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Spatial Cues in Algebraic Syntax

Every language, be it natural or artificial, employs a

system of rules, called a syntax, to govern the arrangement

and interrelation of its elements as they occur in

"sentences." It is the syntax of English, for example, that

determines for the sentence "The man Bill grabbed fell" that

it is the man that fell, Bill who did the grabbing, the man

who was grabbed, etc. Similarly, it is the syntax of the

computer language LOGO that determines that in the command

"FORWARD :CHARGE" :CHARGE will be evaluated as a number of

units for the turtle to progress. As well, it is the syntax

of algebra that determines that in "3x2" it is the x which

is squared and the result tripled, rather than the x.tripled

and the result squared. In general, syntax provides a fixed

internal structure for the elements of the "sentences" of a

language.

Clearly, syntax must be mastered before any sensible

use can be made of a language. In the case of natural

languages, syntax is learned unconsciously through informal

exposure to a language community. A speaker need not be

consciously aware of the "rules" which comprise syntax. For

example, the fluent speaker of English, unschooled in

linguistic theory, would be hard pressed to identify a rule

in which the stress applied to a pronoun determines its
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reference. Yet every native speaker, will unhesitatingly

recognize that pronominal reference for the sentence "Bill

hit John and then Frank hit him" is determined by the

presence or absence of stress on "him." Indeed, a major

project of linguistic research is to discover exactly what

the rules of syntax are for natural languages.

For artificial languages, such as computer languages,

the situation is reversed. Rules of syntax are deliberately

laid out in the original formulation of the language. They

remain fixed (or subject to controlled development)

throughout the life of the language. For the novice,

syntactic rules are learned explicitly from manuals or

through structured teaching. The computer insists on

explicit formulations for commands, and those who design

computer languages and those who "speak" to computers

through these languages are well apprised of the fact.

Mathematical languages are usually considered to reside

within the artificial camp rather than the natural language

camp. Indeed, the very essence of mathematics may be seen

as the presentation of rigorously derived rules through a

rational and determinate notation. Like computer languages,

mathematical languages have been designed for specific

technical or scientific purposes. Their rules are

completely circumscribed by conscious and rational

consideration at the time of their inception. They are
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communicated to novice users from textbooks or through

structured pedagogy.

1.s compelling as this view of mathematical language may

seem, it is assailable on several grounds. First of all,

unlike computer languages, mathematical languages such as

the system of algebraic notation are not the creation of a

single integrated effort. Algebraic results originally were

coded in careful natural language, rather like legal

language is today. The following translation from the great

Mohammed ibn-Musa al-Khowarizmi in his ninth century book

Al-jabr wa'l muqabalah (from which "algebra" got its name)

illustrates this point:

You ought to understand also that when you take the
half of the roots in this form of equation
[quadratic] and then multiply the half by itself; if
thai which proceeds or results from the
multiplication is less than the units
above-mentioned as accompanying the square, you have
an equation. (Boyer, p. 253).

(This statement expresses the fact that in a quadratic

equation the discriminant must be positive in order for

there to exist a real solution). Specialized mathematical

symbols were only gradually introduced, and as Cajori (1928)

observed, the systematization of notations was halting and

evolutionary rather than decisive and final. Thus the

assumption that mathematical languages are like computer

languages in having a rationally accessible syntax should

not be accepted unquestioningly.



Careful examination of pedagogical methods and

materials for algebraic syntax proves particularly damning

to this thesis. A survey of several textbooks (Brown,

Snader & Simon, 1970; Vannatta, Goodwin & Crosswhite, 1970;

Johnson, Lendsey & Slesnick, 1971; Sobel & Maletsky, 1974;

Dolciani & Wooton, 1975; Johnson & Johnson, 1975) found only

1 to 6 pages devoted to instruction in algebraic syntax.

More importantly, the rules presented were, in most cafes,

inadequate to the actual requirements of syntactic skill.

Often, exponentiation and radical were entirely omitted from

the discussion (which typically is near the beginning of the

text) since these operations had not yet been introduced.

Occasionally the left-to-right precedence of related

operations was unstated [(5 3 + 1 = (5 3) + 1, not

5 - (3 + 1)].

Similar deficiencies can be discerned in classroom

based syntactic strategies. In the present study many

grade 9 and grade 11 students tested reported the use of the

acronym BOMDAS which stands for Brackets, Of, Multiply,

Divide, Add, Subtract. This indicates that operations

within parentheses are precedent to those outside of

parentheses and that multiplication and division have

precedence over addition and subtraction. "Of" is a relic

of older notations as illustrated in "3/8 of 24." A similar

technique uses the mnemonic My Dear Aunt Sally for which the



initials correspond to the MDAS of BOMDAS. Such methods are

inadequate even to the parsing of such simple examples as

3x2, and x y + 1.

It is apparent from these observations that the

assumption that syntactic knowledge is transmitted to the

neophyte in an explicit form through the propositions

espoused by text and teacher is highly suspect. Thus one

may ask what is the nature of syntactic skill, if it is not

based on textbook rules? How are these skills actually

acquired by students if pedagogical methods are incomplete?

Are all students equally successful in acquiring this

syntactic knowledge which is fundamental to any sensible use

of algebraic symbolism?

Algebraic Syntax

In order to begin to address these questions, it is

necessary to provide a comprehensive account of algebraic

syntax. The syntax of algebra assigns a fixed internal

structure to the elements of each well formed algebraic

expression. A tree notation adapted from linguistic theory

(Matz, 1980) is used to display this structure. This

notation is illustrated in Figure 1 for the expression

5 3x2 + y. The operations closer to the bottom of the

tree are said to be "precedent" to those above, while the

higher ones are "dominant" to those below. In keeping with

standard practise, syntactic conventions will be formulated



Figure 1

Syntactic Tree Diagram for 5 - 3x2 + y
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"M" represents multiplication
"E" represents exponentiation

as precedence rules, although elsewhere, the author has

argued (unpublished) that cognitively, such rules are

represented in terms of dominance. That discussion,

however, is orthogonal to the present concerns.

There are two kinds of syntactic conventions in

elementary algebra. The first concerns the physical

presence of syntactic markers. Besides the usual

parentheses, there are two other types of syntactic markers.

The vinculum as it occurs in both fractions and radicals is

an indicator of grouping. (Compare, for example, i/x + y and

i + y). Similarly, the raising of symbols in exponents

carries syntactic import (compare x5y and x5y). Inclusion

of an operation within parentheses, above or under a

vinculum, or within an exponent gives it precedence which it

otherwise would not have.
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The second kind of syntactic convention operates in the

absence of physical markers. A comprehensive treatment of

this syntactic component utilizes a hierarchy of operation

levels introduced by Schwartzman (1977). The six operations

are grouped into three levels of two inverse operations

each. The operations at each successive level are repeated

applications of those at the previous level:

Operation Hierarchy

Level 1: addition subtraction

Level 2: multiplication division

Level 3: exponentiation radical

(In this hierarchy, Level 3 is said to be "higher"

than Level 2 which is "higher" than Level 1).

Using this hierarchy, a syntactic convention can be

stated for instances where physical markers are absent.

Syntactic Convention

1. Higher level operations have precedence over lower level

operations, and

2. In case of an equality of levels, the left-most

operation has precedence.
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Thus an expression such as 5 3x2 y is analysed as in

Figure 1 with exponentiation (Level 3) having first

precedence and multiplication (Level 2) having next

precedence. Addition and subtraction are of the same level

(Level 1) therefore subtraction precedes addition because of

its leftwards position.

