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SUMMARY

No model is ever a perfect reflection of the data it is built to

summarize. There are always errors of fit. This is as true with modern item

response theory (IRT) as with all other models. It is important to know to

what extent the accuracy of measurement made with these models is perturbed by

misfit and what can be done to minimize the inaccuracy.

First, a detailed general model was fit to ASVAB (Armed Services

Vocational Aptitude Battery) data to provide the framework for a realistic

simulation structure. Then three of the most commonly used IRT models were

fit in this simulation. A variety of robust estimators of ability were used

and the accuracy and efficiency of each estimator was determined.

With short tests, a simple model coupled with a robust estimator seemed

to be the methodology of choice for describing the data. As test length

increased, so too did the benefits of utilizing a more complex

parameterization.

An unexpected finding was that coupling robust estimators with a Bayesian

prior yielded substantial shrinkage. Future work on ability estimation,

especially for practical applications of adaptive testing, is required to

"unshrink" ability estimates.

-1-
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ESTIMATING ABILITY WITH THE WRONG MODEL

I. Introduction

"All theories are wrong. It's just that some are easier to

disprove than others."
(John W. Tukey)

A model is never a perfect mirror of reality. It is a simplification

that has useful properties. The mathematical models that constitute modern
item response theory (IRT) vary in their complexity, but all are simplifica-

tions. This study examines the extent to which these simplifications disturb

the accuracy of the estimation of ability and the extent to which accuracy can

be affected by the choice of the estimation algorithm.

We shall confine our investigation to three of the most popular IRT

models. These are the one-, two-, and three-parameter logistic models

(denoted 1-PL, 2-PL and 3-PL). Their mathematical form is depicted in

equations (1), (2) and (3), respectively. Details about their genesis and
explanations and justifications of their use are found in the standard sources
(e.g. Allen & Yen, 1979; Andersen, 1980; Lord, 1980; Lord & Novick, 1968;
Rasch, 1960; Wright & Stone, 1979)

P(0) = 1/(1 + exp (-1(0 b))) (1)

P(6) = 1/(1 + exp (-a(0 b))) (2)

P(6) = c + (1-c)/(1 + exp(-a(6 b))) (3)

P(8) is the probability of choosing the correct answer expressed as a function
of the person's ability 0; b is the item difficulty expressed in the same
metric as ability (logits); a is proportional to the slope of the item

characteristic curve at its steepest point, and c is the lower asymptote of

the item characteristic curve. This latter parameter is an attempt to model

the effects of guessing, in that when someone's ability is well below the

difficulty of the item, it is assumed that plausible behavior is random

guessing among all the alternatives offered. A graphic interpretation of

these parameters is shown in Display 1 (from Lord, 1980, p. 14).

10
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Display 1. An ideal version of item characteristic curve (from Lord, 1980,

p. 14, reprinted with permission) with item parameters

illustrated. 3



Each Model is obviously a generalization of the one before it; we can
easily specialize the 3-PL to the 2-PL and the 2-PL to the 1-PL. ,As we shall

describe later, there are costs to be borne through the use of an overly,
general model; so it is wise to use the most restricted model that represents
the data at hand sufficiently well.

I.a Which ability?

In this study we are concerned with the estimation of ability --

nothing more. When looking at equations (1), (2) and (3) one can be misled

into thinking that all three of the 0's are the same. There is a sense in

which this is not true. In models (1) and (2), the ability parameter is the

same, but in (3) it is not. For example, let

We then find that

P= .5 a= 1 b = 0 and c= .2

1 -PL 2 -PL 3 -PL

equals 0 0 -.5

A glib explanation of this phenomenon is that, if the model allows guessing,

less ability is required to get the item correct. In this example we see that

about half a logit less ability is required. The question that naturally

arises after noticing this is, "Which 8 are we trying to estimate?" The

answer is, "The right one." More about this later.

I.b Which model?

Previous studies of the usefulness of item response models have taken

one of two approaches:

1. Fit various models to real data and see which one fits best. This

approach has the enviable property that the investigator knows the

model is being tested under realistic conditions. The principal

drawback is that one does not know what is the right answer. Thus

we may discover that a particular model provides the best answer,

but we do not know if the best we can do is good enough. Or,

under a more optimistic viewpoint, if a less general model is
still good enough for the purposes at hand.

2. Fit various models to simulated data. This approach has the
advantage of allowing the investigator to know the correct answer,
but has the drawback of having an uncertain relationship to
reality. It also tends to trivialize the study, for almost surely

the model that is used to generate the data will be the winner in

any competition.

-4--
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In this study we have tried to solve these two problems
simultaneously. We do this by using the most realistic model we could find to
generate the data for the simulation. Details about this are in section II.

I.c Which estimator?

The structure of our study is starting to emerge. We will fit real
data with a model too complex and cumbersome for common use, but which is
glovelike in its matching of the observed data. We then use the item
parameters of this model to provide a parameterized version of the trace
lines. This model also provides the right value of ability which we shall try
to recover. We then fit the three logistic models to these data. Each model
fits imperfectly. Last, we use these imperfect models to estimate ability.
Naturally we expect them all to fall short. The interesting questions are
"how badly do they do?" and "can we 'fiddle' with the estimator to improve
its performance?" In this study we 'fiddle' with estimators in a variety of
ways, leaning heavily on theoretical and practical developments in the
robust/resistant estimation area. We shall test many kinds of estimators.
These are described in section III.

I.d Who won?

As is often the case in contests like this, there is no clear-cut
answer to what is best; although some clear favorites do emerge. There
are some obvious losers. Our findings are quite optimistic. Earlier work
(Thissen & Wainer, 1982) indicated that the 3-PL required enormous norming
samples for accurate estimates of item parameters for items of only modest
difficulty. Later work (Jones, Wainer, & Kaplan, 1984) demonstrates how
inaccuracies in the estimation of the item parameters become error in the
ability estimates. These results, coupled with the empirical knowledge that
guessing does take place, had led us toward doubts about the ease with which
item response models could be used accurately in many practical situations.
These doubts have been assuaged, for we have discovered that the bias
introduced through the use of the wrong response model is smallish and can be
corrected somewhat with robust estimation wizardry.

The themes and broad outcomes thus sketched, let us now go into the
myriad of detail required for a deep understanding of our study and its
implications.

II. The Logic and Structure of the Simulation

We wished to conduct a simulation whose structure, although known to
us, would be inextricably tied to the empirical world. To accomplish this we
fit data from the Armed Services Vocational Aptitude Battery (ASVAB) with an
item response model that is so general that even non-monotonicities in the
item response curve could be fit easily. The IRT model used was the "multiple
category model" described by Thissen and Steinberg (1984). As the name
implies, it is a model which has a distinct trace line for each of the

-5-
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response alternatives for a multiple choice item. We are concerned here only
with the trace line fitted to the correct response; but by using information
in all of the response alternative data, the multiple category model may yield
a wide variety of shapes for the probability of choosing the correct
alternative as a function of ability. Specifically, the trace line for the
correct response may be non-monotonic and does not necessarily have the
extensive symmetry that is present in the conventional logistic models.

In the notation used by Thissen and Steinberg, the model for the correct
alternative is

in which

exp( zcorrect) dcorrect[exP(z0)]
P(correct18)

exp(zk)

k =0 ,m

zk = ak8 + ck , for k=0 ,m .

(4)

The number of alternatives in the multiple choice item is m. The parameters
of the model are ak and ck, (both for k=0,m) and dk (for k=1,m). All items
considered here were four-alternative, multiple-choice items, so m=4, and
there are 14 parameters in the model. [There are actually only 11
unconstrained parameters, as a single constraint is imposed in estimation on
each of the sets a, c, and d; for details of this and some interpretation of
these parameters, see Thissen and Steinberg (1984).]

Throughout the remainder of this study, the "correct" value of 8 that
we shall try to recover in the simulations is the value given in this model.
Similarly, all response probabilities that will be fit by the other models are
generated by this model.

Aside

This model does not lend itself to easy intuitive penetration. Shortly,

we shall provide some graphic evidence of its performance which usually aids
understanding. Recent research (Winsberg, Thissen 6 Wainer, 1984) has
indicated that the use of a spline function can provide the flexible fit
required in this application with greater statistical stability of the
parameters. This formulation seems to be of great prospective use in test
construction and item analysis, although we still favoi a simpler
parameterization for test scoring.

II.a Model Fitting for Four Items

Why just four items? We begin this study with four items for four
reasons. First, many of the properties of the estimators we have examined
reveal themselves in this limited context; thus we could sharpen our intuition

-6-
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about the structure of the estimators. Second, we could ennumerate the entire
space of 24 possible reponse patterns and compare the model generated
posterior distributions with those actually observed. Third, exposition is
eased considerably with the possibility of guiding the reader through an
example of modest proportions. Fourth, but by no means least, a four item
test is a realistic length for some purposes. Specifically, in adaptive tests
an ability estimate is required after each response; thus, it is wise for us
to know how accurate the estimate is after the first four items. Also, in
many multifaceted tests, specific traits are tested with only a few items.

Of course our four-item test is but the beginning of this study. After
we have gone carefully through our results for this Situation, we shall
describe the results for tests of various lengths, pointing out the
differences in conclusions, such as they are, which depend on test length.

Thissen and Steinberg (1984) fitted the multiple category model to
data on a subtext of the ASVAB. Display 2a includes the item characteristic
curves for the four most difficult items. For several reasons these four were
chosen to start our investigation. Principal among them is the fact that the
ASVAB is not a very difficult test, and so many of the ICCs were not
interesting (being just horizontal lines at the upper asymptote). Three of
these ICC's show an interesting non-monotonicity at the very low end. The
next step in our study was to fit the three logistic test models (equations
(1), (2) and (3)) to these curves through maximum likelihood. We did this by
choosing a large number of points (31) on these curves and fitting with the
assumption that the ability distribution is Gaussian with mean zero and
variance one (8-N(0,10). The results of this fitting are shown in Table 1.

