L Tt W R TR SRR TR T AT Real T T TR T T

DOCUMENT RESUME

ED 263 206 T™ 850 701
AUTHOR Psotka, Joseph

TITLE Reflections on Computers and Metacognition.

PUB DATE [85]

NOTE 10p.

PUB TYPE Viewpoints (120)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS *artificial Intelligence; *Cognitive Processes;

Cognitive Restructuring; Computer Assisted
Ingstruction; *Computer Science; Elementary Secondary
Education; Heuristics; *Learning Processes;
*Metacognition; Problem Solving; *Programing
Languages

IDENTIFIERS *Debugging (Computers); LISP Programing Language;
LOGO Programing Language; Process Product
Relationship; Process Product Research

ABSTRACT

Current notions of metacognition merge with the
predominant scientific model used in psychology, that of information
processing. Metacognition is seen as a control process that governs
the action of more elemental cognitive skills. Given the centrality
of this notion, it is important that metacognition should be examined
in detail. From the point of view of how metacognition relates to
highly sophisticated computer systems in use today and in development
for the future the following are discussed: (1) debugging and
metacognition; (2) cognitive compatibility and learnirg; (3) problem
definition and analyses; (4) procedures and facts; (5) process and
product; and (6) tools for the mind. The perspective of this paper is
that higher order languages like logo and lisp are only beginning to :
have an impact on the understanding of psychological processes. The
whole development of computer—aided instruction, artificial
intelligence, and special environments for instruction will
unquestionably have profound effects on education, but its more
enduring and important effect may well be increasing the
understanding of cognition and learning. (PN)

khkkhkkhkhkhkhkhhkhkkhkhkhkhkhkihhhkhhhhhhhhkhkhkhkkhkhhkhkhkhkkhkhhihkkhkhkhkkhhhkhkhkhhkihkhhhhhhhkk

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
3333333 E 333 I ISR I3 23ISR 22222222 2 & 33




;

R e e
1 = Y

)
'

'

£0263206

t

O

T 850

ERIC

Aruitoxt provided by Eic:

Joseph Psotka
Army Research Institute
5001 Eisenhower Avenue

Alexandria, Virginia 22333-5600

Reflections on Computers and Metacognition

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

[} This document has been reproduced as

received from the person or organization

opiginating it.
M;gor changes have besn made to improve

reproduction quality.

® Points of visw or opinions statad in this docu-
ment do not necessarily rapresent official NIE
position or policy.

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

j . ‘—PS 04 EG\

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."




REFLECTIONS ON COMPUTERS AND METACOGNITION

joseph Psotka

Army Research Institute

5001 Eisenhower Avenue
Alexandria, Virginia 22333-5600

This paper is largely in response to a host of empirical data set out carefully
and in great detail in a group of papers presenited at AERA (Campbell et al., 1985;
Clements, 1985; Dytman et al., 1985; Miller et al., 1985; and Zelman, 1985). It also
reflects some of the discussion at that session "On using Logo with students." and
later with Wallace Feurzeig. The papers presented at the session covered many
topics from several perspectives, but recurrent in their themes was the importance of
Logo for metacognitive growth. Current notions of metacognition merge nicely
with the predominant scientific model used in psychology these days, that of
information processing. Metacognition is seen as a control process that governs the
action of more elemental cognitive skills. Given the centrality of this notion, it seems
timely and important to examine it in greater detail on its own, and especially from
the point of view of how it relates to highly sophisticated computer systems in use
today and in development for the future.

The perspective of this paperis that, in fact, higher order languages like logo
and lisp are only beginning to have an impact on our understanding of psychological
processes. These languages are still quite crude tools for exploring the potential
interactions between computers and people. They are nevertheless very rich tools
for exploration, but insight into the process suggests that these languages need to
be made replete with specialized tools to further their effects. We are only
beginning to see the development of these kinds of specialized systems that could
very much help instructors improve their using logo with students. The whole
development with computer-aided instruction, artificial intelligence, and special
environments for instruction will unquestionably have profound effects on
education, but its most enduring and important effect may well be increasing our
understanding of cognition and learning.