The foregoing provides a brief overview of the syntax

of symbolic algebra. The delineation of rigorous and

rational rules of syntax, however, does not answer the

questions which were posed at the end of the introductory

section. On the contrary, the articulation of a relatively

complex and intricate syntax merely highlights the

inadequacy of standard instructional techniques and

materials as a vehicle for syntactic mastery and raises anew

the questions of student learning.

Hypothesis

The syntax of natural language is difficult to specify,

in part, because of the complex relationship between "deep"

and "surface" structures in language. Deep structures carry

the meaning of sentences. Surface structures are the result

of transformations of the deep structures into expressive

form. For example, in the surface representation of the

sentence "John is easy to please," John appears to be the

subject. The deep structure, however, is more akin to

[It [for someone to please John] is easy]. John is the

12



direct object for an embedded clause in the deep structure

representation.

Algebraic language also has deep and surface aspects.

Multiplication and exponentiation, for example, are

positionally marked by juxtapositions, rather than by

explicit operation symbols. Thus, the deep structure

representation "3 multiply x" has as a surface

representation "3 horizontal juxtaposition x."

Recall that "operation levels" (Page 7), which figured

in the Syntactic Convention, were defined by an inventory of

the operations at each level. (Level 1 is addition and

subtraction, etc). This, therefore, is a deep structure

definition of "levels." Operation level, however, ran be

reformulated in surface structure terms:

Alternative Definition of Operation Level

Level 1: wide spacing; a b ("a + b" and "a b")

Level 2: horizontal or vertical juxtaposition; ab,

Level 3: diagonal juxtaposition; ab a.
D

The syntactic convention (page 7), assumes a quite

different character under these ncv definitions. For

example, the first rule "Higher level operations have

precedence over lower level operations" becomes "diagonally

juxtaposed symbols have higher precedence than horizontally
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or vertically juxtaposed symbols, which have higher

precedence than spaced symbols," rather than the more usual

"exponents and radicals precede multiplication and division

which precede addition and subtraction." One could easily

imagine two computer programs for the parsing of algebraic

expressions, one involving the assignment of deep structure

terms to the expression prior to parsing, the other parsing

directly on the basis of surface features. The two programs

would produce equivalent syntactic decisions.

The delineation of two well-defined characterizations

of "operation level" raises the question as to which version

actually underlies the syntactic knowledge of the fluent

algebraist. Is syntactic knowledge coded as information

about "operations" and other deep structure constructs, or

is it coded in terms of the spacing and positioning of

symbols? Are the degenerate rules of syntax which are

present in our classrooms and in our texbooks somehow the

vehicle for a propositional (deep structure) syntactic

knowledge, or does the student him/herself respond,

untutored, to the positional cues in the notation?

Method

The task of evaluating algebraic expressions was chosen

as the means to investigate the psychological basis of

syntactic skill. A typical example of such a task is to

evaluate 3x2 when x=2. A result of 12 is taken as an
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indication that the expression has been analysed

appropriately as 3(x2). A result of 36 is taken as an

indication that the expression has been analysed

inappropriately as (3x)2.

An overview of the basic strategy of investigation in

this study is as follows: Firstly, it is necessary to verify

that the subjects can perform evaluative tasks appropriately

using standard algebraic notation. Then similar tasks are

presented using a nonce, or artificial, notation. This

notation is specially devised to display the propositional

or deep structure character of algebraic expressions while

distorting the surface cues of ordinary notation. The

ability of subjects to perform appropriate syntactic

analyses in the nonce notation is taken as an indication

that syntactic knowledge is propositionally encoded in deep

structure form. Inability to transfer competent behaviours

to the nonce setting indicates a dependence upon the surface

cues found in ordinary notation.' (Several possibly

confounding factors to this simplified inferential scheme

are considered throughout this report).

'The use of nonce forms is a standard paradigm in
psycholinguistics. See, for example, Braine, (1971);
Marslen-Wilson & Welsh, (1978).



The Nonce Forms Study

A nonce notation was devised which displays the deep

structure relations in algebraic expressions, but distorts

the usual spatial arrangement of the symbols:

aAb = a + b

aMb = ab

aEb = a
b

aSb = a b

aDb =
aE

aRb = aVE

12

In each case a capital letter abbreviation is used to

identify the operation. Thus the notation may communicate,

in propositional form, the operations within an algebraic

expression. The nonce form, however, spaces all of the

symbols equally in a horizontal array. This distorts the

surface, spatial cues available in standard notation for the

determination of operation levels.

Three kinds of tasks were devised using the nonce forms

notation: arithmetic; simple algebraic; and complex

algebraic. The arithmetic tasks were simple binary

combinations such as 5E2 ( 52 ). These items were included

to insure that subjects could indeed retrieve the

appropriate propositional information from the nonce

notation.

The algebraic items, simple and complex, consisted of

algebraic expressions expressed in nonce form. Each

expression contained a single occurrence of the variable

"x." The task was to evaluate the expression for x=2.
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Simple algebraic items were of the form 5MxS2A1

(ie 5x 2 + 1), in which the correct precedence of the

operations is from left to right. Complex algebraic items

were of the form 1A3MxE2 (1 + 3x2) in which the correct

order is other than from left to right.

This distinction was made because of the nature of the

spatial cueing hypothesis. If subjects do in fact rely upon

such cues then they might be expected to transfer their

response patterns to the nonce notation. But the crucial

indicator according to this hypothesis is the relative

spacing of the symbols. Since the nonce notation spaces all

symbols equally, this would be construed as indicating that

the levels of all of the operations are equal. In this

event, syntactic subrule 2 (page 7) would dictate a

left-to-right assignment of operation precedence. Thus for

the items identified as "simple algebraic," subjects using

spatial cues, as well as subjects using propositional

information, would be expected to perform correctly. For

the complex algebraic items however subjects using spatial

cues would tend to continue with the left-to-right

assignment of precedence, while those employing

propositional strategies would adjust their precedence

procedures appropriately.

The instrument contained three ten-item subtests. The

first subtest consisted of nonce arithmetic items. The
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second subtest was an arbitrary arrangement of five nonce

algebra simple and five nonce algebra complex items. The

third Eubtest featured regular notation algebra items which

correspond in syntactic structure to the nonce algebra

items. Thus item #7 in subtest 2 was 1A3MxE22 and item #7

in subtest 3 was 3 + 2x2. These sections of the instrument

are included as Appendix A.

Multiple Choice Distractors. Five multiple choice

options were presented with each item, but a blank space was

also provided for subjects' answers not corresponding to the

given choices. The five options for the algebra items

included all of the possible parsings of the algebraic

expression. For example, the nonce item 1A3MxE2 (x=2) had

13, 16, 37, 49, and 64 provided as possible answers. These

answers correspond to the parsings 1A[3M(xE2)], (1A3)M(xE2),

1A[(3Mx)E2], [1A(3Mx)]E2, and [(1A3)Mx]E2 respectively.

