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ABSTRACT

Cognitive scientists have proposed many theories of intellectual development.

Prominent among these have been theories that describe a chilos growth through it

sequence of hierarchical stages. Psychometricians too, have developed many models for

the measurement of intellectual abilities_ But there has been little contact between
these two branches of scientific endeavour. The psychometric models which have been

applied to developmental hierarchies have either not done justice to the complexity of

the hierarchies, or have been inadequate in their assumptions about the measurement
process.

This research has derived and applied a psychometric model, called Saltus, which

represents the qualitative aspects of hierarchical development in a form which can lead
to additive measurement.

Two theories of development Piaget's theory of cognitive development and
Gagne's theory of learning hierarchies were used to establish the common features of

hierarchical development. These are; gappiness, which pertains to the logical

construction of the hierarchy and occurs when there is no state between adjacent stages,

and rigidity, which pertains to the behaviour of learners, and is exhibited by a fixed
sequence of progression through stages. Saltus assumes a theory with gappiness
expressed through items or tasks and estimates the rigidity of the data, thus testing the

hypothesized gappiness.

Four data sets, collected by researchers working within the traditions of Piaget and
Gagne, were used to explore the usefulness of the Saltus model under practical

application.

The t:ee Piagetian data sets gave clear evidence of rigidity in the step from the

pre-operational stage to the concrete operational stage. The next step, to the formal
operational stage, did not show rigidity, although gappiness was evident: this was

associated with iter., designs that elicited guessing and failed to produce homogeneous

item difficulties. In addition, the existence of a gap, hypothesized by the experimenter

to split the concrete operational stage, was not supported by the Saltus results. The
Gagnean data produced by constructed-response subtraction items t!'alt span the step to

learn regrouping showed strong rigidity. This rigidity was displayed, with only small

variation, under changes in the stimuli f2-digit and 3-digit items), age of the students

(Year 3 and Year 4) and geographical location (different Australian states).
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CHAPTER 1

THE CONCEPT OF A DEVELOPMENTAL HIERARCHY

Introduction

The meaning of the word 'development' given by the Oxford English Dictionary (1961) is:

The growth or unfolding of what is in the germ.' Its meaning for cognitive scientists,

however, has filtered down through its interpretation in a number of other sciences. A

principal one is biology in its embryological and evolutionist parts. Sir Ernest Nagel
delineated this narrower meaning. According to him, what biologists mean by
'development' is:

. . a sequence of continuous change$ eventuating in some outcome, however
vaguely specified, which is somehow potentially present in the earlier stages of the
process . . (The) changes must be cumulative and irreversible . . . those changes
must in addition eventuate in modes of organisation not previously manifested in
the history of the developing system. (Nagel, 1957, pp.15-16)

Nagel's concept has been assumed into the cognitive sciences as the basic idea of

psychological development, and will be used as the starting point for discussion of
developmental hierarchies in this work. It includes references to 'stages' and 'modes of

organization' which suggest qualitative changes between steps in a hierarchy.

There are many aspects to the development of a human being: here we are
interested in development as learning. In the study of learning, there are three foci - the
learner, the teacher, and the matter to be learned. Equivalently, there are three
meanings which are commonly ascribed to the concept of a 'hierarchy' in development:

1 a psychological sequence, the order in which a topic can be learned by a child;

2 an instructions: sequence, the order in which a topic is taught by the teacher;
3 a logical sequence, inherent within the topic to be learned, reflecting the basic

structure of the topic.

To these I wish to add a fourth concept:

4 an empirical sequence, the order in which children are observed to learn a topic.

These four types of sequence are distinct, but in a given context are necessarily
inter-related. An instructional sequence is available for scrutiny, through observation of

teachers' behaviour: a logical sequence can be exposed by analysis of the concepts and

skills used in a topic: an empirical sequence reveals itself in the test results or
behaviour of the child. However, the psychological sequence occurs within the child,
where it cannot be observed. This problem was of concern to Max 'Veber (1904-1949)

who asserted that developmental sequences could be constructed into ideal types. He



described the relationship between such an ideal type and the course of development of a

particular society thus:

Whether the empirical-historical course of development was actually identical with
the constructed one can be investigated by using this concept as a heuristic device
for the comparison of the ideal type and the 'facts' ... This procedure gives rise to
no methodological doubts so long as we keep ;n mind that ideal-typical
developmental constructs anti history are to be sharply distinguished -from each
other, and that the construct here is no more than the means for explicitly and
validly imputing an historical event to its real causes while eliminating those which
on the basis of our present knowledge seem impossible. (Weber, 1904-1949,
pp.101-102)

This problem of how to use the concept of developmental sequences has been carried

over into cognitive science and lies behind the addition of the fourth type of hierarchical

sequence the psychological sequence corresponds to a Weberian 'ideal type' and the

empiricul sequence to his 'facts', whereas the other two have some features common to

both.

The Theory of Piaget

The premier theory of cognitive development today must be that of Jean Plagetil he

was initially trained as a biologist and many of his concepts reveal this background.

Piaget's theory is a theory of the development of structure in intelligent behaviour. He

distinguished structure from the content of intelligent behaviour, which are -the
particulars of any situation, the environment, the stimuli, and the psychomotor abilities

of the child. And he distinguished both structure and content from the function of
intelligent behaviour, which are those aspects which hold constant across all situations,

and is the means by which a child develops from one structure to the next. Function is a

concept of biological origin, the main components of which can be summarized as:

For Piaget, intelligence is not something which is qualitatively fixed at birth, but
rather, is a form of adaptation characterised by equilibrium. Part of man's
biological inheritance is a striving for equilibrium in mental processes as well as in
physiological processes. Twin processes are Involved: assimilation and
accomodation. The child assimilates information from the environment which may
upset existing equilibrium, and then accommodates present structures to the new
so that equilibrium is restored. (Stendler, 1967, p.336)

This dynamic aspect of intelligence operates to move the child through a series of
qualitatively distinct stages each characterized by a hierarchy of different structures.

1 The Piagetian literature is too voluminous to cite, so the interested reader can
refer to Flavell's summary (Flavell, 1963) for general matters. Specific reference
to Piaget's and his colleagues' work will be made only when the discussion is
detailed.

2
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Four stages are used to seriate intellectual development. The Sensorimotor Period
lasting from 0 to 2 years is characterized by differentiation of self from others, the
attainment of object permanence, the acquisition of manipulative skills to seek and

maintain interesting stimuli, and a primitive understanding of causality, time and space.
The Pre* tc1 Perkd,, lasting froil, about 2 to 6 years, is characterized by the
development of symbolic functions in language and the dominance of irreversibility,
centration and egocentricity In problem solving. The Concrete Operational Period,
lasting from about 6 to 11 years, draws its name from the successful application of
logical thinking based on reversibility, decentration and the ability to take the role of
others, to concrete problems in the real world; the conservation of mass, weight and
volume are developed during this period. The Anal stage defined is that of Formal
Operations: here formal reasoning is applied to complex and possibility abstract
problems.

These stages are more than descriptive tags for period of chronological age, or
bundles of attributes which have been observed to cohere. Piaget used them as a
theoretical tool with which to analyse behaviour, and so he needed to provide a sound
theoretical definition for them. The criteria he provided (Piaget, 1960, pp.13-15) are:

1 A fixed order of succession: the age at which certain stages are attained may vary
between individuals, but the stages must be attained in a fixed order by an
individual. This was called hierarchization by Pinard and Laurendeau (1969).

2 Each stage must be subsumed into the next: for instance, the concrete problems

mastered in the concrete operations period are integrated into understanding at the

formal operations level as applications of general principles. This was called
integration by Piaget.

3 Attainment of a stage must solve (logical) problems arising through the application

of the structures of the previous stage and must lay the seeds for the apprehension

of the problems which will be solved in the next stage. The first and last stages
cannot, of course, fulfill both criteria. This was called consolidation by Pinard and

Laurendeau (1969).

4 All the characteristics of a stage, all the preparations for it, and all the

achievements possible within it, must form one general structure; appendages not

systemically connected with the whole are not to be considered part of a stage.
Structuring was the name given to this by Pinard and Laurendeau (1969).

5 Each stage must represent an equilibrium level, and the succession of stages should

show a broadening of content and an increase in the stability of the equilibrium.

This was called equilibriation by Piaget.

3



Two important observations were made by Piaget concerning his conception of

stages (Piaget, 1960, p.16). First, he described a stage theory with just hierarchization

as a minimum program, and one satisfying all five criteria as a maximum program. He

was not dismissing stage theories which did not meet his standards, but was drawing

attention to the theoretical drawbacks of such constructs. He noted, for example, that

the stages in Freud's psycho-analytic theory do not exhibit integration, but found great

merit in Erikson's stages because they do (Erikson, 1956). Second, a very general point,

but one which should always be considered in the analysis of Piagetian ideas: Piaget's

theory does not concern itself with the idiosyncracies of individuals. At a conference
bringing together Piagetians and psychometricians, Piaget defined his attitude to

. . . ordinal succession, not in general development, but in the development of the
individual ... This, I must confess, is a problem I !Ave unfortunately never studied,
because I have no interest whatsoever in the individual. I am very interested in
general mechanisms, intelligence and cognitive functions, but what makes one
individual different from another seems to be - and -I am speaking personally and to
my great regret - far less instructive as regards the study of the human mind in
general. (Piaget dc Inhelder, 1971, p.211)

Thus, to Piaget, the idea of a comprehensive theory, that explained the behaviour of
every individual under every circumstance, was nothing but a red herring.

The Piagetian theory is a psychological theory of hierarchical development. It is

not necessarily a theory of instruction, although it provides definite limitations on the

potentialities of Instruction (Stendler, 1967, p.343). There are many elements in the

details of his theory, mainly in the structuring concepts such as groupings and groups

which owe much to modern abstract algebra. Although the model of the final goal, the

formal operations stage, is derived from the logic of the situation, the stages leading to

the acquisition of that final stage do not represent adult 'logic'. The 'logical' analysis of

a problem will not necessarily reveal the Piagetian stages through which a child would

need to pass in order to master it.

The Theory of Gagne

R.M. Gagne, working in the testing and training of servicemen during World War II,

concentrated not on the psychological state of the learner, nor on the structure of an

area of knowledge, but on an analysis of the task to be taught (Gagne, 1962b). His

technique consists of:

1 identifying a pinnacle skill to be mastered, and

2 establishing a -set of subordinate skills by successively laying out the prerequisites

for each skill.

These sthskills then form a hierarchy if:

15



Table 1.1 Correspondences Amongst the Theories

Piaget Gagng

ilierarchization Rigidity
Integration -
Consolidation -
Structuring Gappiness
Equilibrium -

(a) no individual could perform the final task without having these subordinate
capabilities ... and

(b) that any subordinate task in the hierarchy could be performed by an
individual provided suitable instructions were given, and provided the
relevant subordinate knowleoges could be recalled by him. (Gagne, 1962a,
:' -356)

Criterion (a), which I shall call rigidity, is similar to Piaget's hierarchization. The
meaning of the second criterion, however depends on one's concept of 'suitable' and
'relevant'. This criterion could be interpreted as a proxy for Integration and adjacency.
The tasks contained in these hierarchies are not unrestricted, however. They must
represent

. . . the kind of change in human behavior which permits the individual to perform
successfully on an entire class of specific tasks, rather than simply on one member
of the class ... (Gagne, 1962a, p.355)

This restriction was later used to exclude verbal knowledge (Gagne, 1968), but in its
wider interpretation it seems equivalent to Piaget's structuring: I shall call this
gappiness (See Table 1.1).

Gagne's theory can be interpreted as a theory of instruction, founded on en analysis
of the skills to be mastered, but having as an essential requirement that the analysis
must result in subskills which can be taught successively to the student. Unlike Piaget,
Gagne does hold that this is genuinely a theory of individual behaviour, and so for a
postulated hierarchy to be accepted, it must be shown, within experimental error, to hold
for every individual investigated. Several early studies (Gagne & Dassler, 1963; Gagne,
Mager, Garstons 6: Paradise, 1962; Gagne 6: Paradise, 1961) revealed that while most of
the learners did behave consistently (According to the postulated learning hierarchies,
some did not. This disappointment spawned a series of increasingly sophisticated
statistical procedures for the "validation" of learning hierarchies. Gagne's effort to
explain the idiosyncracies of individuals has not met with success and workers in this
field have since lowered their expectations to that of finding 'reasonably accurate
hierarchies' (White, 1981, p.227).

5



A Generic Theory of Hierarchical Development

Cognitive scientists have produced these complicated theories of development because it
is the qualitative rather than the quantitative aspects of cognitive processing that are
more interesting. Cognitive scientists are more interested in changes in the organisation

of thought than in such quantitative matters as the number of concepts that a child may

possess (Flavell do Wohlwill, 1969, p.77). It is the aim of this work to develop and apply a

model that incorporates some of the qualitative aspects of these theories. This model
brings the three types of learning sequences - psychological, instructional and logical -

together at the common level of the empirical behaviour of learners, that is, at the
measurement level.

The first requirement for constructing a model appropriate for the measurement of
developmental hierarchies is a clear picture of what constitutes such a hierarchy. The
previous sections have described versions of developmental hierarchies and discussed
some problems with them. In order to proceed, however, it is necessary to construct a
generic theory of hierarchical development, concentrating the essential elements of each

of the individual theories described above.

The properties of this generic theory of hierarchical development are sappiness and

rigidity. A hierarchy exhibits gappiness when, according to the theory, there is no
possible state between stages. Such a gap is represented in riaget's theory by
'structuring', and in Gagne's theory by the restriction which I named 'gappiaess'.

A hierarchy exhibits rigidity when, according to the theory, a child at a particular
stage of the hierarchy must have passed through each stage below. This is equivalent to

the hierarchization of Piaget, and the first criterion used by Gagne which I called
rigidity. The other properties have been left out because they are idiosyncratic to the
theory in which they occur. The exception is integration-adjacency, which pertains to
the substantive meaning of the stages in the hierarchy rather than their structure, and

thus, cannot display itself directly. Since integration-adjacency is responsible for
rigidity, this property is contained in the generic *model, through its consequences.

These two features - rigidity and gappiness - are together the defining elements of
the generic theory of developmental hierarchies which will be examined in this work.

How can they be embodied in a psychometric model for the analysis of data? The
psychometric model must work at the level of measurement, and is, therefore, subject to

the problems of connecting qualitative (i.e. theoretical) concepts with quantitative
events. Thus a third element, that of the uncertainty of data, must be Incorporated
when attempting to bring the generic theory of hierarchical development to life through

a psychometric model.
Theories about cognitive development are not well accepted in the scientific

community without adequate empirical demonstration of their major predictions. The

6
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analysis of the data generated by experiments to test and apply all but the most
simple-minded of such theories demands appropriate measurement models. In the case
of hierarchical theories of development, the special features of these theories, peppiness
and rigidity, Impose particular requirements on any measurement model used to analyse
the data produced by applications and testings of the theories.

The Rasch Model

The itasch model (Rasch, 1960/1980) for the analysis of psychometric data is a way to
place persons and items on a scale with a clear probabilistic interpretation of distance on

the scale. For a dichotomously-scored item j, with difficulty Li, attempted by person
i, with ability 6i, the probability of a correct response, yii = 1, is modelled as
(Wright and Stone, 1979, p.15)

exp(
P(yii=1) = (1)

1 + exp(6 6;)

= (x ij)

ij= 6j'
and tis is the logistic function defined by

(x) = exp(x)/(1+exp(x)).

where

The probability of an incorrect response is modelled as

1
P(Yij-°) 1+ exp(Si- 6j)

When combining the probabilities of L items to find the probability of a response vector

yi = (yip ,yid, local independence is assumed. That is, with a vector of item
difficulties, = (6 , 6 j) the probability of response vector yi is

P(S'i I S is 6) = P(yji I L3 i, 6) .
j=1

Local independence says that in calculating the probability of each response, one must
take into account the ability of the person and the difficulty of the item, but once that
has been done a simple multiplicative rule tells how to combine the probabilities.

Using local independence, the probability of person i scoring t on the set of L items
is

L

P( yii = t I Bios) = P(yi J ai, t)
j=1 T

7
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Person
B1 0

2
83

ability

-2 -1
Item
difficulty

0 1 2 logits

6
1

6
2

6
3

Figure 1.1 An Example of a Rasch Scale

L
where T is the set of all yi with yij= t .

j=1

This assumption of local independence would ae incorrect if some subgroup of persons

has a special relationship with some subgroup of items that is not encompassed by the

relationship.

..= B - 6
ij 1 j

This simple relationship between the person and item parameters allows a
straightforward representation of the Rasch scale. Consider three persons with abilities

1=-1, B2=0, 83=1, and three items with difficulties 61=-1, 62=0, 53=1

as represented in Figure 1.1. Person 2 has ability equal to item 2, so, using equation (1),

he has a 50 per cent chance of getting the item right:

exp(0-0)

1 + exp(0-0)
P(Y22 -1)

1

1+1

= 0.5

The probability of person 2 getting item 3 right is

exp(0-1)
P(Y23-1) 1 + exp(0-1)

=0.27

The scale is equal interval, that Is, the (signed) distance between the person ability

and the item difficulty governs the probability of a correct response, and the distance
has the same meaning no matter where on the scale it is located. Thus, the probability
of a correct response from person 1 on item 2 is

exp(-1-0)
NY12=1) 1 + exp(-1-0)

= 0.27
8
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which is the same as the probability of a correct response from person 2 on item 3: the

location of person and item changed, but the distence between them did not.
The natural unit for the scale is the 'login this is interpreted as the (natural)

logarithmic odds of success: if P is the probability of success corresponding to one logit,
then

1og(P/(1-P)) = 1

so exp(1)
P

1 + exp(1)

= 0.73 .