Table 1. Fitting Four ASVAB Items

1-PL 2-PL 3-PL

with Three Models

Item

1 .93 1.36 1.30
2 1.00 1.37 1.56 Locations
3 1.90 1.10 1.10
4 .87 .88 1.08

1 .73 .47 3.25
2 .73 .51 1.94 Slopes
3 .73 1.68 2.14
4 .73 .72 3.50

1 0 0 .26

2 0 0 .25 Lower Asymptotes
3 0 0 .03

4 0 0 .23

-7-
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0
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0
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-2
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0

-2 1
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0 +1 +2 +3

0 +1 +2 +3

Display 2a. Item characteristic curves for four ASVAB items fitted with the
multiple category model (Thissen & Steinberg, 1984)
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An examination of the different interpretations given to the results by
the three models provides insights into these models. For example, item 3 is
seen as the most difficult by the 1-PL (b=1.9), whereas it is the second
easiest for the other two models (both agree on b=1.1). The explanation is
clear, for the 1-PL has no way to deal with the substantial guessing seen on
the other items except to call them easy (a lot of people got them correct);
thus; the one item that has little guessing looks harder. The 2-PL deals with
the guessing by making the slopes gradual. ("There is no guessing, it is just
that it takes a long while for the curve to reach zero ".) Thus, the 2-PL does
better on the location parameter but seems to 'flub' on the slopes. The 3-PL
does a better job all around but still has some misfit. The fitted curves for
these four items for the three models are shown in Displays 2b, 2c, and 2d.

It is important to keep in mind that our method of fitting the ICCs by
the three models essentially assumes that the norming sample is infinite.
That is, the points used to estimate the parameters are assumed known
without error. We will deal with the implications of this later; for now it
tilts the contest in favor of the 3-PL which needs large samples to obtain
stable parameter estimates.

II.b Generating Response Patterns

The next stage of the study involves generating 100 response patterns for
the four items for each of five values of 8 (-2, -1, 0, 1, and 2). These
response patterns are generated from the "true model". When this is done, we
then estimate 0 under each of the assumed models, whose parameters are shown
in Table 1. We then compare the accuracy of the estimates of 8 for each model
with the true values. The schemes used to estimate ability are described in
detail in the next section.

III. Methods of Ability Estimation

There are no "straw men" in this study. We tried to use only those
methods of estimation that are generally believed to be sensible. All

estimators are Bayesian in the sense that we use a N(0,1) population
distribution, included as a "prior" in estimation of B. This was done for two
reasons:

1. With a four-item "test" there would be many score vectors of
(0,0,0,0) or (1,1,1,1). Without consideration of the
population distribution, these would yield infinite ability
estimates.

2. The best of current practice seems to be leaning heavily toward
this approach.

-9-
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Display 2b. The fitted ICCs (dashed) from the 1-PL shown against the true
(solid) ICCs.
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Display 2c. The fitted ICCs (dashed from the 2-PL shown against the true
(solid) ICCs.
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Display 2d. The fitted ICCs (dashed) from the 3 -FL shown against the true
(solid) ICCe.



The results we shall report are optimistic to the extent that one's knowledge
of the prior is incorrect. The estimators we used were

1. M-estimators -- these estimators (here denoted T) are a general .

class that satisfy the equation

E w(T) [x P(T)] = 0 (5)

for some weighting function w. Three of the estimators we used fall
into this class. They are

a. MODE -- The maximum likelihood estimator. This is the traditional
estimator used to estimate ability. In this situation the
weighting function is

w(T) = P'/(PQ), (6)

where Q = 1-P.

The solution to equation (5) with w as in equation (6) is the mode
of the posterior density distribution. In our application we used
a prior distribution as well. This corresponds to adding one more
term to the sum in equation (5). If we denote the prior
distribution G (0), this added term is G'/G. Thus, the MODE with
prior distribution G is the solution T to the equation

E[{1"/PQ} (x-P)] + G'/G - 0 (7)

b) h-estimator (Hnnn) These are a family of M-estimates developed
by Jones (1982a), in which the weighting function is

h
w(T) = a (PQ) (8)

A few observations on the structure of this function, and its
relationship to h can provide insights as to its robustifying
character. First note that by weighting by the slope parameter,
items that are more sharply discriminating count more toward the
estimation of ability than do less discriminating items. The
factor PQ is of greater importance if h is greater than one.
This factor causes items near the examinee's ability (when P is
most near4 equal to Q) to have the greatest weight, and items
farther from that point to decrease in influence. Thus, items that
are, say, too difficult for the examinee, and hence prime
candidates for a guessing strategy, are downweighted. The extent
of this downweighting depends on the value of h. The larger h, the
more drastic the downweighting.

-13-
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where

Comparing the h-estimator with the MODE, consider the 2-PL.
P'= aPQ; thus the MODE is the solution to (x-P)P'/PQ =(x-P)a = O.
If we let h=0, the h-estimate is the solution to (x-p)a (PQ)0
(x-P)a = O. Thus, the h-estimate for the 2-PL is identical to the
MODE when h=0 and gets steadily more robust as h increases. In
this study we shall use a variety of values of h. The estimates
are labeled H0.5, H1.0, and H2.0 for h=0.5, 1.0, and 2.0,
respectively. For further details see Jones' (1982a) development.

c. Biweight (BIWT) Mislevy and Bock (1982) suggested this estimator
in which the weighting function is

(1-U
2

)

2
for 1U1 < 1

w(T) = (9)
0 otherwise

U
a (b T)

k

Thus, we see that the weight is largest when b=T, i.e., when the
difficulty of the item answered is the same as the examinee's ability. As the
difference between b and T increases (as the item becomes less and less
appropriate), w(T) decreases until the item is more than k units away, when it
has no effect on the score at all. Mislevy and Bock suggest that a value of
k=4 be used. In all of our tests we conform to their advice.

In Jones (1982b) is a comparison of the influence functions for these
three M-estimators. The general shape of them is the same in our application,
although they are shrunken a bit through the use of the N(0,1) prior.

It must be remembered that for all three of the M-estimators we have
included a prior distribution, which, in each case, is simply the addition of
one more term (G'/G). In all comparisons, the same prior is used for all
estimators.

2. EAP estimators (MEAN and Mnnn) -- Expected a posteriori estimators are
another class of estimators. They have basically the same structure as the
M-estimators except they reflect the mean of the posterior density, rather
than the mode. When the prior is correct, EAP estimators are optimal, if
mean square error is used as the criterion. We tested EAP analogs to the
three h-estimates (above), called M.25, M.50, and MI.O. Bock (1983)
provides a description of EAP estimation in an IRT context.

3. AMJACK estimation (AMJK) -- This estimator, developed by Wainer and Wright
(1980) is a combination of M- and L-estimates. It is made up from order
statistics derived from the jackknifed pseudovalues of the modal ability
estimate, which are then subjected to another

-14-
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M- estimator. Specifically, if °all is the MODE for a particular

person's response vector, we define

A th
6
(i)

the MODE for that person with the j-- item omitted.

6(j). n 6
all

- (n-1) 6
(j)

is the jackknifed pseudo-value

th
for the item.

Next we form two 'rectors
*

0* of all values of 6 for which x 1

^

- 11
6 of all values of 6

(i)
for which x i 0 .

Then

Let

6
* is of length r i E xi, and

11
6
* is of length n-r.

9c i AMT (6*)
C

e AMT (e*)10

where AMT() is the Sine M-estimate of the location of vector (.).

Then the final AMJACK estimate is

AMJACK [r Ac + (n-r) wl/n (10)

The AMJACK estimator has been shown to provide a superefficient
estimator for the 1-PL compared to the MODE when sample sizes are small, even
when the data conform to the assumptions that would make the MODE
asymptotically optimal. Further, we have found that when the data deviate
from the model, the AMJACK still maintains reasonable efficiency. Also,

despite its arcane derivation, it is easily calculated for the 1-PL. For more

general models, calculations begin to get heavy, but for most purposes this is

not a serious problem. The two parts of the AMJACK work in concert to improve

estimation. The Jackknife portion provides a direct estimate of estimator

variability as well as reducing estimator bias. The Sine M-estimation part of

AMJACK reduces the effects of unusual observations and so corrects for

unmodelled guessing or "sleeping."



We have accumulated a total of 28 ability estimators. Nine estimators
(MEAN, M.25, M.50, M1.0, MODE, H0.5, H1.0, H2.0 and BIWT) are defined and
easily computable for all three logistic models, giving a total of 27. And
AMJK is used only with the 1-PL model, for 28. Thissen, Wainer and Rubin
(1984) describe a computer program for the simulation described here, in which
subroutines compute each of the 28 estimators defined; those subroutines
constitute another, more concrete, if less readable, definition of the
estimators. For quick reference verbal descriptions of the estimators with
their identifying codes are given in the glossary of this report.

Since all estimators included a N(0,1) population density as a "prior,"
it is useful for some purposes to describe the performance of the estimators
in standard deviation units of that population. We follow this practice
throughout this report.

IV. Scaling Conventions and Performance Criteria

In this simulation, the distribution of the values of ability (hereafter
called "u" instead of 6 to match the computer output which makes up much of
the rest of the report) used to create the item responses is known: the
distribution is 20% (usually 100) at each of five points fuj = -2, -1, 0, 1,
2, for j=1 to 5}. Each model/estimator combination (k=1,28; e.g. 1-PL/MEAN,
3-PL/MODE, etc.) produces a mean value UBAR(j,k) for data for each of the five
values of uj. There is also a corresponding standard deviation (S.D.(j,k))
for each distribution of estimates within the set of data for a constant value
of uj. These values give three indices of the quality of estimator k at ui:

and

DBAR(j,k) = uj UBAR(j,k)

S.D.(j,k) = Standard Deviation [UHAT(j,k)]

RMSE(LR. = SQRT[DBAR(j,k)2 + S.D.(j,k)2] .

These three indices, of bias, random error, and mean squared error (MSE)
respectively, reflect the quality (smaller=better) of each estimator as
an estimate of the generating .u

However, it is well-known that IRT ability estimates are deter-
mined only up to a linear transformation of scale. And the several
estimators to be compared here use different scales. Some of the more
"robust" estimators "reject" more of the "information" in the data, and
"regress" more back toward the mean (zero) -- leaving them on a scale
with different units. A scale-free comparison of the estimators is
available if all are transformed to have the same mean and variance in
some sample distribution.

16--



IV.a. Rescaling to Equal Variance

For ease in interpretation, we would like to keep the integral

values of the generating ui's (-2, -1, 0, 1, 2). So we have chosen to

leave the gene-ating distribution "as it is" and "pseudo-standardize"

the distributions of the estimates for each estimator by "matching" the

mean and variance to that of the generating u's. The mean of (-2, -1,

0, 1, 2) is zero and its variance is two. So we require a linear trans-

formation UHAT* = a + 0UHAT with mean zero and variance two.