Alternate Nonce Notation

It was anticipated that performance using a new and

unfamiliar notation might decline somewhat relative to

performance using the usual notation just because of the

unfamiliarity, and quite apart from any particular

hypothesized causes. To guard against the possibility that

poor performance on the nonce items might be attributed to

2The problem of subjects transcribing the nonce notation
into regular form (either in writing or mentally) was
considered and is discussed below.
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the general unfamiliarity of the notation, rather than

specifically to the distortion of spatial cues, an alternate

form of the nonce notation was devised. This notation

differs from the first nonce notation only in that the

spacing of the symbols more closely resembles spacing in the

regular notation.

a A b = aq- b a S b= a- b
a M b = ab aDb = aE

aEb = a
b

aRb = aE
(The Level 1 operations are more widely spaced than the

Level 2 or Level 3 operations). It was reasoned that

inferior performance on the first nonce forms relative to

performance on the spaced form could not be explained in

terms of the general unfamiliarity of the notation, but only

in terms of the differential spacing characteristics of the

notations.

Two versions of the instrument were devised differing

only in the type of nonce notation used. (See Appendix B

for the spaced form version of the instrument). The two

versions were randomly distributed within each of the groups

to which tests were administered.
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Subjects

The instruments were administered to 562 subjects.3

Twenty-two of these subjects failed to provide information

on at least one independent or covariate variable (see

"Covariates") and their scores could not be included in the

analyses. Of the remaining 540 subjects, 23 (4.4%) were

eliminated because of failure to obtain at least seven

correct answers out of nine nonce arithmetic items.' It was

reasoned that subjects either lacking basic arithmetic

skills, or unable to grasp the representational system of

the nonce abbreviatio'ns would not be fairly tested by the

instrument.

Of the 517 subjects (352 male, 165 female) whose

responses were analysed, 133 were students in grade 9

(75 male, 58 female), 159 were students in grade 11

(93 male, 66 female), 81 were students in first year

calculus classes (49 male, 32 female), 124 were students in

fourth year engineering (115 male, 9 female), and twenty

were professional engineers (all male). The grade 9 and 11

students were drawn from two predominantly middle and lower

3Additionally, 68 subjects in grade 9 remedial mathematics
classes were tested. These subjects, in the main, lacked
even rudimentary exposure to elementary algebra and their
scores were not included in the analysis.
4A tenth item dealing with the radical operation was dropped
because this operation does not appear in any of the
subsequent algebra items, and because many of the grade 9
students had not yet been introduced to computation with
radicals.
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middle class secondary schools of the public school system

in Vancouver, Canada. The calculus and engineering students

were'enrolled at the University of British Columbia, and the

professional engineers were in attendance at a meeting of

the Professional Engineers Association of British Columbia.

Due to the small number of professional engineers

participating, their scores were grouped together with those

of the graduating engineering students.

The broad range of "grade" levels was included to

determine whether syntactic reasoning skill develops with

increased mathematical experience and maturity, as well as

to provide a reference group of unquestionably competent

algebraists with, which to anchor the study. All subjects,

however, were expected to be reasonably proficient in the

syntactic analysis of the fairly simple, standard notation

algebraic expressions presented.

Test Administration

Equal numbers of the two forms of the instrument were

randomly distributed within each gender grouping in each of

16 participating classes. Participants were instructed to

circle or write down only final answers for the items, since

a transcription of the nonce items into regular notation

would undermine the intended effect of the notation.

Compliance was enforced by the use of pens rather than

pencils to prevent erasure, and by prohibition on the use of
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scrap paper.

Subjects were given adequate time to complete, check

and correct the current subtest before proceeding to the

next. Correcting of answers in the previous subtest,

however, was not permitted. This was monitored by requiring

the initial of the test administrator next to each

authorized (within subtest) correction.

Covariates

Computing Experience

Several calculator and computer languages employ

syntactic rules for arithmetic evaluation which differ from

the standard of algebraic notation. For example, in the

programming language AM, the expression 3*2+5 is evaluated

as 3*(2+5), 21, rather than as (3*2)+5, 11. (The "*"

represents multiplication). Also, virtually all computer

languages employ explicit symbols for multiplication and

exponentiation which, in standard algebraic notation, are

only positionally marked. Thus subjects with experience in

computer languages have already learned to function with

more than one system of surface representations and might be

expected to have developed a more flexible syntactic rule.

Accordingly, each subject was asked to indicate whether he

or she had "none," "some," or "quite a bit" of experience in

programming a computer.



19

Table 1

mean COMPUTING EXPERIENCE from a 3 point scale:
1 = "none"; 2 = "some"; 3 = "quite a bit"

of computing experience.

GRADE
GRADE 9 GRADE 11 CALCULUS ENGINEERS TOTAL

SEX
MALE 1.49 1.71 1.63 2.29 1.88

75 93 49 135135 352

FEMALE 1.48 1.50 1.34 2.22 -1.50
58 66 32 9 165

.0
TOTAL 1.49 1.62 1.52 2.28 1.76

133 159 81 144 517

This measure provides only a crude indicator of

programming experience, since "quite a bit" to a grade 9

student undoubtedly means something different to a

professional engineer. Nevertheless, the vastly greater

computing experience of the fourth year engineering students

is reflected in the responses to this question. (See

Table 1).

Because of the likelihood that the measure used tends

to inflate the relatively lesser computer expodure of the

younger subjects, developmental trends would be difficult to

evaluate. A covariate adjustment would only partly

compensate for the greater computer experience of the

engineering students. The computing experience scores were

entered as a covariate in the analyses of nonce algebra
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scores in order to obtain this partial control.

Past Algebraic Achievement

The tendency for men to outperform women in higher

level mathematical tasks such ay algebra is well documented.

(See for example, NAEP 1981). In a pilot study, the gender

of the respondent had appeared to be related to nonce

notation performance. Data were collected on the past

algebraic achievement of the subjects in order to insure

that apparent gender differences were not merely an artifact

of general algebraic aptitude. Post secondary schbol

subjects were asked to record the final mark in their final

high school algebra course. The most recent (November 1983)

report card marks in algebra were obtained directly from the

schools for the secondary student participants. The data

were entered as a three point covariate measure against

nonce algebra scores.

Results

Regular Algebra Subtest

As anticipated, most of the subjects demonstrated

competence in the regular notation algebra tasks. The mean

score on this subtest was 93.6% across all grades. There

was a significant grade effect (a = 0.001). Cell means

ranged from 86.4% for the grade 9 subjects to 96.8% for the

engineers and graduating engineers. Men and women performed

about equally well on the regular notation items (93.8% and
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Table 2

NONCE ALGEBRA-SIMPLE PERCENTAGE
BY TEST FORM, SEX and GRADE
WITH ALGEBRA ACHIEVEMENT and COMPUTER EXPERIENCE

as covariates

TOTAL POPULATION
91.03%

( 517)

TEST FORM
closed spaced
91.39 90.66

( 260) ( 257)

SEX
male female

nonce algebra-simple percentage

90.91 91.27
( 352) ( 165)

GRADE
9 11 1'st yr 4'th yr+

86.17 92.20 88.64 95.55 ***

( 133) ( 159) ( 81) ( 144)

*** significant at 0.001 level

93.3% respectively). The interaction of sex with grade was

not statistically significant.

Nonce Algebra-Simple Subtest

The expectation was that both subjects using

propositional referents and those using surface cues in

syntactic decision making would be generally successful at

the five simple nonce algebra items. This expectation was

borne out by the analysis, with overall mean score being

91.0%. Furthermore there were no significant deviations in

this performance between men and women or between those who

25
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received the spaced and the unspaced form of the instrument.

There was however a statistically significant grade effect.

None of the interaction effects was significant. (See

Table 2).