DEBUGGING AND METACOGNITION

Perhaps no other concept derived from computer science has captured the
imagination of psychologists so powerfully in their attempt to explain instruction
than the notion of "debugging” (c.f. Burton, 1982). Superficially, it seems such an
appropriate expression of removing students’ errors in thinking. Letthe program
run, and where it breaks, remove the offending little piece of code. With simple
programs, the task really issimple.




With sophisticated programs of any respectable length, the task is not only
not sosimple, it begins to take on much more profound characteristics to make it
look more like "iearning” than just error correction. In more complex programs, not
only does one have to find the bug, but one hasto restructure the knowledge (data
and procedures) in the program to make it behave properly. Thisturns out to be
quite complicated in many ways.

The more fully developed notions of "debugging” turn out to be central to both
learning and computer programming. Within the learning context, analyses of
childrens' learning has often taken the approach of analysing arithmetic and
algebra. This has several distinct advantages, because both subject matters are
heavily algorithmic and allow themselves to be modelled on computers relatively
easily (compared to the poorly understood skills of civics, for instance). Several
intensive investigations (Brown and Burton, 1978; Sieeman, 1982) have produced
models of studentlearning in which errors are realistically described not by missing
knowledge or facts, but by the imaginative creation of new rules: "buggy” rules or
"mal” rules, as they have been called. A mammoth theoretical undertaking nas
forged a link between these buggy rules and the source of instruction: textbooks
and the order of learning exercises (Van Lehn, 1983). This evidence forces a
conception of the learner as an active theory-builder whose rules are organized into
theoretical statements that try to describe the world as it is known.

The buggy rules are theoretically coequal with other rules and facts in any
student's understanding of the world, and in this respect, can be thought of as
analogous to the individual statements or function definitions in any programming
system. In a programming environment where one is editing functions not only
interactively, but in a structure editor that is making changes as they are seen,
debugging becomes very complicated. The very act of looking at a statement
definition may change it directly or have some indirect effects on other parts of the
environment. In orderto debug in such an environment, the proper metaphor
seems to be one of "tiptoeing" through one's knowledge structures, carefully trying
not to destroy what one steps on. Looking at this process more closely, as a
metaphor, it would seem that there are two key elements of the process: finding a
place to stand; and having a control system that interprets what one finds and
decides what to change. Given this metaphor, debugging is very closely allied to
self-reflection, since being able to examine clearly what one knows (the existing
code) is a precondition for further learning and restructuring.

What sort of computer syste m could maintain this sort of self-reflection.
Clearly, it does not yet exist (although there are some intimations in the work of
Smith, 1985). Two simple processes come to mind. In one, the computer takes a
snapshot of its entire memory every fixed moment of time and stores it away for
future reference. I the other, there are more than one computer (in fact there are
as many as may be needed) and they are each doing the same thing, but time-lagged
by some fixed or variable amount. When one wants to know what it was doing a




few moments ago, it calls on the appropriate computer. In both cases, an interpreter
that can examine the past state of knowledge and decide on what to change so that
a "better" present may come about is still needed (and undefined). Clearly, thase
are very wasteful and inefficient models of self-reflection, but they may at least
provide some sense of the task requirements for this complex ability. Just how much
of this capability really will be required remains to be determined, empirically and
theoretically.

Let us try to create some notion of the human context for this discussion: It
seems that we are able to reflect quite deeply on our past actions and decisions. We
can, forinstance, retrace in our minds the course of an argument or conversation
with someone and realize errors or shortcomings in our logic. We can, as another
example, learn from falling off a bicycle something about how not to maintain
balance, and this something may be quite complex and difficult to articulate. The
point to be drawn from these examples is that we must maintain some relatively
detailed description of our states of knowledge at particular times and make use of
these descriptions to alter those very states of knowledge through some sort of
process of self-reflection. Now the artificial self-reflective systems outlined earlier
provide a ground for creating this self-reflection, at the very least, and they may
begin to suggest some of the mechanisms or procedures for simulating this
fundamental human capacity.

