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Measuring instruments that are used to determine an individual's level of

performance on a psychological or educational trait are seldom truly unidimen-

sional. Certainly, tests based on number series or vocabulary knowledge may
approximate unidimensional measures, but even these narrowly focused tests usu-

ally measure more than one trait (see, e.g., Holzman, Glaser, & Pellegrino,

1980).

Alternatively, many tests are purposely designed to measure more than one

trait. The English Usage Test from the ACT Assessment battery, for example,

measures skills in punctuation, grammar, sentence structure, diction and style,

and logic and organization (American College Testing Program, 1980). These top-

ics have been inc3uded in the test in order to assess more thoroughly the skills

acquired in high school English than could be obtained from a unitary measure.
There is also a statistical motivation for constructing a test that measures

more than one dimension. To maximize a test's ability to predict a criterion

measure, the test should have items that have a high correlation with the crite-

rion but low intercorrelations among themselves (Lord & Novick, 1968). Follow-

ing this selection rule results in a test that measures many dimensions.

The fact that measuring devices seldom measure single dimensions has seri-

ous consequences for the application of item response theory (IRT) to test data.

A basic assumption of most of the IRT models currently being applied is that the
measuring instrument measures a single trait (Lord, 1980; Lord & Novick, 1968).

To the extent that this assumption is violated, these IRT models may not be ap-

propriate. Since tests seldom measure single dimensions, the unidimensional IRT
models are only applicable if they can be shown to be robust to the violation of
the unidimensionality assumption or if the items in a test can be sorted into

subtests that measure a single dimension.

The issue of the robustness of two IRT models--the 1-parameter and 3-para-
meter logistic models--to violations of the unidimensionality assumption has

been addressed by Reckase (1977). He found that even When the proportion of
variance accounted for by the dominant dimension was as low as 20%, the two mod-

els still resulted in reasonable ability estimates. However, since these esti-

mates were of the dominant dimension, much information was lost about other
traits being measured by the other dimensions in the tests. On the other hand,

if the measuring instrument in question measured several traits with equal em-
phasis, the meaning of the ability estimates was difficult to define. Thus,

although the models do seem to be somewhat robust to violations of the unidimen-
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sionality assumption, it is at the cost of lost information or poorly defined
traits. It would seem that a better approach would be to estimate the ability
on each dimension separately.

Two different alternatives exist for obtaining estimates of the traits mea-
sured by a test when more than one trait is being measured. First, the items in
the test may be subdivided into groups of items that are sensitive to differ-
ences on one of the dimensions. This procedure breaks down the test into a se-
ries of unidimensional subtests. Unfortunately, no procedure exists that ade-
quately performs this function when dichotomously scored test items are used
(Reckase, 1981). Factor analysis is the procedure most commonly used for sort-
ing items, but factor analysis suffers from several problems due to the choice
of the correlation coefficient, the effects of guessing, and the determination
of the number of factors (Kim & Mueller, 1978). Therefore, in many cases the
formation of unidimensional subsets of items is not a reasonable approach.

The second possible approach for obtaining estimates of the abilities on

each dimension is to develop a multidimensional model of performance that re-
lates dichotomous item responses to the magnitude of ability on each trait.
Several models of this type have been presented in the IRT literature (Bock &
Aitkin, 1981; Mulaik, 1972; Rasch, 1961; Samejima, 1974; Whitely, ,M0), but
little work has been done using these models in an applied testing atting. In

fact, little research has been done to determine the characteristics of these
models or the properties of the ability estimates obtained through their use.

From this discussion it should be evident that obtaining estimates of trait
levels from a test that measures more than one trait is a difficult problem.
Traditional models such as factor analysis and nonmetric multidimensional scal-
ing are not well suited for use with dichotomously scored test items, and most
of the IRT models that are designed for use with dichotomous test data assume a
unidimensional test. The use of multidimensional IRT models may be the solution
to this problem; however, little work has been done to demonstrate their useful-
ness. The purpose of this paper is to review the existing multidimensional IRT
models and to show how one of the models can be applied to the estimation of
abilities from a test measuring more than one dimension.

Definition of the Problem

Most of the IRT models currently in use assume that the test being analyzed
measures a unidimensional latent trait. This means that all persons having the
same amount of the trait, 0, should have the same probability of a correct re-
sponse to a dichotomously scored item. If individuals with the same level of
the single trait have different probabilities of a correct response to a test
item, this implies that at least one other trait is involved in responding to
the item. If only two dimensions are required in the solution of the item, then
all persons that have the same values on these two dimensions, [6I, 02], should
have the same probability of a correct response. Again, if the examinees have
different probabilities of a correct response, at least one more dimension is
indicated. Once the number of dimensions, n, is determined that results in a
constant probability of a correct response for all persons with the same set of
abilities, 01, 02, ..., On, the size of the complete latent space has been de-
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fined. This concept is discussed in more detail by Lord and Novick (1968).

Note that this method of defining the size of the complete latent space
emphasizes the ability dimensions of the examinees while treating the test item
as a constant stimulus. No information is given concerning the characteristics

of the items. In order to determine the characteristics of the test items,
critical features of the surface describing the relationship between the proba-
bility of a correct response and a person's position in the 8 space must be de-
fined. Two such features that are typically used in IRT are (1) the difficulty
of the item (location of the point of inflection of the item characteristic
curve, or ICC) and (2) the discriminating power of the item (related to the

slope of the ICC at the point of inflection). If the relationship between the
probability of a correct response and a person's location in the 6 space can be
described by a sufficiently well-behaved mathematical function (e.g., the logis-
tic function), the concept of difficulty and discrimination can be generalized
to items that measure more than one dimension in the complete latent space.

Suppose that the relatl nship between the probability of a correct response
to a dichotomously scored test item and a person's location in the 6 space is
given by a function that is monotonically increasing for all e dimensions and is
asymptotic to 0 and 1 as each e 4- -- r.nd e , respectively. That is,

f(e
ij

) < f(6
ik

) i = 1, ..., n ,
[1]

if 6i < Oil for all i, j, and k, Mere i indicates the dimension and j and k

indicate the person, and

f(0
ij

) 4- 0

as 0
ij

4- -= ,

f(0
ij

) 4- 1

as 0
ij

4- = , and

1 > f(0
ij

) > 0 for all i, j .

Then, the difficulty of the item can bevdefined as the values of 2 for which

d2f(6)
- 0 ,

de2

if certain regularity conditions hold. This is the multivariate equivalent to
the point of inflection of the univariate ICC.