Nonce Algebra-Complex Subtest

The complex nonce algebra items proved more diffcult

for most subjects than any of the other items. The mean

percentage correct for all subjects was 66.3%. The analysis

of covariance also indicated that these items were

significantly more dif- .-ult when presented with the

unspaced form of the notation than when presented with the

spaced form (a = 0.001). Also, men scored significantly

better than women on this subtest (a = 0.05), and there was

a significant interaction between gender and form

(a = 0.05). Women using the unspaced form of the instrument

experienced greater difficulty than other subjects. There

were no significant interactions other than gender and form.

See Table 3.

Distractor Selection. There had been an expectation

that subjects unable to apply propositional rules of syntax

to the nonce notation would process the symbols from left to

right (page 13). In each case, the left-to-right solution

was the most frequently chosen distractor. For the item

1A3MxE2 (1 + 3x2), for example, 140 subjects (53.8%) chose

the solution corresponding to the correct parse,

26
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Table 3

NONCE ALGEBRA-COMPLEX PERCENT
BY TEST FORM, SEX and GRADE
WITH ALGEBRA ACHIEVEMENT and COMPUTER EXPERIENCE

as covariates

TOTAL POPULATION
66.27%

( 517)

TEST FORM
closed
59.54

( 260)

SEX
male
70.06

(

spaced
73.07
257)

female
58.18

( 352) ( 165)

GRADE
9 11

55.79 62.77
( 133) ( 159)

SEX
male

FORM
closed 65.78

( 180)

spaced 74.53
( 172)

* significant at
** significant at
*** significant at

nonce algebra-complex percentage

***

*

1'st yr 4'th yr+
65.93 80.00

( 81) ( 144)

female

45.50
( 80)

*

70.12
( 85)

0.05 level
0.01 level
0.001 level

1A[3M(xE2)], and two subjects offered no response. Of the

118 subjects who chose an incorrect response, 51, (43.3%)

selected the response corresponding to the left-to-right

parse, [(1A3)Mx]E2. The pattern of distractor selecton for

this item is shown in Table 4.

27
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24

DISTRACTOR SELECTION for
1A3MxE2 (1 + 3x2) with x=2

RESPONSE PARSE N %

16 (1A3)M(xE2) 19 16.1
37 1A[(3Mx)E2] 29 24.6
49 [1A(3Mx)]E2 16 13.6
64(expected error) [(1A3)Mx]E2 51 43.3

other 3 2.5
118

This propensity towards left-to-right processing,

however, is difficult to interpret. It could result from

the assumption (page 13) that the uniform spacing provided

by the nonce notation was construed as indicating a single

level for all operations. Alternatively, subjects may have

"read" the symbols from left to right as English text. But

more than one half of the respondents selecting an incorrect

response rejected the left-to-right option indicating that

they actively grappled with the syntactic question though

without adequate tools.

Conclusions

Almost all of the subjects participating in the study

were well able to evaluate expressions such as 1 + 3x2 (x=2)

when presented in standard notation. It proved, however, to

be significantly more difficult to transfer this ability to

the closed nonce notation, 1A3MxE2, than to the spaced nonce

notation, 1 A 3 M xE2. These two notations differ only in

the spacing of the symbols. The latter notation was devised

28
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specifically to mimic spacing features of ordinary notation.

Thus it seems necessary to conclude that for some students,

at least, surface features of ordinary notation provide a

necessary cue to successful syntactic decisions.

Individual Differences in Nonce Notation Processes

Although a general tendency for subjects to score less

well on the complex nonce items than on similar standard

notation items was observed, variation amongst respondents

was substantial. Many subjects were able consistently to

render correct syntactic decisions using the nonce notation,

while others were consistently unable to do so.

What do these results indicate about differences in the

cognitive strategies employed by the successful and

unsuccessful participants? Can the conclusion be drawn that

the more successful subjects had access to correct

propositional rules of syntax which were unavailable to

their cohorts?

An alternative explanation of these differences is that

the successful subjects created a mental picture, in

standard notation, of the algebraic expression presented in

nonce notation. They could then "read" the correct syntax

from the spatial cues in their mental image of the items.

The prohibition against physically transcribing the nonce

items into regular notation (page 17) could not be extended

to the imagination of the subjects. Subjects employing such
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Table

SELF REPORT of
VISUALIZATION STRATEGY versus RULE BASED STRATEGY

RULE USED?
YES NO

ROW
TOTAL

VISUALIZATION
USED? YES 120 15 135

(36.0%) (4.5%) (40.5%)

NO 184 14 198
(55.3%) (4.2%)] (59.5%)

COLUMN 304 29 333
TOTAL (91.3%) (8.7%) (100%)

a strategy might achieve success because of a superior

ability to visualize and manipulate mental images rather

than through access to correct propositional rules of

syntax.

Post Hoc Analysis. In an attempt to discover whether

success was due to such mental gymnastics, or if successful

subjects were truly using explicit rules to guide their

responses, each subject was asked to provide an

introspective account of his or her mental processes for one

of the complex nonce items with which he or she had been

successful (if any).

Subjects were asked to record "yes," "no," or "not

sure" to a question such as "For the problem 1A3MxE2, did
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you imagine or visualize or picture in your mind 1 + 3x2 ?"

Similarly, subjects were asked if they used rules of order

of operations in solving the problem and if so, which rules.

Space was provided for students to elaborate on their

response. The portions of the instruments dealing with this

part of the study are included as Appendices C & D.

Ideally, this kind of datum should be acquired through

careful interview to assure that subjects fully understand

the intent of the questions. Of the 449 subjects who had

correctly solved a complex nonce algebra item without

guessing or using a flawed procedure, 116 were unable to

provide a definitive "yes" or "no" response for each of

these questions. The majority (55.3%) of the remaining 333

subjects claimed to have used precedence rules, and not to

have used the visualization technique (Table S). Only 15

subjects (4.5%) claimed to have visualized the problem in

ordinary notation and not applied rules of operation

precedence. Thirty six per cent of the subjects claimed to

have used both strategies.

Verbal corroboration for subjects in this last category

was skewed. None of these subjects provided a verbal

account of the visualization strategy, however, many did

report the use of propositional rules. For example, one

such grade 9 student wrote "exponentiation (ab) is first in

order of operations, then multiplication and addition last,"
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and said nothing about forming a mental image in standard

notation.

In fact, only one or two subjects in the study made a

clear statement of using the visualization technique. One

of these, a grade 9 student, wrote "I tried to visualize the

capital letters as being math symbols and worked on the

exponent part of the question which was the hardest part."

It does not appear from these self reports, however, that

success on the nonce item tasks was often accomplished

through the visualization of nonce expressions in standard

notation. This seems to confirm that access to adequate

propositional information about operation precedence is

truly variable from one individual to the next.

Explaining Individual and Group Differences

To some degree, differences in nonce item performance

can be accounted for by differential instruction. Students

in some grade 11 classes had been taught the BOMDAS rule

(page 4) in the more complete form of EBOMDAS, where "E"

stands for exponentiation. These students tended to apply

their rule of operation precedence successfully to a greater

range of nonce tasks than did other subjects. Additionally,

the propensity for better nonce task performance at higher

grade levels might be attributable to a cumulative exposure

to more adequate instructional fragments over time.
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Such explanations however do not easily account for the

fact that within each class, the range of performance was

great. In grade nine classes, for example, the likelihood

is that the students have experienced the same instructional

situation for their entire algebra careers. Thus

differential instruction does not likely account for the

entirety of individual differences. A more plausible

explanation concerns cognitive style differences of the

subjects. See "Implications For Research."