What one needs to make use of these self-reflective systems is for them to be
aware of their reflectivity and capable of using this knowledge. They need rules or
heuristics for comparing their present state of knowledge with the past so thatthey
can find the appropriate past state to modify. What sort of comparison could this
be? For faulty deductions one might use appropriate backtracking mechanisms. But
what does one do about falling off a bicycle? Well, again one could backtrack to the
pointwhere falling began and then try to do things differently: e.g. "Perhaps|
turned the wheel too sharply. Maybe next time | should shift my weight to
counterbalance, ... etc." It may be that we will not begin to understand the utility of
these systems as they currently exist in our minds until we begin to explore them on
the simulacrum of the computer.

COGNITIVE COMPATIBILITY AND LEARNING

If the experiences with computers are to be useful for theorizing and for
learning, the activities with symbols must correspond in some simple way with the
concepts and ideas in the mind. In the main, the discussion about self-reflection was
really premised on this notion: that we could learn from the computer metaphor
only insofar as it corresponded with what we know to be true about human
self-reflection. This should have an implication for using Logo with students for
learning. Symbolic interaction with Logo should affect the complex development of
mental life to the degree that activity is cognitively compatible or has scme of the




othercharacteristics that good human interface designers have been ardently
promoting: direct manipulation and WYSIWYG (What You See Is What You Getl).

Logo has not been designed directly for this effect, but it seems to share some
of these primal characteristics. It is a clean, hierarchical, procedural language first
developed in 1966 at BBN as an offshoot of Lisp. It was intended to provide a
principled conceptual framework for the exploration of mathematics instruction. it
has turned out to be a very valuable environment for exploring human thinking
skills. However, it is still pretty much in its raw, undeveloped state. Given this state,
it seemssilly to expect it to have dramatic effects on children's thinking without
further development. As an environment for discovery, it certainly provides rich
possibilities, but these have been investigated only with the Logo turtle. What is
clearly needed are other "turtle-like" environments that encourage one to explore
areas of knowledge like music, language, pnysics {c.f. DiSessa, 1984), art, and
anything else one would like to study from kindergarten to post-graduate activities.
Strangely, the business world with its Visicalcs and MacPaints may provide the best
examples of these sort of environments: highly sophisticated, special purpose
programs that allow a great degree of freedom in their use but provide special
assists that make performing certain acts very easy and transparent. If logo is to
survive and grow, it will need these sort of environments for instruction.

One of the strengths of these kinds of tools is that they build on existing
knowledge derived from real life experiences. That is certainly true of the logo
turtle. The more a computer environment recreates :he real world, the easier it is to
operate, and the more creatively one may be able to useit. The logo turtle
encourages children and other users to imagine themselves in the computer
environment and bring their knowledge and experience of the world into that
environment. This may build on a strength we already have, namely the perceptual
systems' ingrained tendency to recognize relationships on the basis of real world
statistics (Egon Brunswik called it "ecological perception”). It should not be
surprising then that (as Campbell et al. found) children tend not to use the command
to tell the turtle to go backwards. After all, how often do we or children walk
backwards to get something? Abstracting the special capabilities of the turtle
beyond what we would physically do in that environment is the critical step. How to
encourage that sort of abstraction is what educators and psychelogists need to
learn.

PROBLEM DEFINITION AND ANALYSIS

Itis no secret that an essential component of clear thinking is to be able to
divide large or poorly defined problems into manageable chunks --- mind-sized bites
--- and order them rationally. Logo (as any higher order language) forces people to
decompose problems into discrete components. The simple but enormous
advantage the computer environment then provides is that these components are




"runnable”: input, transformations, and output are clearly specifiable and can be
made directly inspectable. The system can give immediate feedback on the quality
of the decomposition. It can make obvious missing components. It can make visible
the intermediate products that may be essential for suggesting the next step. In a
complex environment, it can even provide the elemental support of existing
modules that may be incrementally modified to perform the needed activities.