Thus a positive difference of one logit means a log odds of success of 1 and a probability
of success of 0.73. The origin of the scale is arbitrary; it is usually chosen as the
average of the items because the items are explicit and so form a -more interpretable
reference point than would be obtainable from the people.

The Rasch model allows separable estimation of the parameters, that is each
person and item parameter and its associated statistics can be expressed as a separate
multiplicative component of the modelled likelihood of the data (Rasch, 1960/1980,
pp.171-172).

Conditional probabilities can eliminate the person parameters from item
calibration. Item parameters can be eliminated in the estimation of person parameters
in the same way. This is what is meant when the Rasch parameters are said to be
'test-free' and 'sample-free' (Wright and Douglas, 1977).

This attribute of the Rasch model is equivalent to the existence of simple
sufficient statistics for both persons and items. A sufficient statistic for a parameter is
one that contains all the modelled information in the data regarding that parameter; in
this ,ense a sufficient statistic is a 'best' statistic. A statistic t estimating a parameter r.
over a sample x, is sufficient if the likelihood L can be expressed as a product of two
functions, L1 and L2, the first of which involves the parameter and the statistic, and
the second of which does not involve the parameter (Kendall and Stuart, 1969, p.9):

L( B,x) = B)L2(x) . (2)

For the Rasch model, considering a person of ability eh i, the likelihood L, given a
vector of item difficulties d, is

exp 6)
L(8i,Y; I 6)-

C(Ei, 6)

where C( ) = j(1 + exp( 6 i- *Si))

so exp ,',(am s) = expt Li Yly
C( Bi, 6)
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Thus the likelihood can be expressed in the required form and

ri = 1 jyii,

the score for the person, is the required sufficient statistic for the person ability, given

the item difficulties S. Similarly,

s. = 1.y.
3 a ij

is sufficient for .1.' given the person abilities P.. This is known as conditional

suaiciency.
There are several estimation algorithms for finding the person and item parameters

for a given data set. A good first approximation is given by PROX (Cohen, 1979; Wright
and Stone, 1979, pp.28-45; Wright and Masters, 1982, pp.61-67), which assumes normal

distributions of persons and items. The statistically best procedure Is the algorithm CON
(Andersen, 1972; Wright and Masters, 1982, pp.85-86), which calcu:ates the symmetric
functions necessary to achieve the conditional solution. For larger numbers of persons
and items, however, this algorithm is cumbersome. An easier solution, UCON (Wright
and Panchepaskan, 1969; Wright and Stone, 1979, pp.62-65; Wright and Masters, 1982,

pp.72-80), is widely used for its simplicity, speed and accuracy: it is an iterative
maximum likelihood method which estimates person and item parameters simultaneously.

Application of the Rasch Model to Developmental Hierarchies

When data from a test designed to identify a developmental hierarchy is analysed with

the Rasch model, the resulting scale would be expected to exhibit segmentation. That is,

1 items representing different stages of the theory are contained in separate
segments of the scale, with a non-zero distance between segments, and

2 segments are in the order predicted by the theory.

This definition is made in terms of parameters; if item estimates are being considered,

then the idea of distance between the stages must include the standard error of

measurement. Thus, for estimates, a non-zero distance between segments would be
established by a difference between the closest items of adjacent segments of two or
three times the standard errors of their calibrations. A useful indicator of segmentation

is the segmentation index, S:

S = d . - 6Bruin Amax'

on a scale where SBmin is the difficulty of the easiest item of type B, and d

is the difficulty of the hardest item of type A.
Segmentation Is the expression in Rasch terms, of the concepts of rigidity and

gappiness. The gappiness of the stages defines the division of items into separate types
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Person SI
S2

ability

I I I I I

-2 0 2 logics

61
6
2

Item I I I I

types A B

Figure 1.2 Two Stages Represented on a Rasch Scale

and the lack of Intermediate states between stages means that distances between
segments can be interpreted as indicating genuine stage gaps rather than an artifact of
item selection. If overlap were found between sets of items representing adjacent
stages, then some items of the lower stage must be more difficult than some items of
the higher stage, which is inconsistent with the rigidity of a hierarchical theory.

Segmentation of the scale, however, is not completely analogous to rigidity.
Consider, for example, the situation depicted in Figure 1.2 where two items, with
difficulties t

1
and ''2' have been chosen to represent stages A and B, respectively.

A person, with ability :1, working through stage A has, according to the model, the
following probability of success on item 2:

l'(-2) = 0.12 .P(Y12=1)= If ( 81- 62) =

A person, with ability :2, working through stage B has the same probability of getting
item 1 wrong:,

P(y21 =0) = 1 - tii( t32- di) = 1 - ii(2) = 0.12 .

The equality of P(y21=1) and P(y12=0) is caused by symmetry of the Rasch model:
the inodel depends only on the logit distance between the stages. The Rasch estimation
process determines this distance so that the two probabilities (F(y12=1) and Ny21=0)
are equal, and the symmetry of the model is maintained. Compare this, however, with

the concept of rigidity: persons must pass through the stages in a fixed order.
Theoretically, a person passing through stage A cannot succeed on item type 13, although

some measurement error will inevitably occur: a person passing through stage B would
be expected to do quite well on items of ty?e A, but might not get them all correct,
being subject to the same human error. There is nothing in this description requireing
that the two sorts of error be equal. In general, we would expect 1(1712=1) not to equal

P(1721=8)1 and if care is taken to eliminate guessing on the items, we would expect

P(y21 =0) > P(Y12=1)*

11
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The point is not that

P(Y21=0= P(1712=0

could never occur, but that restricting the model so that it must occur does not express

the theory of developmental hierarchies as embodied in the asymmetry of rigidity.

The fit of the Rasch model, however, can be used to detect rigidity. According to
the discussion above, we expect

P(Y21=0) P(Y12=1) (3)

These probabilities can be expressed in terms of expected values calculated using the

parameters

7'12 = NY12=1) and

1 721 = P(Y21=0)

So equation (3) can be re-expressed as

1 '721 7 1 2 ' (4)

The Rasch model, however, will estimate the item difficulties and person abilities so that

1 1721 712 (5)

where
21 and f's

12 are the expected values calculated using the Rasch estimates of
the parameters. Suppose now that we accept the Rasch estimate of ;121, that is

a 21 = 421

Then equation (4) becomes

1 7121 5 712

so that, using equation (5)

7712 > 7112 (6)

This means that the estimated Rasch parameters will predict more success for persons in

group I on items of type B than will actually occur.

With this in mind, the results of a Rasch analysis of items constructed according to

a developmental hierarchy can be examined for symptoms of rigidity. The most obvious

application of the above reasoning is to compare observed responses with those expected

from the estimates. For persons in group I, the observed successes on type B items

should to lower than those expected. This exercise is good for getting a 'feel' for the

effect of a gap on person responses, but the detail becomes overwhelming as the number

of persons increases. The solution is to consider the Rasch model item fit statistics.

12
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These are calculated by summing the residuals over persons for each item and
transforming the sums to a distribution close to a standard normal (Wright and Masters,

1982, pp.99-105). The theoretical residual is

- TTx12 = Y12 12

But estimates must be used to find the expected respcnse, so instead we have an
observed residual

= Y12 ;12

Which by equation (8) gives

x12 ) x12

Under the standardizing transformation, this discrepancy produces negative misfit

values. Thus a pattern of negative fit statistics for Items in stage B is a symptom of
rigidity.

In a Rasch analysis we can expand our attention to more than two stages.
Introducing a stage C above item type B, however, makes the situation more
complicated, as one is unsure whether to view items of type B as an upper stage
compared with type A or a lower stage compared with type C. It seems reasonable to

think of the items in the lower portion of type B as the upper stage for type A items, and

the items in the upper portion of type B as being the lower stage for type C items. Thus,

in an analysis of several stages, one would look for a pattern of negative misfit at the
lower end of successive stages.

This discussion has deduced expected patterns of misfit based on the assumption

that the Rasch model is performing reasonably well in estimating the performances of

person group II on item type A, but not so well in estimating the performance of person
group I on items of type B. If the measurement situation led to a belief that other
assumptions were more realistic, then different patterns of misfit would be expected and

could be deduced in the same way as those above.

An Adaptation of the Rasch Model

The Linear Logistic Test Model (LLTM) (Fischer, 1973) is a Rasch model with a linear

marginal condition developed to help explore tne cognitive structures represented by the

items in a Rasch scale. The form of the model is the same as that given above, with the

item difficulty decomposed into a linear function of the weight and difficulty of the

different cognitive operations which are assumed to be necessary for the successful

completion of the item. The first step in applying the model is to assume a set of
operations underlying the model. A weight describing the influence of each operation on

13
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the item is then assigned: this is usually the number of times that the operation must

occur in order to complete the item (Fischer, 1977, p.204). /f there are m cognitive
operations involved, the item difficulty is decomposed into:

6j ' T qjk nk + c
k=1

where 4( is the weight of the operation k in item j,

n k is the parameter attached to operation k,

and c is a normalizing constant.

The matrix (q
11(

) must be of rank m for the parameters to be estimable. Estimation

equations for the model were derived by Fischer (1972, 1973). The r.k parameters for

the hypothesized cognitive operations are interpreted as the difficulties of the
operations, although whether this is conceptualized as the difficulty of learning the

operations or of performing the operations depends on the experimental situation (Spada,

1977, pp.243-249). The relevance of the results of an analysis using this model depends

heavily on the plausibility of the weights assigned to the cognitive operations and one's

certainty that the list is exhaustive (Spada and Kluwe, 1980, pp.29j.

The application of this model to developmental hierarchies . subject to the same
criticism as given in the preceding section for the application of the Rasch model to

developmental hierarchies. Although the item parameters found by an LLTM analysis

will not, in general, be the same as those found by a Rasch analysis, the same
fundamental symmetry is present. The contribution that this model has made to the

development of Saltus is the demonstration that the parameterization of the difficulties

and abilities within the logistic function can be adapted to take into account certain
special features of the measurement situation. Such en adaptation Is the substance of

the remainder of this work.
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CHAPTER 2

THE SALTUS MODEL

Introduction

The word 'saltus' comes from the Latin for 'leap': the Oxford English Dictionary (1961)
gives its meaning as 'a leap or sudden transition; a breach of continuity'. It has been
chosen by this author as the name for this psychometric model because it embodies the
twin notions of movement in a particular direction (i.e. rigidity) and jumpiness (I.e.
gappiness) by which the generic theory of hierarchical development has been define°.

The interaction between a person i and an item j, recorded dichotomously as
yo = 1 for correct and yii = 0 for incorrect, Is governed by a logistic model:

exp A ;
13(y111) 1 4. exp A ij

= '1"( X &

where the parameter ' ij is composed of additive elements for person, 13i, item,
6i, and also Saltus parameter, y ij:

A ij = Si- 6j+ YU

The Saltus parameter is not considered to vary by person and item, but by person group,
h, and item type, k. Thus:

Y ij = Y h(i)k(j)

where h(1) is the group which contains person I,

and k(j) is the type of item j.

The groups and types are determined by the substantive theory. Item types are
composed of items which, according to theory, represent particular stages. Person
groups are then formed on the assumption that persons at or passing through a particular
stage mill score above the previous stage but not above the stage they are hi. Thus, if
there are LA items of type A and LB items of type B, persons scoring LA or less
are classified into group I and the remainder Into group II. This is the basis for the
classification used in the applications considered here: it has been chosen because it
represents the expected pattern of responses that would occur if the hierarchical tneory

of development under consideration were correct. With this classification, the first
person group is seen to be operating at the level of the first Item type and the second
person group is seen to be operating at the level of the second item type. Other ways of
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Table 2.1 The Saltus Matrix

Item type

Person Group

I II

A

B

1A1 1 AII

list Y au

using scores to classify persons are poklible, but Cie one outlined above has given the

clearest interpretation of the Saltus parameters, is consistent with the generic theory
and provides an unambigucus first assessment of those who have not yet crossed the pp.

Were an external criterion su2erior to test score available, then this would be used
to pre-classify the people. In that case, Saltus would not be needed to define the
hierarchy, but could be used to co-ordinate a definition with other measures such as
pencil and paper tests, multiple-choice tests, etc. Unfortunately, external criteria for
developmental hierarchies are not available, nor perhaps, will ever be.

In order to make the presentation clearer, attention shall be restricted to cases
where just two person groups and two item types arc present. The core of the model,
and the estimation algorithm in particular, do not need this restriction, but many of the

interpretations become confusing if more stages are considered at one time.
With two person and two item groups, the Saltus parameters can be expressed in

the Saltus matrix in Table 2.1 The arrangement given in the Table - item types indexed
as rows A and B, and person types indexed as columis I avid II - will be adhered to

throughout.

Under the Saltus model, the probability of a correct response, yi1=1, for person i
in person group h, attempting item j of type k, is:

exp( or 6j+ Yhk)
P(yii=1) =

1 +
(7)

exP( B i- 6 j+Yhk)

Note that, as person and item parameters occur in eivation (7) combined with a Saltus

parameter, interpretation of the person and item paran.eters must be made relative to
the appropriate Saltus parameter. Probabilities for sets of items and people are
combined using the assumption of local independence.

Logit Scale Representation of the Saltus Matrix

The Saltus parameters can be interpreted only in conjunction, with person and item
parameters. For example, given a person of ability 0 and an item of difficulty 0 on the

logit scale, the probability of that person getting the item corre.ct is:

16
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Table 2.2 Probability of Success

Item type

Person Group

I II

A

B

Is (y
AI) Is (YAII)

is (Y0i) Is (YBII)

1 exP Yhk
1' (Yhk)

1 + exp Yhk

But the same person attempting an item of difficulty -1 logits would have probability

w (1+ `I hk) of succeeding. Yn order to simplify the discussion, we will suppose that
person abilities do not vary within person groups and item difficulties do not vary within
item types. Later, these restrictions will be eased so that only the average of the
abilities within each group and the difficulties within each type need be 0. This focusses

our attention on the Saltus parameters and the hierarchical step which they measure.
Then the probabilities of success for the different person groups and item types are as
given in Table 2.2

In order to represent this situation on a logit scale, we must set out the two item
types and two corresponding person groups. Mark the location of item type A by dA,
item type B by dB, person type I by by and person type II by bu. Then the Saltus
matrix tells us what relationships among these locations to expect: the probability of a
person in group I succeeding on an item of type A is, by equation (7).

P(ym=1) z: 1,(bidA),

but from Table 4,

NYAI=i) = 7 (Yd:

hence,

bl - dA = 'AI

Similarly,

bI - dB = yBI

b
II

- d
A

= y
All

bII - dB -. - T
Bll

This can be summarized in the matrix equation:

17



i'AI YAII bl dA NI dA

YBI YBII I)/ - dB bil - dB

which shows what the Saltus parameters mean on the logit scale. This system of

difference equations cannot be solved without a constraint. The location of item type A

has been chosen as the reference point because, while persons In group II c...m be expected

to have some reasonable failure rate on items of type A, the success rate of persons in

group I on items of type B is expected to be irregular.

Setting

d
A

= 0

the matrix equation becomes

[AI ?Al
b

bI

- d

bll

I B
bYBI YBII II - dB .

This gives,

b1 = "YAI and

bII YAR

But two equations for dB:

dBI = bI ?Br AI YBI and

dBR
= YBH = y All- Y BB

Note that the solutions of these two equations have been denoted dB/ and dm. They

will be called the group I gap and the group II gap, respectively. The difference between

these two gaps is called the asymmetry index:

D dBI dBll = ?AI? BI) BII)

When the gaps are equal, there is a unique placement for the items of type B and

the asymmetry index is zero. If D is non-zero, then the items of type B cannot be given

a unique location; the symbols BI and BII will then be used to refer to the different
locations of item type B from the differing perspectives of person groups I and II,
respectively. A positive asymmetry index indicates that the item types are relatively

closer together (in terms of difficulty) for group II than for group I. This is consistent

with the progression of difficulties for a developmental hierarchy; type B is almost
impossibly harder than type A for persons in group I, but once the step between the

stages has been straddled (that is, for persons in group II), the difference between the

two item types becomes much less. Thus, when the asymmetry Index is not zero in the

examples and discussion that follow, it will be assumed that it is positive. A negative
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asymmetry index indicates that the types are relatively closer together for group I than
for group II. If this occurs, Saltus will estimate it; however, In a hierarchical situation,
with segmentation between the item types, a negative asymmetry index is evidence of
guessing or some similar fault in the item design. Thus negative asymmetry indices will
not be discussed until they occur in Chapter 4.

The locations of item types A and B used in the definitions of the v.* and the
asymmetry index, are, in the moat general case, the mean locations of the items of types
A and B. In the discussion in this chapter, the mean location of an item type is the same
as the location of every item of that type since we have assumed that there is no
variation within item types.

The following special cases will serve as signposts toward understanding the
relationships between the Saltus parameters and the relationships between the Saltus
parameters and the interaction of persons with items. In the interests of simplicity, the
restriction that all person abilities are constant within groups and all item difficulties
are constant within types will be maintained, although the interpretation of the diagrams
is essentially the same with the lighter restriction that th.: average within each group
and type is set of zero.