This requires

a = 0UBAR(j,k)/5

as well as
P

Variance(UHAT*(k)] = 0.2 L [0 (UBAR(j,k)
2
-UBAR(.,k)

2
)

+ 02S.D.(j,k)21

Additionally,

Variance[UHAT *(k)J = 2.

Combining gives

2
0 Li[OBAR(j,k)

2
-UBAR(.,k)

2
) + S.D.(1,k)

2
1 = 10

SO

0 = SQRT(10/qj[(UBAR(j,k)
2
-UBAR(.,k)

2
)+S.D.(j,k)

2
1})

The rescaled UHAT* = a + 0UHAT, in which a and 0 are as given above, are

called "variance matched" (VM) because a set of them has the same mean (zero)

and variance (2) as the generating distribution of five points. The UHAT* give

three more criteria for the quality of estimator k:

and

DBVM(j ,k) = uj UHAT*(j,k)

SDVM(j,k) = Standard Deviation[UHAT *(j,k)1

REVM(j,k) = SQRT[DBVM(j,k)2 + SDVM(j,k)21 .



IV.b. Rescaling to Minimize MSE

One might also be concerned with the linear transformation of the
estimated UHAT' = a' + OtUHAT which gives the "best" (MSE) linear relation-
ship with the five values of uj (-2, -1, 0, 1, 2). [Actually, there are an
infinite number of weighted versions, but we will restrict ourselves to the
equally-weighted one.] For this, we want 8' and a' to minimize

Q - 1 {[(0111BAR(j,k)+a' )-y24.012S.D.(j,k)2).
To minimize Q,

p - 21 j{ [0 UBAR(j ,k)+a ] -ui) a 0

at the solution. Therefore

a' - -1 8'UBAR(j,k) /5

a_g
i

. 21 {[(0,LIBAR(i,k)4,a')u jUBAR(j,k)
as

+ 8's.D.(j,k)2) 0

at the solution. Therefore,

8' au ljujUBAR(j,k)/{1pUBAR(j,k)2-UBAR(.,k)2)

+ S.D.(j,k)21)

The rescaled UHAT' - a' + 01UHAT, giving minimum (MIN) RMSE produces
three more indices of the quality of the estimators:

DBMI(j,k) = uj - UHAT'(j ,k)

SDMI(j,k) = Standard Deviation[UHAT'(j,k)]

and

REMI(j,k) - SQRT[DBMI(j,k)2 + SDMI(j,k)21 .

IV.c. A Note On the Rescalings

For highly accurate estimators, the three scalings are approximately
the same. If the mean of the estimates is zero, a a a' - O. And

8' - 0
2
{1 u jo B AR (j,k)/10} .
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So for estimators with "natural" variance near two, 0 is near unity; if such

an estimator is linearly related to uj, UBAR(j,k) is near uj and ljuiUBAR(j,k)

is near 10 and a, is also near unity. For a "perfect" estimator, all three

scalings are identical.

For less accurate estimators, the rescalings may or may not

diverge. Variance matching changes the scale of the estimates (usually,

but not always, it expands them) to match the variance of the original;

MIN(RMSE) resealing may not match the variance. The most extreme diver-

gence comes with a hypothetical estimator which is uncorrelated with the

generating uj's. Variance matching resealing would produce a set of

estimates with variance 2, all of which would be error. MIN(RMSE)

resealing, on the other hand, would rescale such a set of estimates to

have variance zero (0' would be zero).

IV.d. What is Which Resealing For?

All of the model/estimator combinations are supposed to be

estimating the same thing. Therefore, one might imagine that a testing

program using one estimator could "switch" to another and maintain com-

parability between u-estimates through the "inherent equating" of the

IRT model. The "naturally" scaled versions of the 28 estimators show

what would happen if such a switch were made. In general, the results

would be disastrous. The different scales, resulting mostly from dif-

ferent degrees of shrinkage, make the results using most of the pairs

of estimators hopelessly incomparable.

Shrinkage seems to be fairly uniform within an estimator, however.

And the scale of IRT estimators is usually arbitrarily set to have a

predetermined variance in some standardizing sample. If the variance

of the population is known (as it is in our simulation) or if there

exists some standardizing sample in which the variance is assumed known,

the output of an estimator, however much it "shrinks," may be resealed

to have that variance. We have done this linearly and call this

"variance matching" (VM) resealing. Lord (1984) has pointed out that the

shrinkage to be removed by resealing is not linear, and so linear resealing is

not a perfect solution. We expect future developments in IRT to include some

more elegant techniques for "unshrinking." No others are readily available at

this time.

In any event, VM gives the results that would be obtained if the

estimator was used in a form resealed to have the variance of some

standardizing sample. It "removes" the artifactual differences due to

differential shrinkage. With "variance matching," we compare 28
model/estimator combinations, all of which give the same variance for our

sample of simulees, on bias and random variance at each of the five levels of

u. Given that the scale is arbitrary, this resealing gives the performance

for each estimator in contexts in which absolute cut-point values are used for

admission, etc. relative to known standardizing distribution.

-19-
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If one is concerned only with correlation of ability estimates with some
other variable, then one is concerned only with the linear dependence of the
estimates on the true values. For each estimator, there exists a linear
rescaling which minimizes the MSE of the estimates from the true values. We
call this rescaling MI. The smaller the MSE under this criterion, the
stronger the linear dependence of the estimates on the true values. The
smaller the MSE is under this rescaling, the more the estimates would
correlate with any variable linearly related to the true values.

A way to look at VM and MI together is that MI is regression of the
estimates on the true values, and VM is standardization. Regression (of Y on
X) can be separated into two steps (for X with "standard" variance):

1. Rescale Y to have the "standard" variance of X. After this step, use the
45-degree line through the mean as "principal axis" prediction; this is VM.

2. "Regress" the predicted values on Y to mean-Y. This gives the "regression
line" instead of the principal axis. This is MI. Thus, MI is produced by
"the correlation between the estimates and the true values" times VM.

V. The tests

We have examined the performance of the 28 estimators using four
"tests." Two of the tests consisted of only 4 items, one was 20 items, and
another was 40. The 4-item tests served two purposes: (a) they formed a
basis for the construction of the longer tests, and (b) they provide evidence
about the performance to be expected of the various estimators if they are
used in a computerized adaptive test (CAT), in which case an estimate*based on
only 4 items would be required early in each testing session. The 20-and
40-item tests simulate ability estimation for realistic-length CAT and
paper-and-pencil tests. Of course, all the tests and all of the item response
data are artificial. The simulated item response data are probablistically
determined by the trace lines for the items whicl make up each test.

In order to lend an air of realism to the simulated data, we created the
tests using trace lines estimated from real item response data; this seemed a
more realistic approach than simply "making up trace lines." The data used
were from the National Opinion Research Center (NORC) national probability
sample tested on ASVAB Form 8A (Bock and Mislevy, 1982). The trace lines used
were generated by the parameters of the multiple category model estimated by
Thissen and Steinberg (1984). Only eight distinct trace lines were used in
the entire simulation; four of these were estimated from data for 4 items in
the ASVAB Word Knowledge subtest and the other four from 4 items of the
General Science subtest. We used these trace lines because first, they were
conveniently available; second they are among the most "realistic"
mathematically defined trace lines obtainable; and third, among the eight
curves is represented just about any shape that the trace line for the correct
response could reasonably be expected to follow. We do not claim that our
simulated tests are ASVAB Word Knowledge or General Science, or any other test
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for that matter. We would claim that the simulated tests are "inspired" by

trace lines that fit the item response data for those tests well, so the

simulated tests are made up of items which, as best we can tell, behave like

some of the items on those tests. With that disclaimer, we will continue to

identify the simulated tests with "WK" and "GS" (for Word Knowledge and

General Science) because those identifiers have served to keep the tests

straight in our analyses and because there may be some interest in the

parentage of the tests.

V.a The Word Knowledge (WK) 4-item set

The trace lines used to create the simulated data for the WK 4-item set

are shown in Display 3; the parameters (for the model in equation 4) are given

in Table 2. Display 3 shows the true trace lines (solid) and the best-fitting

3-PL trace lines (dashed) for comparison. The items vary in both the shapes of

their trace lines and the closeness with which the binary logistic models can

approximate them. WK item 1 (the items are numbered 1 to 4 here; these are

not ASVAB item numbers) has an extremely modest slo?e and nearly linear shape;

it is well approximated by any of the three logistic models at all points on

the ability dimension. WK item 2 has the most "strange" (objectionable) trace

line in this set; there is a very high probability (of guessing?) on the

left, followed by a distinct "trough" near zero.

In the vicinity of zero on WK item 2, some of the distractors are quite

effective. They fade, and a sharp rise in P(correct) appears between 0 and

+1. This trace line is not well-approximated even by the 3-PL: at -2, the

3-PL underestimates the probability of a correct response by more than .1,

whereas around zero it similarly overestimates the true probability. WK item

3 is the most "logistic" of the set. WK item 4 is not as non-monotonic as WK

item 2, but there is still a slight trough unfittable by the 3-PL, so the 3-PL

underestimates P(correct) at -2 by about .1.