A modular, hierarchical environment can provide much support to facilitate
crisp logical thinking, but it needs specialized tools to adequately perform this
function. By and large, these tools are not yet available in Logo, even though some
things (such as idea processors that help organize and restructure large bodies of
notes ) are beginning to be available in business and the Al community (cf. Halasz
and Moran, 1984).

One of the real strengths of Logo has been its support of a graphics
environment with turtles and sprites. The graphics not only support debugging
facilities for symbolic programs and a wonderful student interface; they also let
analogical mental structures find direct visible support. They create a bridge
between the symbol systems of the mind and the computer. In a very real sense a
graphics support environment can become a physical symbol system in which mental
objects are directly inspectable. With any luck, this graphics support can let mental
structures grow with greater power and flexibility to cut apart problems, reorient
them, and suture them together in novel and creative ways.

There is a natural precedent for this speculation that the computer can mirror
the mind and facilitate the growth of new symbol systems. Olson (1985) has pointed
out that the growth of printing brought about a parallel growth in language. A
prominent feature of this change was an increase in the number of state descriptors
(e.g. assert, state, aver, affirm, etc.) since the printed word had to carry the surplus
meaning of gesture and facial expression. These words found their way into regular
discourse as well.

Logo is a communication system as well. The words and ideasused to
communicate with the computer may well be turned on one's own knowledge to
guide the formulation of modular, structured components. It is naive to believe that
we have privileged access to our own ideas. A computer environment may in fact be
able to reify those ideas so that they may be more readily inspected and analysed.

PROCEDURES AND FACTS

Debugging one's own knowledge first assumes an inspection system that can
safely examine that knowledge without interfering with it. It is a convention these
days to separate knowledge into two kinds: procedures and facts. Procedures are
the mind's actions. They are intuitive because we have access to them only by




running them, or in the form of vague kinaestheticimagery. Facts are retrievable in
the form of words, images, or other conscious descriptors.

The distinction bwteen procedures and facts in mental life follows a similar
distinction between functions and data in computer life. There is a continuing
controversy over the relative merits of procedural versus data-oriented
programming that is epitomized by the differences between Lisp and Prolog. Itis
clear that each has its merits but that these are still developing and presently poorly
defined.

Fundamentally, an entity or symbol in a machine may be regarded as either a
datum or as part of a procedure, depending on the context and purpose. In fact,
there may be a kind of Heisenberg Principle of Uncertainty invelved with debugging
these symbols. One may be able to examine the symbol either by running it as part
of a procedure or by inspecting its values directly. In a complex system, it may not be
possible to do both. Either action may have unintended side-effects: in a complex
system many things may change without leaving a trace, so that the systemis in
effect non-deterministic. The procedures may be viewed as plans with default data
values bound to the components of the plans. If one executes those plans to see
where they lead, this very process may destroy the default values that existed at the
time. Furthermore, at any given moment the actions of the procedures depend on
the conditions of the data value in intricate, interactive ways. Changing the
bindings of the data intimately affects how the procedures run. A debugging
environmentthat chooses to debug by running procedures risks destroying the
values: and adebugging environment that chooses to reset values runs the risk of
deactivatiry certain components of the procedures.

As Dytman et al. have shown, children's debugging activities reflect the
operation of this uncertainty principle. Children try to solve their problems by
systematically (and unsystematically) 1.) Changing data values, and 2.) changing lines
in their procedures. Usually they focus on one or the other at a time. Often they
must begin over again when both are tried and the environment is destroyed.

PROCESS AND PRODUCT

In an educational environment, products are often of secondary importance:
the process of arriving at the right solution is the real goal, and the particular
exercise of that process (while it must be selected with care to foster learning
expeditiously) only serves that goal. In her analysis of programming activity, Dytman
et al. find that the relative experts ask about procedures, while novices ask about
outcomes and products. These young experts appear to be ableto "run" the
procedures in their minds to envision their outcomes. The others still need
reassurance about what the real outcome is supposed to be. They still have to learn
to adapt their self-inspection schemes and develop ways to run their internal plans
to determine the proper outcome.