Case (1): Figure 2.1 Here the asymmetry index is zero and the segmentation index
is also zero. The person groups and item types have no effect on person abilities and
item difficulties. There is no segmentation of the Item types and therefore there is no

evidence of gappiness. Note that each Saltus parameter 6 named in the Saltus matrix.

Case (ii): Figure 2.2 Now the person groups are behaving differently, the first
group sees the items as more difficult than the second group. Neither person group,
however, has differentiated between item types. Again, the segmentation index is zero
and the asymmetry index is zero (i.e. (c-c)-(d-d)=0).

Case (iii): Figure 2.3 Here the two person groups have different abilities, and the
two item groups have different difficulties, but the person groups see the difference
between the two item groups as equal. The segmentation index is a-b: the difference
between the easiest item of type B, which is located at a-b, and the hardest item of type
A, which is located at 0, is a-b, so there is some evidence of gappiness.

The asymmetry index is 0, that is

((c +a)-(c +b)) - ((d +a)-(d +b)) = (a-b) - (a-b) = 0

so there is no evidence of rigidity.

Case (iv): Figure 2.4 Case (iv) is a simplification of Case (iii). The asymmetry
index is zero here also. This case will be used for simulations in which the person groups
are located at their respective item types.
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Saltus matrix
(AI) a (AII)[a.

a (BI) a (SII)

]

Logit scale: A I

B II

1

a

-1---

0

Figure 2.1 Saltus Matrix and Logit Scale for Case (i)

Saltus matrix
(Al) d (Al

c (BI) d (BII)

Logit scale: A
I B II

I I t

c 0 d

Figure 2.2 Saltus Matrix and Logit Scale for Case (ii)

Saltus matrix

Logit scale:

rc+a (Al) d+a (Ail
a (BI) d+a (BII)

I A B II

I I I I

: +a 0 a-b d+a

Figure 2.3 Saltus Matrix and Logit Scale for Case (iii)
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Case (v): Figure 2.5 This is the most general expression for a Saltus matrix:

there are no special relationships amongst the Saltus parameters. In order to clarify the
presentation, the logit scales are presented first from the point of view of person group
I, then person group II, then the two together. The asymmetry index is

D = (t-s) - (r-v)

which will, in general, not be zero. (The presentation in Figure 2.5 assumes that the
asymmetry index is positive.) The group I segmentation index is t-s (the difference
between BI and A), and the group II segmentation index is r-v (the difference between Bll
and A). The Figure exhibits both positive asymmetry and segmentation for both person
groups.

Case (vi): Figure 2.6 This is specialization of Case (v). It will be used for
simulations in which the person groups are located at their respective item types.

Relationship to the Rasch Model

The Saltus model preserves the basic features of the Rasch model while adding one
other. This makes for a more complicated mode of presentation, however, and the
advantages will have to be considered in each application. Under what conditions are the
Saltus model and the Rasch model the same? For a Saltus matrix of the form

[Y AI Y Al]

1BI YBII

the requirement for it to represent a Rasch model is that, using translations, we can
apportion the Saltus parameters among the person and item parameters so that the
Saltus matrix becomes null and the person and item parameters remain unique. This is
what was attempted in the previous section when the logit scales for each person group
were marked onto one scale. This could be accomplished with a unique assignment of
the person and item parameters when the asymmetry index was zero, and not otherwise.
Thus a Saltus model is a Rasch model when the Saltus matrix has an asymmetry index of
zero. When the asymmetry index is positive the Saltus model is estimating features in
the data that the Rasch analysis can represent only as misfit. The further the
asymmetry index is from zero, the less Rasch-like is the model.

Even when a Saltus model cannot be represented as a Rasch model, many of the
features of the Rasch model persist. The event which occurs when an item is attempted
by a person is now governed by a Saltus parameter as well as person and item
parameters. It can still be represented on a logit scale with the added complication that
the second type of item will have two locations depending on the group to which the
person belongs. The location of item type B from the point of view of person group I,
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Saltus matrix
(AI) p (Al

p (BI) 0 (BII)

Logit scale: I II

I I

0 p

Figure 2.4 Saltus Matrix and Logit Scale for Case (iv)

Saltus matrix

Logit scale
for Person Group I:

Logit scale
for Person Group II:

Combined logit scale:

r (Al
v (BII)

I A BI

I I I

t 0 t-s

A BII II

I I I

0 r-v r

I A BII II BI

I I I I 1

t 0 r-v r t-s

Figure 2.5 Salt,_. Matrix and Logit Scale for Case (v)

Saltus matrix

Logit scale:

L0
(AI) u (AII)]

w (BI) 0 (BII)

I II

A BII BI

1

0

I i

u w

Figure 2.6 Saltus Matrix and Logit Scale for Case (vi)
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dBI, is in particular need of interpretation. If it were impossible for a person in group
I to succeed on an item of type B, then dB/ should be infinity. However, at the
empirical level, where a hierarchical theory meets reality, many factors can combine to
make d

BI
finite - guessing, copying, carelessness on item type A, and error in

recording of results, are just a few. As dim nears dmp the question must be asked
whether the asymmetry of the Saltus matrix Is sufficient to claim that the rigidity is
important. This question can be answered only with respect to the substantive
application.

Saltus maintains the probabilistic nature of the Rasch model, and the additive
interpretation of the parameters. The role of local independence is maintained, but the
range of person-item behaviour that can be modelled has been expanded. Asymmetric
patterns, such as those represented in Case (Iv), that would constitute breaches of local
independence under the Rasch model, are included in the Saltus model. These patterns

can be detected within the Rasch model by the analysis of misfit statistics as described
above.

Separation of person and item estimates is also maintained. By considering
conditional probabilities, the person parameters can be eliminated, leaving only item and

Saltus parameters. Similarly, item parameters can be eliminated, leaving the person and
Saltus parameters, and Saltus parameters can be eliminated, leaving only the person and
item parameters. The scale is still an equal interval scale using the logit as the natural
unit. The minimal set of sufficient statistics has enlarged to incorporate the Saltus
parameters.

One Important difference between the Rasa model and the Saltus model Is that
they place their largest standard errors in different parts of the logit scale. The Rasch
model places its largest standard errors at the extreme scores for the combined person

groups and item types (i.e. at zero and the maximum score), and its smallest in the
middle. Saltus places its largest standard errors at the extreme scores for each person
group, so that quite large standard errors occur at the gap between the two person
groups. Given that the assumption of rigidity is true, it seems reasonable to expect large

errors over the gap. A person who has succeeded on all the Items of type A, but failed
all of type B, is teetering on the brink of the gap one more success and that person
would be classified in group II and the magnitude of this potential change is expressed
as a large standard error in the Saltus model.

Relationship to the Generic Theory

The two attributes of the generic theory of hierarchical development that must be
understood in relation to Saltus ere rigidity and gappiness. Gappiness is a property of the
substantive content of the items: no 'in-between' or 'transition' stages are to be
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represented amongst the items. This is indicated in both the Rasch model and in Saltus

by segmentation of the logit scale. Saltus adds to this the ability to measure rigidity
through the asymmetry index. In order to investigate the rigidity between two stages,

they must be theoretically distinguished as having gappiness and this gappiness must have

been demonstrated through the segmentation index. Segmentation is an expression of

the separation of the content into separate stages: asymmetry is an expression of the

directionality of development.
Segmentation is measured through two segmentation indices - one for each person

group. The person group I and person group II segmentation indices are

SI = (YBmin ?BP (Y Amax- YAP' and

SII YBrnIn YBIP Y Amax- yid respectively.

Note the when the gaps are equal, so that the asymmetry index is zero, the group

segmentation indices are also equal. Segmentation has been demonstrated when these

indices are greater than a chosen standard: for estimates this could be two or three
times the standard error of the item calibrations. The strength of the segmentation is

indicated by how much greater the segmentation indices are than this standard. The

segmentation indices are not of equal importance. Rigidity focusses attention on the

inability of persons in group I to succeed on items of type B, and so the group I
segmentation index is more crucial. It is possible to imagine a theory of hierearchical

development in which the difference in difficulty between type A and type B items is

reduced to nothing as a person masters stage B. In this case, Si, would be very small,

but the segmentation would still be expressed by S1 because that is the measure of the

learning that must be done in order to get to the higher stage.

Asymmetry is expressed in the Saltus model through the asymmetry index D.

Generally we expect that, while persons operating at stage B might fail items of type A

at some rate determined by the many factors covered by the term 'human error', persons

operating at stage A cannot succeed on items of type B except through some

non-cognitive strategy such as guessing or cheating. Tests of cognitive development are

(or should be) designed to minimise these non-cognitive strategies. Thus, one would

expect that dB/ would be greater than dm, so the asymmetry index should be
positive. If the asymmetry index is positive, the group I segmentation index must be

greater than the group II segmentation index. If the asymmetry index is zero, then

segmentation might still be present, indicating that item type B Is harder than item type

A, but there would be no indication of a distinct change in perspeLtive associated with a

stage transition. If the asymmetry index is negative, then the type B items would be

harder for the group II people than for the group I people: one could speculate that this

situation could arise if certain item types provoked guessing in the ignorant and misled

the able. But this type of situation is difficult to reconcile with the concept of a
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developmental hierarchy if .it were observed, then one would seek an explanation in

terms of flawed items or faulty theory.

Estimation of Parameters

To estimate the parameters in the Saltus model, the unconditional maximum likelihood

procedure, UCON, is used (Wright and Panchepakesan, 1969), with adaptations for the

Saltus parameters; this adaptation is called the UCONG procedure. For person i with

ability 6i, item j with difficulty dj, and Saltus parameter y hk, where h Is a
function of i and k is a function of j, the probability of a response yii, is

exP(Yfj( Br 6j+ Yhk))
P(Yij I Bp 6jr Yhk)

1 + exP(B r j" hk)

Using local independence, the likelihood of the data matrix ((yip is modelled as

the continued product of the unconditional probabilities over L items and N persons:

N L exp(yii( r d j+ Yhk))
A II II

1=1 j=1 1 + exp( Br 6j+ Yhk)

exP(/ i j Yij( Br 6j+ lhk))
=

ini(1 + exP( 6j+Yhk))

The log-likelihood is:

N L B II
= ri Bi- / sj 6.1 thkihk

i=1 j=1 k=A h=1

N L
- L log(1 +exp( Or 6j+ Yhtd)

j=1

where r. = y.j is the score for each person,

si = E iyij is the score for each item, and

thk = Yu is the Saltus score,
G(h,k)

that is, the score for all items of type k over all persons in group h, and G(h,k) is the set

of all person-item pairs in which the person group is h and the item type is k.

Equation (8) is the logarithmic version of the required form for conditionally
sufficient statistics (Kendall and Stuart, 1969, p.9), for each of the parameters. Thus,

the item scores, given the person abilities and the Saltus parameters, are sufficient for

the item difficulties; the person scores, given the item difficulties and the Saltus
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parameters, are sufficient for the person abilities; and the Saltus scores, given the

person abilities and the item difficulties, are sufficient for the Sa ltus parameters.

The estimates which maximize the likelihood are the same as those which
maximize the log-likelihood. The maximum of the log-likelihood Is given by the set of
parameters for which the partial first derivatives are zero and the partial second
derivitives are negative. The maximum likelihood estimates are the solutions to the
equations:

r- = 0, for r = 1, ..., L-1,

-si + tt = 0, for j = 1, L (9)

and thk - 1 ij = 0, for h=1,1i and k=A,B .

G(h,k)

These equations are solved under the constraint that, for each Saltus parameter,

the average of the person score estimates and the average of the item difficulty
estimates are set to zero. This generalizes the situation for the Rasch Model where the

item and person parameters were held constant within types and groups. It ensures that

the relationship between the groups of persons and the item types is measured only by

the Saltus parameters. If br is the estimate of Sr, di is the estimate of
it and

we adopt the convention that I is the set of scores for person group I, Il is the set of
scores for person group II, A is the set of subscripts for items of type A and B is the set

of subscripts for items of type B, then the constraints can be written

I br = 0

br = 0

EAdj =0

E B dj = 0.

Equations (9), under the constraints (10), are solved using Newton's technique. If

br (t), dj (t) and ghk(t) are estimates of the person, item and Saltus parameters,
respectively, and Pri(t) is the probability of a person with score r getting item j
correct calculated using these estimates, then the estimates will be improved by:

and
(10)

L
r - Pri(t)

jhr(vi-1)= hr(t) =1

L

Prj(t) (1 Prj(t))
j=1

for r = 1, ..., L-1,
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di (t+1)= dj(t)

L-1
-sj + E NrPrj (t)

r=1

L-1
NrPrj (t)(1 Prj (t))

r=1

for j = 1, L

where Nr is the frequency of score r

thk E E NrPrj (c)
jcic rch(t)

Eitik ghk NrPrj (t) (1-Prj (t))
jckreh

for h=1,11 and k=A,B .

Asymptotic standard errors can be estimated from the denominator of the last
iteration:

SE(br) = ( Pri(1-Pri))-1/2

SE(dj) = ( NrPrj(]. - Pri))-1/2

SE(ghk) = ( NrPrj(]. - Prj))-1/2,
jc k r ch

where Prj is the probability found using the final estimates.

Note that when the sufficient statistics sj or tick are zero or maximal, a
solution Is not attainable. If an item score is zero or maximal, the analysis can be
carried out without that item. If a Saltus score is zero or maximal, the asymmetry index

is not obtainable from the data. Data sets where this occurs are called 'intractable'.
The liCON estimation procedure has been found to give results which are slight

overestimates of the parameters. This is due to the use made of the person estimates at
each iteration of the item estimates, as though they were parameters. The correction
made for this bias is to deflate the item difficulty estimates by (L-1) /L, and then
re-estimate the person abilities (Wright, Masters and Ludlow, 1981). For Saltus, a
similar correction is made, based on the number of items within each stage. Items of
type A are corrected by (LA-1)/LA, and items of type B are corrected by
(LB-1)/LB. For gaps, the correction is (1.-1)/L, where L* is the average of LA
and LB.

An initial approximation is made using a modification of the PROX technique
(Wilson, 1984 pp.81-84).
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Assessing the Fit of Data to the Model

The fit of data to the Saltus model is examined through the use of two statistics. The
logit bias (Wright, 1982) for an item with respect to a person group is the average
amount by which the estimates underestimate the success of that group on the item, in
logit units. The standardized bias measures the same thing scaled to have a mean of 0
and a standard deviation of 1.

For NI persons of type I, with
Yij

representing the observed score of person I
on item j and 13 ij the expected score of person I on item j, the logit bias of item j with
respect to group I is

=

NI

(Yij Pii)
i=1

where v. = P..(1 - P..) is the item variance.

The logit bias gives a measure, in logit units, of how much on average the model has
underestimated the difficulty of an item with respect to a particular person group. For
example, a group I logit bias of -1.00 on an item with estimated difficulty 1.00 logits,
indicates that, for an average group I person, the item's difficulty was overestimated by
1.00 logits, or, alternatively, that group I ability was underestimated, for that particular

item, by 1.00 logits.

The standardized bias of item j with respect to group I is

N

1GI(j) = zu/(Nr)1/2
i=1

where z
ij = (y. - P. )/(vij)1/2 is the standardized residual (Wright, 1982).

Because it incorporates a measure of the underlying standard error of measurement, the

standardized bias gives perspective to the corresponding logit bias: it has expected value

0 and standard deviation approximately 1. A standardized bias of less than 1 indicates

that, no matter how large is the logit bias, it is small compared to the variation
expected, and so, should not oe interpreted. A standardized bias of 2 or more indicates
that the corresponding logit bias should be investigated.

These formulae can be repeated using group ICI to give the logit and standardized
biases for group II, represented by H11(j) and Gii(j).

For persons, the same procedure can be repeated with respect to item types. For

item type k, with Lk items, the legit bias is
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Lk

Iik(i) -
(Yij Pij)

j=1

Lk
I vii

j=1

and the standardized bias is

for k=A,B,

Lk
CO) = ziii(Lk)1/2 for k=A,B.

j=1

The interpretation of these quality control statistics is analogous to the interpretations

for the items.

Checking the Performance of Saltus

A series of simulations was conducted to detect bias in the model (1, ;:son, 1984,

pp.86-125). These showed that when the asymmetry Index was zero, the generators were

accurately estimated. As the asymmetry index increased the estimates remained good

except when the group II gap was small (less than 2) and the group I gap was large (more

than 4), in which case the group I gap was under-estimated: this was found to be
associated with 'cross-overs' persons who had been classified by their scores Into the

wrong person group. Simulations are expensive and time-consuming to conduct: Wilton

(1984, pp.152-9) describes an approach based on tailored simulations, but a better
solution is needed.
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..-HAPTER 3

A SUBTRACTION HIERARCHY

The Subtraction Tasks

A large set of constructed-response subtraction items was developed according to a

Gagnean learning hierarchy at the Australian Council for Educational Research: they

were later published as the 'RAPT in Subtraction' tests (Izard et al., 1983). The items

were tried with a structured probability sample of students in Years 3 and 4 at schools in

Victoria id New South Wales. The students were selected as intact classrooms sampled

from the population of schools structured by: geographical location (rural, suburban,

inner urban), size (large, small), and type of school administration (state, Catholic,
private). After several rounds of revision of item objectives, and after some further

items were written and tested, the researchers settied on the hierarchy shown in Table

3.1 as the best respresentation of the subtraction learning sequence.

The items were analysed using the Rasch model and the results are summarized In

Figure 3.1; the RAPT units used are a linear transformation of the original logits. Each

objective is represented by six items; although a sequential development through the
objectives is clearly indicated, segmentation is not evident except between objectives 3

and 4.

