the matrix o' ccond derivatives Improve conditioning

of this matrix. Solutions may be obtb-iled from any data set with the imposition
of sufficiently strong priors on the item parameters, though judicious and
thoughtful choice of priors is recommended.

Estimation of the latent distribution. The original Bock-Aitkin solution
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assumes that persons are drawn from a specified distribution, normal or other-

wise. The program now allows for the simultaneous estimation of the latent dis-

tribution if the user prefers. This is accomplished by revising the weights

A(X k
) at the beginning of each iteration as follows:

A(t41)(Xk) = (1/N) E P(t)(Xklxi)

1 2(xi XI) A
(0

(Xk)

E

N i E P(xilXs) A(t) (Xs)

[20]

The distribution is then restandardized to set the scale and location of the

latent ability variable. Under this convention, a common slope parameter is
estimated in the 1-parameter model while the standard deviation of the latent
distribution is fixed at one; this is equivalent to the more typical practice of
fixing all slopes at one but not restricting the ability parameters.

Different patterns of item attempts for different persons. As seen in

Equations 17 and 18, there is no necessity of assuming that all persons are pre-

sented the same items. This feature is of particular value in t%e assessment
setting because item parameters may be estimated from data gathered in highly
efficient multiple-matrix sampling designs where each person responds to only
one to five items in a scale. Despite the sparsity of data for each person pro-
scribing the estimation of his/her ability, it is no barrier to iteratively
building up the estimates of population densities and item proportions correct
at the points Xk. Persons with few responses are spread more broadly and per-

sons with more responses are spread less broadly, each in accordance with the
information conveyed by his/her response pattern.

Examples

In order to illustrate the use of the BILOG program, runs for 1-, 2-, and
3-parameter models are presented for two sets of data. First is a set of re-
sponses from 1,000 persons to five items of the Law School Admissions Test
(LSAT), a data set which has been analyzed in the past by Bock and Lieberman
(1970), Bock and Aitkin (1981), Andersen (1973), Andersen and Madsen (1977), and

Thissen (1982). These data have been found to be well fit by a 1-parameter lo-
gistic item response model and a normal distribution of ability. Second is a

set of simulated data of 1,000 persons to 18 items. The known parameters of the

items, which include lower asymptotes, may be compared with the estimated val-

ues.

Example 1: LSAT

The five items of the LSAT analyzed by Bock and Lieberman in 1970 and oth-
ers since were, on the whole, rather easy for the persons in the sample; about
30% of the examinees answered all five items correctly. It has been found by
Andersen (1973) that the data are well fit by a 1-parameter logistic ogive model
and an underlying normal distribution of ability. These data were subjected to

8
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item analysis via the 1-, 2-, and 3-parameter logistic models with BILOG, all
under the assumption of an underlying normal distribution.

Table 1 presents the resulting item parameter estimates and, for the 1- and
2-parameter solutions, a likelihood ratio test of fit against a general multi-
nomial alternative (see Bock & Aitkin, 1981). A straight maximum likelihood
solution could not be obtained for the 3-parameter model, so the solution shown
incorporates weak prior distributions on both slopes and asymptotes. The slopes
had log normal prior distributions with means of zero (i.e., slopes of one) and
standard deviations of two (slope values corresponding to a range of two stan-
dard deviations would be .018 and 54.598); asymptotes had a beta prior with pa-
rameters 1.25 and 5.75 (roughly comparable to saying with the weight of five
observations that the asymptotes were .05). The formula for the likelihood ra-
tio test was applied to the 3-parameter solution, but it must be noted that its
distribution is not chi-square because the parameter estimates are modes of
posteriors, not maximums of the likelihood function; its value, gauged in com-
parison with the degrees of freedom appropriate to a true maximum likelihood
solution for the 3- parameter model, may be considered a somewhat more conserva-
tive index of fit.