In the simulation, item response data were generated from the true

(solid) trace lines in Display 3, and abilities (for the 3-PL estimators) were

estimated using the dashed trace lines. This is "estimating ability with the

wrong model," as described above. It is not possible in this type of

simulation to distinguish particular observations (item. responses) as "true"

or "error%-the wrongness of the model takes a more subtle form. As noted

above, on WK items 2 and 4, the 3-PL underestimates the probability of a

correct response at -2 by a noticeable margin. Since the data were actually

generated using the probabilities given by the "true" curve, this means that

more simulees at -2 will respond correctly to the second and fourth items than

the 3-PL (or any-PL) model "expects"; in other words, there was an excess of

0101 item response vectors. Specifically, at -2 the true model generates 9%

0101; for the 1-PL fit for these items, that probability is 1%; for the 2-PL

fit it is less than 1%; and for the 3-PL fit it is only 4%. On the other

hand, the true probability of the response vector 0000 (all incorrect) is only

27%; the 1-PL fit gives 61% (1), the 2-PL fit gives 60%, and the 3-PL fit

gives 39%. So no particular "0101," for instance, is an "error"; it is just
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Display 3. "True trace lines" (solid) and 3-PL estimates of the four-item
WK-inspired example. The fitted 3-PL curves are dashed.
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Table 2. Multiple category and n-PL parameters, WK 4-item set

Item 1

a(k) -1.076 -2.856 1.519 0.193 2.221

c(k) 0.118 -3.798 2.859 -1.919 2.741

d(k) 0.098 0.186 0.305 0.411

Item 2

a(k) -3.026 -0.296 1.199 -0.703 2.826

c(k) 0.096 0.563 -1.612 0.874 0.078

d(k) 0.170 0.239 0.139 0.452

Item 3

a(k) -0.747 -1.810 -0.069 0.687 1.938

c(k) -1.594 -3.201 0.203 2.040 2.553

d(k) 0.170 0.239 0.139 0.452

Item 4

a(k) -1.608 -0.364 -0.221 -0.774 2.967

c(k) 0.019 -1.269 0.356 0.379 0.514

d(k) 0.098 0.186 0.305 0.411

Estimated 1-PL parameters

Item Location Slope

1 0.10 1.04

2 0.12 1.04

3 -0.31 1.04

4 -0.02 1.04

Estimated 2-PL parameters

Item Location Slope

1 0.14 0.64
2 0.13 0.89
3 -0.26 1.32

4 -0.01 1.51

Estimated 3-PL parameters

Item Location Slope
Lower

Asymptote

1 0.57 0.78 0.13

2 0.68 4.24 0.29

3 -0.20 1.39 0.03

4 0.36 4.10 0.21
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that there are too many of them as far as any of the logistic models are
concerned. The effect of this "excess" of patterns like 0101, and 0100, and
0001, etc. and the corresponding lack of 0000s on the distribution of
estimated abilities at -2 is what the simulation is all about. With 4 items,
this is somewhat comprehensible. With more items, it is not, but the idea
remains the same.

We would also note that the n-PL models are not terribly wrong. The idea
has been to make them "realistically" wrong. Some of the trace lines are well
approximated by some of the n-PL curves. Some are not. It is likely that the
real world is like that. This is not a "worst case" simulation, but rather,
an attempt at realism.

We chose the trace lines for four of the most difficult items on the
Word Knowledge subtest because they are "located" farthest to the right of the
distribution of the population tested. This provides more information about
peculiarities of shape of the trace lines in the middle and on the left than
can be obtained from data for easier items. (Correct trace lines must be
uninteresting on the right, as they approach unity or something is seriously
wrong.) Thus, this 4-item test provides most information between abilities of
0 and +1, near the 3-PL location estimates (in Table 2). This should be borne
in mind as we discuss the results of the simulation in terms of the ability
levels of our simulees (at -2, -1, 0, +1, and +2). Those ability levels
should not be viewed as "absolutes," but rather relative to the simulated
test. When we consider the simulees at ability level -2, we are considering
examinees whose ability is 2 or more standard deviations "below" the test
items to which they are responding. For this test, simulees of ability about
0 or +1 are responding to a very appropriate test, and those at +2 are
responding to items which are too easy. So the outcome should be interpreted
in those terms: the performance of the estimators at abilities of 0 and +1
should be indicative of their performance when items presented and the
abilities of the examinees are well-matched, and performance elsewhere
describes the outcome with less appropriate items.

V.b. The GS 4-item set

The trace lines used to create the simulated data for the GS 4-item set
are shown in Display 4; the parameters for the multiple category model are
given in Table 3. Display 4 shows the true trace lines (solid) and the
best-fitting 3-PL trace lines (dashed) for com-parison. GS items 1 and 4 have
troughs near 0 on the ability scale and are not fitted well by the 3-PL. GS
item 2 is well approximated by the 3-PL, not by either the 1-P1 or 2-PL; GS
item 3 is well approximated by all three logistic models. These 4 items are
difficult, with most of their information concentrated around +1 on the
ability scale.

Relative to the WK 4-item set, the GS 4-item set has more information
at ability levels around +1, but the logistic models are less accurate there,
especially on GS items 1 and 4. The logistic models are also very wrong at
abilities below -1 on both GS item 1 and GS item 4. The slopes for the four GS
items are quite high; see the n-PL parameters approximating these curves in
Table 3, or inspect the trace lines. So this test is made up of very "good"
items, with the exception of the peculiarities in their trace lines.
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Display 4. "True trace lines" (solid) and 3-PL estimates for the four-item

GS-inspired exam?le. The fitted 3-PL curves are dashed.
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Table 3. Multiple category and n-PL parameters, GS 4-item set .

Item -1
a(k) -2.211 -0.234 0.779 -0.278 1.943
c(k) 0.566 0.658 -1.809 1.079 -0.494
d(k) 0.185 0.185 0.185 0.445

Item 2

a(k) -0.766 0.640 -0.575 -0.450 1.151
c(k) 1.741 -2.905 1.602 -0.275 -0.162
d(k) 0.183 0.183 0.183 0.451

Item 3

a(k) -0.767 -0.057 -1.285 0.198 1.911
c(k) -0.037 0.554 0.544 -0.229 -0.832
d(k) 0.264 0.264 0.264 0.208

Item 4

a(k) -1.612 -0.703 -0.168 0.096 2.387
c(k) 0.475 0.451 -0.528 0.462 -0.860
d(k) 0.188 0.188 0.188 0.436

Estimated 1-PL parameters

Item Location Slope

1 0.93 0.73
2 1.00 0.73
3 1.90 0.73
4 0.87 0.73

Estimated 2-PL parameters

Item Location Slope

1 1.36 0.47
2 1.37 0.51
3 1.10 1.68
4 0.88 0.72

Estimated 3-PL parameters

Item Location Slope
Lower

Asymptote

1 1.30 3.25 0.26
2 1.56 1.94 0.25
3 1.10 2.14 0.03
4 1.08 3.50 0.23
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V.c. The GS 20-item set

In order to generate a 20-item artificial test without completing the
mind-boggling excercise of somehow generating and describing 20 different
trace lines, we settled upon the strategy of "multiplying" the GS 4-item set.

We replicated each of the four GS trace lines five times, to make a 20-item
set. The shapes remained the same as those shown in Display 4. To give the

test a broader range of difficulty or, equivalently, to spread the
information over a wider range of ability, each replication of the 4 items of
the GS set was "translated" .5 to the left. So the first 4 items of the
20-item set have true trace lines identical to those shown in Display 4.
Items 5 to 8 are the same, except that they are translated left .5, so, for
instance, the trough which is at zero in GS item 1 is at -.5 in item 5. Items

9 to 12 of the 20-item set consist of the GS 4-item set translated to the left
(easier) by 1, items 13 to 16 are 1.5 "easier" and items 17 to 20 are two
standard deviations easier.

Since the GS 4-item set was quite difficult, this process of replicating
it in successively easier versions produced a test with a good deal of
information from about +2 (the top of the information in the original set)
down to about -1. Table 4 gives the parameters for the multiple category
model used to generate the 20-item set, as well as the n-PL parameters
approximating the true trace lines. The progressive shifts of the items are

more clearly visible in the n-PL location parameters (going from items 1 to 20

in sets of four) than in the multiple category parameters.

The n-PL location parameters do not shift in steps of exactly .5,
because the effects of the lack of fit of the "wrong models" change as the
regions in which the n-PL models do not fit "slide off" the plots to the left.
So the 20-item simulation is of a reasonably broad-range test made up of
highly discriminating items with slightly odd trace lines.

V.d. The GS 40-item set

The structure of the 40-item set is extremely simple; the test consists
of two identical replications of the 20-item set. Each trace line in the

20-item set appears twice. Thus, the only difference between the 40-item set

and the 20-item set is length. All of the trace lines are (shifted) versions
of the GS curves in Display 4, and all of the parameters are the same as those
in Table 4, except that there are two copies of each.
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Table 4. Multiple category and n-PL

Item 1

parameters for 20-item set

a(k) -2.211 -0.234 0.779 -0.278 1.943
c(k) 0.566 0.658 -1.809 1.079 -0.494
d(k) 0.185 0.185 0.185 0.445

Item 2

a(k) -0.766 0.640 -0.575 -0.450 1.151
c(k) 1.741 -2.905 1.602 -0.275 -0.162
d(k) 0.183 0.183 0.183 0.451

Item 3

a(k) -0.767 -0.057 -1.285 0.198 1.911
c(k) -0.037 0.554 0.544 -0.229 -0.832
d(k) 0.264 0.264 0.264 0.208

Item 4

a(k) -1.612 -0.703 -0.168 0.096 2.387
c(k) 0.475 0.451 -0.528 0.462 -0.860
d(k) 0.188 0.188 0.188 0.436

Item 5

a(k) -2.211 -0.234 0.779 -0.278 1.943
c(k) -0.540 0.541 -1.419 0.940 0.478
d(k) 0.185 0.185 0.185 0.445

Item 6

a(k) -0.766 0.640 -0.575 -0.450 1,151
c(k) 1.358 -2.585 1.315 -0.500 0.414
d(k) 0.183 0.183 0.183 0.451

Item 7

a(k) -0.767 -0.057 -1.285 0.198 1.911
c(k) -0.421 0.526 -0.099 -0.130 0.124
d(k) 0.264 0.264 0.264 0.208

Item 8

a(k) -1.612 -0.703 -0.168 0.096 2.387
c(k) -0.331 0.099 -0.612 0.510 0.334
d(k) 0.188 0.188 0.188 0.436

Item 9

a(k) -2.211 -0.234 0.779 -0.278 1.943
c(k) -1.645 0.424 -1.030 0.801 1.449
d(k) 0.185 0.185 0.185 0.445

Item 10
a(k) -0.766 0.640 -0.575 -0.450 1.151
c(k) 0.975 -2.265 1.027 -0.725 0.989
d(k) 0.183 0.183 0.183 0.451
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Table 4 (continued)