Compare the definitions of objectives 1 and 5 with those for 2 and 6. These trio

pairs of objectives both test the regrouping step, the first with 2-digit items, the second

with 3-digit items. These two pairs provide an interesting way to replicate the step from

not being able to regroup to the attainment of the regrouping skill. The analysis will
focus on this part of the hierarchy because it clearly demonstrates segmentation and

because of the added interpretation made possible by the repetition of the regrouping
step across different numbers of digits. The subsample used in the analyses is described

in Table 3.2. All items and students used in the analysis are from the original sample

because the additional students and items used in the final construction of the RAPT

tests were not available. The items are given in Figure 3.2. In the following analyses,

the items without regrouping (i.e. those from tests 1 and 2) constitute the type A Items,

and those with regrouping (i.e. those from tests 5 and 6) constitute the type B Items.

The Rasch analysis of the subtraction items has demonstrated that the Items segment

the logit scale. The Saltus analysis will allow the exploration of this segmented scale for

the asymmetry that indicates a rigid hierarchy.

In the table and figure captions, the analysis concerned will be indicated by
symbols for the number of digits in the subtraction items (2 or 3), the state (V or NSW),

the Year of the students (3 or 4) and the sex of the students (M or F). Thus, '3V4' is an
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Table 3.1 Subtraction Objectives

Test
number

1

2

3

4

5

6

7

8

Objective

Subtract a 2-digit

regrouping.

Subtract a 3-digit
regrouping.

Subtract a 1-digit

regrouping.

Subtract a 1-digit
regrouping.

Subtract a 2-digit
regrouping.

subtrahend from a 2-digit

subtrahend from a 3-digit,

subtrahend from a 2-digit

subtrahend from a 2-digit

subtrahend from a 2-digit

minuend,

ninuend,

minuend,

minuend,

minuend,

with no

with no

with no

with

with

Subtract a 3-digit subtrahend from a 3-digit minuend, with
regrouping from one place and no zeroes in the minuend.

Subtract a 3-digit subtrahend from a 3-, 4, or 5-digit minuend,
with regrouping from two places and nu zeroes in the minuend.

Subtract a 3- or 4-digit subtrahend from a 3-, 4- or 5-digit
minuend, with regrouping where necessary and zeroes in the
minuend.

analysis of the 3-digit item data from the Victorian Year 4 students, and '2NSWF' is an

analysis of the 2-digit item data from the female New South Wales students.

Comparison with the Resell Analysis

The sample of 75 Year 4 students from Victoria taking the 3-digit items was chosen as
the main comparison group because the grade 3 groups were found to be less stable in
their performances and the New South Wales fourth year students gave an intractable set
of results on the 2-digit items.

The Rasch item estimates are given in Table 3.3 and are illustrated in Figure 3.3 in

this table and figure the scale has been centred on the average of the A items to match
the procedure for the Saltus analyses. The items show segmentation: the segmentation

index (the difference between the hardest type A item and the easiest type B item) is
1.19, considerably greater than the 0.22 root mean square of the standard errors of the
inner two items. The fit statistics show the characteristically large negative values
above the suspected gap.

The Saltus item estimates are given in Table 3.4 and are illustrated in Figure 3.4.
The estimated Saltus matrix is

[0.44 (Al) 1.88 (All
-4.55 (BI) 0.55 (1310
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Test 1

Test 2 : :

Test 3

Test 4

Test 5

Test 6 Regrouping

Test 7

Test 8

RAPT

scale

No regrouping

. . :

20 30 40 50 60

Figure 3.1 Item Difficulties on the RAPT Subtraction Scale

with standard errors

10.35 0.231

0.72 0.13 .

The asymmetry index is 3.61, with standard error 0.84: the negative fit statistics in the
Basch analysis have accurately indicated a large asymmetry. Note that the distance in
Figure 3.3 of 2.36 between the average of the group A and group B items for the Basch

analysis has been decomposed into a distance of 1.38 for group II and 4.99 for group I.
The width of the item sets has not altered much: 1.47 and 0.82 for the type A and B
items under the Basch analysis, and 1.18 and 0.90 under the Saltus analysis. The positive
asymmetry index is illustrated in Figure 3.4 by the distance between BII and BI. The

Basch analysis has 'averaged' the two locations of B given by Saltus. That Is, Saltus has

shown that, for the group I students, the type B items are further from the type A items

than was indicated by the Basch analysis, and that, for the group II students, the type B
items are closer to the type A items than was indicated by the Basch analysis.

The Basch and Saltus estimates for the type A items are plotted against one
another in Figure 3.5. This figure shows that the two models are calibrating the A items
in the same way. The same comparison for item type B is shown in Figure 3.6: there are
two locations for each item in this figure, one for group I and one for group II. Within
each group, the items fall on a line parallel to the identity line, indicating that the two
models are giving the same relative difficulties between the items. However, for group

I, Saltus has placed the B items 1.00 logits below the Basch location, and, for group II,
Saltus has placed the B items 2.61 items above the Basch location. The asymmetry index

mea'..ures the distance between the location of the B items for the two groups (i.e. 3.61 =
1.00 + 2.61).
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Table 3.2 Sample Used for Saltus Analyses

2-digit items 3-digit items

State Year 3 Year 4 Year 3 Year 4

Victoria 42 boys 27 boys 25 boys 36 boys
41 girls 24 girls 23 girls 39 girls

Total (Vic.) 83 51 48 75

New South Wales 25 boys 14 boys 37 boys 17 boys
38 girls 17 girls 30 girls 22 girls
18 unknown 21 unknown 29 unknown 26 unknown

Total (NSW) 81 52 96 65

Grand Total 164 103 144 140

The fit statistics for the Saltus model (given in Table 3.4) are not as large as those
for the Rasch model (given in Table 3.3), nor do they show a discernible pattern. This
lack of pattern and small size for the fit statistics implies that a better fit has been
obtained.

The standard errors for the item difficulties on the logit scale are derived from the
item standard errors from the UCONG estimation procedure, SI, and the standard
errors of the gaps, sich, which are used to locate the items on the scale. For group I
students, the location of item i is di, if i is of type A and di+dm, if i is of type B,
where di is the estimated item difficulty for item i and dBi is the estimated group I
gap. Hence, the standard errors for student group I (I shall use 'student' rather than
'person' throughout this chapter) are given by

s .2 = s.
2 if i is of type A, and

s 1.
2 = 5.2 + s

BI
2 :f i is of type B

where s. is the estimated standard error for item i,

and sill is the standard error of the group I gap.

Similarly, for students in group II, the standard error of item i is given by

s'i 2 = si 2 if i is of type A, and

sti 2 2 2 if i is of type B

where still is the standard error of the group II gap.

The standard errors for group I students attempting type B items are largest because
they are far from those items. The standard errors for the group II . tudents attempting

type B items are smaller because they are close to those items. The errors for the A
items are approximately the same as those for the Rasch analysis. The errors for the B
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Test 1: 2-digits, no regrouping

1.1 99 1.2 73 1.3 37
-48 -42 -14

---

1.4 64 1.5 98 1.6 75
-22 -74 -54_

Test 2: 3-digits, no regrouping

2.1 598 2.2 678 2.3 997
-123 -234 -411

2.4 364 2.5 369 2.6 689
-221 -145 -352

Test 5: 2-digits, regrouping

5.1 71 5.2 73 5.3 81
-48 -68 -65
___ ---

5.4 23 5.5 32 5.6 55
-15 -18 -17

Test 6: 3-digits, regrouping

6.1 417 6.2 455 6.3 826
-126 -173 -452

6.4 352 6.5 565 6.6 865
-119 -384 -639

Figure 3.2 Items in the Subtraction Tests

34

45



Table 3.3 Rasch Estimates for the 3V4 Sample

Item Item
type label

Estimated

Difficulty Error Fit

B

A

6.1

6.6

6.3

6.4

6.2

6.5

2.87

2.53

2.38

2.30

2.14

2.05

0.31

0.30
0.29
0.29

0.28

0.17

-0.41

- 1.13

- 1.52

- 1.80

- 1.16

- 2.06

2.6 0.86 0.39 0.57
2.5 0.34 0.45 1.12
2.1 -0.03 0.51 -0.10
2.3 -0.29 0.55 0.61
2.2 -0.29 0.55 0.92
2.4 -0.61 0.62 0.36

items are larger than those for the Rasch analysis because the scale has stretched to
accommodate the, more accurate estimation of the Saltus model. The coefficient of
variation gives a measure of the impae of this change In standard errors: the average
coefficient of variation for the Rasch analysis for the B items is 4.15, and for the Saltus
analysis it is 3.14 for group I and 5.74 for group II. Thus the reactive accuracy of the
Rasch estimates is between the two for the Saltus estimates, with the group II estimate
performing best, as one might expect since group II has been constructed to match item
type B.

The Rasch and Saltus score estimates are given in Table 3.5 and illustrated in

Figures 3.3 and 3.4. The count of scores shows a bi-modal pattern that is typical where

there is rigidity between item types. The Rasch estimates for the scores progress
monotonically as one expects for items measuring a single attribute - the higher the
score, the higher the logit ability. For Saltus, however, this is not so. The score

Student
scores

1 2 3 4 5 6

7 8 9 10 11

-1

Item
types A

Figure 3.3 Rasch Estimates for the 3V4 Sample
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Table 3.4 Saltus Estimates for the 3V4 Sample

Item Difficulty
Group I Group II

type order Difficulty Error Difficulty Error Fit

D 6.1 5.52 0.85 1.91 0.38 0.49

6.6 5.16 0.86 1.55 0.40 -0.19

6.3 5.00 0.86 1.39 0.41 -0.43

6.4 4.91 0.87 1.30 0.42 -0.58
6.2 4.73 0.87 1.12 0.43 0.27

6.5 4.62 0.87 1.01 0.45 -0.62

A 2.6 0.68 0.36 -0.52

2.5 0.31 0.42 Same 0.33

2.1 -0.02 0.48 as -0.28

2.3 -0.23 0.53 group 0.25

2.2 -0.23 0.53 I 0.34

2.4 -0.50 0.60 0.18

estimates fold back onto themselves, so that a group II student with score 10 gets a

slightly lower estimate than a group I student with score 6!

The reason for this is that the logit scale has been set up with the A items as the

reference point. That a group I student with score 6 has an estimated position 0.28 logits

above a group II student with score 10, means that a group I student has a slightly higher

probability of getting the A items correct than the group II student who scored 10.
However, as the student who scored 6 is in group I, that student's chance of getting a

type B Item correct is very small, as indicated by the position of BI at 4.99 logits in

Figure 3.4, whereas the grmip Ii Student who scored 10 has quite a good chance of getting

a type B item correct, ,ildicated by the position of BII at 1.38 logits. These

probabilities are detailed an Table 3.6. This table shows the large difference in the

difficulty of type B items for student groups I and II: it also shows that the type B items,

Student
scores

1

Item
types

2 3 4 5 6

7 8 9 10 11

I 1

0 1 2 3 4 logits 5

A ATI --- L BI_J

Figure 3.4 Saltus Estimates for the 3V4 Sample
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Figure 3.5 Rasch and Saltus Difficulties for Type A Items

even though their logit range of 1.18 is the same for both student groups, have a much
smaller range of probability for the group I students than for the group ll students.

Consider, for example, a group I student who scored 4 and a group II student who
scored 7. These have approximately the same logit abilities, that is, the type A items
look much the same to both: the group I student has a probability of success ranging
from 0.51 to 0.77 and the group II student has a probability of success ranging from 0.55
to 0.88. This can be interpreted as meaning that a student who has almost mastered the
non-regrouping items, but has had little or no success on the regrouping items, has much
the same ability with respect to the non-regrouping items as a student who has just
begun to succeee on the regrouping items. This implication fits well with the type of
item involved -

3

correct solution of these subtraction problems requires sustained

For group II For group I

Identity
0

2

36 Line

52

36/
4-

UO
,52'4

/41.00 2.61-7/
N

cc
I

1 1 1 1 1 I

1 2 3 4 5 6
Soltus Estimate

Figure 3.6 Rasch and Saltus Difficulties for Type B Items
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Table 3.5 Score Estimates for the Rasch and Saltus Analyses

Student
group Score Count Ability Error Ability Error

Rasch Saltus

II 11 38 2.95 1.08 3.14 1.08

10 16 2.08 0.83 2.31 0.83

9 5 1.48 0.74 1.75 0.74

8 2 0.97 0.78 1.30 0.69

7 2 0.49 0.69 0.90 0.66

I 6 6 -0.02 0.69 2.59 1.09

5 3 -0.45 0.69 1.53 1.02

4 3 -0.95 0.71 0.73 0.92

3 0 -1.48 0.75 0.04 0.89

2 0 -2.10 0.84 -0.66 0.94

1 0 -2.99 1.09 -1.59 1.15

concentration on an algorithm combining several entry-level skills such as remembering

subtraction tables and keeping columns aligned. These skills are still under improvement

while the student is being introduced to new topics such as regrouping. Contrast this

with the Rasch results, which give a student who scored 7 a much higher chance of
success on every item than a student who scored 4, and hence a much higher chance of

success on the non-regrouping Items. Because the two types of items have not been
identified in the Rasch model, the detail of the different student behaviours for the
different item groups is completely missing.

For the regrouping items, however, the difference in ability is very noticeable.
The group II student is finding the items difficult, he is having reasonable success (0.50)

at the easier ones, and just a little success at the harder ones (0.24). But for the group I

student these items are, uniformly, almost impossible the probability of Success ranges

down from 0.12 to 0.00. This reduction in the range of probabilities illustrates the

Table 3.6 Probability of Success on Easiest and Hardest Items

Probability of Success

Non-regrouping items Regrouping items

Group Score Easiest Hardest Easiest Hardest

I

II

1 0.25 0.09 0.00 0.00

2 0.46 0.21 0.01 0.00

3 0.61 0.32 0.01 0.00

4 0.77 0.51 0.02 0.01

5 0.89 0.71 0.05 0.02

6 0.96 0.87 0.12 0.05

7 0.80 0.55 0.50 0.24

8 0.86 0.65 0.60 0.32

9 0.90 0.74 0.70 0.42

10 0.94 0.84 0.81 0.56

11 0.97 0.92 0.91 0.75
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Table 3.7 Saltus Item Fit Statistics for the 3V4 Sam le

Item

Student Group I Student Group II

Logit
bias

Standardized
bias

Logit

bias
Standardized

bias

2.1 -0.89 -0.64 0.44 0.85
2.2 1.21 1.23 -0.56 -0.84
2.3 0.37 0.56 -0.15 -1.01
2.4 0.10 0.32 -0.03 -0.66
2.5 0.22 0.01 -0.06 -0.30
2.6 -0.36 -0.22 0.17 0.37
6.1 6.11 1.76 -0.04 -0.14
6.2 1.86 2.72 -0.05 -0.08
6.3 -1.03 -0.49 0.05 0.23
6.4 -1.03 -0.52 0.06 0.34
6.5 -1.05 -0.61 0.08 0.31
6.6 -1.03 -0.44 0.04 0.19

difference in perspectives between the two groups the regrouping items are near
enough to the group II students for the details of their construction to make an
observable difference in the students' performance, but the overwhelming difficulty of
mastering regrouping has pushed the items so far beyond the ability of the group I
students that the differences between the items have become insignificant.

Another way in which the Rasch analysis differs from the Saltus analysis is in the
pattern of the standard errors of the score parameters given in Table 3.5. For the Rasch
analysis they increase towards the more extreme scores, but for the Saltus analysis they
increase towards the extreme scores in each score group. The ;mportant difference is in

the middle: for Rasch, this is where the smallest standard errors are, but for Saltus,
large standard errors occur here because this is the critical region between the two
student groups. A change of just one score here could put a student into the other group,
resulting in a great deal of change in the modelled probabilities of success for that
student.

The item fit statistics given in Table 3.7 for the Saltus analysis draw attention to
items 6.1 and 6.2, which have standardized biases for student group I of 1.76 and 2.72,
and logit biases of 6.11 and 1.86. The logit biases indicate that the group I students
exhibited more success (6.11 and 1.86 logits worth) on the Items than the estimated
parameters would indicate, and the standardized biases indicate that these logit biases
are large compared to the level of variability that is expected in a probabilistic model.
Since the performance of the group II students would dominate the estimation of the

type B items, some group I students are doing relatively better on items 6.1 and 6.2
(compared to 6.3 to 6.6) than the group II performances would predict. As these items
are at the beginning of the test form, perhaps some students who did not have the
regrouping skill had time in apply a 'low-stress' algorithm (such as counting) to these
first few items, thus circumventing the intent of the test-makers.
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Table 3.8 Saltus Student Fit Statistics from the 3V4 Sample

Student

Item type A Item type IS

Responses to items

Test 2 Test 6

Logit Std. Logit Std.
Student type No. bias bias hiss bias 1 2 3 4 5 6 1 2 3 4 5 6

'Careless Error'

(8 students) 60 -4.37 -2.81 1.18 0.98 1 1 1 0 1 1 1 1 1 1 1 1

'Misclassification?'
(1 student) 58 -1.48 -0.76 3.67 2.52 1 1 1 1 0 1 1 0 0 0 0 0

'Inconsistent with
ordering of item types'
(1 student) 69 -2.47 -2.04 1.34 1.62 1 0 1 1 0 0 1 1 1 1 0 1

'Fit Saltus'

(65 students) 14 1.09 0.66 -1.04 -0.47 1 1 1 1 1 1 0 0 0 0 0 0
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The student fit statistics for the Saltus analysis, some of which are given in Table
3.8. draw attention to two sets of students who are not fitting the estimated model well.