Table 1
LSAT Item Parameter Estimates IVI.=/

Model Chi-Square df Item Threshold Slope Asymptote

1-P 9.90 19 1 -3.482 .788 .000
2 -1.270 .788 .000

3 -0.305 .788 .000
4 -1.659 .788 .000

5 -2.664 .788 .000
2-P 7.74 12 1 -3.318 .836 .000

2 -1.356 .731 .000

3 -0.279 .891 .000
4 -1.845 .697 .000

5 -3.074 .669 .000
3-P 9.27 7 1 -3.217 .831 .049

2 -1.176 .752 .048

3 -0.127 1.207 .029
4 -1.704 .694 .048

5 -3.114 .624 .050

It is no surprise to see that the 1-parameter model fits the data well and
that the 2-parameter model fits even better but not sufficiently better to
justify the additional parameters estimated. As noted by Thissen (1982), the
1-parameter solution agrees (after resealing) with Andersen's conditional maxi-
mum likelihood solution (Andersen, 1973).

It is somewhat of a surprise to see that the 3-parameter solution appears
to fit poorer than the 2-parameter solution, but this is because a maximum like-
lihood solution was not attained; the resulting parameter estimates depend not

9



- 197-

only on the data but on the priors. Bock and Lieberman (1970), estimating in-

tercepts and slopes for different fixed values of asymptotes, found that asymp-
totes of zero did indeed fit best. It may be seen from the estimates of asymp-
totes that the only item which shows much difference from the prior is that of
Item 3--the only item sufficiently difficult to provide much information about

an asymptote. For this item, the information pushes the asymptote value down in
the direction of zero.

Example 2: Simulated Data

Responses were generated from a random sample of 1,000 simulated examinees
from a standard normal distribution to an 18-item test, in accordance with a
3-parameter logistic ogive item response model. The generating item parameters

are shown in Table 2. There are essentially two groups of nine items each. In

the first group, all slopes are 2.0 and all lower asymptotes are .05; thresholds
range from -2.0 to +2.0 in increments of .5. In the second group, all slopes
are 2.0 and all asymptotes are .25; thresholds again range from -2.0 to +2.0 in

increments of .5. The broad range of difficulty of the items is refle:ted in
their resulting proportion-correct values, which ranged from .11 to .96 correct.
Item-test biserials ranged from .4 to .8.

Table 2
Generating Values of Item Parameters

for Simulated Data Example
en

Item Threshold Slope Asymptote

1 -2.00 2.00 .05

2 -1.50 2.00 .05

3 -1.00 2.00 .05

4 -0.50 2.00 .05

5 0.00 2.00 .05

6 0.50 2.00 .05

7 1.00 2.00 .05

8 1.50 2.00 .05

9 2.00 2.00 .05

10 -2.00 2.00 .25

11 -1.50 2.00 .25

12 -1.00 2.00 .25

13 -0.50 2.00 .25

14 0.00 2.00 .25

15 0.50 2.00 .25

16 1.00 2.00 .25

17 1.50 2.00 .25

18 2.00 2.00 .25

BILOG solutions for the 1-, 2-, and 3-parameter models are shown in Table
3. The 1- and,2-parameter solutions are straight maximum likelihood solutions,
with the normal distribution of persons assumed. The 3-parameter solution re-
quired priors on all item parameters, the specification of which is described in

10



Table 3
Item Parameter Estimates for Simulated Data

for the 1-, 2-, and 3- Parameter Module

Inter-

Item cept SE Slope SE

Thresh-

old SE

Diaper-

sion SE tote SE

Chi-

Square df Prob

1-Parameter Model
1 -3.632 .141 1.197 .015 -3.035 .141 .836 .011 .0 .0 7.7 9 .5640