[2]

For some functions, f(2), the second derivative will be undefined; and for

others, Equation 2 will yield multiple solutions. However, for a class of mod-
els based on the logistic function, Equation 2 gives a solution that defines a
difficulty function rather than a difficulty value for an item. This function

is the locus of points in the 6 space that yields a .5 probability of a correct
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response the item. An example of the difficulty function for an item that
measures two dimensions may help clarify this concept.

Suppose that the complete latent space is defined by two dimensions, 01 and
02, and that the relationship between the probability of a correct response to
an item and the values of 2 are given by the following function:

e(a161 + a202 + a3)
P(x = 110, g) =

1 + e(alel a202 a3)
[3]

where al, a2, and a3 are values related to the shape of the probability surface
for this particular item. An example of the probability surface is given for al
= 1.5, a2 = .5, and a3 = .65 in Figure 1. The difficulty function for this item
is defined as

62P(x = 112, g)

601
=0. [4]

The second derivative is only taken with respect to Al in this case because the
points of inflection define the save function in both dimensions. If for sim-
plicity, P is used in place of P(x = 1 10, g), the second derivative is equal to

62p
= a12P(1 - 3P + 2P2) .

6O

If this expression is set equal to zero and solved for P, three solutions
result-0, .5, and 1. Since 0 and 1 are degenerate cases where 0 = +co, the dif-
ficulty function is defined as the intercept of the probability surface with the
.5 plane (a plane parallel to the 0 plane at P = .5)

[51

The line of intersection of the .5 plane with the probability surface can
be obtained by determining which values of 6 restAt in a .5 probability of a
correct response. Since the exponent in Equation 3 must be equal to zero to
obtain a probability of .5, the appropriate values of 0 are the solutions to the
equation

Qlel + a202 + a3 = 0 .

This is the equation of a straight line in the @ plane. In the usual linear
form, the equation becomes

02 = 01
a2 a2

[6]

[7]

This line is shown as a dashed line on the .5 plane in Figure 1. Thus, for this
example, the difficulty of the item is defined as a linear function instead of a
single value.
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Figure 1

An Example of a Two-Dimensional Probability Surface

The difficulty of the item in the usual latent trait sense can be deter-
mined on each dimension by holding the ability on the other dimension constant;
for example, the point on the 62 scale that yields a .5 probability of a correct
response when 61 0 is -a3/a2, which is equal to -(-.650/1.5) .43 for the

surface given in Figure 1. Similarly, when 62 sm 0, 61 se -a3/al -(-.650/.5)

1.3. Note that these "conditional difficulties" are different for each dimen-
sion even though there was only one summative term in the model, a3. When the

dimensionality of the latent space is greater than two, the difficulty function
for an item defines a hyperplane if a logistic model is used to describe the
probability surface.

The definition of the discriminating power of the item in a multidimension-
al space can also be generalized from that used in the unidimensionai case. In

the unidimensional case, the discriminating power of an item is a function of
the slope of the i,am response function at the point of inflection. The dis-

criminating power of the item in a multidimensional space can likewise be deter-
mined by calculating the slope of the item response surface along the line de-
fining the difficulty of the item.

This slope can be determined by evaluating the first derivative of the item
response surface for values on the difficulty line. In the example given above,

the first derivative of the item response surface with respect to DI is

6
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If this function is evaluated for points on the line 02 mg (-01/02)01 - 03, the
result is .25a1 for all values of 01. Thus, al is a discrimination parameter
for the first dimension. Since the model is symmetric with respect to the O's,
the derivative with respect to 02 results in .2502 when evaluated at all values
on the difficulty line. Thus, both the difficulty function and the discrimina-
tion parameters are defined by the a parameters in the exponent of this model.
As with the difficulty function, the discrimination of a multidimensional item
can be generalized to many dimensions. In the general case, the discrimination
with respect to a dimension is the slope of the item response surface at the
difficulty hyperplane. This slope may be a function of the 0 vector in more
complex models.

Up to this point, the complete latent space has been defined and the con-
cept of an it response surface (IRS) has been introduced. Extensions of the
unidimensional concepts of difficulty and discrimination have also been defined
for the multidimensional IRS. The goal of this research, however, was to esti-
mate the amount of ability an examinee possesses on each of these dimensions in
the multidimensional latent space. Before this goal can be attained, tuo steps
must be completed. First, a reasonable and convenient form for the IRS must be
selected; and secondly, the parameters of the item response surface for each
item must be determined.

Multidimensional Latent Trait Models

A number of models already exist in the literature for approximating the
IRS. Each of these models will now be described, and the characteristics of the
surface that they define will be summarized. Subsequently, one model will be
selected for further analysis, leading to the estimation of model parameters.

Rasch's Model

The first of the models to be produced for approximating the IRS in a mul-
tidimensional space was presented by Rasch (1961). Although the model was not
specifically designed to represent multidimensional data, hasch indicated that
vectors could be used for item and person parameters, thus extending the model
to the multidimensional case.

The general form of the model is given by

n

(2 w 0 +
n
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e
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x is one of i = 1, ..., k item responses;

0 is the person parameter vector with elements et, 9 = 1, n;

a is the item parameter vector with elements az, R = 1, n;

u , and v are weights for the person and item dimensions;

z is a scaling constant for the item responses; and

n is the number of dimensions.

The model can be shown more conveniently in vector form as

(W '0 + U 'a + O'V a + zi)
i

P(x = ik!,2) = k (wi'e Ui'q 214a zi)
E e

(10]

where W and U are vectors of weights for each item response, and V is a matrix

of weights.

This model is extremely general, allowing both dichotomous and polychoto-

mous scoring and containing both the 1- parameter and 2-parameter logistic models

as special cases. Because the model is so general, it is difficult to determine

the form of the item difficulty and discrimination functions. However, for the

special case of a dichtobously scored item with W and Y. equal to unit vectors
for a correct response and zero vectors for an incorrect response, V equal to
the identity matrix for a correct response and a zero matrix for an incorrect

response, and z equal to zero for all responses, the difficulty function is a

hyperplane and the conditional slopes of the surface Where it intersects the .5

plane are functions of ai. The model presented in Equation 3 and shown in Fig-

ure 1 is a special case of the general model.

Only one study is known that uses this general model to represent multidi-
mensional item response data (Reckase, 1972), although there have been other
applications of the model (Andersen, 1982; Andrich, 1978). In the Reckase

(1972) study an attempt was made to estimate the parameters using a least
squares procedure for a special case of this model, where Vi is a zero matrix

for all responses and zi takes on zero values for all responses. The attempt

was not entirely successful, however, in that the fit of the multivariate model

to multivariate data was no better than the fit of the simple Rasch (1960) model

to the same data When estimates of the parameters were used. The poor results

were attributed to two factors: (1) both the parameter vectors and the weights

were estimated from the data and (2) the sample size used was too small to esti-

mate accurately the large number of unknown variables. The parameter estimates

were interpretable, however, suggesting that a less ambitious approach might be

fruitful.