The first set is composed of students who scored 11, placing them in group II, but who

were unsuccessful on one non-regrouping item. A typical case is student No, 60 who,
with an estimated ability of 1.26, failed item 2.4, causing a standardized bias of -2.81 for
the non-regrouping items. There were eight students In this set, and the result may be
considered to indicate careless error on the part of these students. The second set
consists of just two students. Student No.58 scores 6, but he did not conform to
expected behaviour because he was successful on item 6.1 but unsuccessful on Item 2.5,

causing a standardized bias of 2.52 on the regrouping items. The categorization
employed by Saltus has placed him In group I, so that the success on item 6.1 seems
surprising, but he could equally be considered a low-ability group II student, which would

make the failure on item 2.5 surprising. This case would bear further investigation If the

student were available for interviewing. Student No.69 failed on items 2.2, 2.5, 2.6 and
6.5, and succeeded on the rest. She was the only student in the sample who succeeded on

more regrouping items than non-regrouping items. She was also the only student who
caused large misfit statistics for both the Rasch and Saltus analyses; a total fit of 3.00
for the Rasch model, and standardized biases of -2.04 and 1.62 for item types A and B

for the Saltus model. The inconsistency of this student is difficult to interpret and would
also have to be investigated through interview.

One final comparison can be made between the two analyses. It has been left to
last because of the emphasis that has been placed on the interpretation of results rather
than on their statistical features. This is the statistical improvement resulting from the

Saltus model. Because the Saltus model is the same as the Rasch model with the
addition of one asymmetry parameter, and because the same sample was used for both
analyses, a likelihood ratio test can be performed to compare the fit of the two models.
The total log-likelihood for the Rasch analysis was -307.91 and for the Saltus analysis,
-288.95. This gives a likelihood ratio chi-squared statistic of

-2(-307.91 + 288.95) = 37.92

on 1 degree of freedom, which is significant at the 0.001 level. This indicates that the
extra degree of freedom used by the Saltus model for its Saltus parameter makes a
significant improvement in fitting the data.

Replicating the Saltus Results

The complexity of the subtraction sample allowed some attempt at quasi-experimental

design. The geographical structure permitted a comparison between the Victorian and
New South Wales results, the grade structure permitted a comparison between Year 3
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Table 3.9 Subtraction Saltus Matrices, with Standard Errors in Parentheses

Victoria New South Wales

2-digit 3-digit 2-digit 3-digit

Year 3 0.61 2.86 0.67 1.97 0.43 2.60 0.33 2.87

(0.21) (0.39) (0.40) (0.29) (0.22) (0.32) (0.19) (0.26)

-7.01 0.22 -7.16 0.48 -4.51 0.25 -3.93 0.20
(1.00) (0.16) (1.00) (0.18) (0.34) (0.15) (0.37) (0.12)

Year 4 0.31 1.92 0.44 1.88

(0.39) (0.29) (0.35) (0.23)

-3.88 0.49 -4.55 0.50

(0.60) (0.16) (0.72) (0.13)

0.31 2.09
(0.45) (0.27)

-3.50 0.32

(0.52) (0.13)

and 4 results, and the structure of the item objectives permitted a comparison between

different realizations of the same step in the hierarchy. In addition, an investigation of

male-female differences was made, but due to insufficient numbers and some missing
data in the New South Wales sample, this could only be studied by pooling the year levels

of the Victorian sample. Each of these comparisons constitutes one small step along the

way to fully understanding the meaning of a gap: the specification of those item

features which do not alter a gap, those which change its measure but not Its quality, and

those which change it into something other than a gap, would delineate a realization of a

stage transition within a generic theory of hierarchical development. The discussion of

these results is confined to the Saltus parameters, as the details for the other
parameters were similar to those for the Saltus analysis just discussed.

The Saltus parameters for the 2- and 3-digit items over the Year 3 and 4 Victorian

and New South Wales samples are given in Table 3.9 and the asymmetry indices are given

in Table 3.10. The Saltus parameters are presented as Saltus matrices. The 2-digit

results for the New South Wales Year 4 students are not given as this sample proved

intractable to Saltus analysis. Consider first the Victorian Year 4 sample (the 3-digit

case was discussed in detail in the previous section). These two matrices show a similar

pattern: all except the two BI Saltus parameters (-3.88 for 2-digit items and -4.55 for

3-digit items) are close, but even they are less than one standard error apart. Thus, for

Table 3.10 Subtraction Asymmetry Indices, with Standard Errors in
Parentheses

Victoria

Year 2-digit 3-digit

New South Wales

2-digit 3-digit

3 4.99 6.34 2.59 1.59

(1.11) (1.13) (0.54) (0.53)

4 2.76 3.61 2.04
(0.79) (0.84) (0.75)
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the Victorian Year 4 sample, the pattern of results, discussed above fob the 3-digit case,

Is repeated for the 2-digit case. This indicates that, for this sample at least, the
regrouping gap Is not much affected by the different number of digits used in these items.

Consider the Victorian Year 3 sample. Once again the pattern of results of the l-

and 3-digit items are similar. The All Saltus parameters (2.86 for 2-digit items and 1.97
for 3 -digit items), however, are somewhat more than one standard error apart. This

seems reasonable, since one might expect less experienced Year 3 students to find the

superficial differences between the 2- and 3-digit items more of a problem than the Year

4 students. This difference is interesting - the Year 3 students who are in group I are

relatively better (about 1 logit) at the 2-digit type A items than the 3-digit type A
items. This is consistent with the usual order of introduction of such problems.
Moreover, these Year 3 students in group II are also about 1 logit better than the Year 4
students in group II at the type A items. (Compare the All Sa ltus estimate for the

Victorian Year 3 2-digit case, 2.86, with the All Saltus estimate for the Victorian Year 4

2-digit case, 1.92.) This could be a case where a freshly honed skill deteriorates over the
next year or so.

With some understanding of the differences between the 2- and 3-digit cases for

the Victorian Year 3 students, attention can now be concentrated- on the differences
between Year 3 and Year 4. It is a noticeable difference, and is consistent across the

two item types: the AI Saltus estimates are more negative for the Year 3 students (-7.01
and -7.16) than for the Year 4 students (-3.88 and -4.55). This means that the Year 3

group I students find the type B items even more difficult than the Year 4 students,
which, given the relative lack of experience of the Year 3 students, Is what we expect.

Before making too much of this, however, notice that the logit parameters for the
3-digit case transle.te to a probability of success for a typical group I student attempting

a typical group B item of 4.0 x 10 4 for the Year 3 students, and 6.8 x 10 3 for the

Year 4 studer.ts. Although these probabilities are proportionally different, they are both

so small that in the normal classroom setting they would look like 'never'.

Consider the New South Wales results. The 3-digit analysis on the New South
Wales Year 4 students gave a pattern of results within a standard error of the
corresponding Victorian sample. Lnfortunately, the 2-digit analysis for the New South

Wales Year 4 students was intractable. The Year 3 analyses are similar the Year 4

analysis: there is no large increase in the BI Saltus estimate as In the Victorian sample.

This could be due to an earlier introduction of the regrouping algorithm for brighter

students in New South Wales.

The comparison of male with female samples was made difficult by the small
number of cases within each of the cells when one sex was deleted, and also by the

amount of missing data concerning the sex of the students In the New South Wales

sample. So the New South Wales sample was left out and the year levels were collapsed
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Table 3.11 Summary of Saltus Analyses for Victorian Boys and Girls

2-digit items 3-digit items

Saltus Asymmetry Saltus Asymmetry

Sex matrix index matrix index

Boys 0.46 2.42 3.40 0.55 2.09 4.50
(0.23) (0.35) (0.73) (0.35) (0.25) (0.84)
-5.11 0.31 -5.61 0.43

(0.58) (0.16) (0.71) (0.14)

Girls 0.65 3.03 4.31 0.64 1.27 6.52
(0.31) (0.60) (1.23) (0.42) (0.57) (1.31)

-6.47 0.22 -6.28 0.87

(1.00) (0.22) (1.01) (0.45)

in the Victorian sample. The results for these collapsed samples are given in Table 3.11.

Taking first the 3-digit items, the Saltus parameters indicate that the group I girls find

type B Items relatively harder than the boys, and the group II girls find the A items

relatively harder than the group I boys. This is reflected in the difference in the
asymmetry indices: 4.50 for boys and 6.52 for girls, which are between 1 and 2 standard

errors apart. These results indicate that the girls are finding the regrouping gap more

rigid than the boys. Compare this with th,' 2-digit Item analyses. Here the group I girls

once again find the type B items relatively :larder than do the group I boys. But the

group 11 girls find the type A Items relatively easier than the group II boys, which makes

the two asymmetry indices closer: 3.40 for boys and .1.31 for girls - the difference is not

large compared to the standard errors of the asymmetry indices.

Overall, these results show a remarkable consistency. The patterns described in

the previous section hold consistently across the replications described here; the

exceptions have been found to have reasonable explanations. These explanations should

not be seen as a way of 'making excuses' for discrepancies In the results, but rather as

building blocks to a deeper and more detailed understanding of the conditions under

which gaps occur in development and the stimuli that can reveal them.
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CHAPTER 4

A RULE-ASSESSMENT HIERARCHY

Introduction

A rule-assessment approach to the understanding of cognitive development has been
advanced by Robert S. Siegler (1981) as an adaptation of Piaget's theory. It attempts to
assimilate two criticisms of the Piagetian position on developmental sequences. The
first criticism concerns the sequence of development within a concept: Piagetians would

evaluate this is in clinical interviews. Apart from the problems of the reliabilqy of such

procedures (Keating, i980; Neimak, 1975), this practice has been found difficult to
t>ply to young children (Bryant, 1974) and has been criticised on the grounds that

children may possess a concept operationally but may not be able to articulate it
(Brainerd, 1977). The second criticism concerns the sequence of development between
concepts: Piagetian theory predicts certain synchronies in the development of the
different concepts due to the over-arching effects of the stages. Empirical studies have
shown that far more variation is present than the Piagetian literature would lead one to
expect (Brainerd, 1978; Flavell, 1971; Keating, 1980; Neimark, 1975).

The most important characteristic of the rule-assessment approach is the
specification of a series of increasingly powerful rules for solving problems. The

behaviour of the learner Is assumed to be dominated by the rule which he or she is using
at a particular stage of development, and the sequence of development through the rules
is assumed to be fixed. Thus far, it is basically the same as the Piagetian approach. It
differs, however, in that it does not assume that these rules are the same across
concepts, although the search for congruence between concepts consistutes a large and
interesting part of the research. It also differs in that the data are collected as
non-verbal choices to concrete problem-solving situations.

Siegler investigated the rule-assessment approach with three experimental
situations involving proportionality: a balance scale task, a projection of shadows task
and a probability task. For each, using task analysis, and by reference to previous
empirical and theoretical work, a series of rules that children might use in tackling the
task was hypothesized. Then a set of concrete problem types were developed which were

easily replicable, which had a well defined set of variations and for which there were a

small number of possible solutions so that the subject could indicate his or her choice
with a minimum of verbal interaction. These problems are fundamentally different from

traditional multiple choice tests in that:

1 the alternative solutions presented are exhaustive; there are no other alternative
answers that are not nonsensical,
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Rule I

Values of
dominant dimension

equal?
\,,....

Yes No

I

Altnrnatives Choose alternative with
equal greater value for dominant

dimension

Figure 4.1 Siegler Rule I

2 the rules predict not only which problems a subject should answer correctly but

also predict which problems will provoke guesses and which will be answered
Incorrectly (for this latter the rules specify which alternative will be chosen).

Siegler used the following description of the Piagetian Stages for the balance scale
task as the basis of developing his rules:

Stage 1

the child understands that the weight is needed on both sides to achieve a balance
and even that the weights should be approximately equal but there are as yet no
systematic correspondences of the type 'further = heavier'. (Inhelder and Piaget,
1958, pp.168-169)

Stage 2

weight is equalized and added exactly, while distances are added and made
symmetrical. But coordination between weight and distances as yet goes no
further than intuitive regulation. (Inhelder and Piaget, 1958, p.169)

Stage 3

the subjects proceed from the same conception to a search for an explanation in
the strict sense of the term ... The general equilibrium schema is differentiated in
the present case by constructing the proportions W /W1 = LI/L. (Inhelder and
Piaget, 1958, pp.174-175)

Siegle calls the weight on each side of the fulcrum the dominant dimension
because in cases of conflict, young children have been found to use weight more
frequently than the distance of the weights from the fulcrum. He calls distance the
subordinate dimension (Siegler, 1981, p.5). The postulated rules are:

Rule 1 (see Figure 4.1). If the values of the dominant dimension are equal, then the

alternative choices are equal. If not, then choose the alternative with the larger
value for the dominant dimension.

Thus, the child using Rule 1 will not consider the distances of the weights from the
fulcrum; to such a child, only the amounts of the weights matter. Stage 1 corresponds
to Rule 1.
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Rule II

Values of
dominant dimension

Vequal?

Yes No

I I

Values of subordinate Choose alternative with
dimension equal? greater value for dominant

/ \ dimension

Yes No

I I

Alternative Choose alternative with
equal greater value for subordinate

dimension

Figure 4.2 Siegler Rule II

Rule II (see Figure 4.2). If the values of the dominant dimension and the
subordinate dimension are equal, then the alternative choices are equal. If the
values of the dominant dimension are equal, but the values of the subordinate
dimensions are not, then, choose the alternative with the larger value for the
subordinate dimension. Otherwise, choose the alternative with the larger value for
the dominant dimension.

A child using this rule will consider the distances of the weights from the fulcrum only
when the weights are the same; otherwise this child will consider only the amounts of
the weights.

Rule III (see Figure 4.3). Same as Rule II except that if the values of both of the
dominant and subordinate dimensions are not equal, the child will 'muddle through'
(Siegler, 1981, p.6).

A child using this rule is aware of his or her lack of understanding of the behaviour of the

balance scale when both weights and distances vary, and will use some cognitive strategy

such as guessing or taking cues from the experimenter. Rules II and III correspond to
Stage 2.

Rule IV (see Figure 4.4). Use the correct formula for choosing the alternative (this
will not necessarily involve actual calculation).

A child using this rule will compute torques on either side of the balance beam and
choose accordingly. This computation may be either an actual calculation, or could be
done 'by eye'.
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Yes

Rule III

Values of
dominant dimension

equal?

Values of subordinate
dimension equal?

Yes

Alternative
equal

No

Choose alternative with
greater value for
subordinate dimension

Figure 4.3 Siegler Rule III

No

Values of subordinate
dimension equal?

Yes

Choose alternative
with greater value
for dominant dimension

N
No

Muddle
through

In order to distinguish children at these four Rule levels, Siegler designed six
problem types.

1 Equal Problems (E), with the same values on both dominant and subordinate
dimensions for the two choices.

2 Dominant Problems (D), with unequal values on the dominant dimension and
equal values on the subordinate dimension,

3 Subordinate Problems (S), with unequal values on the subordinate dimension
and equal values on the dominant one.

4 Conflict-dominant Problems (CD), with one choice greater on the dominant
dimension. the other choice greater on the subordinate dimension, and the
one that is greater on the dominant dimension being the correct answer.

5 Conflict-subordinate Problems (CS), with one choice greater on the dominant
dimension, the other choice greater on the subordinate dimension, and the
one that is greater on the subordinate dimension being the correct answer.

6 Conflict-equal Problems (CE), with the usual conflict, and the two choices
being equal on the outcome measure. (Siegler, 1981, p.9)

In the balance scale task the E problems would have both sides of the scale
identical; with the D problems the dista !.s would be the same, but the weights would
vary and in the S problems the weights would be the same but the distances would vary.

On the CD problems, the side with more weight will descend, on the CS problems, the
side with the weight further from the fulcrum will descend, and on the CE problems the
two sides balance, but both weights and distances are unequal.

The predicted success rates for each of these problem types for ch:lciren using the
four rules are given in Table 4.1. The six problem types give different profiles for the
four rules, and this was the basis of Siegler's classification. The four rules do not,
however, distinguish all of the item types: E and D are predicted to elicit identical
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Rule IV

Values of
dominant dimension

equal?

...

Yea

1

Values of subordinate
dimension equal?

N

No

1

Values of subordinate
dimension equal?

/
Yes

I

No

I

Yes

1

No

Alternative Choose alternative with Choose alternative Use
equal greater value for with greater value correct

subordinate dimension for dominant dimension formula

Figure 4.4 Siegler Rule IV

responses from children at all levels, as are CS and CE. Problem type CD has a
distinctive predicted response pattern, indicating that children of a higher rule level (III)

will give a lower rate of correct answers than will children at lower rule levels (I and II).

This pattern causes no problem when using a data analysis technique that examines each
problem type separately and uses complex rules to achieve a 'sensible' classification, as
does Siegler. When using a probabilistic m -Kiel such as Saltus, however, one assumes that

a higher score is always modelled as indicating a higher ability (i.e. Rule) level. Hence,

this problem type had to be left-out of all Saltus analyses. The monotonic relationship

between problem types and rule levels that results when problem type CD is left-out, can

be seen by considering the mean predicted success rates for problem types and rule
levels as given in Table 4.1. These mean predicted success rates also illustrate the lack

of predictive distinction between problem types E and D and between problem types CS
and CE.