2 -3.324 .117 1.197 .015 -2.777 .117 .836 .011 .0 .0 26.3 9 .0019

3 -2.083 .089 1.197 .015 -1.741 .089 .836 .011 .0 .0 29.3 9 .0006

4 -1.413 .081 1.197 .015 -1.162 .082 .836 .011 .0 .0 46.1 9 .0000

5 -0.384 .074 1.197 .015 0.320 .075 .836 .011 .0 .0 20.3 9 .0161

6 0.391 .078 1.197 .015 0.327 .079 .836 .011 .0 .0 39.8 9 .0000

7 1.272 .084 1.197 .015 1.063 .085 .836 .011 .0 .0 25.7 9 .0024

8 1.885 .095 1.197 .015 1.575 .096 .836 .011 .0 .0 8.5 9 .4840

9 2.196 .105 1.197 .015 1.835 .105 .836 .011 .0 .0 29.9 9 .0005

10 -4.603 .170 1.197 .015 -3.847 .170 .836 .011 .0 .0 30.0 9 .0005

11 -2.867 .109 1.197 .015 -2.396 .110 .836 .011 .0 .0 4.2 9 .8961

12 -2.619 .100 1.197 .015 -2.188 .101 .836 .011 .0 .0 23.9 9 .0046

13 -1.616 .081 1.197 .015 -1.350 .082 .836 .011 .0 .0 19.7 9 .0196

14 -0.818 .072 1.197 .015 -0.684 .073 .836 .011 .0 .0 20.7 9 .0142

15 -0.301 .070 1.197 .015 -0.251 .070 .836 .011 .0 .0 26.5 9 .0018

16 0.275 .071 1.197 .015 0.230 .072 .836 .011 .0 .0 28.6 9 .0008

17 0.669 .071 1.197 .015 0.559 .072 .836 .011 .0 .0 57.1 9 .0000

18 0.837 .073 1.197 .015 0.700 .073 .836 .011 .0 .0 56.8 9 .0000

All Items 501.5 162 .0000

2-Parameter Model
1 -3.587 .142 1.513 .116 -2.368 .149 .660 .050 .0 .0 3.7 8 .8821

2 -3.341 .121 2.008 .105 -1.664 .121 .498 .026 .0 .0 8.5 8 .3370

3 -1.982 .092 1.922 .105 -1.032 .095 .520 .029 .0 .0 13.5 8 .0958

4 -1.332 .087 2.168 .122 -0.614 .089 .461 .026 .0 .0 19.5 8 .0123

5 -0.154 .075 1.490 .103 -0.104 .088 .672 .046 .0 .0 5.6 8 .6933

6 0.695 .081 1.747 .113 0.398 .088 .573 .037 .0 .0 19.2 8 .0141

7 1.522 .085 1.368 .092 1.113 .097 .732 .049 .0 .0 22.7 8 .0038

8 2.111 .096 1.190 .089 1.774 .113 .840 .063 .0 .0 14.6 8 .0673

9 2.275 .103 C.735 .092 3.093 .199 .360 .170 .0 .0 13.4 8 .0995

10 -4.806 .175 2.235 .126 -2.149 .173 .447 .026 .0 .0 12.3 8 .1356

11 -2.657 .109 1.318 .101 -2.016 .122 .758 .058 .0 .0 4.5 8 .8095

12 -2.487 .102 1.562 .098 -1.593 .108 .640 .040 .0 .0 15.2 8 .0543

13 -1.418 .081 1.333 .090 -1.150 .099 .811 .060 .0 .0 12.0 8 .1510

14 -0.625 .072 1.034 .085 -0.604 .106 .967 .080 .0 .0 15.1 8 .0566

15 -0.117 .068 .885 .079 -0.133 .122 1.130 .101 .0 .0 10.9 8 .2067

16 0.446 .070 .944 .081 0.473 .114 1.059 .091 .0 .0 20.8 8 .0079

17 0.761 .069 .501 .071 1.521 .291 1.397 .283 .0 .0 15.2 8 .0558

18 0.918 .071 .466 .072 1.971 .338 2.148 .330 .0 .0 12.6 8 .1250

All Items 239.3 144 .0000

3-Parameter Model
1 -3.363 .367 1.328 .167 -2.532 .280 .753 .094 .053 .032 7.6 7 .3729