Mulaik's Model

Another multidimensional model that was developed as an extension of the

8
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work of Rasch (1960) was proposed by Mulaik (1972). This model is given by

P(x = 11I'71)
i=E1

yini

1 + E yini
i=1

where the yi's are item parameters and the Tri's are person parameters for the

interaction of a person and an item in an n-dimensional space.

The previous definitions of the item difficulty and discrimination do not
apply to this model, since the surface defined by Equation 11 does not have a
point or line of inflection. However, the intersection of the surface with the
.5 plane is a hyperplane and could be used to define item difficulty. Unlike
the previous model, the conditional slope of the IRS at the intersection with
the .5 plane is not simply a function of the item parameters but also depends on
the ability parameters. A two-dimensional example of the response surface de-
scribed by this model is presented in Figure 2.

Figure 2

Item Response Surface for Mulaik's Model

Mulaik (1972) presented a maximum likelihood procedure for estimating the
parameters of this model, but it appears that it has not ever been applied. He

9
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cautioned that the amount of cnmputation and the constraints required to esti-
mate the parameters may be too great for the current generation of computers.

Sympson's Model

A third model that has been developed to describe the interaction of a per-

son and an item in a multidimensional latent space was described by Sympson

(1978). Rather than extend the 1-parameter logistic model, as done by Rasch
(1961) and Mulaik (1972), Sympson (1978) based his model on an extension of the
3-parameter logistic model (Birnbaum, 1968). The mathematical expression for

this model is given by

n [-1.7a9(6z - bz)] -1

P(x = 112,a,b,c) = c + (1 - c) 11 [1 + e

Z=1

[12]

where
x is the item response,
6 is a vector of ability parameters,
a is a vector of discrimination parameters,
12 is a vector of difficulty parameters, and
c is a pseudo-chance level parameter.

An example of the surface defined by Equation 12 is given in Figure 3 for the
two-dimensional case with parameters c = .2, a1 = .7, a2 = 1.2, b1 = -.6, and b2

= .5.

Unlike the models presented by Rasch (1961) and Mulaik (1972), the root of
the second derivative of this equation does not detine a difficulty function but
gives a single value for each dimension. This value is simply the b parameter

for that dimension. The difficulty of an item using this model can therefore be
defined as the vector of b values, which defines a point in the multidimensional
space.

The slope of the IRS at the point of inflection for Sympson's (1978) model
is given by

n

(1-c) (1.7)n flat

Z=1 ,

4n

Which is solely a function of the item discrimination parameters and the pseudo-
chance level parameter. If the slope of the function is determined at the dif-
ficulty point with respect to just one dimension, 6i, the result is (1 - c)

(1.7)ai/4x2(n-I), Where n is the number of dimensions. Thus for this model the

a vector defines the discrimination power of the item.

Sympson (1978) has done some preliminary work on estimating the parameters
of this model for some simple cases, but no procedure has yet been published for
the full multidimensional case. Lord (1978), in discussing Sympson's (1978)

10
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Figure 3
Item Response Surface for Sympson's Model

paper, has suggested that a Bayesian or maximum likelihood procedure might be
more fruitful than the method Sympson proposed. However, these methods have not
been developed to the point where this model can be applied to actual test data.

Bock and Aitkin's Model

Bock and Aitkin (1981) suggested a multidimensional latent trait model that
is an extension of the 2-parameter normal ogive model (Lord & Novick, 1968).
They also indicated that this model is similar to the factor analysis procedures
developed for dichotomous data by Christoffersson (1975) and Muthn (1978).

The mathematical form of the Bock and Aitkin (1981) model is given by the
equation

t
2

Z(0) (-
P(x = 112,o,c) = 1 dt

(20
(13]

where

z(e) s c + E
i=1 aiOi,

8 is a vector of ability parameters,
a is a vector of discrimination parameters, and
c is the item difficulty parameter.

11
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Due to the similarity of the cumulative model and logistic functions, this
model is very similar to one of the special cases of the general Rasch model

given in Equation 9. Specifically, it corresponds to the case where the expon-

ent of that model is equal to E a
i
8
i
+ a

4-1
nfor a correct response and 0 for an

incorrect response.

As with the general Rasc*i model, the difficulty function for the model is

defined by the equation for a hyperplane

Ea
i
8
i

c = 0 . (14]

The conditional slope of the IRS for points on the difficulty function is given
by aiNU, demonstrating that the a vector is related to the discriminating

power of the item. Since the two-dimensional IRS for this model is indistin-
guishable from the logistic surface presented in Figure 1, an example is not
presented for this model.

Bock and Aitkin (1981) have produced an estimation procedure for their mod-

el based on the marginal maximum likelihood technique. They have applied this
procedure tr.: data assuming a two - dimensional solution. The results of the anal-
ysis showed that different quadrature procedures used in conjunction with mar-
ginal maximum likelihood techniques gave slightly different results but that a
two-dimensional solution deemed to fit the data fairly well. No other applica-

tions of this model are known.

Samejima's Model

Samejima (1974) presented a more general version of the model suggested by
Bock and Aitkin (1981) as a special case of her continuous response model in a
multidimensional latent space. Ber model is given by the equation

a -(8 - b )

P: (2) = (u)du (15]

where
zg is the point of dichotomy of the continuous trait measured by this item,

P* (0) is the probability of a correct response,
zg

a4 is a vector of discrimination parameters,

0 is a vector of ability parameters,

b
8

is a vector of difficulty parameters, and

(u) is a twice 'ifferentiable function.

When lYg is the normal density function, Equation 15 is identical to Equation 13

with c a - Eaibi. When tPg is defined as the logistic density function, the model

is a special case of the general Rasch model given in Equation 9. Samejima also
points out the similarity of the model to linear factor analysis.

12



- 162-

Whitely's Models

One other class of multidimensional latent trait models exists in the lit-
erature, but this class of models was developed from a different perspective
than the others. The models presented up to this point generally consider the
dimensions required to determine the complete latent space as unknown hypotheti-
cal constructs, the properties of which need to be discovered. In contrast, the
class of the models proposed by Whitely (1980) considers the dimensions to be
components in a cognitive model of performance. These dimensions are defined in
advance of being estimated as particular cognitive processes.