Table 4.1 Siegler Pr..',tions for the Balance Scale Task

Problem
type

Rule

MeanI II III IV

E 1.00 1.00 1.00 1.00 1.00
D 1.00 1.00 1.00 1.00 1.00
S 0.00 1.00 1.00 1.00 0.75
CD 1.00 1.00 0.33 1.00 0.8.1

CS 0.00 0.00 0.33 1.00 0.33
CE 0.00 0.00 0.33 1.00 0.33
Mean without CD 0.20 0.60 0.73 1.00
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The participants in the study were sixty subjects, ten at each of the following
ages: 3 years, 4 years, 5 years, 8 years, 12 years, 21 years (college students). Half of
each age group was male and the other half was female. The three tasks were
administered twice, one month apart. For each task, the subjects were shown apparatus
arranged to represent the problem types and asked to predict a certain results for the
balance scale, they had to predict whether the beam would dip left or right, or stay
even. Each problem type was represented by 4 items, and, in order to be classified u
belonging to a Rule level, the subject needed to answer 20 out of the 24 items in the way

Siegler predicted. Additional sub-rules were used for some subjects at certain stages to
check that the classification was accurate (Siegler, 1981, p.18).

Overall, Sielger found that the behaviour of most subjects 'fit' the Rule hierarchy
well: for the four older groups, 96 per cent were classifiable in the balance scale task,
94 per cent in the shadows task and 79 per cent in the probability task (Siegler, 1981,
p.22). The 3-year-olds, however, were found to give patterns of responses which
predominantly resulted in no rule classification, and gave generally unrevealing
explanations (Siegler, 1981, pp.23-26). These subjects were left out of the Saltus
analyses because of this lack of consistency in their responses to the stimuli.

Siegler concluded that, for the balance scale, 'children were found to pass through
a consistent age related sequence' (Siegler, 1981, p.26) and that, 'the developmental
sequence on the projection of shadows task was very similar' (Siegerl, 1981, p.26), but
that for the probability task, only Rules 1 and 4 were used with any regularity (Siegler,
1981, pp.26-27).

The Balance Scale Task

The balance scale rules and problems have been described in the previous section (see
especially Figures 4.1 to 4.4 and Table 4.1). After removing the 3-year-olds, fifty
subjects remained. One would net expect to find a great many stage transitions in the
month between the two testings. In fact, Siegler found that, over the three tasks, 77 per
cent of the subjects remained at the same rule level, 18 per cent advanced and 5 per
cent moved to a lower level. For fifty subjects, this means that the net upward
movement averaged across the tasks was 6.5 persons. This is not a large enough group to

make a study of gains worthwhile, so the two testings will be treated as replications, to

aid in the search for consistency. For the balance scale task, the first testing gave an
intractable data set on the step from D to S. As the first testing also gave some
intractable data sets fur the shadows task, the analyses in this and the next section will
use the second testing as the primary data set, and the results of the first testing will be

discussed only when they provide interesting evidence for or against consistency.
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Table 4.2 Rasch Results for Balance Scale

Item Mean Standard Mean
type difficulty error fit
E -2.87 0.27 0.20
D -2.16 0.25 0.11
S 0.00 0.20 -3.61CS 1.73 0.19 2.49
CE 2.50 0.22 -0.1

An initial Rasch analysis of the five problem types, using the fifty subjects, gave
the mean item difficulties and mean fit statistics in Table 4.2. The difficulties shown
are centered on the average of the S items for consistency with later Saltus scales. The
standard errors are calculated as the mean of the estimated standard errors of the
problems, divided by the square root of the number of problems. The general pattern of
the item difficulties conforms to the pattern predicted in Table 4.1: P and E are the
easiest, S is in the middle and CS and CE are the hardest. However, the means for D and
E are 1.93 standard errors apart, and those for CE and CS are 2.65 standard errors apart,
which are considerably more than would be expected if the two pairs were actually equal
in difficulty, as predicted. The fit statistics for the S problems show the large negative
values that we expect to occur above a gap, which leads one to expect large asymmetry
indices for the D to S and E to S steps. The total fit for CS is a large positive value
which indicates a pattern of misfit different from that caused by rigidity. The total fit
for CE is negative, but not large enough for one to be confident that it is Indicating a
gap. Thus, the Rasch results predict a gap for the D to S and E to S steps, hint that
there might be a small gap from S to CE and imply a disorderly pattern for the step from
S to CS.

Each Saltus analysis concentrates on just those parts of the sample that give
information about each step; subjects who get all incorrect or all correct on both types
of problems are not used by the procedure, since these subjects do not give any
information concerning the relative difficulty of the problem types. With fifty subjects
and what appear to be three levels of problem difficulty, this means that the number of
subjects who give useful information rege..iing each of the two steps will be small. The
numbers available for each of the Saltus analyses are shown in Table 4.3. The size of
these samples makes the parameter estimates from the Saltus analyses have large
standard errors. Nevertheless, many of the effects were large enough and consistent
enough to warrant a detailed analysis of these data. Researchers considering collecting
data for the investigation of developmental hierarchies should be aware that if n is the
number of cases thought to be needed to make an analysis worthwhile, then n cases must
be collected for each step.
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Table 4.3 Number of Subjects in the Balance Scale Analyses

First testing Second testing

Subjects Std. bias Subjects Std. bias

Step

E to S
D to S
S to CS
S to CE

>2.0 >2.0

34 0 23 2

29 19 2

36 5 34 4

29 1 32 1

For the step from problem type E to problem type S, Seltus estimated a gap matrix

of

[0.54

-3.48

1.31

0.61 with standard errors

r.37
0.52

0.81

0.62

as this is in the range of gap matrices found to need correction for under-estimation of
the BI gap parameter, simulations were carried out to correct for 'crossovers' (Wilson,
1984, pp.114-125). The estimates of the group I gap indices from these tailored
simulations are shown in Table 4.4 and illustrated in Figure 4.5. These simulations

supported a linear correction which gave a corrected value of -4.16 for the BI gap
parameter. This correction is large, and the values are not so far out on the logit scale

Table 4.4 Simulations for the E to S Step

Generator

4.02

4.45

4.72

3.71

Estimates

2.52

3.21

3.49
3.66

4.55

3.36
3.46
3.51

3.62
4.09

2.96

3.82
4.44

4.59
4.75

3.71

4.26
4.34
4.60

5.38

Mean of estimates

3.39

3.61

4.11

4.46
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Figure 4.5 Group I Gaps for the E to S Simulations

that the correction has negligible practical impact. With this correction, the asymmetry
index is 3.97 and its standard error is 1.20. The corrected item estimates for the E to S
step are given in Table 4.5, the parameter estimates are given in Table 4.6 and the logit
scale is illustrated in Figure 4.6.

These tables and the figure show a pattern similar to that for the subtraction tasks
in Chapter 3. The problem types are quite homogeneous in difficulty and, for the group -I
subjects, the scale is strongly segmented, with average group I subjects succeeding quite
well on average type E problems (probability of success = 0.63), but finding the S
problems very difficult (probability of success = 0.02). The group II subjects find the E
problems about equally as difficult as the group I subjects. They find the S problems
somewhat harder than the E items, but not at all so hard as the group I students found
them to be, and, in fact the problem types are not segmented for the group II students.

Table 4.5 Item Estimates for the E to S Step

Group I Group II

Item Standard Standard
type Item Difficulty error Difficulty error

E El 0.32 0.77 Same
E2 0.32 0.77 as
E3 0.06 0.65 for
E4 0.58 0.54 Group I

S S1 4.08 1.02 0.71 1.29
S2 5.21 1.08 1.24 1.34
S3 4.68 1.08 1.71 1.29
S4 4.24 0.96 0.27 1.29
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Table 4.6 Score Estimates for the E to S S112

Number
Person of Standard

group Score persons Ability error

I 1 0 -1.04 1.22

2 1 0.05 1.05

3 4 1.02 1.07

4 14 2.14 1.14

II 5 1 0.63 1.09

6 0 1.25 1.16

7 3 2.13 1.34

This pattern can be interpreted to mean that, for a subject working at the level of

problem type E, the S problems are almost impossible, but for one working at the level of

problems type S, the problem types are of roughly the same difficulty, with problem type

S somewhat harder on the average. This can be compared to Siegler's predictions by

noting that he would classify those who scored less than three as being below Rule I (at

Rule 0), those who scored 3 or 4 out of the E problems as having attained Rule I, and

those who scored at least 3 on both E and S as having attained Rule H. Thus, a Saltus

score of 0 to 2 places the subject at Rule 0, a score of 3 to 5 places the subject at Rule I,

and a score of 6 or 7 places the subject at Rule H (assigning the transitions between
Rules to the lowest score possible).

Table 4.7 and Figure 4.7 compare the Saltus group classification with the
rule-assessment classification and give both Saltus estimates and Siegler predictions of

probability of success for a subject at each score, for the type E and type S problems.

The two probability patterns are most discrepant at scores 5 and 6, where the Saltus

transition is out of step with the Rule transition. They are more alike for scores 3 and 4

and for 7 and 8, where both classifications agree. Siegler does not make any prediction
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Gr.I 1

Gr.II

1

-1
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type
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6 7
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Figure 4.6 Logit Scale for the Balance Scale E to S Step
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Table 4.7 Siegler and Saltus Classifications for the E to S Step

Probability of success on average problem type

F. S

Saltus
group

Test
score

Siegler
rule

Saltus
estimate

Siegler

prediction
Saltus

estimate
Siegler
prediction

<II 0 0 0.26 7 0.00 0.00
I 1 0 0.26 ? 0.00 0.00
1 2 0 0.51 7 0.01 0.00
I 3 I 0.73 1.00 0.02 0.00
I 4 I 0.89 1.00 0.07 0.00
II 5 I 0.65 1.00 0.48 0.00
IL 6 II 0.78 1.00 0.63 1.00
II 7 II 0.89 1.00 0.80 1.00

>I 8 II 0.89 1.00 0.80 1.00

for the success on problems type E of those who score less than 3, but his prediction of
success for these subjects for problem type S agrees well with the Saltus estimates. It
should be remembered when interpreting this table and this figure that both Saltus
estimates and Siegler's predictions are not applicable to students who do not fit
(according to their respective patterns of misfit). In considering the probability patterns
in Figure 4.7, it must be recalled that Siegler's predictions represent an ideal; that he
does not expect that ideal to be attained is indicated by his acceptance of 3 out of 4 as
sufficient evidence that a rule has been achieved. So the position of the probability
curve is not as important as its shape. For problem type E, Siegler predicts that all
subjects with scores from 3 to 7 will have equal chance of success, and that is the
pattern that Saltus gives. For problem type S, Siegler predicts a large increase at score
5, and Saltus finds a large increase at 4; this is not a crucial difference, the important
point is that both agree on the existence of a jump.

The small number of subjects bars detailed interpretation of the Saltus results. (A
movement of one standard error below or above the logit location of a score of 5 results
in a range of success for problem type E from 0.39 to 0.85 and for problem type S from
0.23 to 0 73.) But, in their general tendencies, the two patterns of probability are
similar:

1 Both show a fairly constant success rate on problem type E for persons at score 3
and above, but Saltus gives a lower (and more realistic) rate.

2 Both show a dramatic increase in rate of success for problem type S for subjects
above a cut-off score, although they differ, by one score point, on where that
cut-off is.

Although one must be guarded in making conclusions, one can say that the estimated
Saltus model for the E to S step matches the Siegler's predictions for the rule-assessment
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Figure 4.7 Siegler Compared to Saltus for the E to S Step

model. As there were only two large misfits in the Saltus analysis (see Table 4.3), the
Saltus result can be considered a confirmation that the great majority of subjects are
following the rule-assessment pattern on this step.

The step from problem type 0 to problem type S in the second testing gave an
asymmetry index of 3.17 (standard error = 1.48) and a similar gap matrix,

1.41 [1.45 1.01

-4.01 0.52 with standard errors 0.60 0.70

and only two misfits, so the pattern is constant, as Siegler predicted, across problem
types E and D. The BI gap matrix for this step was adjusted by a series of simulations
similar to those for the E to S step. The estimates from these simulations are given in

Table 4.8 and illustrated in Figure 4.8; they indicate that a linear correction of the
original group I gap index from 4.39 to 4.65 was suitable. Thus for the transition from

Rule I to Rule II, the results of the Saltus analyses agree with Slegler's conclusions. The
segmentation of the problem types and the large positive asymmetries indicate that the
step from Rule I to Rule II, as realized by problem types E, D and S, could be a step in a

hierarchical development.

The Rule II to Rules III and IV transitions were examined by two Saltus analyses:
one for the step from problem type S to problem type CS and one for the step from
problem type S to problem type CE. The asymmetry Index for the S to CS step for the

second testing was -1.36 with a standard error of 0.70 and the gap maid:: was

[-0.23 2.52]

1.24 0.15 with standard errors

[1.27 0.5/
- 0.29 0.25
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Table 4.8 Simulations for D to S Step

Generator

4.39

4.64

4.84

5.05

Estimates

3.01

3.36

3.87
4.83

5.20

3.79
3.91
3.91

4.64
4.89

4.16
4.54
4.57
5.01

5.92

3.71

4.39

4.96

5.38
6.25

Mean of Estimates

4.05

4.23

4.11

4.94

Generating group 11 gaps

6 5 4 3
I I I I

Identity
Line

Figure 4.8 Group I Gap for the D to S Step

57

68



Table 4.9 Item Estimates for the S to CS Step

Group I Group II

Item Standard Standard
type Item Difficulty error Difficulty error

S S1 0.00 0.48 Same
S2 0.17 0.47 all

S3 0.00 0.48 for

S4 -0.18 0.51 Group I

CS CS1 1.19 0.55 2.55 0.69
CS2 0.75 0.54 2.13 0.68
CS3 0.75 0.54 2.13 0.68
CS4 1.30 0.56 2.66 0.69

The item estimates for step S to CS are given in Table 4.9, the score estimates in Table

4.10 and the logit scale is illustrated in Figure 4.9. The subjects scoring 4 and below are

referred to as group II and those scoring 5 and above are referred to as group III. This

step presents a different picture from that for the previous step. The score estimates do
not fold-back in the pattern that has been observed at other stage transitions, and the
asymmetry index is negative; -1.36. This means that the CS items for group I occur to
the left of the CS items for group II on the logit scale, so that there are subjects in group

I (those with score 4) who are predicted to do better on the CS items than some in group
Il (those who score 5). Although the Saltus analysis is capable of modelling this situation,

It has not been discussed to this point because it does not conform to the rigidity pattern

for a hierarchical theory.

To understand this result, consider the probability of success that Saltus gives for
different scores, as shown in Table 4.11 and Figure 4.10. The probabilities for problem

type S show a steady increase as the score increases; there is no plateau as there was

for type E in the previous step (see Table 4.7 and Figure 4.8). The probabilities for the
CS problems do not show the characteristic jump at the boundary between groups (as for

Table 4.10 Score Estimates for the S to CS Step

Number
Person of

group Score persons Ability

ZI 1 1

2 1

3 1

4 12

III 5 9

6 6

7 4

- 1.34

- 0.46

0.16

0.71

1.69
2.44

3.51

Standard
error

1.11

0.88
0.80
0.78

1.00

1.05

1.23
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Figure 4.9 Logit Scale for the Balance Scale S to CS Step

problem type S in the previous step), but instead they flatten out across the boundary and

actually decrease from score 4 to score 5.

Before attempting to interpret this strange result, I made some investigations to
rid myself of doubts over its reliability. First, there were four subjects in the analysis
who gave large standardized biases; they did much better on the CS problems than on

the S problems, and moreover, these same four appeared as misfits in the first testing
for exactly the same reason. These four having been Identified as consistent misfits,
they were deleted from the data set and the Saltus analysis was run again. The resulting
gap matrix was

[0.25 3.61 [3.37 1.011

-2.38 0.04 with standard errors 0.45 0.26

Table 4.11 Siegler Predictions and Saltus Estimates of Success for the S to
CS Step

Probability of success on average problem type

Saltus
group

Test
score

Siegler
rule

S CS

Saltus
estimate

Siegler
prediction

Saltus

estimate
Siegler

prediction
<III 0 II 0.21 0.00 0.09 0.00
II 1 II 0.21 0.00 0.09 0.00
II 2 II 0.39 0.00 0.19 0.00
II 3 II 0.54 1.00 0.30 0.00
II 4 II 0.67 1.00 0.43 0.00

III 0.67 1.00 0.43 0.33
III 5 III 0.84 1.00 0.34 0.33
III 6 IV 0.92 1.00 0.52 1.00
III 7 IV 0.97' 1.00 0.76 1.00

'-II 8 IV 0.97 1.00 0.76 1.00
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The asymmetry Index is still negative, but a little smaller than for the full data set:
-0.98 with standard error 1.11'. Second, a series of five simulations was run to check on

the bias of the gap estimates. The mean group II and group III gap Indices were 1.54 with

a standard error of 0.17 and 1.79 with a standard error of 0.19. As the generators were
1.47 and 2.37, this suggests that the group II gap index was underestimated; that is, is
true value is higher, making the asymmetry index even more negative. These

investigations suggest that the phenomenon is probably not a product of random
fluctuation in the data.