Individual Differences in Regular Notation Processes

The study has pointed to differences in the rule

structures which subjects have available to them. Some

subjects have adequate propositional rules available and

others do not. Those who do not must be relying upon the

spatial cues in order to perform correct syntactic analyses
.

with ordinary notation. But what of the subjects who do

have adequate propositional rules available to them? Do

they may make use of their propositional knowledge, or, like

their cohorts, do they make use of surface cues in ordinary

notation syntactic decisions? This study has provided no

direct evidence about these students' regular notation

processes.

It is this researcher's bias that all (or nearly all)

people proficient in the manipulation of algebraic symbols

do normally make use of the spatial cues in ordinary
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notation to assist in syntactic decisions. There are two

main reasons for this view. Firstly, the presence of

surface rules for which there are no usual propositional

counterparts is suggestive. For example, x5Y is

interpreted, syntactically, as x (5y)
despite the fact that

normally exponentiation has precedence over multiplicaton.

A propositional formulation of such a rule might be

"operations within an exponent have precedence over the

associated exponentiation." The presence of such a

formulation, even if only in limited usage, would suggest

that some portion of the population reauires propositional

constructs in order to function syntactically. Its absence

(at least in the limited experience of this author) opens

the possibility that some aspects of surface processing of

syntactic cues may be universal.

The second reason is that spatial cues in standard

algebraic notation tend to mimic syntactic cues in natural

language. Consider, for example, the interpretation of the

morphemic string light house keeping. Its ambiguity

({light + house keeping} versus {light house + keeping}) is

resolved on the basis of several factors including temporal

spacing of its lexical units. (In written form, of course,

the parse is indicated directly by a physical gap). Thus

the untutored predisposition to interpret physical spaces in

algebraic notation as.syntactic markers may result from an
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adaptation of a learned linguistic response.5

This final observation provides an answer for one

question which has hitherto remained unasked in this report.

Why, if students do not develop the fragmentary

propositional rules provided by instruction into a viable

deep structure system, would they be predisposed to discover

a complex surface structure syntax completely unaided by

pedagogic assistance? It may be the case that virtually any

surface pattern is more easily apprehended than an

incompletely specified propositional system. This

explanantion should be considered, but it seems to this

author that a truly arbitrary surface system would provide

little prospect for spontaneous discovery. It seems more

likely that students are predisposed to "discover" the

system of surface notation cues because of patterns of

syntactic analysis which have already been established in

natural language. The hypothesis that natural language

competencies underlie algebraic syntax skills calls for

additional theoretical and empirical investigation.

5In fact the temporal spacing between words in oral language
is not achieved by an actual break in the flow of speech,
but rather by a slight lengthening of word initial and/or
word final speech sounds in accordance with intricate but
unconscious rules of speech. Additionally, phonetic features
such as word initial aspiration for voiceless stops, voicing
for glides, and syllabic stress contribute to the
identification of internal juncture (Stageberg, 1966,
pp. 69-71).
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In its long and gradual evolution our system of

algebraic notation has incorporated into itself regular

surface patterns perhaps unbeknownst even to the innovators

themselves. The presence of such surface regularities

enables the unconscious and automatic parsing of expressions

without the necessity of semantic processing. This must be

counted as a significant source of the strength of algebraic

symbolism. As with any powerful technology, however, there

is a need to carefully monitor its implementation and to

assure that no harmful side effects result from its

introduction.

Implications for Research

Constructivist Perspectives

The constructivist epistemology in mathematics

education, as advocated in recent works (eg. Houlihan &

Ginsburg, 1981; Cobb & Steffe, 1983; and von Glasersfeld,

1983), holds that the student is to be seen as an active

agent in his/her own learning, rather than as a passive

recipient of predigested knowledge. The present study falls

within the purview of constructivist research in mathematics

education, since the student has been shown to take an

independent (if unconscious) initiative in the development

of syntactic skill.

Support for a constructivist epistemology has been

provided in such focal mathematics education studies as
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Erlwanger (1974) and Brown and VanLehn (1980). In such

studies, constructive involvement is evidenced in the

persistent misconceptions or errors of the neophyte. But a

constructivist epistemology goes beyond merely a model of

learning. Cobb and Steffe (1983) observe,

the adult cannot cause the child to have experience
qua experience. Further, as the construction of
knowledge is based on experience, the adult cannot
cause the child to construct knowledge. In a very
real sense, children determine not only how but also
what mathematics they construct. (p. 88T--

In the present study, students were successful in their

standard notation syntactic decisions. The differences in

nonce performance reflected differences in the nature of the

mathematical competence which was acquired, rather than just

in the way that it was acquired. Thus, in the limited

sphere of evaluating algebraic expressions, a measure of

support has been found for a more radical constructivism.

Algebraic Symbol Competence

Beyond the limited sphere of expression evaluation

tasks, what are the consequences to mathematical performance

of surface versus deep representations of algebraic syntax?

The hypothesis presented in this study was elaborated by the

author in the construction of a generative transformational

syntactic theory of algebraic symbol manipulation

(unpublished). In an associated semantic theory (so far

only outlined) a theoretical evaluation of this question is

underway. Indeed, the "Implications For Practise" section



34

of this paper presents a firm opinion as to the outcome of

that evaluation. Nevertheless, independent empirical

verification is required. Correlations between mode of

syntactic representation and performance on a variety of

algebraic symbol manipulation tasks should be sought.

Spatial Cues in Real Number Properties

Having shown that spatial cues are used in syntactic

decisions, it is worthwhile to question whether other

aspects of algebra symbol skill are also cued by the spatial

representations of symbols. In this connection, it is

germane to note that Schwartzman (1977) introduced the

notion of "operation levels" for a topic of elementary

algebra other than algebraic syntax. He observed that

several real number proper,ties share certain characteristics

related to distributivity:

(a + b)c = ac + bc, (a - b)c = ac bc,

(2)

a +b
_
ab

c
+

b c

(ab)c =
acbc,

Cl/gE CligCvE

a -bab
c b c

He also noted that the operation being distributed was, in

each case, exactly one level higher than the operation over

which it was being distributed. [Properties in (1) above are

Level 2 over Level 1, and those in (2) above are Level 3
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over Level 2]. Since then, the author (unpublished) has

argued that the Generalized Distributive Law which states

that "any operation distributes over any one lesser level

operation" is manifest as a cognitive structure in the

successful manipulation of algebraic symbols.

Having proposed a formal theory of the cognitive

representation of real number properties which incorporates

the notion of "levels," it is again maintained that this

rule can accept both the deep structure and surface

structure characterizations already delineated. As in the

present case, a means for selection on the basis of

psychological considerations should be sought.

In the present study, the hypothesis of spatial cueing

in syntactic decisions has been supported. The system of

syntax however is an essentially arbitrary agreement among

the users of the notation. Any other well-formed system

could suffice. It is therefore intriguing to speculate that

the immutable properties of the real numbers themselves may

be psychologically represented ls artifacts of the positions

of symbols rather than in a propositional form such as

mathematicians are wont to display them.