2 -3.232 .407 1.956 .192 -1.652 .275 .512 .t.10 050 .030 6.8 7 .4545

3 -1.804 .332 1.795 .138 -1.005 .276 .557 .043 .052 .030 6.7 7 .4642

4 -1.131 .346 1.936 .138 -0.584 .303 .517 .037 .035 .021 19.3 7 .0074

5 -0.027 .348 1.463 .123 -0.018 .338 .683 .057 .040 .023 5.1 7 .6537

6 0.852 .454 1.803 .154 0.472 .450 .554 .047 .035 .016 9.3 7 .2278

7 1.991 .551 1.832 .167 1.087 .577 .546 .050 .038 .013 11.1 7 .1313

8 2.588 .643 1.542 .183 1.679 .692 .649 .077 .030 .011 5.8 7 .5592

9 3.089 .814 1.266 .215 2.439 .901 .790 .134 .039 .013 8.1 7 .3277

10 -4.325 .481 1.858 .233 -2.327 .301 .538 .067 .052 .032 14.7 7 .0400

11 -2.571 .308 1.283 .135 -2.004 .249 .779 .082 .051 .031 2.2 7 .9443

12 -2.217 .376 1.605 .157 -1.382 .316 .623 .061 .186 .051 7.0 7 .4317

13 -1.101 .404 1.442 .145 -0.764 .390 .693 .070 .196 .052 18.3 7 .0110

14 -0.125 .561 1.465 .183 -0.086 .573 .682 .086 .214 .048 14.1 7 0484

15 0.484 .545 1.432 .171 0.338 .565 .698 .083 .192 .037 6.7 7 .4570

16 1.274 .613 1.765 .188 0.722 .637 .567 .061 .156 .026 8.3 7 .3080

17 1.670 .680 1.009 .180 1.654 .764 .990 .176 .164 .033 18.6 7 .0096

18 2.093 .792 1.193 .210 1.756 .877 .839 .148 .165 .027 11.2 7 .1277

All Items 181.0 126 .0010
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greater detail below. The indices of goodness of fit that accompany the esti-

mates are not true likelihood chi-squares, but approximations based on combining
persons into 10 homogeneous groups on the basis of their Bayes ability esti-

mates. Counts of correct responses observed in each group were then compared
with those expected under the assumption that all persons in a group have the

same true ability.

The 1-parameter solution exhibits biases in both thresholds and slopes, as

compared with the generating values. Although all items have the Bain generat-
ing slope of 2.0, the common value estimated is only 1.2, due to the attenuation

caused by the nonzero lower asymptotes. There is a tendency for difficult items
to fit more poorly than easy items, and for items of the second group (with
higher asymptotes) to fit more poorly than items of the first group (with lower
asymptotes).

The 2-parameter solution represents a marked improvement in fit. Many

items, particularly easier items, are well explained by this solution. Serious

biases are apparent, however, in the slope estimates. Again, because of the
nonzero lower asymptotes, slopes are consistently underestimated to a degree
that increases with difficulty and with the values of the asymptote itself.

The 3-parameter solution represents another, though less impressive, im-
provement in fit; the solution required prior distributions on intercepts,

slopes, and asymptotes. Normal priors with mean zero and standard deviation two

were placed on all intercepts. It may be seen that the data effectively domi-

nated the prior in this case, as considerable information about intercepts is
present in the data. Log-normal priors with mean .588 and standard deviation
.500 were placed on slopes; this corresponds roughly to a prior mean of 1.8 and
a standard deviation of 1.0 for the slopes themselves, suggesting a prior belief
that slopes would probably range between about .5 and 5.0. Beta priors with
parameters (3.5, 47.5) were placed on asymptotes for the first 11 items and with
parameters (11, 41) for the last 7 items; this corresponds to saying with the
weight of 50 observations that the asymptotes were .05 for the first 11 items

and .20 for the last 7. These values were obtained by inspecting plots of the

residuals from the 2-parameter solution, as illustrated by Figure 1.

Although the 3-parameter solution provides an adequate fit to the data,

with,a chi-square ratio less than one and a half, discrepancies remain between
final parameter estimates and generating values. For the second group of items

in particular, both thresholds and slopes tend to be too low. The apparent par-
adox of adequate fit but imperfect recovery of item parameters is resolved at
least partially by an examination of estimated and observed response curves.
Figure 1 plqts data for Item 16 under the 2-parameter solution; Figure 2 plots
the data for the same item under the 3-parameter solution. Despite nontrivial
differences in estimates of item parameters (.5 vs. .7 for threshold, .9 vs. 1.8

for slope, 0 a. .16 for asymptote), both curves are able to explain observed
proportions of correct` response in the region where the majority of persons are

to be found. Despite the differences in their parameters, the 2- and 3-paramet-
er curves are not very different with respect to the data at hand.