Item 11

a(k) -0.767 -0.057 -1.285 0.198 1.911

c(k) -0.804 0.497 -0.741 -0.031 1.079

d(k) 0.264 0.264 0.264 0.208

Item 12

a(k) -1.612 -0.703 -0.168 0.096 2.387

c(k) -1.137 -0.252 -0.696 0.558 1.527

d(k) 0.188 0.188 0.188 0.436

Item 13

a(k) -2.211 -0.234 0.779 -0.278 1.943

c(k) -2.750 0.307 -0.641 0.662 2.421

d(k) 0.185 0.185 0.185 0.445

Item 14
a(k) -0.766 0.640 -0.575 -0.450 1.151

c(k) 0.592 -1.945 0.740 -0.950 1.565

d(k) 0.183 0.183 0.183 0.451

Item 15

a(k) -0.767 -0.057 -1.285 0.198 1.911

c(k) -1.188 0.469 -1.383 0.068 2.035

d(k) 0.264 0.264 0.264 0.208

Item 16

a(k) -1.612 -0.703 -0.168 0.096 2.387

c(k) -1.943 -0.604 -0.780 0.606 2.720

d(k) 0.188 0.188 0.188 0.436

Item 17

a(k) -2.211 -0.234 0.779 -0.278 1.943

c(k) -3.856 0.190 -0.251 0.523 3.392

d(k) 0.185 0.185 0.185 0.445

Item 18

a(k) -0.766 0.640 -0.575 -0.450 1.151

c(k) 0.209 -1.625 0.452 -1.175 2.140

d(k) 0.183 0.183 0.183 0.451

Item 19

a(k) -0.767 -0.057 -1.285 0.198 1.911

c(k) -1.571 0.440 -2.026 0.167 2.990

d(k) 0.264 0.264 0.264 0.208

Item 20

a(k) -1.612 -0.703 -0.168 0.096 2.387

c(k) -2.749 -0.955 -0.864 0.654 3.914

d(k) 0.188 0.188 0.188 0.436
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Table 4 (continued)

Estimated 1-PL parameters

Item Location Slope

1 0.63 1.27
2 0.67 1.27

3 1.28 1.27
4 0.59 1.27

5 0.31 1.27
6 0.38 1.27
7 0.68 1.27
8 0.17 1.27
9 -0.16 1.27

10 0.00 1.27
11 0.07 1.27
12 -0.36 1.27
13 -0.72 1.27
14 -0.45 1.27
15 -0.56 1.27

16 -0.97 1.27
17 -1.32 1.27
18 -0.94 1.27
19 -1.18 1.27
20 -1.63 1.27

Estimated 2-PL parameters

Item Location Slope

1 1.36 0.47
2 1.37 0.51
3 1.10 1.68
4 0.88 0.73
5 0.37 0.94
6 0.55 0.75
7 0.56 1.83
8 0.18 1.22

9 -0.16 1.37
10 -0.00 0.97
11 0.05 1.93
12 -0.31 1.68

13 -0.62 1.69
14 -0.47 1.16
15 -0.45 1.97
16 -0.77 2.03
17 -1.08 1.87
18 -0.92 1.31

19 -0.94 1.98
20 -1.23 2.26
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Table 4 (concluded)

Estimated 3-PL parameters

Item Location Slope
Lower

Asymptote

1 1.30 3.25 0.26

2 1.56 1.94 0.25

3 1.11 2.14 0.03

4 1.08 3.50 0.23

5 0.77 2.83 0.23

6 1.06 1.84 0.24

7 0.61 2.12 0.03

8 0.56 3.17 0.21

9 0.24 2.53 0.20

10 0.54 1.77 0.24

11 0.10 2.08 0.03

12 0.03 2.94 0.19

13 -0.32 2.32 0.17

14 0.02 1.71 0.22

15 -0.41 2.05 0.02

16 -0.50 2.78 0.17

17 -0.88 2.16 0.13

18 -0.51 1.65 0.21

19 -0.92 2.01 0.01

20 -1.03 2.66 0.15
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VI. Results, natural scaling

In this section, we discuss the outcomes of the simulation study as they
appear if the estimators are not rescaled. These results are important for
two reasons. The first is that there may be circumstances under which there
is no way to rescale, or "unshrink" estimates of ability; under such
circumstances, the results of this section are indicative of the performance
of the various models and estimators. The second reason for the importance of
these results is that they point up sharply the need for some kind of
rescaling for many of the estimators we consider. Results as they appear when
the estimators are rescaled are given in Section VII.

In this and the following section, most of the results are presented in
the form of XTREE glyphs, because they show the results quickly in ways that
tables do not. Thissen and Wainer (1984) describe XTREE glyphs and their
interpretation in this context. Briefly, XTREE glyphs are multivariate
graphical displays. In the context of this investigation, each model (1-PL,
2-PL, and 3-PL) at each level of ability (-2, -1, 0, +1, +2) is assigned an
XTREE; each of the 9 or 10 estimators for that model at that level of ability
is assigned a pair of branches on the XTREE. The left branch has length
proportional to that estimator's squared bias, while the right branch has
length proportional to that estimator's random variance; so the sum of the
lengths of the two branches is proportional to MSE. It sounds complicated,
but it is simple: short branches are good, and long branches are bad. A
standard set of branches at the bottom of each XTREE provide numerical
standards for interpretation of the other branches. The assignment of
estimators to branches is given by a "key" on the left side of each XTREE
plot.

VI.a The 4-item simulations

Displays 5 and 6 are the XTREE plots for the outcome of the WK and GS
4-item simulations, respectively. One outcome is of such great magnitude that
it dominates the scale of the XTREEs and dwarfs all other results, and that is
the massive bias for most of the estimators at both extremes (-2 and +2) in
both plots. The "standard" base of the XTREEs in both plots on the bias
(left) side is 4, which is equal to a bias of 2 (squared); when an estimator's
branch approaches that length (and some exceed it!), indicating that the mean
of the estimates was about zero, the population mean, and about as far from
the correct value of -2 or +2 as such estimates can be. This bias is, of
course, due to "shrinkage" toward the population mean of zero. The shrinkage
of estimates like these is (approximately) proportional to a ratio of the
information in the prior to the information in the item responses. Most of
the estimators can extract so little information from 4 items that the prior
dominates the item responses, instead of the other way around.

The GS 4-item set simply provides so little information at -2 that no
real pattern is visible there. In the GS simulation at +2, and in the WK
simulalation at both -2 and +2, there is a further pattern visible. With a
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single notable exception (discussed later), the more "robustified" the
estimator is, the worse it does. This effect is visible in the "scallops" on
the left side of all the XTREEs in those columns, because,-going-from-the
bottom to the top, the order of the estimators is MEAN, and then three
progressively robustified integrated estimators (M.25, M.50, and M1.0), then
the non-robustified MODE (which does better), followed by four robustified
modal estimators (H0.5, H1.0, H2.0, and BIWT). The robustified estimators
"resist" some item responses they (anthropomorphically) "feel" are
unreasonable, thus throwing away some of the meagre information in the 4-item
data and, as a result, are shrunk (biased) even more than their conventional
counterparts. There is not much to see in these XTREEs at abilities of -1, 0,
and +1 because the scale is set to fit the wild behavior at the extremes on
the plots. The estimators do not behave so very much differently from each
other at those ability levels, although the tendency for the robust estimators
to "overshrink" is still apparent.

The notable exception to this generally disastrous behavior of the
estimators in their attempts to reach low and high ability levels on the basis
of only 4 items is AMJK. It has much less bias under almost all conditions
with 4 items than do any of the other estimators. This is clearly a result of

the jackknife component of the procedure. Jackknifing was originated as a
procedure for reducing bias in statistical estimates (Quenouille, 1956);
"shrinkage" is a kind of bias, and the jackknife eliminates some of it. AMJK
has a good deal of random variance (right branches on the top trees) at all
levels of ability because, since it is a robustified estimator, it, too, is
throwing away some of the information in the data. But it is remarkably

unbiased.

To make this more concrete, the results from the simulation program
displaying bias and variance in semi-graphic form is included in Displays 7
and 8 for AMJK and the 3-PL MODE for the WK 4-item simulation. At ability ,
-2, 32 of the AMJK estimates are within a half a standard deviation of being
right! By contrast, all of the 3-P1, modal estimates are more than 1.2 away
from the true value of -2.

None of the IRT estimators really performed well with only 4 items, if
they were trying to reach extremes of ability. (If they were trying to reach
the middle, they didn't do too badly because they didn't go anywhere.) The
problem is shrinkage, and some way must be found to overcome that problem
before IRT estimates with small numbers of item responses can be expected to

be useful. It might be noted here that "not using" a prior distribution would
not solve the problem in any noncosmetic sense: if there had been no "prior,"
or a uniform (un-normed) prior, the many "perfeCt" response vectors 0000 and
1111 would have been assigned infinite estimates by all estimators. Since

some of these appear at all ability levels, it would have been hard to tell
about bias, but the variance of the estimates at each ability level would have

been infinite. That is not better.
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Kay for the ten- (l-PL) arta rune-branch (2-.
._XTREEs_

------ BIWT
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MEAN
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Each XTREE is within a modal at an ability level
Only one scaling is shown: it is identified at the
upper left: RMSE is "natural." REVM is
variance matching, and REMI is MIN(RMSE)

There is a branch for each estimator. ordered as
above *AMJK only for 1-PL
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Display 5. XTREE plot showing Squared Bias and Variance for the
Simulated 4 item Word Knowledge Test with RMSE resealing.
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Key for the ton- (1-PL) and nine-branch (2-.3-PL)
XTREEs

AMJK

BIWT

H2. 0

H 1. 0

HO. 5

MOOE

M1.0

M. 50

M. 25

MEAN

Standard
Bases

Each XTREE is within a model at an ability level
Only one scaling is shown: it is identified at the
upper left: RMSE is "natural." REVM is
variance- matching. and REMI is MIN(RMSE)

There is a branch for each estimator. ordered as
above *AMJK only for 1-PL

Bias2 is on the left. random variance is or
the right

Base lengths are given in the lower left

RMSE -2 -1

1 -PL

2 -PL

3 -PL

4-Item CS simulation
Bases 481

0 +1 +2

Display 6. XTREE plot showing Squared Bias and Variance for the
Simulated 4 item General Science Test with RMSE resealing.
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4 ASVAB