The mathematical form of the model used by Whitely is similar to that used
by Sympson (1981) in that it is composed of the product of separate logistic
model terms. The particular model, called the multicompoent latent trait mod-
el, is given by the equation

n
(6

i
- b )

P(x = 116 b) = II e

i=1
(6i - b ) '

1 + e

(16]

Where the variables are as defined above. This model is the same as the Sympsoh
(1978) model with c = 0 and ai = 1/1.7 for all i. Since it is a special case of
the Sympson model, it also has a difficulty function equal to the b vector, and
the slope at the point defined by the b vector is 1/4n. Whitely (1980) has also
produced more complex versions of this model, but they are all composed of com-
binations of the 1-parameter logistic model.

Whitely (1980) has developed procedures for estimating the parameters of
this model, but the estimation has been performed in a different manner than the
other models that have been described. Whereas the estimation procedures for
the other models have attempted to estimate the vector parameters from the di-
chotomous responses to test items, Whitely has developed an experimental design
for collecting responses on each cognitive component separately. The parameters
of each of the product terms of the model are then estimated separately using
procedures developed for the unidimensional Rasch model. No descriptions of a
procedure for simultaneous estimation of all of the parameters of the model has
been found in the literature.

Comparison of the Multidimensional Models

An analysis of the six models that have been described above indicated that
these models fall into three basic classes. The first of these classes (Class
I) is of the form

z(2)

P(x = 112,$) = U(u)du

-co

(17]

where z(e) is a linear function of the elements of 2. The general Rasch (1961)
model, .he Bock and Aitkin (1981) model, and the Samejima (1974) model fall into

13
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this class. All of these models allow high ability on one dimension to compen-

sate for low ability on another dimension, resulting in what Sympson (1978) has
labeled as compensatory models. All of these models have linear difficulty
functions When used with dichotomously scored data and have conditional slopes
at points on the difficulty function that are functions of the corresponding
discrimination parameters. These models are fairly simple from a mathematical
point of view (especially wh2..n gu) is the logistic density function), and esti-
mation procedures have been developed for the parameters (Bock & Aitkin, 1981).

Class II models contain a single example, the model proposed by Mulaik
(1972). This model is of the form

P(x =

n

E
1411

i=1
n

1 E

i=1

(18]

where the variables are as defined earlier. This model is also compensatory in

Sympson's (1978) sense, but it is unlike the previous class in that the ability
metric is defined from 0 to +o' instead of from to 4'. This results in an IRS
that does not have a point or line of inflection. If the difficulty of the item
is defined by the intersection of the item with the .5 plane, the result is a
linear function similar to that for the Class I models. The slope of the IRS at
the difficulty function has the property of changing with its position relative
to the ability dimensions. Mulaik (1972) has proposed an estimation procedure
for this model, but there have been no studies to determine its practicality.

Class III models contain the models proposed by Sympson (1978) and Whitely
(1980). These models take the form

P(x = 110,0 . al + (1 - al) 11 p-i(6i) , (19]

where a, is a lower asymptote parameter and P;(01.) is the probability of re-

sponse with respect to a specific dimension. In Whitely's (1980) model the di-
mensions are defined as specific cognitive processes required to solve the prob-
lem proposed in the item, and the a1 parameter is assumed to be zero. In Symp-

son's (1978) model the dimensions are hypothetical traits based on commonalities
among items.

Unlike the previous models, the Class III noncompensatory models do not

allow a high ability on one dimension to compensate for a lower ability on an-
other. The lowest of the values of Pi(6i) defines the upper bound of P(x =

112,9.). Although some work has been done on the estimation of parameters for
the Class III models, no generally accepted algorithm for estimation of the pa-
rameters of these models is known to exist.

14
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Several issues need to be considered in selecting one of these models as a
description of the interaction between a person and an item. The first is
whether the model is realistic. This depends on Whe 'ter a compensatory or non-
compensatory model is appropriate for actual persons and items. Unfortunately,
this is a question that still needs to be answered, based on research in cogni-
tive psychology. Although sufficient information is presently not available,
the applicability of the models to actual testing situations may provide an an-
swer.

Beyond questions of the psychological meaningfulness of the models are
questions of practicality. The most well developed estimation procedukes are
available for the Class I models; and these models tend to have the most flexi-
ble options dub.' to the characteristics of the exponential term. As a conse-
quence, the Class I models tend to be more promising than the other models. Of

the Zdass I models, the generalized Rasch model has the greatest flexibility in
its options and is the most mathematically tractable. The remainder of this
paper will therefore concentrate on the properties of this model and the proce-
dures for the estimation of its parameters.

Application of the General Rasch Model

Although the general Rasch model is a generalization of the 1-parameter
logistic model, a very simple model, in its most general form the model is very
complex. A study (McKinley & Reckase, 1982) was thus undertaken to determine
Whether a less complex formulation of the model would be adequate for modeling
multidimensional response data.

Method

Design. The general design of this study was to first evaluate the proper-
ties of a simple formulation of the general model and then to evaluate increas-
ingly more complex versions of the model produced by inserting additional terms.
The initial form of the model investigated is given by Equation 20:

P(xle a ) 1
y 0 a ) exP(ura + we ) [20]

For each level of model complexity, the properties of the model were investigat-
ed and the reasonableness and usefulness of the model were explored. This was
done primarily by generating simulated test data to fit the particular form of
the model being investigated and by analyzing that data in an attempt to assess
how well the characteristics of the data matched the characteristics of real
test data. If it were found that a particular form of the model could not be
used to generate realistic data in terms of either dimensionality or item char-
acteristics, then that form of the model was rejected and a different form of
the model was investigated. Distinct special cases of the model were obtained
by eliminating different terms from the general model by setting the appropriate
parameter weights equal to zero.

Analyses. The analyses of the generated data that were performed included

15
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factor analysis and traditional item analysis. The purposes of the analyses

were three-fold. One purpose was to determine whether the obtained factor
structure of the data resembled the factor structure typically obtained for real

test data. The second purpose was to determine whether the obtained unidimen-

sional item characteristics (difficulty and discrimination) were similar to
those obtained for real data. The third purpose was to aid in the interpreta-

tion of the parameters of the model.

If it were found that a model could not be used to generate realistic data,
an attempt was made to determine what changes in the model would yield a more

acceptable model. In many cases it was necessary to generate additional data,
using different values for the parameters of the model in order to answer spe-
cific questions about a particular model statement. Once an understanding was
gained as to the roles played by different parameters of the model, predictions
could be made regarding the effects of adding or eliminating other terms.

Results. As a result of the analyses performed on the different formula-
tions of the model, a good understanding of the significance of the terms in the

model was gained. It is now clear that parameters play quite varied roles de-
pending on the term of the model in Which they appear. Because of this, the
characteristics of the data for which the model can be used vary markedly, de-
pending on the form of the model.