A clue to the possible meaning of the plateau in the CS probabilities in Table 4.10
is provided by Siegler's predicted probabilities. First, however, the rationale, following
Siegler, for classifying the scores into Rules (as shown in the third column of Table 4.11)

must be given. As before, a subject is classified below Rule II until he or she gets 3 out

of 4 of the S problems correct; a score of 0 to 2 corresponds to being below Rule II, and

a score of 3 indicates that Rule II has been attained. Here the classification differs from

that for the previous step, because the predicted jump in probability is from 0.00 to 0.33
rather from 0.00 to 1.00 (compare the last columns of Tables 4.7 and 4.11). This means

that, once at rule II, a subject need only demonstrate success on one-third of the four
problems in CS, or 1.33 problems, to be considered as having attained Rule III.

Unfortunately, 1.33 is not an integer, so some interpretation is needed. I decided that if
a subject was correct or at least 1 out of 4, then Rule M had been achieved. When a
subject gets 3 out of 4 on both problem types, Rule IV has been attained, so scores 6 to 8

are assigned to Rule IV.
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This results in the pattern of probabilities shown in columns 5 and 7 of Table 4.10.

The interesting thing to note in this Table is that the plateau of probabilities for the CS
problems occurs just where Siegler predicts that subjects will be guessing. Given that
Siegler has succeeded in designing Items that provoke guessing at certain rule levels, and

if these rules are indeed determining the behaviour of these subjects, then guessing could

explain why the CS items are not discriminating between subjects with score 3, 4 and 5.
Thus, the reversal of the usual increase in probability of success, which Saltus has
indicated for score 5, matches Siegler's prediction. In general, a negative asymmetry
index will cause a similar reversal, or at least a plateau, in the estimated probabilities of

success. The causes will not always be the same, but it seems likely that Siegler is
correct here and that guessing is the origin of the negative asymmetry index.

The Siegler prediction and the Saltus estimates for problem type S, as given in
Table 4.11 and Figure 4.10 are not so well-matched as those for problem type CS.
Siegler predicts a large jump in the probabilities near score 3, but this is not observed in
the Saltus estimates. It may be that the guessing which caused the plateau in the CS
items has caused the probability jump for the S problems to be obscured.

Overall, the match between Siegler's predictions and the Saltus estimates is good
for the CS problems, but not conclusive for the S problems. The existence of four
subjects who consistently found the CS items easier than the S items is of concern, and,
were they still available, could lead to interesting follow-up study. Although Saltus has
shown that it can model this guessing, the use of items which elicit guessing is not a
sound procedure in the investigation of hierarchies. The guessing pattern (as indicated
by a negative asymmetry index) has overwhelmed any chance of finding evidence of
rigidity (which would be indicated by a positive asymmetry index).

The Saltus analysis for the second testing for the step from S to CE gave an
asymmetry index of 0.99 with a standard error of 1.54, and the following gap matrix:

[0.54
3.81 r.40 1.01

-4.26 0.06 with standard errors 1.05 0.28

The item estimates are given in Table 4.12, the score estimates in Table 4.13, and the
logit scale is illustrated in Figure 4.11. The problem types segment the logit scale, but
the CE problems are not homogeneous in difficulty and the overlap between the location
of the CE problems for groups I and II is considerable.

The difference between the mean location of the CE items for group II and group
III, 0.93, is not large compared to the standard errors for the two means, 0.62 and 0.60.
This lack of distinction between the locations for the two person groups, combined with
the spread in difficulty for the CE items, has resulted in a pattern of probabilities, as
shown in Table 4.14 and Figure 4.12, that does not clearly exhibit the large jumps
expected of hierarchical situations. Once again, the Saltus probability pattern for the S
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Table 4.12 Saltus II Estimates for the S to CE Step

Group II Group III

Item Standard Standard
type Item Difficulty error Difficulty error

S S1 0.01 0.74 Same
S2 0.40 0.70 as

S3 0.01 0.74 for

S4 -0.42 0.78 Group I

CE CE1 4.27 1.22 3.28 1.16

CE2 5.57 1.24 4.58 1.18

CE3 6.06 1.27 5.07 1.21

CE4 3.30 1.24 2.31 1.81

problems is not conclusively like or unlike the pattern for the rule-assessment model;
there are large increases in probability, not a single large jump, as predicted, but the
predictions and the estimate match well for the higher scores. The patterns for problem

type CE are not conclusive either; the plateau which was associated with guessing for
the S to CS step is not apparent in these results; but the predictions and the estimates
match well for the lower scores. It seems that the CE items are not provoking guessing
to the same extent as were the CS items. The Saltus analysis for this step does not
conclusively support Siegler's claim that the rule-assessment predictions are borne out in

the data, nor conclusively refute that claim.
The preceding discussion on the S to CS and S to CE steps used only three groups,

but the rule-assessment theory was designed with four rules. This is no oversight. The

four rules were to be distinguished by five problem types, but the predicted responses
given in Table 4.1 indicate that the rules differ on only three sets of the problem types.

Thus Saltus, because it demands a matching of subject group with the problem type that

characterises that group, could only distinguish three groups of subjects. Nevertheless,

the Saltus analysis has shown support for Siegler's claim that the subjects are performing

Table 4.13 Score Estimates for the S to CE Step

Number
Person of Standard
group Score persons Ability error

II 1 4 -1.09 1.22

2 1 0.00 1.07

3 0 1.00 1.11

4 6 2.25 1.25

III 5 8 2.68 1.46
6 8 3.82 1.48
7 5 5.11 1.60
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according to the prediction of the rule-assessment model for the step from Rule I to
Rule II. But the Saltus analyses have not clearly supported this claim for the remaining

two steps although some good matches between prediction and estimate were found for
some problem types. The analyses are consistent with the hypothesis that the problem
may be due to the incitement to guess present in the CS problem type, and in part due to

the lack of homogeneity of the CE problems. With respect to a generic theory of
hierarchical development, the analyses have indicated: that the E and D to S steps
behave like steps in a hierarchy; that the S to CE step, although it has a sizeable
positive asymmetry index, does not behave hierarchically, perhaps because of the lack of

homogeneity of the CE items; and that, although the S to CS step exhibits segmentation,

guessing has obscured the potential for demonstrating the hierarchical nature of this step.

Table 4.14 Siegler Predictions and Saltus Estimates for the S to CE Step

Probability of success on average problem type

S CE

Saltus

group
Test

score
Siegler
rule

Saltus
estimate

Siegler
prediction

Saltus
estimate

Siegler
prediction

4111 0 II 0.25 0.00 0.00 0.00
II 1 II 0.25 0.00 0.00 0.00
II 2 II 0.50 0.00 0.01 0.00
II 3 II 0.73 1.00 0.02 0.00
II 4 II 0.90 1.00 0.07 0.00

III 0.90 1.00 0.07 0.33
III 5 III 0.94 1.00 0.24 0.33
III 6 IV 0.98 1.00 0.50 1.00
III 7 IV 0.99 1.00 0.79 1.00

>II 8 IV 0.99 1.00 0.79 1.00
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Linking the Saltus Analyses

The three Saitus analyses for the balance scale task described in detail above are shown
linked together on the one logit scale in Figure 4.13. For the balance scale tasks, the
asymmetry indices are non--zero, so the BI and Bll locations are far apart on the logit
scale. The method of linking is determined by two considerations:

1 The S problem type is in every step, so it can be the basis for the linking procedure

within tasks.

2 The location of the group I students will be used later to link all three tasks, so the

location of the S problem type for these students Is used to link the other problem

types.

Thus, for each of the analyses, the logit scales were translated to make zero coincide
with the mean difficulty of the S items. The estimates for each subject group were
separated, so that the two sets of analyses, D and E to S and S to CS and CE, become
three distinct segments of the one scale, one segment for each of the person groups. The
D to S and E to S steps supplied the difficulties for problem types D, E and S as they
applied to group I, and these are given as the first row below the logit scale in Figure
4.13. The second row gives the locations for D, E and S for group II taken from steps D

to S and E to S, and it also gives the locations of CS, CE and S for group II taken from
steps S to CS and S to CE. The third row gives the location for CS, CE and S for group
III, taken from steps S to CS and S to CE. The location given for the person group,.
deserves some comment. The mean of group I, for example, was located at -4.13 by the

E to S step and -4.06 by the D to S step; the location given is the average of the two.
The group II location is the average of 0.61 (E to 5), 0.56 (D to S), -0.23 (5 to CS) and

0.54 (S to CE). The group III location is the average of 2.52 (5 to CS) and 3.87 (5 to CE).
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The lower limit for each ability group is similarly the average of the lowest scores from

the appropriate steps, and the upper limit is the average of the highest scores from the
appropriate steps. For comparison, the means of the Rasch estimates for each problem
type are shown above the logit scale.

This figure illustrates the segmentation of the logit scale achieved by Siegler's
problem types, and the differences in item difficulty for the different subject groups.
The unoccupied regions between the segments of the logit scale, 1.74 logits between
groups I and II, and 0.51 between groups II and III, show that, especially between groups I
and II, Siegler's problems have succeeded in distinguishing between the groups very well.
The differences in the location of the problem types for the person groups has been
examined in the previous section and will not be repeated here, except to note that, for a
subject at the top of group II, the CS problems are somewhat easier than for a subject at
the bottom of group III, which is consistent with he interpretation that these items are
provoking guessing in the less able subjects. Thus Lhe linked scale provides another way

of displaying the anomalous behaviour of the CS problems.

The gap matrices for the four Saltus analyses for the second testing are presented

again in Table 4.15 beside the equivalent gap matrices for the first testing. (All

estimates presented are in the original, uncorrected, form.) The entries in the gap
matrices for the two testings are all within a standard error of one another. The pattern
of asymmetry indices is also repeated. The E to S step gives a large positive asymmetry
index, the S to CS step gives a small negative index and the S to CE step gives a small
positive index. This stability gives one confidence that the patterns discussed above are
not ephemeral, although not so much confidence as would be the case given a larger
sample and (hence) smaller standard errors.
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Table 4.15 Saltus Matrices from First and Second Testings of the Balance
Scale Task

First Testing Second Testing

Step Gap Matrix Standard Errors Gap Matrix Standard Errors

E to S 0.48 1.63 0.39 0.43 0.54 1.34 0.37 0.80
-2.83 0.51 0.43 0.29 -3.48 0.61 0.52 0.62

D to S 0.64 1.48 0.45 1.06
-3.75 0.52 0.60 0.70

S to CS -0.02 2.30 0.22 0.60 -0.23 2.52 0.27 1.06

-1.70 0.22 0.31 0.32 -1.24 0.15 0.29 0.25

S to CE -0.41 2.30 0.32 0.60 0.54 3.87 0.40 1.01

-3.09 0.24 0.61 0.30 -4.26 0.06 1.05 0.28

The problem types, rules and predictions of success for the projection of shadows

task are the same as for the balance scale task (i.e. Table 4.1 applies to these problems
as well as the balance scale problems). The apparatus for this task consisted of two
lights projecting shadows on a screen from two horizontal cross-bars. The length of the
cress-bars and their distances from the lights could be manipulated to give different
problems; length is considered the dominant dimension and distance the subordinate
(Siegler, 1981, pp.5-16). Subjects were asked to predict whether the shadow to the left
or the right would be longer if the lights were turned on, or if they would be the same
length. The gap matrices for the projection of shadows task are given in Table 4.16 and

the linked logit scale is illustrated in Figure 4.14.

The figure shows a quite similar pattern to that for the balance scale task. The
logit scale is well-segmented, the E and D problems appear closer in difficulty to the S
problems for person group II than for person group II (corresponding to positive
asymmetry indices for the E to S and D to S steps), the CS problems show the same
anomalous behaviour, being relatively easier for some group I subjects than for some

Table 4.16 Saltus Statistics for the Second Testing of the Shadows Task

Step Gap Matrix Standard Errors

E to S 0.83 3.15 0.40 1.04
-4.52 0.19 0.72 0.42

D to S 0.55 3.13 0.37 1.02
-3.40 0.08 0.47 0.40

S to CS -0.34 3.54 0.19 1.01
-1.26 0.08 0.24 0.35

S to CE 0.27 4.05 0.30 1.01
-2.89 -0.02 0.51 0.33
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Figure 4.14 Linked Logit Scale for the Shadows Task

group II subjects. Thus, the same conclusions can be drawn for this task as for the
previous task. The rule-assessment predictions are borne out quite well by the Saltus
analyses for the steps D to S and E to S, and these steps follow a pattern in keeping with
a developmental hierarchy. However, the upper two steps, although showing a
progression in difficulty, follow neither the pattern predicted by Siegler, nor that for a
developmental hierarchy.

The definition of problem types for the probability task was different from that for

the other two, and so the predicted probabilities of success differ also. As Siegler gives

only one example of each type and no explicit definition, the types will not be described
here. Fortunately, for our purposes, the predictions of success are sufficient to define
their natures. These predictions are given in Table 4.17. The arrangement is similar to
that for the other two tasks, but there are now four different patterns of probability: A
and C are the easiest types, E and F are the hardest, and B and D fail in between, with B
being easier than D. The tendency to provoke guessing is not predicted for any of the
problem types.

Table 4.17 Siegler Predictions for the Probability Task

Problem

type I II III IV

Rule

A 1.00 1.00 1.00 1.00
B 1.00 1.00 1.00 1.00
C 0.00 1.00 1.00 1.00
D 0.00 0.00 1.00 1.00
E 0.00 0.00 0.00 1.00
F 0.00 0.00 0.00 1.00
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Table 4.18 Saltna Statistics for the First Testing of the Probability Task

Step Cap Matrix Standard Errors

A to B 0.20 1.05 0.29 0.39
-2.23 0.82 0.35 0.36

C to B 0.29 0.59 0.33 0.25
-2.56 1.34 0.38 0.31

B to D -0.32 1.06 0.36 0.52
-1.14 0.81 0.42 0.48

D to E -0.27 1.62 0.36 0.49
-1.22 -0.43 0.44 0.33

D to F -0.20 2.34 0.30 0.73
-1.33 0.20 0.37 0.30

The apparatus for this task consisted of two sets of marbles, with different
numbers of red and blue marbles in each. The subjects were asked to choose which pile
gave the better chance of picking a blue marble, if one had to pick a marble with eyes
closed (Siegler, 1981, pp.15-16). The gap matrices for the probability task are given in
Table 4.18 and the linked logit scale is illustrated in Figure 4.15.

The linking in Figure 4.15 is also somewhat different from that for the previous
two tasks. The mean difficulty is used to position the estimates from the A to B, C to B,
and B to D steps, but the mean difficulty of problem type D is used to position the
estimates from the D to E and D to F steps, and the two are linked to one another
through the B to D step. The pattern shown in this figure is quite different from that for
the other two tasks. The most striking feature is that group I and II are not
differentiated by the problem types. There is quite good segmentation between group I
and group II, but the segmentation between groups III and IV is not very pronounced. The

problem types show strong positive asymmetry, and hence, strong rigidity, for steps A to
B and C to B, while the B to D and D to E steps show only little asymmetry, and the D to

F step is of a similar type to the S to CS step in the balance scale task. The C to B step
gives a negative group II gap index so that problem type C is easier than type B for the
group II students. This swapping of problem difficulties will not be interpreted because
of the high number of misfits in the C to B analysis (12 cot of 37 subjects gave
standardized biases over 2.0). Taken together, however, these two results imply
considerable problems with the specification of problem type C. Given this difficulty
with problem type C, the only step that can be said to clearly follow the prediction is the
A to B step, the rest do not show the kind of behaviour associated with either the
prediction of the rule-assessment model or the steps of a developmental hierarchy.

Summarizing his findings on developmental sequences between tasks, Siegler found

that Rules I, II and III were acquired earlier on the balance scale task and the projection
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Figure 4.15 Linked Logit Scale for the Probability Task

of shadows task than on the probability task, but that Rule IV was acquired much earlier
on the probability task than the other two. He also noted that, at the individual level,
there was little synchrony between the tasks (Siegler, 1981, pp.27-28). In order to make

the same type of comparisons using Saltus, it is necessary to link the three logit scales
together. Common items were used to link the scales within tasks; as there are no
common items between tasks, common subjects must be used to link across the tasks.
Ten subjects were found to be common to all the group Ito group II analyses, that is, for
steps E to S and D to S for the balance scale and the projection of shadows tasks, and the

A to B and C to B steps for the probability task. These subjects are listed in Table 4.19,
and their locations on each of the logit scales as given by the Saltus analyses. The mean

of the group for each analysis was calculated and then averaged for the two analyses per

Table 4.19 Common Subjects Used to Link the Three Logit Scales

Balance Shadows Probability

Student EtoS D to S EtoS D to S A to B C to B

31 -2.53 -2.38 -2.47 -1.84 -1.02 -1.30
32 -2.53 -2.38 -2.47 -1.84 -0.07 1.04
35 -2.53 -2.38 -2.47 -1.84 -0.07 0.17
37 -2.53 -2.38 -2.47 -1.84 -1.02 1.91
38 -2.53 -2.38 -2.47 -1.84 -2.52 -1.30
39 -2.53 -2.38 -4.06 -1.84 -1.02 0.17
40 -3.65 -2.38 -2.47 -1.84 -1.02 -1.30
41 -2.53 -2.38 -2.47 -1.84 -1.02 -1.30
44 -2.53 -2.38 -2.47 -1.84 -1.74 -2.09
45 -2.53 -4.59 -5.18 -3.88 -1.02 -2.09

Mean -2.64 -2.60 -2.90 -2.04 -1.05 -0.74

69

80



logits

r 1 1 1 i 1 1 1 1 1 1

for

-5 -4 -3 -2 -1 0 1

Balance scale task

2 3 4 5

Gr.1 DE S

I

I

for S I

Gr.[L II

for
1

S CS CE
Gr.[[[ III -

for E D

Projection of shadows task

S

Gr.l.

for S

I

Gr.t[ II
for

I

S CS CE
Gr.ttt III

for C A

Probability task

B

Gr.I

for

I

IB D

Gr.11

for
---II-T---

D D E F
Gr.I1I --III ---

Figure 4.16 Linked Saltus Logit Scale for the Three Tasks

logit Scale. This indicated that, if the balance scale estimates are taken as the standard,

the locations on the projection of shadows scale need to be translated by -0.15 logits and
those on the probability scale need to be translated -1.72 logits. The final, fully-linked,
logit scale is illustrated in Figure 4.16. Note that the groups H and III for the probability
task have been collapsed to group H and that group IV has been re-named group III.
Three Rasch analyses for the three tasks are also displayed in Figure 4.17.