Bin

WK

u=-2.0

Estimator=AWK

Binned u-UHAT
u=-1.0 u= 0.0 u= 1.0 u= 2.0

End 1

1.6- 1.8 1

1.4- 1.6 15

1.2- 1.4 26 *

1.0- 1.2 9

0.8- 1.0
0.6- 0.8 30

0.4- 0.6 29 73

0.2- 0.4 40

0.0- 0.2 37

-0.2- 0.0
46

-0.6--0.4 32 50

-0.8--0.6 14

-1.0--0.8 21

-1.2--1.0
-1.4--1.2 47

-1.6--1.4 4

-1.8--1.6 2

End 21 2

Mean d -1.224 -0.274 0.288 -0.036 0.705
Std. Dev. 0.655 0.659 0.765 0.543 0.382

Binned Estimated s.e.
Bin u=-2.0 11=-1.0 u= 0.0 u= 1.0 u= 2.0
End

1.9- 1.8
1.8- 1.7
1.7- 1.6
1.6- 1.5
1.5- 1.4
1.4- 1.3
1.3- 1.2
1.2- 1.1
1.1- 1.0
1.0- 0.9
0.9- 0.8
0.8- 0.7
0.7- 0.6
0.6- 0.5 12 11 4 2

0.5- 0.4 54 58 77 48 27

0.4- 0.3
0.3- 0.2
0.2- 0.1
0.1- 0.0 34 31 19 50 73

Mean s.e. 0.327 0.338 0.382 0.245 0.147
Std. Dev. 0.206 0.200 0.167 0.209 0.182

Display 7. Frequency Distributions of Bias and Standard Errors for the AMJK
Estimator from the Simulated 4 item Word Knowledge test.
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4 ASVAB WK Estimator=MODE

Binned u-UHAT
n

End
1.6- 1.8
1.4- 1.6
1.2- 1.4
1.0- 1.2
0.8- 1.0
0.6- 0.8

0.4- 0.6
0.2- 0.4
0.0- 0.2

-0.2- 0.0

. u -1.0 u= 0.0

18

12

33

3

u= 1.0

1

10

5

8

26

50

u= 2.0

1

1

3

22

73

-0.4--0.2 42 18

-0.6--0.4 15 8

-0.8--0.6 5 2

-1.0--0.8 20 2

-1.2--1.0 7 4

-1.4--1.2 51 7

-1.6--1.4 6

-1.8--1.6 6 2

End 37 2

Mean d -1.658 -0.655 0.028 0,120 0.988
Std. Dev. 0.470 0.411 0.480 0.290 0.120

Binned Estimated s.e.
Bin u=-2.0 u=-1.0 u= 0.0 u= 1.0 u= 2.0
End

1.9- 1.8
1.8- 1.7
1.7- 1.6
1.6- 1.5
1.5- 1.4
1.4- 1.3
1.3- 1.2
1.2- 1.1
1.1- 1.0
1.0- 0.9
0.9- 0.8 51 42 18

0.8- 0.7 18 31 24
0.7- 0.6 5 9 21

0.6- 0.5 18 9 7 50 73
0.5- 0.4 8 9 30 49 27

0.4- 0.3
0.3- 0.2
0.2- 0.1
0.1- 0.0

Mean s.e. 0.723 0.728 0.626 0.487 0.504
Std. Dev. 0.134 0.123 0.151 0.056 0.036

Display 8. Frequency distributions of Bias and Standard Error for the 3-PL
MODE estimator from the Simulated 4 item Word Knowledge test.
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VI.b The 20- and 40-item simulations

Displays 9 and 10 are the XTREE plots for the 20-and 40-item
simulations, respectively. Note that errors (both bias and random) are
smaller at these test lengths, so the standard bases of the XTREEs are
smaller: two on the bias (left) side and one on the random (right) side.
Also note that there is a clear winner, defined by having short branches
(small MSE) across the entire range of ability: 3-PL MEAN.

We knew in advance that 3-PL MEAN ought to do best as test length
increased because, ignoring the fact that it is the "wrong model" for the
moment (it is not all that wrong), it is asymptotically optimal. What we did
not know was the location of "asymptotically." It appears to be around 20
items.

The robustified estimators continue to have problems with bias due to
shrinkage at extreme true abilities. In very robust estimators, the problem
is very large at 20 items and is not going away in any real sense at 40 items.
BIWT is generally better than the robustified mean-estimators (M.25, M.50, and
M1.0), which, in turn, are better than the h-estimators. All of those
estimators do improve between 20 and 40 items; AMJK, for no reason which is
clear to us, does not really improve as the test gets longer, and so loses
ground steadily to the MEAN.

A surprise, in some sense, is that the MODE, which has been the
classical ability estimate of IRT, does slightly but noticeably worse than the
MEAN at the extremes. This is especially true for the 3-PL model. In the
XTREE plots, the MODE branches are the middle branches (fifth in from either
end, excluding the bases); notice that at both +2 and -2 for both the 20-and
40-item tests, the branches are longer on the bias side for the MODE than for
the MEAN (bottom branches). In these regions of ability, especially with the
3-PL model, the posterior density for ability given the item responses has a
distinct propensity to be skewed, and the MODE of a skewed distribution is a
fragile estimator. Here we are in the odd position (for veterans of the
"robust estimation campaign") of pronouncing the MEAN "more robust." But it
is; at least, it is more robust than the MODE. Indeed, except that it is
probably a computational monster, a median might be better yet.

Display 11 shows the frequency distribution of the differences between
the estimates and the true value of ability (u-UHAT) at each level of ability,
and the distributions of estimated standard errors, for the 3PL MEAN for 20
items; Display 12 shows the same results for 40 items. In neither case is

performance perfect: both show some bias at ability , -2, .5 for 20 items and
.4 for 40 items; so it is not even improving rapidly there. This bias is made

to appear small by squaring it on the XTREE plots. But even with some bias
there, the estimated standard errors (squared) provide an excellent
approximation to the real MSE at each level of ability.
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Key for the ten- (1-PL) and nine-branch (2-. 3-PL)XTREEs

AMJK

BIWT

H2. 0

H1.0

HO. 5

, MODE

M1.0

//
/

M. 50

/ M. 25

/ MEAN

Standard
Bases

Each XTREE is within a model at an ability level
Only one scaling is shown: it is identified at theupper left: RMSE is "natural." REVM is
variance-matching, and REMI is MIN CRMSE)

There is a branch for each estimator, ordered asabove AMJK only for 1-PL
Bias2 is on the left, random variance is orthe right
Base lengths are given in the lower left

4 9

RHSE -2 -1

1-PL

2-PL

3-PL

5 x 4-item GS (20 items) simulation
Bases 2, 1

Display 9. XTREE plot showing Squared Bias and Variance for the
Simulated 20 item General Science Test with RMSE rescaling.
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Key for the ten- (1-PL) and nine-branch (2-.3-PL)
XTREEs

AMJK*

BIWT

//
H2. 0

H1.0

H0. 5

MODE

//
Ml. 0

/
---------_ --,' /.p.----------------/1

cp
i

5 i

M. 50

M. 25

MEAN

Standard
Bases

Each XTREE is within a model at an ability level
Only one scaling is shown: it is identified at the
upper left:. RMSE is "natural." REVM is
variance-matching, and REMI is MIN(RMSE)

There is a branch for each estimator. ordered as
above *AMJK only for 1-PL

Bias2 is on the left, random variance is on
tho right

Base lengths are given in the lower left

RMSE -2

1-P!

2 -PL

3 -PL

0 +1

\./

+2

10 x 4-item GS (40-item) simulation
Bases 2: 1

Display 10. XTREE Plot showing Squared Bias and Variance for the
Simulated 40 item General Science Test with RMSE Rescaling.
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4 GS X5

Bin
End

Estimator=MEAN

Binned u-UHAT
u=-2.0 u=-1.0 u= 0.0 u= 1.0 u= 2.0

1.6- 1.8
1.4- 1.6
1.2- 1.4
1.0- 1.2 1

0.8- 1.0 1

0.6- 0.8 3 1 1 19
0.4- 0.6 16 11 22 22
0.2- 0.4 22 18 20 14

0.0- 0.2 13 14 15

-0.2- 0.0 9 15 17 11 43
-0.4--0.2 30 10 19 24

-0.6--0.4 39 19 19 2

-0.8--0.6 13 1 1 4

-1.0--0.8 4 1

-1.2--1.0 3 1

-1.4--1.2
-1.6--1.4 2

-1.8--1.6
End

Mean d -0.486 0.019 -0.028 0.066 0.270
Std. Dev. 0.254 0.388 0.338 0.367 0.323

Binned Estimated s.e.
Bin u=-2.0 u=-1.0 u= 0.0 u= 1.0 u= 2.0
End

1.9- 1.8
1.8- 1.7
1.7- 1.6
1.6- 1.5
1.5- 1.4
1.4- 1.3
1.3- 1.2
1.2- 1.1
1.1- 1.0
1.0- 0.9
0.9- 0.8
0.8- 0.7
0.7- 0.6
0.6- 0.5 55 11 1 43
0.5- 0.4 40 54 32 35 29
0.4- 0.3 5 22 25 22 4

0.3- 0.2 10 23 30 22
0.2- 0.1 3 17 10 2

0.1- 0.0 3 2

Mean s.e. 0.497 0.413 0.312 0.328 0.427
Std. Dev. 0.047 0.091 0.109 0.104 0.111

Display 11. Frequency distributions of Bias and Standard Error for the 3-PL
MEAN estimator from the Simulated 20 item General Science test.
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4 GS X 10

Bin
End

1.6- 1.8
1.4- 1.6
1.2- 1.4

u = -2.0

EstimatorMEAN

Binned u-UHAT
u = -1.0 u 0.0 u 1,J0 u 2.0

1.0- 1.2 1

0.8- 1.0 1 1

0.6- 0.8 4 2

0.4- 0.6 10 1 7 18

0.2- 0.4 18 17 19 35

0.0- 0.2 10 20 41 27 18

-0.2- 0.0 26 21 30 33 11

-0.4--0.2 20 19 10 12 15

-0.67-0.4 23 1 2

-0.8--0.6 12 5 1

-1.0--0.8 8

1

-1.4-1.2
-1.6--1.4
-1.8--1.6

End
Mean d -0.358 0.055 0.033 0.034 0.185

Std. Dev. 0.283 0.345 0.195 0.218 0.290

Binned Estimated s.e.