To begin with, it is Blear that the use of W191 and y'ai terms alone is not

sufficient for modeling multidimensional response data. The linear composite
represented by the Irgi term in the model determines only item difficulty.

Moreover, the order of the oi vector is unimportant. It is the magnitude of the

inner product of the item parameter vector and the weight vector that determines
the difficulty of the item. Regardless of whether the vectors have one or five
elements, as long as the inner product is the same, the difficulty of the item
in terms of proportion of correct responses is the same.

It is also clear from the results of the analyses that the product term
ASVcsi is necessary if item discrimination is to be modeled. When data are gen-

erated using only the inner product terms, the items modeled have constant dis-
criminations and the resulting data are unidimensional. When the product term
is included, the items modeled have varying discrimination. Moreover, the fac-
tor analysis results indicate that the dimensionality of the generated data is
determined by the number of elements from the oi vector used in the efysi term.

However, it should be emphasized that if the V matrix contains more than one
nonzero element in a row or column, a a or 0 term will appear in the exponent
multiplied by more'than one of the 0 or a parameters, respectively (e.g., 0101 +

6
1
a
2
or Olal + 02a1)* The presence of these terms in the exponent results in

difficulty in determining the meaning of the 0 and a vectors.

The elements in the oi vector in the eivai term determine the discrimina-

tion of the modeled items. Because of this, use of the same elements of the oi
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vector in both the iVQi term and the U'ai term produces an undesirable charac-

teristic in the data. Since the elements used in the 6iVQi term determine item

discrimination, while the elements in the Tqi term determine item difficulty,

use of the sane elements in both terms yields items having highly related ob-
served item difficulty values and item discrimination values. This is not a
very realistic situation.

Conclusions. On the basis of the results of the analyses, it was concluded
that if the model is to be used to represent multidimensional item response
data, it must include the 2iyai term, but no element in either the ai or the Oj

vector should be multiplied by more than one term in the other vector. If items
are to vary in difficulty, the U'ai term must be included; but to avoid highly

related values for unidimensional measures of item discrimination and difficul-
ty, no element of the ai vector should appear in both the U'a i term and the Olycli

term. The model that appeared to be most useful for modeling multidimensional
response data is given by

1
gi) exp(11"cri + rjycri) [21]

where no elements of the a
i
vector appear in both terms of the model.

There was one additional significant finding. Although it was concluded
that the use of the model without the Opai term was unsuccessful in modeling

multidimensional response data, this result was obtained when the special case
of the model was applied to dichotomously scored item response data. This model
may also be applied to polychotomously scored item response data. In one spe-
cific application of this model to polychotomous response data, some measure of
success was attained in modeling multidimensional data using only the U'ai and

WO terms. Dichotomously scored items were transformed to polychotomous form

by grouping items together to form clusters having several nominal response cat-
egories. When these data were analyzed, several dimensions could be determined.
However, this approach has not been extensively investigated, and any conclu-
sions drawn as to the usefulness of this approach are at best tentative.

Estimation of Parameters in the General Rasch Model

Two basic approaches to estimating item parametera can be distinguished.
One approach is to specify a distribution of the latent ability of the popula-
tion from which the sample was taken and then to integrate the response function
with respect to that distribution to obtain item parameters unconditionally
(Bock, 1972). This approach has been taken by Bock and Lieberman (1970) and
Bock and Aitkin (1981). The other approach is to estimate item parameters by
treating the examinees' abilities as fixed unknowns and by conditioning item
parameter estimation on estimates of ability (Bock, 1972). This approach has
been taken by Lord (1968) and Kolakowaki and Bock (1970). The present research
considers both approaches. However, at this time only the conditional item pa-
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rameter estimation procedure is designed for the most general form of the model;

it is still limited to the use of dichotomously scored data and it does not es-

timate the W, U, and V parameter weights. The unconditional item parameter es-

timation procedure is designed for use with the form of the model given by Equa-

tion 21. As was the case with the conditional item parameter estimation proce-

dure, this procedure does not estimate the parameter weights.

In addition to the two procedures that have been developed for item parame-

ter estimation, a maximum likelihood ability estimation procedure has been de-

veloped for estimating the ability parameters for the general Rasch model. This

procedure estimates ability conditionally and is combined with the conditional

maximum likelihood item parameter estimation procedure discussed above to form a

conditional maximum likelihood estimation procedure for simultaneous estimation

of the item and ability parameters of the general Rasch model. Used alone, the

conditional maximum likelihood ability estimation procedure can be used to esti-

mate ability using the item parameter estimates obtained from the unconditional

item parameter estimation procedure.

Unconditional Item Parameter Estimation

General procedure. The unconditional item parameter estimation procedure

is an adaptation of a procedure proposed by Bock and Aitkin (1981), which was

designed for use with a multidimensional 2-parameter normal ogive model (see

Equation 13). In the initial step of this procedure, a distribution of ability
is assumed, and quadrature nodes and weights are selected for use in determining
expected sample sizes for portions of the distribution using numerical integra-

tion. For the multidimensional case, the prior distribution of ability is mul-

tivariate, and the nodes and weights are vectors. At each node the expected
number of examinees from the sample having the ability represented by the node
is computed, as is the expected frequency of correct responses to each item by

examinees with the ability represented by the node. These expected number-cor-

rect scores and expected sample sizes are used in a logit analysis, which is

performed using a least squares regression procedure. The results of the logit

analysis are estimates of the parameters of the model.

The initial stage of the estimation procedure requires provisional esti-
mates of the item parameters. These provisional estimates are used in the first

step of the initial stage, Which involves obtaining expected sample sizes and

number-correct scores. In the second step of the initial stage, a logit analy-
sis is performed to obtain new estimates of the item parameters. These new es-

timates are used in the first step of the second stage, which involves obtaining

new estimates of sample sizes and number-correct scores. These new sample sizes

and number-correct scores are used in another logit analysis, which yields a new
set of item parameter estimates. These stages are repeated until a criterion of

convergence is met or until a limit on the number of stages is reached.

Expected sample sizes and number-correct scores. The expected sample size

at each node is given by

N L )/4

t k k

2=1
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expected sample size at node k;

ability represented by node k;

weight for node k;

number of examinees in the sample; and
likelihood of response vector Z given node k.
by

L
I
(8
k
) = R P(u

ij
)

i=1

Where P(uj&) is given by

P(uil) = exp[uit(ci + /2ii2k)] / (1 + expEci +

where

ui& is the response to item i in response vector 9,

c
i is the difficulty parameter for item i, and

619kis given by

M
A =
-i-k

E a
im

0
km ,

m=1

where

Pk is

M is the number of dimensions,
a
im is the mth element of the discrimination parameter vector for

item i, and
e km is the Mil element of node k.

given by

q
t = E L (8 )W

I k k '
k=1

[23]

[24]

[25]

[26]

where a is the number of quadrature nodes. The sum over all of the nodes of the

ratio in Equation 22 is one, and the sum of the Nk over all of the nodes is N,

Where N is the number of examinees in the sample.