12
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Figure 1
Observed and Expected 2-Parameter Logistic Response Curve for Item 16

(Smooth Line is Fitted Response Curve; "X" Represents Proportion Correct of a
Group of Persons with Approximately Similar Abilities; Vertical Bars around

Curve Represent Two Standard Errors around Expected Group Proportions Correct)

1.00

.90

E .80

.70

e. .80

10
a.

.10

1.1

00

.-1I.38 -.99 -41 .18 4 1.31 1.89 247 2.40

0

3.03

Figure 2
Observed and Expected 3-Parameter Logistic Response Curve for Item 16

(Smooth Line is Fitted Response Curve; "X" Represents Proportion Correct of a
Group of Persons with Approximately Similar Abilities; Vertical Bars around

Curve epresent Two Standard Errors around Expected Group Proportions Correct)
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Discussion

With the use of marginal maximum likelihood estimation procedures and prior

distributions on item parameters, it is now possible to estimate item response

curves under the 1-, 2-, and 3-parameter logistic models from even very sparse

data sets. It will be noted that the emphasis here is on the estimation of re-

sponse curves rather than on item parameters. Simulation studies suggest that

the recovery of generating item parameters is problematic, even with large num-

bers of items and persons, when the parameters of an item are not well identi-

fied by the calibration sample. These circumstances seem to obtain quite fre-

quently with the 3-parameter model and, occasionally, with the 2-parameter model

when the calibration sample does not span a sufficiently broad range of ability.

Item response curves are estimated that do, on the other hand, explain the data

satisfactorily.

The explanation of these findings is that for typical educational tests,

data are well explained by a region of values in the parameter space. For an

easy item, for example, data at hand may be well explained by either a 2- or a

3-parameter ogive; curves of each type can be found that are virtually identical

in the region of the ability scale where the calibration examinees are to be

found. The use of weak prior distributions will function in this situation to

keep the resulting parameter estimates "reasonable," or in line with the values

that the substantive interpretations of the item parameters would suggest (e.g.,

item slopes ranging between, say, 0 and 4) and asymptotes ranging between, say,

0 and .25).

The practical implication of this result is that the substantive interpre-

tation of item parameters in the 3-parameter model (and, to a lesser extent, the

2-parameter model as well) may not always be justif-ed. Maximum likelihood es-

timates for a given item may differ substantially from another set of values

that reproduce the calibration dfe.a nearly as well. Discussion of item charac-

teristics could be couched in terms of the item information function instead,

since all sets of item parameter estimates in the "solution space" will yield

similar information functions in the region where the data lies. Characteris-

tics such as the point of maximum information and the value of the information

function at that point can be expected to be much more stable than the item pa-

rameter estimates themselves.

Fortunately, most applications of IRT depend on the shape and location of

response curves rather than the parameter values, particularly when applications

are foreseen for examinees Who are typical of the calibration sample. The esti-

mation of an individual's ability from a given response pattern would typically

be similar if computed from any item parameter values that produce similar re-

sponse curves in the neighborhood of his/her ability. Discrepancies would be

more likely for persons with abilities that are extreme.

One application that demands special attention, however, is vertical equat-

ing, or the linking of tests across broad ranges of ability--often across sever-

al grades or age groups. One approach to the equating problem is to calibrate
tests separately in the low and high ability groups, say, and then to attempt to

find the linear transformation that produces the closest match of item parameter

14
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estimates for those items that were administered to 1-,Nth groups. Now, a linking
item will tend to be comparatively easy for the high ability group and compara-
tively difficult for the low ability group. This means that the range of abili-
ty for which its response curve is well estimated in either group does not cover
the region where the groups overlap, i.e., "lere the two estimated curves are
supposed to be made to match. Poor linking may result as an artifact of the
multicollinearity of item parameter estimates. The information needed for a
proper link is found in not just the item parameter estimates and their standard
errors, but in the matrix of correlations among the estimates as well. (This
problem may be avoided by calibrating all items together with responses from all
groups simultaneously, an option available in both BILOG and LOGIST.)
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