Bin u = -2.0 u = -1.0 u 0.0 um. 1.0 um. 2.0

End
1.9- 1.8
1.8- 1.7
1.7- 1.6
1.6- 1.5
1.5- 1.4
1.4- 1.3
1.3- 1.2
1.2- 1.1
1.1- 1.0
1.0- 0.9
0.9- 0.8
0.8- 0.7
0.7- 0.6
0.6- 0.5 6

0.5- 0.4 75 14 15

0.4- 0.3 17 44 39

0.3- 0.2 2 42 87 90 46

0.2- 0.1 13 10

0.1- 0.0
Mean s.e. 0.445 0.318 0.217 0.222 0.327

Std. Dev. 0.057 0.070 0.016 0.016 0.070

Display 12. The frequency distributions of the Bias and Standard Error for
the 3-PL MEAN estimator from the Simulated 40 item General
Science Test.
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4 GS X 5

Bin
End

1.5- 1.8
1.4- 1.6
1.2- 1.4

u=-2.0

Estimator=MODE

Binned u-UHAT
u=-1.0 u= 0.0 u= 1.0 u= 2.0

1.0- 1.2 2
0.8- 1.0 3

0.6- 0.8 2 1 16

0.4- 0.6 6 5 11 22
0.2- 0.4 16 10 18 14

0.0- 0.2 21 22 32 43
-0.2- 0.0 25 34 18

-0.4--0.2 18 15 13 13
-0.6--0.4 31 11 11 2

- 0.8 - -0.6 28 4 2 4

-1.0--0.8 15 1 1 1

-1.2--1.0 6 1

-1.4-1.2 2

-1.6--1.4
-1.8--1.6

End
Mean d -0.638 -0.082 -0.054 0.049 0.347
Std. Dev. 0.251 0.330 0.293 0.299 0.267

Binned Estimated s.e.
Bin u=-2.0 u=-1.0 u= 0.0 u= 1.0 u= 2.0
End

1.9- 1.8
1.8- 1.7
1.7- 1.6
1.6- 1.5
1.5- 1.4
1.4- 1.3
1.3- 1.2
1.2- 1.1
1.1- 1.0
1.0- 0.9
0.9- 0.8
0.8- 0.7
0.7- 0.6 10

0.6- 0.5 35 5

0.5- 0.4 41 29 1 43
0.4- 0.3 14 65 36 21 52
0.3- 0.2 1 64 78 5

0.2- 0.1'
0.1- 0.0

Mean s.e. 0.492 0.387 0.300 0.298 0.388
Std. Dev. 0.076 0.057 0.011 0.023 0.061

Display 13. The frequency distributions of the Bias and Standard Error for
the 3-PL MODE estimator from the Simulated 20 item General
Science test.
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Display 13 shows the 20-item results for 3-PL MODE. It is between .1
and .2 more biased at extreme abilities, but its nominal standard errors are
estimated to be the same as those for the MEAN.

Additionally, it is clear from these results that with the 3-PL MEAN,
the use of the normal population distribution is a non-issue at test lengths
over 20 items or so. Except (slightly) at ability = -2, where this set of
items provides almost no information, the item responses swamp the prior, and
there is negligible bias due to shrinkage. In an adaptive test, in which the
examinees of low ability (eventually) responded to some very easy items, there
would probably be less bias at -2, as well.

VII. Results, with

Resealing, either to match the variance of the generating distribution
of ability or to minimize MSE, is the great equalizer of this study. The
tendency for clear winners (and losers) to appear, such as existed in the
previous section (AMJK (if anything) good for small sets of items and 3-PL
MEAN good for long tests), disappears instantly when the estimators are
resealed .in an attempt to make their various interactions with the prior
vanish. But certainty will not exist in this section: Every estimator is
about as good as every other (for 20 or 40 items) or as bad (for 4 items).
There are some trends: pretty much without exception for the longer tests and
with some exceptions for the short tests, the 3-r. estimators perform better
than the corresponding 1-PL and 2-PL estimators. And the robust estimators
show some advantages here, but they are by no means sufficiently uniform to
recommend them for general use.

VII.a The 4-item simulations

Displays 14 and 15 show the XTREEs for the WK 4-item set with scaling to
match the variance of the generating distribution; and Displays 16 and 17 give
the same results for the GS 4-item set. Note that, because the badness of the
estimates has been re-distributed much more evenly across levels of ability
than it was originally, the bases for the XTREEs are only 2 on the bias2 side
and remain 1 on the variance side. It all fits, because a great deal of what
used to be bias at the extremes has been transformed by rescaling into random
variance pretty much all over. Most of the rescalings involve some mean shift
(to reduce the bias at -2 which existed in all the estimators) and
multiplication by a factor greater than unity to expand the variance. These
processes reduced bias at the extremes, at the expense of inducing some bias
and a great deal of heretofore unseen random variance in the middle.

The results with the two rescaling conventions do not differ a great
deal with respect to differences among the estimators. AMJK was least changed
in rescaling, of course, since it was closest in its original form. It seems
that all of the estimators can be made to behave much like a transformed AMJK
with an appropriate linear transformation. That is, with 4 items, they can
show little bias and lots of variance. There are occasional long branches on
the XTREES which attract attention, but if that estimator is followed across
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Key for the ten- (1-PL) and nine-branch (2-.3-PL)
XTREEs

AMJK*

BIWT

H2. 0

HI. 0

HO. 5

/ MODE

M1.0

M. 50

M. 25

MEAN

Standard
Bases

Each XTREE -is within model at on ability level
Only one scaling is shown: it is identified at the
upper left: RMSE is "natural." REVM is
variance-matching. and REMI is MINCRMSE)

There is branch for each estimator. ordered as
above *AMJK only for 1-PL

Bis2 is or: the left. random variance is on
the right

Base lengths are given in the lower left

REVM -2 0 +1

1-PL

2-PL

+2

-/ / 2 ./
-./ / /

-,. / .../ ../

----/ / -/
-..../ / ../ /
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----../ I ..../ ./

....:/// '''''''''....// ....**""",:;:l
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.......\,//
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Bases 2:1

Display 14. XTREE Plot showing Squared Bias and Variance for the
Simulated 4 item Word Knowledge Test with REVM Rescaling,
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Key far the ton- (1-PL) and nine-branch (2-.3-PL)
XTREEs

AMJK*

BIWT

II/ H2-0

/
H1.0

H0. 5

MODE

M1.0

M.50

M.25

MEAN

Standard
Bases

Each XTREE is within a model at an ability level
Only one scaling is shown: it is identified at the
upper left: RMSE is "natural." REVM is
variance-matching. and REMI is MIN(RMSE)

There is a branch for each estimator. ordered as
above *AMJK only for 1-PL

Bias2 is on the left. random variance is on
the right

Base lengths are given in the lower left

REMI -2

1 -PL

2 -PL

3 -PL

K -e/
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-/

4-item WK simulation
Bases 2: 1

Display 15. XTREE Plot showing the Squared Bias and Variance for the
Simulated item Word Knowledge Test with REMI Resealing.

1

ti

ti



Kay for the ten- (1-PL) and nine-branch (2-,3-PL)
XTREEs

AMJK*

BIWT

H2.0

Hl. 0

.../// HO. 5

MODE

/
M1.0

M. 5D

M. 25

/// MEAN

Standard
Bases

Each TREE is within a modal at an ability level
Only ona\scaling is shown: it is identified at the
upper laft: RMSE is "natural," REVM is
variance- matching. and REMI is MINCRMSE)
Thera is a branch for each estimator, ordered as
above *AMJK only for 1-PL

Bias2 is on the laft, random variance is on
the right

Base lengths are given in the lower loft

REVM

1 -PL

2 -PL

3 -PL

4 -item GS simulation
Bases 211

Display 16. XTREE Plot showing the Squared Bias and Variance for the
Simulated 4 item General Science Test with REVM Rescaling.
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Key for the ten- (1-PL) and nine-branch (2-.3-PL)
XTREEs

- _
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There is a branch for each estimator, ordered as
above *AMJK only for 1-PL
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Display 17. XTREE Plot showing the squared Bias and Variance for the
Simulated 4 item General Science Test with REMI Rescaling.



to other levels of ability there will be some equally surprising short branch

somewhere. In most cases in the four plots there appears to be a tendency for

the 3-PL estimators to do better than the others.

It may be that any procedure which succeeds in getting rid of bias at

the extremes of ability with only 4 items must induce a great deal of random

variance everywhere. It is not clear which is better: to administer 4 items

and still believe everyone has approximately ability zero (most "naturally

scaled" estimators) or to believe that everyone is all over the place, with

variances sometimes in excess of the original one (for some resealed

estimators). If rescaling is available, it seems that all of the estimators

are approximately equally good (which is bad).

VII.b The 20- and 40-item Simulations

Displays 18, 19, 20, and 21 show the 20-item variance-matched and

MIN(MSE) results, followed by the 40-item VM and MI results. Performance

here, in contrast to the 4-item case, is so good that the scale of the XTREEs

has been changed dramatically; the bases are .25 on the bias2 side and .125 on

the random variance side. So what seem to be long lines are nothing. The

XTREEs are drawn to that scale to show the clear patterns, and there are some.

One clear pattern in all four plots is that the 3-PL estimators perform much

better than the others. So we restrict our consideration to 3-PL estimators.

The MEAN is no longer a clear winner if the estimates can be "unshrunk."

In both rescalings, BIWT, H0.5, and H1.0 frequently do better (have shorter

branches on both sides of the trunk) than the MEAN. M0.25 and M.50 seem to

"trade in" some random error for more bias than the MEAN shows, but perform

well. The MODE continues to show erratic performance, and H2.0 seems to have

a good deal of bias at times, like at +2 and -2 in the 20-item plots of the

results with MSE minimized.

The robust estimators induce shrinkage, which yields bias. If this

shrinkage can be reduced in a practical situation, robust estimators may be

useful: specifically H0.5, H1.0, and BIWT. But they must be stretched to

beat the MEAN on MSE. Of course, this indicates they will beat the MEAN on

correlation under any circumstances. Thus, robustness can help us; but its

inward regression when used in estimation with priors is a problem that must

be considered in any context in which robust estimators are used.