The expected number-correct score for item i at

s uity8k)Au)
r
ik

= E

Z=1

node k, rik, is given by

[27]

Where the other terms are as previounli defined. The sum over all of the nodes
of the r

ik for an item is equal to the observed number-correct score for the
item.

19



Multiple logit analysis. For each item the expected proportion-correct
score at each node is given by

P
ik

= rik /
k '

[28]

where all of the terms are as previously defined. The Pik are converted to log-

its and used as the dependent variable in a regression analysis. The indepen-
dent variables in the regression analysis are the elements in the node vectors.
The model for the regression analysis is given by

loge[iik / (1 - Pik)] = ci + A19k + error , [29]

where all of the terms are as previously defined. The regression analysis re-
sults in estimates of c

i
and Ai.

Conditional Item Parameter Estimation

This procedure is based on the conditional maximum likelihood estimation
technique. The procedure begins with the computation of an initial weighted
item score on each of M dimensions using

N N
X
ik

=

iE 1 i

u
jk

+ E

1
jk

v
jk '==

where

[30]

Xik is the initial score for item i on dimension k,

ujk is the kth element of U, and

vik is the kth element of V.

The index j indicates that 'he value of the elements of U and V are dependent on
the response of the Ith examinee to item i. These scores are converted to z
scores via the transformation

zik (Xik - / sk [31]

where
zik is the z score for item i on dimension k,

Xik is as defined in Equation 30,

3Ck is the mean of the weighted scores on dimension k, and

s
k is the standard deviation of the weighted scores on dimension k.

The z scores are used as initial estimates of the item parameters. That is,

a
oik

= z
ik ,

[32]

where a oik is the item parameter estimate of item i on dimension k after 0 iter-

ations.
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New item parameter estimates are obtained using the initial item parameter
estimates as the starting point in an iterative process. One iteration is com-
plete when a new item parameter estimate is obtained for each it on each di-
mension. Within a single iteration, new estimates on the first dimension are
obtained while holding the estimates on all other dimensions constant at the
values obtained on the previous iteration. Estimates on the second dimension
are obtained using previous estimates on all other dimensions except the first
dimension. For the first dimension the new estimates are used. An iteration is
complete when new estimates have been obtained on all dimensions. Iterations
continue until a criterion of convergence is met or until a limit on the number
of iterations is reached.

On the Eth iteration, the new estimate on the kth dimension for item i is
given by

2
a

azik a(2.-1)ik .4.
Da

ik aa
ik

logel,(Jik) - 2 logeL(aik

where a
(2.-1)ik is the estimate for item i on dimension k from the previous iter-

ation and log L is the log to the base e of the likelihood function for the re-
sponse vector for item i. The likelihood function is given by

[33]

N

L(a
ik

) = Ii P(u
ij

) ,

j=1

[34]

where P(uij) is the probability of response uij by person j to item i with pa-

rameter aik. P(uij) is given by

exp(W1-21 + Ul'ai + 2i'Vlgi + z1)
P(u

ij
=1) =

exp[W '6 +U 'a +6 'V a +z ]+exp[1,1-2j1+12'a+piii'llg+z] ' [35]

-o -j -o -j -o o

where all of the terms are as previously defined. The 0 and 1 subscripts on the
vectors of weights, U, V, and W, indicate the values taken by those vectors for
an incorrect and a correct response, respectively.

The first derivative of the loge likelihood function is given by

N N

aa
loge L(a ) = E U + E 0 'V - E (U -11o)Q E (U1 -4.0 'V1)P i.

, [36]

j=1 -3 j=1 -3 o -j - ij -jjai

where all of the items are as previously defined. The second derivative of the
loge likelihood function is given by

N
82 log L(a ) =E'[U +U+ 6 'V +V+V]

2 PQ, [37]

8a2
e

j=1
-o -1 -j -o -o -1 ij ij

,

f. 21
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where Pij is the pribability of a correct response to item i by person 1, Qij

1 Pi and the oWer terms are as previously defined.

Conditional Ability Parameter Estimation Procedure

The conditional ability estimation procedure is also a maximum likelihood
estimation procedure. It is very similar to the conditional item parameter es-
timation procedure. For each examinee an _aitial weighted score is computed on
each of M dimensions as

X
jk

=
i=E1 i=

w
jk

+ E
1

v
jk

a
ik

, [38]

where Xjk is the initial score for person l on dimension k. These scores are

converted to z scores via the transformation

zik = (Xjk - Tek) / sk ,

where

zik is the z score for person j on dimension k,

Xjk is as defined in Equation 38,

3ct is the mean of the weighted scores on dimension k, and

sk is the standard deviation of the weighted scores on dimension k.
The z scores are used as initial estimates of ability. That is,

6ojk zjk '

where
ojk

is the ability estimate of person i on dimension k after 0 itera-
tions.

[39]

[40]

Estimates of ability are obtained using the same iterative process as was
described for the conditional item parameter estimation procedure. On the Ith
iteration, the new estimate on the kth dimension for person j is given by

eZJk

2
a

, [41]log L(04k)
30
jk e 2

log
e
L(0

jk
)

/[ "jk

Where Oa_ojk is the estimate for personl on dimension k from the previous

iteration and log L is the log to the base e of the likelihood function for the
response vector for person J.. The likelihood function is given by

n
1.(e

ik
) = IT P(u

ij
) ,

i=1
[42]
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where P(uii) is the probability of a response uji to item i by person with

ability Ojk. P(uij) is given by Equation 35. In evaluating Eli the most recent

item parameter estimates are used.

The first derivative of the log likelihood function is given by

a

ae
log Ve ) =EW +Eyi?.1. E(14,0 yoqimij -E (W + , [43]e -j

i=1 i=1 i=1

where all the terms are as previously defined. The second derivative is given
by

32
n

2
log [ ( ) P Q

39 2 e -j
L(9 ) = 14

o
+ W

-1
+

-V

+
o -1

a
-i ij ij '

1

where, again, all the terms are as previously defined.

Evaluaton of the Estimation Procedures

[44]

General Design

The general approach taken to evaluate the estimation procedures was to
apply the procedures to test data generated to fit a two-dimensional version of
the model given by Equation 24 and then to compare the estimates of the parame-
ters with the values used to generate the simulation data. For this ourpose a
data set comprising response data for 50 items and 1,000 examinees was generat-
ed. Three parameters for each item and two parameters for each examinee were
used to generate these data. The values used for the item parameters are shown
in Table 1. The examinee ability parameter° were selected from a bivariate nor-
mal distribution with p = 0, p - 0, and E equal to the identity matrix.