The situation portrayed in this figure agrees with Siegler's initial findings. The
first two problem types and group I for the probability task occur somewhat to the right
of those for the other two tasks; in other words, the first two problem types are more

difficult, and those who have shown some success on them are more able, for the
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probability task than for the other two. And the last two problem types are easier, and
those who are succeeding on them less able, for the probability task than for the other
two, as is shown by the location of types E and F to the left of CS and CE and by the
location of group III for the probability task to the left of the locations of group III for
the other two tasks. However, contrary to Siegler's findings, the first two problem types
and group I for the probability task occur at approximately the same location as those
for the other two tasks; in other words, the first two problem types are no more
difficult, and those who have shown some success on them are ro more able, for the
probability task than for the other two. The Rasch scale (Figure 4.17) agrees with
Siegler's findings: the Rasch and Siegler results differ from those for Saltus because
they are both averaging the position of the A and C problem types for all the subjects,
whereas Saltus is using the responses of only those who are actually learning types A and
C - the group I students. Despite this difference between the probability task and the
other two, Figure 4.16 (the Saltus scale) shows considerable synchrony in the placement
of the subject groups. The three group Ps occupy a different region of the logit scale
from the three group IPs, and, except for the probability task, the group IPs occupy a
different region from the group 11Ps. The problem types are not so well-behaved, but the
defining problem types for each group - E and D (from the first two tasks) and C and A
for group I, S and B and D (from the probability task) for group II, and CS and CE and E
and F for group III - all fall within distinct regions of the logit scale. Although Siegler
found little synchrony at the individual level, there is agreement among the tasks at the
group level, if the groups chosen to display this are the three Saltus groups rather than
Siegler's four rule groups. As Rules II and III correspond to Piaget's Stage 2, this pattern
suggests that the Piagetian classification into three stages is better represented by these
data than the four Siegler rule levels.
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CHAPTER 5

CONCLUSION

Background to the Saltus Model

The Saltus model for the analysis of data from hierarchical theories of development

originated in the need for & psychometric model that articulated psychological and
educational t1.4orles like those of Piaget (1960) and Gagne (1962, 1968). The insight

contained in their theories which is embodied in Saltus, Is that learning is a process of

growth, akin to biological growth; it can occur smoothly, or Jr spurts or stages, and once

it has occurred it cannot be undone. This learning process has been termed development,

and when it occurs in stages, hierarchical development. Piaget has offered his stages as

a way of representing hierarchical development; Gagne, learning hierarchies. The

features of these schemes that are modelled by Saltus are summarized by the twin

concepts of gappinez and rigidity. Gappiness is the lack of a stable state between

stages of development. Rigidity is the fixity of the sequence of stages. The theories of

Piaget and Gagne contain many mere ideas than are expressed by gappiness and rigidity:

Saltus attempts to model only those. features of them that make development
hierarchical. The Rasch model (1960/1980) is a probabilistic method for analysing test

data that provides a clear and interpretible scale of person ability and item difficulty

that is well suited to the interpretation of development through stages of a hierarchy.

There is, however, no explicit way to integrate the knowledge of the stage origin of

Items into the model (although; through the use of fit statistics, some clues can be

gained). Saltus is an attempt tc adapt the Basch model to the problem of developmental

hierarchies, while maintaining the advantages of the Rasch approach to measurement;

the method of adapting the Rasch model was suggested by the Linear Logistic Test

Model. As a developmental hierarchy is composed not merely of distinct types of Items,

but also of groups of persons who behave differently when attempting the different item

types, the item and person parameters for Saltus are separated into those that operate

within each person group and item type and those that operate between the person

groups and item types.

Description of the Saltus Model

the connection between hierarchical theories of development and the realities of data

collected as responses to tasks and items is, in the Saltus model, provided by a

probabilistic formulation that falls within the family of psychometric models first

described by George Rusch (196C/1980). In these models, each person has an ability,

and each item a difficulty, :j, measured in logits. The difference between the

72

83



ability and the difficulty,

-
1j jd.

determines the probability of success of the person on the item through the logistic
function:

exp 1;
P(success)

+ exp Aij

In Saltus the same formulation is applied; however, the knowledge that the items were
designed to test (at least) two different stages of development is used to make the model
more sensitive to the theory. The items are classified into types A and B by this
knowledge; A for the earlier stage, B for the later stage. The persons are classified by
the meaning that their scores would have if the theory were correct; that is, given L
items of type A, a person who scores less than or equal to L should succeed only on items
of type A, and so, is classified into group I; and a person who scores more than L should
have succeeded on all of type A and some of type B, and so, is classified into group II.
With this arrangement, the argument of the logistic function is specified as

= B.- + y
j hk

where the person and item parameters measure ability within group and difficulty within
type, and the Saltus parameter, y hk, measures the effect on probability of success
contributed by membership of person group h for item type k.

Gappiness and rigidity are expressed in the Saltus model as segmentation and
asymmetry. Segmentation is the extent to which the item types separate the logit scale
into distinct segments, and is indicated by the segmentation index, which is the distance
between the most difficult item of type A and the easiest item of type B. If the
segmentation index is large and positive, the two item types are clearly separated into
distinct regions on the logit scale. If it is zero or negative, the item types occupy the
same region on the logit scale. Asymmetry is the relative difference in difficulty of the
item types from the perspectives of the two person groups. When the asymmetry index
is zero, the Saltus model is equivalent to the simpler Basch model, which can be
interpreted to mean that the difference in difficulty between the two item types is the
same for both person groups. When the asymmetry index is positive, the group I persons
see the item types as being further apart in difficulty than do the group II persons. This
pattern is typical of hierarchical development: the upper stage Items are near to
impossible for persons at the lower stage, but persons at the upper stage, while finding
the upper stage items of medium difficulty, still make a certain amount of 'human error'
on the lower stage items. This diminishes the observed difference in difficulty of the
item types. This pattern is also manifested in a jump in the predicted probability of
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success at the border between the two groups that is not present when the asymmetry

index is zero.

A negative asymmetry index, in contrast, indicates that the group I students see

the item types as closer together than do the group II students. This is not consistent

with rigidity as it implies that some group I students will find some type B items easier

than some group II students. This can be caused by a flaw in the item design such as a

tendency to elicit guessing. The asymmetry index is the difference between the group I

gap, which indicates how hard an average type B item is for an average group I person,

and the group II gap, which indicates how easy an average type A item is for an average

group II person.

As the item types and person groups have been specified to be consistent with the

assumption that a hierarchical theory of development describes the performance of the

persons on the items, lack of fit to the model, for either persons or items, indicates some

failure in this assumption. Such misfit is not necessarily evidence that the postulated

theory is not hierarchical; the problem could lie in the design of the items that are

meant to bring the theory to life. Thus, in the search for confirmation of a theory, the

Saltus model can contribute not only by providing estimates for a model of person
behaviour, but also by providing an indication of the degree to which the data conform to

this model.

The Saltus model was estimated with an iterative maximum likelihood algorithm

called GCONG that commences with an approximate solution based on PROX. Fit
statistics based on the discrepancy between predicted and observed response patterns

can be calculated with respect to each person group and item type, allowing the

evaluation of the extent of consistency of the data with the estimated model, and
providing a framework for diagnosing flaws in items and unusual behaviour in persons.

When no group I person is correct on any type B item, or every group II person is correct

on all type A Items, the Saltus estimation procedure does not work: data sets for which

this occurs are called 'intractable'. In such cases, the difference between the two gaps

has become infinite (typically, it was found that the BI location became positively
infinite). Thus, the step has become 'impossible' for group I students, and the hierarchy

has clearly been established. Saltus cannot estimate this infinite gap because the

probabilistic assumptions of the model do not hold here. However, as this situation

represents what might be called a 'perfect' hierarchy, attention should be given to the

colistruction of an alternate algorithm that will allow the estimation of the non-infinite

parameters of this 'perfect' step.

Application of Saltus

The two pieces of educational research which were used to explore the application of

Saltus to theories of hierarchical development were chosen because in each case the
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researchers insisted on an explicit and examinable link between the hierarchical theory
and the items intended to realize that theory. Research that uses standard published

tests of cognitive ability would, in general, not be suitable for Saltus analysis, because
standard tests are seldom grounded in explicit theory.

The first data set analysed with Saltus was part of a subtraction sequence
assembled in accordance with the learning hierarchy theory of Gagne (Izard et al.,
1983). The constructed response items were designed at the Australian Council for
Educational Research and administered to third and fourth year students in schools in
V4ctoria and New South Wales. Interest focussed on the transition from being able to
solve subtraction problems without regrouping (item type A) to being able to solve
problems for which regrouping was needed (item type B); this step was duplicated for
subtract:on items with both two and three digits. In comparison with the simpler Rasch

analysis, thee differences were noted. First, the estimates of Item difficulty and person

ability implied an interpretation that reflects the relationship between tne two models.

The Rasch analysis logit scale, which is illustrated in Figure 5.1 indicated that both item

types were relatively homogeneous in difficulty, that they segmented the logit scale, and

that the difference between the means of the two item types was 2.36 logits. These

estimates give a probability of success of 0.07 for an average group I person on an

average type B item, and a probability of success of 0.94 for an average group II person
on an average type A item.

The Saltus analysis logit scale, which is illustrated in Figure 5.2, also indicated that

the item types were relatively homogeneous in difficulty, and showed a much stronger

segmentation of the logit scale for group I, but a weaker segmentation for group li. The

difference between the means of the two types was 4.99 logits for group I and 1.38 logits

for group II. The probability of success of an average group I person on an average type

B item has become more extreme: 0.01. The probability of success of an average group

II student on an average type A item has become less extreme: 0.86. This can be
interpreted to mean that, for those who cannot regroup, the regrouping items are almost

impossibly hard, and in particular, much harder than the non-regrouping items; but for
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Figure 5.2 Saltus Estimates for 3-digit Subtraction Items

those who can regroup, the difficulty of the non-regrouping items approaches that of the

regrouping Items, perhaps because of sloppiness, faulty recollection of tables, and other

factors commonly labelled 'human error'. Thus, the Rasch model is estimating a model
that 'averages' the effects of the two item types.

These differences in pattern might not be meaningful if there were no gain in fit by

Saltus over the Rasch model. This leads to the second and third differences between the

two. The second difference was that the fit statistics for the Rasch model showed
strong negative misfit for all but one of the type B items. This is interpretible as a clue
to the existence of rigidity on the step immediately below these items, and this hint was
confirmed by the shift of these misfit statistics to unremarkable levels in the Saltus
results.

The third difference is in the total log-likelihood for the two analyses: this is an

overall measure of fit that takes into account the extent to which every person misfits
the model. Twice the difference between the two log-likelihoods provides a likelihood
ratio statistic which can be compared to a Chi-Square distribution on one degree of
freedom; the obtained value of 37.92 indicates an improvement of fit by the Saltus
model which is significant at the 0.001 level.

The second data set analysed by Saltus was produced by three Piagetian tasks
modified by R.S. Siegler (1981) to test an adaptation of Piagetian theory called
'rule-assessment'. The rule-assessment model postulates a sequence of four rules which

the subjects will use to solve certain types e items, and is tested through an
arrangement of apparatus and item types intended to reveal the rule which a subject has

attained without the need for further interview. The first task was the prediction of the

movement of a balance scale under varying conditions of weights and distances. The
transition from Rule I to Rule H was well-segmented and gave a strong positive
asymmetry Index. The Saltus logit scale gave a pattern of results similar to Siegler's

predictions. The probability patterns are shown in the top row of Figure 5.3: the

important features are the plateaux in the probability curves for the Ru'o. I items (item
type E) for scores 3 to 7, and the jump in the probability curves for the rule II
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items (item type S) near score 4. There were not enough item types to distinguish Rule II
from Rule III, but the double step, from Rule II to Rule IV was examined by two Saltus
analyses. One gave a negative asymmetry index and the other, although the item types
were well segmented and the asymmetry index was positive, gave a wide range of
difficulty for the higher problem type. The negative asymmetry index was associated
with the CS item types which were designed to elicit guessing from subjects at a certain
rule level, so the result matched Siegler's prediction in this respect. The probability
curves for this analysis are shown in the middle row of Figure 5.3; the squiggle in the
curve for the CS items is caused by the negative asymmetry index. But the prediction
for the other item type (S) did not give the hump in probability predicted by Siegler. The
lack of homogeneity of the items in the highest step resulted in a pattern of probability,
shown in the bottom row cf Figure 5.3, that did not match Siegler's predictions for either
item type. These results are not conclusive: the first step in the rule-assessment
hierarchy matched Siegler's predictions and satisfied the requirements for being a step
from a hierarchy. The upper steps matched Siegler's predictions in part. Although they
exhibited segmentation, one gave a negative asymmetry index and the other gave a
positive asymmetry index that had little influence because of the heterogeneity of the
most difficult of the item types.

The same series of analyses was performed on the second task, a problem of
predicting the length of a shadow cast by a cross-bar where both the bar and its distance
from the light source could be varied. The Saltus results for this task were the same as
those for the first task. The third task involved deciding which of two piles composed of
red and blue coloured marbles gave a better chance of picking a red marble on a random
choice; the variables that were manipulated were the number of red marbles and the
number of blue marbles. A different arrangement of problem types was designed for this
task, allowing four Rules to be distinguished. The step from Rule I to Rule II was well
segmented and showed a strong positive asymmetry index. The linked logit scale for the
probability task is illustrated in Figure 5.4. The extra problem type allowed the Rule II
to Rule III step to be investigated; but these problem types did not separate the subjects
at these Rule levels. The step from Rule III to Rule IV gave a negative asymmetry index
indicating that some guessing was occurring, contrary to Siegler's predictions.

Overall, these three tasks show consistency: the Rule I to Rule II step is
hierarchical; the existence of the Rule II to Rule III step received no support from the
one task for which Saltus could examine the evidence; the Rule HI to Rule IV step,
though segmented, does not give a hierarchical pattern of results. When the three tasks
were linked on a single logit scale, it was found that although the probability task was
slightly harder to start but easier to master than the other two, the three tasks are
consistent in their placement of the person groups. The pattern revealed suggests that
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the original Piagetian classification into three stages (i.e. Rules II and III collapsed) is
the more accurate way of representing the rule-assessment data.

In these two analyses, Saltus has demonstrated its ability to respond -to the
theoretical structures of educational and psychological researchers. For the Gagne
subtraction data, a hierarchical step was identified and investigated in a range of
contexts. The Siegler rule-assessment data showed that two of the postulated stages
could be collapsed to conform to a Piagetian classification. Saltus also demonstrated its

relationship to the Rasch model: when asymmetry is zero, the two models give the same
results; when asymmetry is strongly positive, the Saltus model gives a pattern of results

more complex than the Rasch results, which allows a specifically hierarchical

interpretation. The Rasch estimates approximated an average of those for Saltus, but do

not give a good a fit as Saltus when asymmetry is strongly positive. The problem of
under-estimation of the group I gap when the group II gap is small was also investigated.

It was fuund that a correction could be deduced from a series of tailored simulations
when the estimated group I gap was not too large. When the group I gap is large,
however, such a solution may not be possible, but the context of the analysis may
indicate that any correction would not alter the practical interpretation.

Implications of the Research

There are some avenues for further research along the lines of Saltus that may be
fruitful. Once a sound and reliable hierarchy has been established using Saltus, an
immediate application would be to the long term monitoring of persons as they passed
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through the hierarchy. Thus, the work done by Saltus in identifying the stages of the

hierarchy could be applied to the study of change within individuals. A potential
adaptation of Saltus is to the situation where there are two indicators of a hierarchy,

such as a Piagetian interview and a pencil and paper test. One of the indicators could be

used to classify the persons, and this could be used to ascertain the agreement between

the two classifications. This would be a useful validation technique for new instruments.

The co-ordination of a psychometric model with psychological and educational

theories has not been without cost. The theories did not fit exactly into the form needed

by Saltus, and some item designs employed were insufficiently free of guessing to allow a

clear-cut interpretation. Whether these are problems with the theories or problems with

Saltus depends on your point of view. Interpretation of results is more complex than the

simpler Rasch alternative, although Saltus indicates when the simpler model is

sufficient. The gains from the application of Saltus have been:

1 the introduction of psychometric ideas into the design of instruments used for the

investigation of hierarchies,

2 ,. the development of a meaningful graphical representation of the hierarchy on the

legit scale, and

3 the addition of a probabilistic framework for the evaluation and Interpretation of

persons and items that do no fit the hierarchy.

It is hoped that the presentation of this model has contributed to the value of the

pieces of substantive research analysed. It was the high quality of the original work that

allowed Saltus to search for patterns of agreement and discrepancy. It is also hoped that

this demonstration of an adaptation of the Rasch model will encourage further

adaptation of this excellent model to specific measurement and research situations.
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