Field Dependence/Independence

Why should some students respond to their instructional

situation by constructing a propositional knowledge of

syntactic rules which allows transfer of syntactic skill to
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the nonce notations, while their cohorts are reliant upon

surface forms? Individual differences in the ability to

translate skills from 3 familiar context to a new one have

been studied by psychologists involved in cognitive style

research. Witkin and Goodenough (1981), pioneers in such

research, note that:

Subjects identified as field dependent in perception
of the upright were found to have greater difficulty
in solving that particular class of problems in
which the solution depends on taking an element
critical for solution out of the context in which it
is presented and restructuring the problem material
so that the element is now used in a different
context. (p. 17)

The task of transfering syntactic skill to the new nonce

environment appears to fall within the "class of problems"

which Witkin and Goodenough describe.

The terms field dependence/independence originally

derived from variations in judgements of vertical

self-orientation on the basis of the visual field (field

dependence), or alternatively, on the basis of the

vestibular stimulation caused by the action of the

gravitational force on the human body (field independence).

In ordinary circumstances, external and internal stimuli are

mutually reinforcing since objects in the visual field are

usually aligned to gravity. In many ingenious experimental

settings, however, the visual and vestibular cues were

displaced from each other and subjects were measured as to

which stimulus predominates in decisions of vertical
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orientation. Eventually, other cognitive indices such as

spatial/visualization ability and the ability to find hidden

figures embedded within a compelling visual format were

correlationally associated with field independence (Maccoby

& Jacklin, 1974).

The nonce forms experiment has some apparent

similarities to field dependence studies. In ordinary

syntactic processing, spatial cues and propositional

frameworks are mutually reinforcing and usually lead to

adequate decisions. The nonce notation however has

displaced these cues from one another and the effect upon

subjects decisions has been observed. In this light, the

ability to transfer syntactic skill successfully to a new

notational environment may be part of a general tendency

towards field independent stimuli restructuring. The

embedded figures correlations and similar studies have

already shown that intellectual processes can mediate in the

process of field independent self-orientation. Therefore,

the propensity to structure notational stimuli so as to make

them transportable to the new context of the nonce notation

seems, almost by definition, to be a measure of field

independence. The sex differences found in nonce notation

performance tend to support this hypothesis, since cognitive

style and gender are well documented correlates (Fennema,

1975; Witkin & Goodenough, 1981). The hypothesis could be

41
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empirically tested by appending a test such as the Embedded

Figures Test in a replication of the nonce forms study.

Sex Differences in Mathematical Achievement

Sex differences in mathematical achievement (especially

for more abstract content domains) have consistently been

observed in mathematics education studies (eg. NAEP, 1975;

NAEP, 1981). Observed correlations between cognitive style

and mathematical inclination (Witkin, Moore, Oltman, et al,

1977), as well as an apparent relationship between

mathematical processes and cognitive style correlates, have

provided a source for intriguing conjecture about the nature

of these gender differences. However, verifiable

explanations have not been forthcoming. For example,

Fenemma (1975) speaking with regards to spatial

visualization skill notes:

It appears reasonable, therefore, to hypothesize
that since there is a concurrent developmental trend
and since tests of spatial visualization ability
contain many of the same elements contained in
mathematics, the two might be related. Perhaps less
adequate spatial visualization ability may partially
explain girls inferior performance in mathematics.
However, there are no data available which enables
one to accept or to reject this hypothesis. (p. 37)

What is lacking is a firm demonstration that specific

mathematical functions are actually dependent upon the

presence of these generally operative cognitive structures.

If, as hypothesized above, the propensity to formulate

propositional, deep structure syntactic rules from surface
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notational cues is a function of cognitive style, then a

link is established between cognitive style and the specific

mathematical task of syntactic analysis. Of course, such a

link provides an explanation of sex differences in

mathematical achievement only to the extent that the

presence or absence of such propositional rules can be shown

to be a determinant of algebraic competence. To some

degree, this result is contraindicated by the present study

since even subjects dependent upon surface cues were shown

to be reasonably proficient at the standard notation

expression evaluation tasks. In the concluding section,

however, this question is considered in more detail.

Implications for Practise

The study has suggested that many students develop

syntactic skill on the basis of their informal experience of

notation, and quite apart from the propositional content of

instruction. As an educator, how does one evaluate this

situation? Should one be content that students seem able to

master the syntax of algebra without explicit instruction,

or is there cause for serious concern?

Instruction in algebraic syntax (such as it is) usually

focusses on evaluative tasks similar to those that have been

employed in this study (eg. evaluate 5x3 + 2y when x = 2 and

y = -4). Evaluative skill is essential for the important

functions of checking solutions to equations, and for
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checking identities between open algebraic sentences.

Matz (1980) has noted that these tasks cause difficulty

for some students. There is, however, no systematic

evidence available which suggests that these problems

persist beyond an initial phase of algebra experience.

Indeed, for the fairly simple expression presented in this

study, performance across grades was excellent (93.6%).

Thus for the evaluation of specific expressions, students'

mastery levels are probably sufficiently high so that no

major concern need be expressed.

Less well recognized, however, is that syntactic skill

also plays a crucial role in the representation of

real number properties. Consider, for example, the

cancellation law for fractional algebraic expressions,

g= lap . What constitutes knowledge of this property

adequate to its successful application in the simplification

of algebraic expressions? Clearly, understanding that

elimination of like subexpressions in the numerator and

denominator constitutes a legal move is part of that

knowledge. However, as the frequent occurence of the

a + , e aEerror-type (Matz, 1980) indicates, this is only

part of the required knowledge. Equally important is a

thorough grasp of the syntactic contexts in which the rule

can be applied.' Similarly, every real number property, or

'Also, the author has argued (unpublished) that common error
types (x + y)2 = x2 + y2 and ilx + y = v'x + 6 are instances

44
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algorithm of elementary algebra specifies its own syntactic

setting of application. An abstract knowledge of syntactic

context is, therefore, essential to the application of real

number properties. But as Davis and McKnight (1979) have

documented, the whole notion of application of real number

properties may be entirely absent.

R, an adult studying college algebra at a community
college, was confronted by the need to compute
(Vx + a Vx - a)2 by carrying out the squaring.
When the instructor referred to (A + B)2, R
considered this an irrelevant digression, and did
not see how to make use of it. This was a typical
response by R. Apparently R has not recognized that
one has certain key patterns in one's mind call
them semantic templates and that mathematics
sometimes requires an effort to match up some
notation on paper with an appropriate semantic
template. R feels that something explicitly present
in (Vx + a Vi7)2 should determine the next
step. (pp. 106-107)

They observe:

The syntax of algebraic expressions may be a key
or milestone kind of knowledge in algebraic
learning. The degree of syntactic security seems to
be a crucial element in a student's predisposition
to regression under strain. (p. 56)

For educators, fluent in the manipulation of algebraic

symbols, the role of syntactic skill may be difficult to

discern. As in natural language, the focus of conscious

consideration is the intention of expression rather than the

mechanics of expression. In particular, the presence of a

tacit system of spatial markers which enables superficial

6(cont'd) of the application of a distributivity principle
to an inappropriate syntactic context.
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demonstration of syntactic mastery may serve to divert

attention away from this fundamental competence and towards

"higher level" topics such as real number properties,

notions of variable reference, etc. Thus the focus of

remediaticn, instruction and research may be skewed towards

the system of real number properties, or the notions of

variable reference while the underlying syntactic deficit

goes undiagnosed.

The study has shown that important individual

differences in students' cognitive structures result from

the abdication of serious, rigorous syntactic instruction.