It is interesting to speculate how this resource-seeking activity of the young
changesin older children. Zelman makes a well-documented case that adolescents
learning to program in Logo generally are quite willing to take procedures provided
from teachers and adopt them as their own. By changing some of the data values,
the students can produce their own unique products. This approach of adopting
procedures seems consistent with general educational principles where teachers try
to instil procedures and provide rote instructions for following them; but it seems
inappropriate and inconsistent with accepted software practices where the program
is the important product, not the actual output of the program. It may be that
teaching programming skills raises new problems of plagiarism and independence of
effort.

TOOLS FOR THE MIND

Given the existence of these realistic and objective examinations of Logo's
effectiveness and potential uses, it seems time to call for a public examination of the
directions languages like Logo should take. It seems clear that there is now a need
for more than just an open-ended exploratcry environment. There is a real need for
a tool for self-experimentation and revision; to support the externalizaticn of our
thought processes. Miller's finding that a software product for building IQ is
relatively effective in many ways, provides one direction for a set of environment
tools. But clearly, it needs the added flexibility of being adaptible to each student's
own purposes.

Zelman's study provides uneqgivocal evidence for the importance of structured
software and guidance within the Logo environment. There is a real need for
curriculum related materials and exploratory environments in the same system. Lisp
machines coming out of the Al community provide an outstanding model for the
kinds of facilities that are needed. Above all, they have emphasized the complete
integration of the computing environment: everything is available at the same time
and roughly with the same priority status.

As a final speculation for future directions, think about a system where
everything is done in dynamic memory. Think about an integrated environment in
which every change affects how everything else works. And then consider that you
cannot turn the machine off to reset all its values. Think how important debugging
and knowledge restructuring then becomes. And consider how much we might
learn about the human mind with such a model.

REFERENCES




Brown, J. S. and Burton, R. R. Diagnostic models for procedural bugs in basic
mathematical skills. "~ Cognitive
Science, 1978, 2, 155-192.

Burton, R. R. Diagnosing bugs in a simple procedural skill. In D. Sleeman and J. S.
Brown (Eds.), Intelligent Tutoring Systems, London: Academic Press, 1982.

Campbell, P. F., Fein, G. G., Scholnick, E. K., Frank, R. E., and Schwartz, S.S. Initial
mastery of the syntax and semantics of Logo. Chicago: AERA, 1985.

Clements, D. H. Effects of Logo programming on cognition, metacognition, and
achievement.Chicago: AERA, 1985. '

DiSessa, A. A. A principled design for an integrated computational environment.
Paper in preparation, 1984.

Dytman, J., and Wang, M. C. An investigation of the role of the learner in Logo
learning environments. Chicago: AERA, 1985.

Feurzeig, W. Personal Discussions. Chicago: AERA, 1985.
Halasz, F. G. and Moran, T. P. Notecards. Personal communication.

Olson, D.R. Computers as tools of the intellect. Educational Researcher, 1985, 14,
pp.5-8.

Miller, G. E., Emihovich, C, Clare, V., and Froning, D. The effects of interactive
programming on preschool children’s self-monitoring. Chicago: AERA, 1985.

Sleeman, D. H. Inferring (mal) rules from pupils’ protocols. Proceedings of the
European Conference on Artificial Intelligence, 1982, 160-164.

Smith, B. C. Reflection and semaniticsin Lisp. CSLI Report No. CSLI-84-8, 1984.

Van Lehn, K. Felicity conditions for human skill acquisition: Validating an Al-based
theory. Xerox Cognitive Instructional Sciences Report Number CIS-21; November,
1983.

_Zelman, S. Individual differences and the computer learning environment:
motivational constraints to learning Logo. Chicago: AERA, 1985.

10