The weight vectors used in this study were as follows. For an incorrect
response, all of the weight vectors were set equal to zero. For a correct re-
sponse, the following matrix and vectors were used:

[45]

[46]

[47]

As can be seen, only the first item parameter was selected by the weight vector,
U, to act as the item difficulty parameter. The other two item parameters were
selected by the weight matrix, V, to act as discrimination parameters. The re-
sulting model is given by



Table 1

True and Estimated Parameters

True
Parameters

Estimates
Unconditional Conditional

Item 1 2 3 1 2 3 1 2 3

1 -.65 1.50 .50 -.51 1.45 .44 -.48 1.27 .36

2 -1.40 .50 1.25 -1.34 .48 1.29 -1.56 .45 1.29

3 -.20 1.35 .15 -.02 1.49 .40 -.06 1.69 .25

4 .40 1.60 .55 .64 1.67 .84 .59 1.58 .63

5 .00 .50 1.15 .19 .48 1.02 .10 .51 1.04

6 -1.30 .35 1.05 -1.31 .50 1.17 -1.68 .42 1.25

7 .05 1.45 .35 .28 1.56 .43 .34 1.63 .35

8 .19 .25 1.40 .20 .27 1.18 .25 .20 1.23

9 -.17 .85 .85 -.02 1.07 .87 -.07 .89 .67

10 .14 1.75 .45 .40 1.60 .60 .34 1.45 .57

11 .37 .60 .80 .40 .66 1.02 .29 .61 .88

12 .87 1.65 .65 .82 1.49 .63 .70 1.38 .46

13 -.93 .35 1.35 -.98 .26 1.58 -1.00 .24 1.65

14 1.85 .65 1.65 1.80 .70 1.55 1.59 .54 1.29

15 .06 .65 .65 .16 .73 .66 .00 .80 .52

16 -.41 .45 1.45 -.31 .48 1.53 -.38 .23 1.60

17 -1.54 .75 1.25 -1.41 .72 1.32 -1.55 .71 1.14

18 .34 1.55 .25 .44 1.50 .32 .39 1.46 .29

19 -.15 .65 1.35 .14 .90 1.38 .04 .65 1.28

20 1.48 1.25 .45 1.54 1.41 ..41 1.42 1.32 .22

21 -1.45 1.65 .45 -1.42 1.69 .46 -1.73 1.80 .48

22 ,75 .45 1.35 .75 .45 1.42 .67 .40 1.35

23 -.75 .35 1.55 -.62 .33 1.75 -.63 .21 1.72

24 1.10 1.10 .30 .99 .92 .37 .93 1.11 .35

25 -.55 1.20 .15 -.42 1.35 .29 -.38 1.37 .24

26 .50 .50 1.00 .44 .66 1.03 .28 .49 1.12

27 -.15 1.45 .45 .10 1.36 .52 -.02 1.32 .42

28 .65 .70 .70 .78 .63 .66 .56 .68 .86

29 -1.00 1.00 .30 -1.02 1.16 .37 -.95 1.14 .38

30 1.00 .30 1.00 1.18 .27 1.27 .98 .27 1.14

31 -.25 .95 .25 -.16 .99 .20 -.04 1.11 .24

32 -.70 .15 1.50 -.65 .17 1.46 -.68 .03 1.51

33 .85 1.15 .45 1.10 1.31 .42 .98 1.29 .30

34 .05 .10 .95 -.02 .13 .92 .03 .20 1.09

35 -.95 1.35 .50 -.79 1.39 .64 -.80 1.28 .52

36 -1.50 .20 1.20 -1.45 .36 1.07 -1.38 .47 1.03

37 1.80 1.55 .55 2.16 1.84 .35 2.06 1.51 .44

38 -2.00 .15 1.15 -1.98 .32 1.05 -2.06 .30 1.09

39 -.90 1.40 .35 -.70 1.38 .22 -.70 1.18 .40

40 1.00 1.00 1.00 1.06 .92 .96 1.04 .87 .79

41 .15 1.25 .70 .26 1.33 .80 .28 1.17 .75
42 -1.50 .25 .95 -1.45 .40 .85 -1.60 .49 1.14

43 -1.25 .35 1.45 -1.02 .27 1.42 -1.13 .26 1.30
44 1.25 1.30 .25 1.37 1.25 .19 .95 1.26 .26

45 -2.00 1.15 .15 -1.89 .99 .09 -2.01 1.30 .13

46 1.75 .50 .50 1.80 .52 .59 1.65 .68 .64

47 .65 .65 1.30 .82 .48 1.39 .71 .49 1.27
48 -.25 1.00 .45 -.19 1.03 .59 -.17 1.03 .53

49 .35 .55 1.15 .40 .59 1.14 .24 .48 1.04

50 .00 .95 .15 -.05 .87 .25 -.07 1.11 .26
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exp[oil + oi2Oji + oi38j2)xi4]
P(x18 o )

1 + exp[oil + °Heil+ oi38j2]

Results

[48]

Table 1 shows the item parameter estimates obtained from both the condi-
tional and unconditional item parameter estimation procedures. The estimates
have be -n scaled to have the same means and standard deviations as the corre-
sponding true item parameters. The correlations of the estimates with the true
values are shown in Taule 2. As can be seen, for these data there was very lit-
tle difference in the quality of the estimates yielded by the two estimation
procedures. Of course, this comparison is based on simulation data and on only
one data set. Clearly, more research is needed before any definite conclusions
about these procedures can be drawn.

Table 2
Intercorrelation Matrix for True and Estimated Item Parameters

Parameter
True

Estimation Procedure
Unconditional Conditional

°T1 °T2 °T3 °U1 °U2 6U3 8C1 8C2 6C3

°T1 1.00 .21 -.12 .99 .20 -.12 .99 .15 -.18

°T2 .21 1.00 -.75 .20 .97 -.72 .15 .96 -.79

0T3 -.12 -.75 1.00 -.12 -.72 .97 -.18 -.79 .96

°U1 .99 .20 -.12 1.00 .24 -.13 .99 .19 -.20

°U2 .20 .97 -.72 .24 1.00 -.73 .19 .96 -.80

°U3 -.12 -.72 .97 -.13 -.73 1.00 -.20 -.80 .97

°C1 .99 .15 -.18 .99 .19 -.20 1.00 .20 -.22

aC2 .15 .96 -.79 .19 .96 -.80 .20 1.00 -.88

0C3 -.18 -.79 -.96 -.20 -.80 .97 -.22 -.88 1.00

Discussion

The purposes of this paper were threefold. First, the fundamental concepts
required when considering multidimensional models for the interaction of a per-
son and a test item were defined. These concepts included the multidimensional
latent space, the item difficulty function, and the item discrimination func-
tion. These definitions were conceived as multidimensional generalizations of
similar concepts in unidimensional IRT models. Second, six existing multidimen-
sional models were reviewed and, on the basis of their similarities, were clas-
sified into three general categories. The characteristics of these categories
were described, and the general Rasch model was selected for further study on
the basis of ease of parameter estimation. Third, estimation procedures for the
parameters of the general Rasch model were described and applied to a set of
simulation data that had been generated according to a two-dimensional special

25
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case of the model. The results indicated that a very close correspondence had

been obtained between the estimated item parameters and those used to generate

the simulation data.