Some students, perhaps due to a more field independent

cognitive style, develop propositional notions of operation

hierarchies which permit the abstract conceptualization of

syntactic contexts. Other students, including

proportionately more women than men, develop syntactic rules

which are inextricably bound to the physical representation

of symbols on a page. They do not obtain flexible cognitive

structures underlying transferable syntactic knowledge. As

long as educators continue to accept, as evidence of

syntactic mastery, students' ability on expression

evaluation tasks, there will be no way to distinguish

between these two groups except possibly as the successful

and the unsuccessful, the mathematically inclined and the

mathematically disinclined, the able and the disabled.
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APPENDIXA

NONCE FORMS INSTRUMENT (closed)

Sections 1, 2, and 3



Section 1 CAPITAL LETTER Arithmetic

In each of the following ten examples an arithmetic problem has

been translated using the following CAPITAL LETTER notation:

aAb = a + b aSb = a b

aMb = ab aDb = ill.

2,-
aEb = a

b
aRb = vb

eg. 3M5 means 3 is multiplied by 5

Calculate the answer to each of these problems in your

head. If your answer is one of those listed after the problem

then circle that answer in the test booklet. If your answer

not in the list, then write it in the space following.

1) 3E4 = 7, 12, 64, 81, 2) 5A16 = -11, 11, 21, 80,

3) 3R8 = 2, 3, 5, 11, 4) 7M12 = -5, 5, 19, 84,

5) 22S17 = 5, 13, 14, 39, 6) 18D6 = -12, 3, 12, 24,

7) 4E3 = 7, 12, 64, 81, 8) 26A14 = -40, -12, 12,

9) 12M4 = 3, 8, 48, 60, 10) 7E1 = 1, 6, 7, 8,

is

40,_

Please do not look ahead when you have finished.

Wait for instructions from the tester.



Section 2 CAPITAL LETTER Algebra

In each of the following ten examples an algebraic expression

has been translated using the CAPITAL LETTER notation:

aAb = a 4- b aSb = a b

aMb = ab aDb =
2

a
b

= ;15aEb aRb =

Evaluate each of the algebraic expressions in your head. If

your answer is one of those listed after the problem then circle

that answer in the test booklet. If your answer is not in the

list, then write it in the space following.

In all of these algebraic expressions x = 2.

1) 3MxA4 = 10, 13, 18, 48, 2) 2MxE3 = 10, 16, 27, 64,

3) 5M(2Ax) = 12, 20, 100, 625, 4) 5A3Mx = 4, 11, 14, 16,

5) xE4S2 = 3, 4, 6, 14, 6) 3E4SxA1 = 3,10,27,78,80,

7) 1A3MxE2 = 13,16,37,49,64, 8) 10S3MxA1 = 1,3,5,15,21,

9) 6A(3MxS2) = 0,6, 9, 10, 16, 10) 6SxE2A1 = -2,1,3,17,64,

Please do not look ahead when you have finished.

Wait for instructions from the tester.



Section 3 Algebra(usual notation)

Evaluate each of the following algebraic expressions in
your head. If your answer is one of those listed after the
problem then circle that answer in the test booklet. If your
answer is not in the list, then write it in the space following.

In all of these algebraic expressions x = 2.

1) 5x + 7 = 3, 17, 32, 45, 70,

2) 5x2 = 5, 10, 20, 49, 100,

3) 4(6 + x) = 14, 24, 26, 28, 32,

4) 3 + 4x = 9, 11, 13, 14, 24,

5) x3 2 = 1, 2, 6, 7, 16,

6) 24 x + 1 = 2, 5, 8, 13, 15,

7) 3 + 2x2 = 11, 19, 20, 49, 100,

8) 19 4x + 2 = 3, 9, 13, 32, 60,

9) 3 + (7x 2) = 0, 3, 15, 18, 21,

10) 5 x2 + 1 = -3, 0, 2, 10, 27,

Please do not look ahead when you have finished.

Wait for instructions from the tester.
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Section 1 CAPITAL LETTER Arithmetic

In each of the following ten examples an arithmetic problem has

been tr'nslated using the CAPITAL LETTER notaticn:

a A b = a + b

a M b = ab

aEb = ab

a S b = a b

a D b =
a
b

aRb = /1.5

eg. 3 M 5 means 3 is multiplied by 5

Calculate the answer to each of these problems in your

head. If your answer is one of those listed after the problem

then circle that answer

not in the list, then write

1) 3E4 7, 12, 64, 81,

3) 3R8 = 2, 3, 5, 11,

5) 22 S 17 = 5, 13, 14,

7) 4E3 = 7, 12, 64, 81,

9) 12 M 4 = 3, 8, 48, 60,

in the

it

39,

test booklet.

in the space following.

2) 5 A 16

4) 7 M 12 =

6) 18 D 6 =

8) 26 A 14

10) 7E1 = 1,

If your answer is

= - 11,11,21,80,_

-5, 5, 19, 84,

-12, 3, 12, 24,

= -40,-12,12,40,

6, 7, 8,

Please do not look ahead when you have finished.

Wait for instructions from the tester.
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Section 2 CAPITAL LETTER Algebra

In each of the following ten examples an algebraic expression

has been translated using the following CAPITAL LETTER notation:

a A b = a+ b

a M b = ab

aEb = a
b

a S b = a-b

a D b =
a.
--
b

aRb = In

Evaluate each of the algebraic expressions in your head. If your

answer is one of those listed after the problem then circle that answer

in the test booklet. If your answer is not in the list, then write it in

the space following.

In all of these algebraic expressions x = 2.

1) 3 M x A 4= 10,13,18,48, 2) 2 M xE3 = 10,16,27,64,

3) 5 M (2 A x) = 12,20,100,625,_ 4) 5 A 3 M x= 4,11,14,16,_

5) xE4 S 2 = 3,4,6,14, 6) 3E4 S x A 1 = 3,10,27,78,80,

7) 1 A 3 M xE2 = 13,16,37,49,64, 8) 10 S 3 M x A 1 = 1,3,5,15,21,

9) 6 A (3 M x S 2) = 0,6,9,10,16, 10) 6 S xE2 A 1 = -2,1,3,17,64,_

Please do not look ahead when you have finished.

Wait for instructions from the tester.
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Section 3 Algebra(usual notation)

Evaluate each of the following algebraic expressions in
your head. If your answer is one of those listed after the
problem then circle that answer in the test booklet. If your
answer is not in the list, then write it in the space following.

In all of these algebraic expressions x = 2.

1) 5x + 7 = 3, 17, 32, 45, 70,

2) 5x2 = 5, 10, 20, 49, 100,

3) 4(6 + x) = 14, 24, 26, 28, 32,

4) 3 + 4x = 9, 11, 13, 14, 24,

5) x3 - 2 = 1, 2, 6, 7, 16,

6) 2' x + 1 = 2, 5, 8, 13, 15,

7) 3 + 2x2 = 11, 19, 20, 49, 100,

8) 19 4x + 2 = 3, 9, 13, 32, 60,

9) 3 + (7x 2) = 0, 3, 15, 18, 21,

10) 5 x2 + 1 = -3, 0, 2, 10, 27,

Please do not look ahead when you have finished.

Wait for instructions from the tester.
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APPENDIX C

POST HOC INSTRUMENT (closed nonce form)



...

Section 4 Answer Check PAGE 1

Recall that question 7 in Section 2 was 1A3MxE2 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 13? Yes or No . [Check yes or no).
If your answer was 13, then please proceed to Page 2 now.

If your answer was not 13, then please go on to the next
question.

Recall that question 8 in Section 2 was 10S3MxA1 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 5? Yes or No . [Check yes or no].
If your answer was 5, then please proceed to Page 4 now.