VIII. Conclusions

The conclusions reached in this investigation are different for two

different classes of situations. The first class of situations includes those

in which the numerical value of the ability estimate must be taken seriously,

without rescaling. Such situations include comparing the ability estimate to

some cut-point or criterion for a classification decision and also the process

of computerized adaptive testing in which the value of the current ability

estimate at any point in the process is used to select the next item. [In
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Display 18. XTREE Plot showing the Squared Bias and Variance for the
Simulated 20 item General Science Test with REVM Rescaling
(Note Bases are .25: .125).
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Display 19. XTREE Plot showing the Squared Bias and Variance for the
simulated 20 item General Science Test with REMI Rescaling.
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the Simulated 40 item General Science Test with REVM
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Display 21. XTREE Plot showing the Squared Bias and Variance for the
simulated 40 item General Science Test with REMI Rescaling.
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The results for the naturally scaled estimators differ, depending on
whether a few items (four or so) or many items (20 or 40) are considered. If
the goal is to make an ability estimate with a few items, there is a serious
problem with almost all of the estimators, and that is bias due to shrinkage.
For a population with a mean of zero, that means thatalmost all of the
estimates for almost all response patterns are very near zero. So the
estimators do well for examinees with true ability near zero: their estimates
are near zero. The estimators do not do so well with examinees with true
abilities near -2 or +2, as their estimates are also near zero. With a few
items (about four), most of the estimators move so little that it is not clear
that the outcome is worth the computation. With items like the ones in these
simulations, with substantial non-zero levels of P(correct) on the left,
examinees with true abilities of -2 have estimates which tend not to move down
from zero at all. The estimators do better on the right: examinees with true
abilities at +2 may be assigned estimates a little over +1 by the best of the
conventional estimators, 3-PL MEAN.

AMJK is a notable exception to this trend toward zero. At some cost in
increased variance, AMJK "spreads" the high and low ability examinees'
estimates much sooner (in number of items) than any of the other estimators.
This is not a matter of being "robust"; it is a matter of being much less
biased, due tc the jackknife component of the procedure.

An unexpected, but nevertheless important, finding in this investigation
is that, with few items, the problem with IRT ability estimators is not
robustness, or lack of it, but rather, shrinkage and its avoidance. One of
the robust estimators, AMJK, happened to have been constructed in such a way
that it avoids shrinkage well; this lets us see the problem. Future work in
ability estimation, especially for practical applications of adaptive testing,
is required on "unshrinking" ability estimates. It is possible that we can do
much better. It would also be useful to do much better, as shrinkage is a
problem that will remain. A frequently proposed solution to the problem of
shrinkage, to "not use a prior" or "use a uniform prior," does not really
solve the problem in a useful way. The response vectors whose estimates
shrink most are the "perfect" ones: 0000 and 1111 for 4 items. With "no
prior," these response vectors either have infinite estimates of ability or
are pronounced to have "no estimate." While having an excessively regressed
estimate may be bad, it is not clear that either an infinite one or none at
all is better. To ignore the perfect response vectors (which are quite common
with a few items) and to note that the rest of the estimates are less biased
if no prior is used is solving only part of the problem at the extreme expense
of another part. The problem is not solved here, but it is well specified.

With many items, 3-PL MEAN does as well as its estimated standard errors
say it does, and that is pretty well. This optimal estimator does well as
long as there are enough item responses that "the data swamp the prior."
Unless some effort is made to reduce shrinkage, the robust estimators seem to
have too little information relative to the prior and to regress more from the
extremes, thus losing to 3-PL MEAN.
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In the second class of situations, in which the values of the ability
estimates are not used with respect to outside criteria (like cut-points or
the point of maximum information of pre-calibrated items) or in which
resealing is possible, there is a completely different set of conclusions.
These conclusions apply to situations in which resealing is possible, or in
research applications in which only the correlation of the estimates with
other variables is required, as correlation is not affected by any linear
resealing. When resealed, all of the estimators behave similarly when faced
with 4 items. They do not behave very well, as most of the resealing
increases the random variance in the process of "stretching" the scale out t'
the extremes.

As the test gets longer (to 20 and 40 items in our simulations), a
pattern of superior performance for the 3-PL estimators emerges. This
superiority of the 3-PL estimators, of course, is based on "error-free"
estimates of the item parameters, which may be difficult to obtain in practice
or else require large calibrating samples. And Jones, Wainer and Kaplan
(1984) describe the scale of problems induced in ability estimates by error In
3-PL item parameter estimates. However, if the 3-PL item parameter estimates
are good and the test is long, several 3-PL ability estimators are
more-or-less equally good: 3-PL MEAN, H0.5, H1.0, and BIWT. Those robust
estimators, when their excessive shrinkage is "defeated" by resealing, perform
a little better than the MEAN. This means that, even if they were not
resealed, if they were used only in a correlational context, the robust
estimators would do better than the MEAN. So they are to be recommended for

some applications. The other robust estimators either do not improve well as
the test increases in length (AMJK and H2.0) or seem to decrease raodom ertor
at too much cost in 1,ias (the Mnnn estimators).

In conclusion, it should be observed that these simulations were
realistic rather than abusive. This shows in the results: the robust'

estimators did not do better than the "asymptotically best if the model fits"
MEAN in MSE and did very little better if the estimates were resealed. The
true trace lines we used were not very different from the n-PL trace lines
which approximated them when estimating ability with the wrong model.
Presumably, if we had made the wrong model "wronger," by using more exotic
true trace lines that the logistic models could not approximate well, the
performance of the MEAN would have deteriorated and the robust estimates would
have gained on it. But it is not clear what would have been gained
conceptually by such a "worst case" set of simulations.

When the model may be "moderately wrong," as It was in the
simulations, prescriptions ace fairly clear. With a few items, either do not
compute IRT ability estimates it all until you have more items, or nae
If you have more items, use 3-PL MEAN if you cannot rescale or "unshriuk" ot
use H0.5, H1.0, or BIWT if you can rescale, or are concerned only with
correlation and want some "robustness" or protection against aberrant
responses.
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Robust Estimation of Ability

Glossary - 1

Glossary

A number of mnemonics are used throughout the series of reports on the
robust IRT estimation of ability (here, and those by Thissen, Wainer and Rubin
(1984) and Thissen and Wainer (1984)). Some of these are standard in item
response theory and some are less so as the structure of the study requires us
to make distinctions in nomenclature not commonly of interest. The names we
use, mostly four capitalized characteristics in length for the convenience of
some computer systems, are brought together here with verbal descriptions;
more mathematical descriptions are provided in various places in the text.

Ability

The central concept in the study is "ability"; the standard notation for
this latent variable in IRT is 6. We use 6 frequently in the text, but also U
(both upper and lower case) in some of the material which is (essentially)
computer output, for the simple reason that most computer output devices
cannot print 6.

Models

1-PL This nearly-standard nomenclature is used for the one-, two-,

2-PL and three-parameter logistic IRT models. The models are defined

3-PL in equations (1), (2), and (3); the 3-PL model is that of Lord (1980),
the 2-PL has all lower asymptote parameters at zero, and the 1-PL model
also has all the slopes equal.

Estimators

MEAN The MEAN (also called "EAP" by Bock and Mislevy (1982)) is the
average, obtained by numerical integration, of the posterior density
over 6, given the item responses.

Mnnn There are three "robustified" mean-type estimators considered in the
study, denoted M.25, M.5, and M1.0. These are the expected value
analogs of the Jones (1982a) "h-estimators" in which the contribution
of each item to the posterior is weighted by an exponential function
of the information it provides about 6 in that region. The values of
nnn are the values of "h" used.

MODE The MODE, more commonly called the "Bayer modal" estimate in the IRT
literature because it includes the population density, is the mode of
the posterior density over 6 given the item responses.
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Robust Estimation of Ability

Glossary - 2

Hnnn Three examples of the class of "robustified" modal estimators
proposed by Jones (1982a) are included: H0.5, H1.0, and H2.0. 11,...se

are modal estimators in which the contribution of each item to the
posterior is weighted by an exponential function of its informati,i1
at that point. The number following "H" is the value of Jones'
(1982a) "h", the exponent of the information,

BIWT Another modal estimator in which the contribution of each item is
weighted, this time with Tukey's "biweight," was proposed by Bock and
Mislevy (1982).

AMJK Wainer and Wright (1980)-proposed a relatively complex robust
estimator of ability which is a weighted jackknifed modal estimator.

With the exception of AMJK, all estimators are defined for all models, so an
estimator is defined by both its four-character identification and that for
model with which it is used.

Scaling Conventions

Estimates of 8 are determined only up to an arbitrary linear transformatioL
(of location and scale). For some purposed, i.e., comparing scores for a single
group of examinees who all responded to the same set of test items, the scale is
irrelevant as between-individual comparisons have the same properties under arty
linear transformation. For other purposes, i.e., comparing the values of
different estimators which may be on different scales on bias or MSE, the choiL:
of linear transformation of the estimates is crucial. We consider three scaling,
conventions for all of the estimators.

No special name is given to the "natural scaling of the estimators,
defined as "the way they come out of the computer program." This Scalk,

is defined by an interaction between information in the item set and
variance of the population distribution (which is always 1 here), and so
varies from estimator to estimator as each estimator behaves as though
there was a different amount of information in the item responses.

VARM One procedure to make the performance of the various estimators ITKI:c
straightforwardly comparable is to rescale all estimators to have tn
same variance in the simulee sample, as well as the same mean. like

rescaling the estimates obtained with each estimator to have the
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mean (zero) and the same variance (2) as the uniform (-2,2) sample of
simulees used in this study, we make the concept of MSE much more
meaningful.

MINV If MSE is to be the criterion for selection of a good estimator,
another rescaling of the estimates obtained with each estimator is
that which minimizes MSE over the sample of simulees.

Performance Criteria

Several variables el-scribe the performance of each estimator in the
simulation study. Each of these variables is defined for each scaling
convention (above).

UHAT A vector of simulated values for each estimator at each level of 6.
The simulees are not indexed; functions of this vector [i.e.,
S.D.(UHAT)] are over the simulees.

UBAR The average of the estimates for each estimator at a particular level
of 6 (or u or U) is called UBAR. These values are different for the
three scaling conventions, and so UBAR is modified, by the name of a
scaling convention (none, VARM, or MINV).

DBAR The bias of the estimates for an estimator is the

DBVM difference between UBAR for that estimator and the true value

DBMI of 6. This is denoted DBAR for "natural" scaling, DBVM for VARM
rescaling, and DBMI for MINV rescaling.

S.D. The standard deviation of the estimates for a particular

SDVM estimator at some level of 6 is denoted by S.D. for the

SDMI "natural" scaling, SDVM for VARM rescaling, and SDMI for MINV
rescaling.

RMSE The Root Mean Square Error is the root of the sum of

RFVM the squares of DBAR and S.D. (mutatis mutandis for the other

REMI scaling conventions) and is denoted in forms parallel to the bias and
standard deviation indices.
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