On the basis of this information, two conclusions can be drawn. First, the

concepts of difficulty and discrimination can be generalized to the multidimen-

sional case, but the results are slightly different for conmensatory and noncom-

pensatory models. For the compensatory models, the item diificulty is defined

by a linear function of the ability dimensions, while for the noncompensatory

models, difficulty is defined by a vector of difficulty parameters. In both

cases the slope of the item response surface at the difficulty function is a

function of the discrimination parameters of the model.

A second conclusion that can be drawn is that the parameters of the general

Rasch model can be estimated with acceptable accuracy for the simple two-dimen-

sional case presented in the paper. This is, of course, very minimal evidence

for the value of the estimation procedures; but combined with the work of Bock

and Aitkin (1981), the results look fairly promising.

The results presented in this paper summarize only the initial steps in a

thorough study of the applicability and usefulness of multidimensional latent

trait models. Much further work needs to be done. The sample size requirements

and the characteristics of the estimates obtained from the estimation procedures

need to be determined. Procedures for determining the number of dimensions re-

quired for the multidimensional latent space must be developed as well as guide-

lines for interpreting the dimensions. The usefulness of the models for real

data applications such as test construction and adaptive testing should be in-

vestigated. Also the advantages of these procedures over existing multilimen-

sional procedures, such as factor analysis, should be studied.

REFERENCES

American College Testing Program. Content of the tests in the ACT Assessment.

Iowa City IA: Author, 1980.

Andersen, E. B. A general latent structure model for contingency table data

(Research Report No. 82). Copenhagen: Universitetets Statistiske In-

stitut, 1982.

Andrich, D. A rating formulation for ordered response categories. Psycho7

metrika, 1978, 43, 561-573.

Birnbaum, A. Some latent trait models and their use in inferring an examinee's

ability. In F. M. Lord & M. R. Novick, Statistical theories of mental test

scores. Reading MA: Addison - Wesley, 1968.

Bock, R. D. Estimating item parameters and latent ability when responses are

scored in two or more nominal categories. Pschometrika, 1972, 37, 29-51.

Bock, R. D., & Aitkin, M. Marginal maximum likelihood estimation of item

26



- 176-

parameters: Application of an EM algorithm. Psychometrika, 1981, 46,
443-459.

Bock, R. D., & Lieberman, M. Fitting a response model for n dichotomously
scored items. Psychometrika, 1970, 35, 179-197.

Christoffersson, A. Factor analysis of dichotomized variables. Psychometrika,
1975, 40, 5-32.

Holzman, T. G., Glaser, R., & Pellegrino, J. W. gnitive determinants of se-
ries completion: Individual and developmental differences. Paper present-
ed at the annual meeting of the American Educational Research Association,
Boston, April 1980.

Kim, J., & Mueller, C. W. Facto: analysis: Statistical methods and practical
issues. Beverly Hills CA: Sage Publications, 1978.

Kolakowski, D., & Bock, R. D. A Fortran IV_Program for maximum likelihoo4 itela
analysis and test scoring: Normal ogive model (Research Memo No. 12).
Chicago: The University of Chicago, Department of Education, Statistical
Laboratory, 1970.

Lord, F. M. An analysis of the verbal scholastic aptitude test using Birnbaum's
three-parameter logistic model. Educational and Psychological Measurement,
1968, 28, 989-1020.

Lord, F. M. Discussion: Session 2. In D. J. Weiss (Ed.), Proceedings of the
1977 Computerized Adaptive Testing Conference. Minneapolis: University of
Minnesota, Department of Psychology, Psychometric Methods Program, 1978.

Lord, F. M. Applications of item response theory to practical testing_problems.
Hillsdale NJ: Erlbaum, 1980.

Lord, F. M., & Novick, M. B. Statistical theories of mental test scores. Read-
ing MA: Addison-Wesley, 1968.

McKinley, B. L., & Reckase, M. D. Multidimensional latent trait models. Paper

presented at the annual meeting of the National Council on Measurement in
Education, New York, March 1982.

Malaik, S. A. A mathematical investigation of some multidimension. Rasch mod-
els for psychological tests. Paper presented at the annual meeting of the
Psychometric Society, Princeton NJ, March 1972.

Muthen, B. Contributions to factor analysis of dichotomous variables. Psycho-
metrika, 1978, 43, 551-560.

Rasch, G. Probabilistic models for some intelligence and attainment tests.
Copenhagen: Danske Paedagogike Institut, 1960.

Rasch, G. On general laws and the meaning of measurement in psychology. In J.

27



- 177 -

Neyman, Proceedings of the Fourth Berkeley Symposium on Mathematical Sta-

tistics and Probability (Vol. 4). Berkeley: University of California

Press, 1961.

Reckase, M. D. Development and application of a multivariate logistic latent

trait model (Doctoral dissertation, Syracuse University, 1972). Disserta-

tion Abstracts International, 1973, 33. (University Microfilms No.

73-7762)

Reckase, M. D. Ability estimation and item calibration using the one and three

parameter logistic models: A comparative study (Research Report 77-1).

Columbia: University of Missouri, Department of Educational Psychology,

November 1977.

Reckase, M. D. The formation of homo eneous item sets when guessin is a factor

in item responses (Research Report 81-5). Columbia: University of Mis-

souri, Department of Educational Psychology, August 1981.

Samejima, F. Normal ogive model on the continuous response level in the multi-

dimensional latent space. Psychometrika, 1974, 39, 111-121.

Sympson, J. B. A model for testing with multidimensional items. In D. J. Weiss

(Ed.), Proceedin s of the 1977 Com uterized Ada tive Testin Conference.
Minneapolis: University of Minnesota, Department of Psychology, Psychomet-

ric Methods Program, 1978.

Whitely, S. E. Multicomponent latent trait models for ability tests. Psycho-

metrika, 1980, 45, 479-494.

28