If your answer was not 5, then please go on to the next
question.

Recall that question 10 in Section 2 was 6SxE2A1 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 3? Yes or No . [Check yes or no].
If your answer was 3, then please proceed to Page 6 now.

If your answer was not 3, then please go on to the next
question.

Recall that question 2 in Section 2 was 2MxE3 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 16? Yes or No . [Check yes or no].
If your answer was 16, then please proceed to Page 8 now.

If your answer was not 16, then please go on to the next
question.

Recall that question 4 in Section 2 was 5A3Mx (x = 2).
Without changing it, please go back and check your answer
1) Was your answer 11? Yes or No . [Check yes or no'
If your answer was 11, then please proceed to Page 10 now.

If your answer was not 11, then please put your pen down now and
close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 2

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 13 as your answer for.

1A3MxE2.

Did you guess? yes or no __ . [Check yes or no)

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

xE2 = 4, 3M4 = 12, 1Al2 = 13.

yes or no [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 3

I would like to know what went through your mind as you figured

out the order of operations xE2 = 4, 3M4 = 12, 1Al2 = 13.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 1A3Mx2, did you imagine or visualize or

picture in your mind

yes or no

1 + 3x2

or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 4

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 5 as your answer for.

10S3MxA1

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

3Mx = 6, 1056 = 4, 4A1 = 5.

yes or no [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 5

I would like to know what went through your mind as you figured

out the order of operations 3Mx = 6, 1056 = 4, 4A1 = 5.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 10S3MxA1, did you imagine or visualize or

picture in your mind 10 3x + 1 ?

yes or no or not sure __ [check one]

2) Did jou consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no 1.1r not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 6

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 3 as your answer for.

6SxE2A1.

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

.
If you didn't guess the answer, then did you use this order of

operations?

xE2 = 4, 6S4 = 2, 2A1 = 3.

yes or no -- [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 7

I would like to know what went through your mind as you figured

out the order of operations xE2 = 4, 6S4 = 2, 2A1 = 3.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 6SxE2A1, did you imagine or visualize or

picture in your mind 6 x2 + 1 ?

yes or no __ or not sure [check one]_

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ __or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 8

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 16 as your answer for

2MxE3.

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

xE3 = 8, 2M8 = 16.

yes or no __ [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



Section 4 PAGE 9

I would like to know what went through your mind as you figured

out the order of operations xE3 = 8, 2M8 = 16.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 2MxE3, did you imagine or visualize or

picture in your mind 2x3 ?

yes or no __ or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ __or not sure [check one)

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.
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Section 4 PAGE 10

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 11 as your answer for

5A3Mx.

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

3Mx = 6, 5A6 = 11.

yes or no __ [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 11

I would like to know what went through your mind as you figured

out the order of operations 3Mx = 6, 5A6 = 11.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 5A3Mx, did you imagine or visualize or

picture in your mind 5 + 3x ?

yes or no or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



APPENDIXD

POST HOC INSTRUMENT (spaced nonce form)



Section 4 Answer Check PAGE 1

Recall that question 7 in Section 2 was 1 A 3 M xE2 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 13? Yes or No [Check yes or no].
If your answer was 13, then please proceed to Page 2 now.

If your answer was not 13, then please go on to the next
question.

Recall that question 8 in Section 2 was 10 S 3 M x Al
(x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 5? Yes or No . [Check yes or no].
If your answer was 5, then please proceed to Page 4 now.

If your answer was not 5, then please go on to the next
question.

Recall that question 10 in Section 2 was 6 S xE2 A 1

(x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 3? les or No . [Check yes or no].
If your answer was 3, then please proceed to Page 6 now.

If your answer was not 3, then please go on to the next
question.

Recall that question 2 in Section 2 was 2 M xE3 (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 16? Yes or No . [Check yes or no].
If your answer was 16, then please proceed to Page 8 now.

If your answer was not 16, then please go on to the next
question.

Recall that question 4 in Section 2 was 5 A 3 M x (x = 2).
Without changing it, please go back and check your answer.
1) Was your answer 11? Yes or No . [Check yes or no].
If your answer was 11, then please proceed to Page 10 now.

If your answer was not 11, then please put your pen down now and
close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 2

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 13 as your answer for

1 A 3 M xE2.

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

xE2 = 4, 3 M 4 = 12, 1 A 12 = 13.

yes or no [check yes or no)

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.



.

Section 4 PAGE 3

I would like to know what went through your mind as you figured

out the order of operations xE2 = 4, 3 M 4 = 12, 1 A 12 = 13.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 1 A 3 M xE2, did you imagine or visualize

or picture in your mind 1 + 3x2 ?

yes or no __ __or not sure [check one)

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.

72



Section 4 PAGE 4

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 5 as your answer for

10 S 3 M x A 1

Did you guess? yes or no __ . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

3 M x= 6, 10 S 6 = 4, 4 A 1 = 5.

yes or no [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 5

I would like to know what was in your mind as you figured out

the order of operations 3 M x = 6, 10 S 6 = 4, 4 A 1 = 5.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 10 S 3 M x A 1, did you imagine or

visualize or picture in your mind 10 - 3x + 1 ?

yes or no __ or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ __or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 6

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 3 as your answer for

6 S xE2 A 1.

Did you guess? yes or no __ . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

xE2 = 4, 6 S 4= 2, 2 A 1 = 3.

yes or no
-- [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.

75



Section 4 PAGE 7

I would like to know what went through your mind as you figured

out the order of operations xE2 = 4, 6 S 4 = 2, 2 A 1 = 3.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 6. S xE2 A 1, did you imagine or visualize

or picture in your mind 6 x2 + 1 ?

yes or no __ __or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no or or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 8

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 16 as your answer for

2 M xE3.

Did you guess? yes or no . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

xE3 = 8, 2 M 8 = 16.

yes or no [cneck yes or no]

.

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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Section 4 PAGE 9

I would like to know what went through your mind as you figured

out the order of operations xE3 = 8, 2 M 8 r, 16.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 2 M xE3, did you imagine or visualize or

picture in your mind 2x3 ?

yes or no __ __or not sure [check one]

2) Did you consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ __or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.



Section 4 PAGE 10

If you don't understand the questions on this page then please

ask for assistance from the tester.

I would like to find out how you got 11 as your answer for

5 A 3 M x.

Did you guess? yes or no __ . [Check yes or no]

If you did guess, then please close your test booklet now. Thank

you for your cooperation in the study.

If you didn't guess the answer, then did you use this order of

operations?

3 M x = 6 , 5 A 6 = 11.

yes or no __ [check yes or no]

If you did use this order of operations, then please turn to the

next page now.

If you didn't use this order of operations then how did you

figure out the answer? (explain)

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.
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A .
4 Section 4 PAGE 11

I would like to know what went through your mind as you figured

out the order of operations 3 M x = 6, 5 A 6 = 11.

Think Back To When You Were Doing The Problem A Few Minutes Ago.

1) For the problem 5 A 3 M x, did you imagine or visualize or

picture in your mind 5+ 3x ?

yes or no __ __or not sure [check one)

2) Did you, consciously remember rules that tell you what the

order of operations is supposed to be?

yes or no __ __or not sure [check one]

If yes then what rules did you use?

3) Please try to explain in your own words what went through

your mind as you figured out the order of operations.

Please put your pen down now and close your test booklet.

Thank you for having participated in the study.


