
DOCUMENT RESUME

ED 260'688 IR 011 760

AUTHOR Harvey, Wayne
TITLE Designing Educational Software for Tomorrow.
INSTITUTION' SRI International, Menlo Park, Calif.
PUB DATE May 85
'NOTE 12p.
PUB TYPE Viewpoints (120)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Artificial Intelligence; Cognitive Style;

*Courseware; Design Requirements; *Environmental
Influences; *Instructional Design; Instructional
Development; *Learning Strategies; *Microcomputers;
Quality Control; Teaching Methods

IDENTIFIERS *Software Design

ABSTRACT
Designed to address the management and use of

computer software in education and training, this paper explores both
good and poor software design, calling for improvements in the
quality of educational software by attending to design considerations
that ire based on general principles of learning-rather than specific
educational objectives. This approach'also focuses attention on the
student computer segment of the wider context inwhich learning
occurs and which includes the external environment, e.g., the-school,
the home, and cultural institutions, as well as other indiyiduals,
e.g., parent, teacher, fellow students, who affect the interactions
between the student and the computer. Topics discussed include: (1)
goals for computer use in education; (2) the software design process-
and the source of quality productions; (3) student orientation to
software; (4) student interaction with. hardware and-softWare; (5)
ways to facilitate student understanding; (6) promising directions to
pursue; and (7) the Advanced Instructional Technology Program at SRI
International. Included are diagrams which illustrate the concepts of
software types and, learning skills, educational software development,
design considerations for educational, software, and the interaction
of computer science and cognitive engineering. The paper concludes
with a call for instructional designers to use information on how
people store, manipulate, and process knowledge in the, design of
educational software. (JB)

Reproductions supplied by EDRS are the best that can be made

* from the original document.
***************-**

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EOUCATION

EOUCATIONAL RESOURCES INFORMATION
CENTER IERICI

itl This document has been reproduced as
received from the person or organization
originating it.

0 Minor changes have been made to improve
repioduction quality.

Points of view or opinions stated in this docu
mint do not necessarily represent official NIE
position or poky.

DESIGNING EDUCATIONAL
SOFTWARE FOR TOMORROW

Wayne 'Harvey

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-4004

BEST COPY AVAILABLE

May 1985

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Wayne Harvey

TO THE EDUCATIONAL RESOURCES-
INFORMATION CENTER (ERIC)."

r,

The potential for computers to improve educational is
enormousmore dramatic than any invention since writ-
ing. Yet that potential is not being met. Simply put, our
schools are being swept up in a tidal wave of technology
without any idea of how to make wise' se of it.

Representative Albert Gore, Jr.
Author of the National Education
Software Act of 1984

Despite the vast quantity of educational software available for
microcomputers, there are few outstanding programs that use the
computer as an effective and innovativeeducational tool. Too often
software designers focus on the technical qualities of their program
implementation rather than attending Ao the kind of learning expe-
rience that should be created.

To fealize the potential of these new technologies, the educa-
tional software of the future will have to work with the hardware to
become an "intelligent" partner in learning rather than an entertain-
ing but inflexible taskmaster. This paper considers where we are and
what is needed, and suggests some proMising directions to pursue.

A

A

Many of the expectations that educators have
for the uses of computers to mediate instruction are
based on the educational software predominant in
schools and homes' today. Unfortunately, the com-
puter today is an underused and often misused edu-
cational tool, with even the best educational software
barely tapping its potential. If we are going to see
great improvements in the quality of educational
software, we must all be more aware of the design
'considerations that make for quality in software and
demand that developers' products be sensitive to
these considerations. Much of what we know about
good software design and good instruction often is
not reflected in present-day computer-assisted instruc-
tion. Perhaps this would not be so if we expected
more of software designers.

Before exploring good and poor software design
in this paper, it is necessary to develop a perspective
on the possibilities for using computers as educa-
tional tools. What are reasonable goals for computer
use in education? After answering that question, the
software design process is examined and criteria for
quality in instructional software are identified. Finally,
we will look at reasonable expectations for our future
instructional systems. How will current research
efforts contribute to advanced computer-assisted
instruction, and what are promising directions to be
pursuing?

The approach in this-paper is to focus attention
on the student-computer segment of a wider context
In which learning occurs. The wider context includes
the external environment (e.g., the school, the home,
or a museum) in which the learning takes place, as
well as other individuals (e.g., the teacher, a parent,
or other students) who affect the interactions between
student and computer. Although successful educa-
tional software design requires consideration of
these environmental and sociological factors, we can
still learn about designing quality into softviare by
examining the more easily handled, but still very
complex, student-computer relationship.

Goals for Computer
Use in Education

With many thousands of pieces of educational
software available for microcomputers, it is no
wonder that people can make little sense out of how
to use computers to help students learn. Much of this
software is "not-very-fancy" drill and practice activi-
ties, and one often hears that "there's almost no good
educational software; it's mostly drill and practice."
But behind this statement lies an unfortunate confu-
sion between quality of the software and complexity
of the educational objective.

Obviously, there are many different things to
learn, and there are many different ways to learn
things. What is-important is to match what is to be
learnedwhich may in fact be something very
mundane=with the best way to learn it. So if our
objective is to teach some high-level problem-solving
skillsyes, drill and practice software may very well
be "bad" software. But, if we want a child to learn
the alphabet, this type of software may be ideal. Then
the question becomes, "is it high-quality drill and
practice software or is it poorly designed?"

Proponents of computer use in education often
make the mistake of promoting for.general use some
particular kind- of software that might be useful
mainly for achieving specific learning objectives.
One cannot specify the "right" way to use a com-
puter any more than the "right" way to use a book. A
computer is a general-purpose tool and as such can
be used to accomplish different objectives. If one
wants to strengthen creative skills, maybe certain
games or puzzles will be the appropriate kind of
software, while a focus on logical thinking skills

. might be better handled by creative simulations or
learning to write programs (see Figure 1, "Software
Types and Learning Skills").

A better way to think about the use of comput-
ers in education is to consider general principles of

NATURE OF SOFTWARE WHAT IS LEARNED

DRILL AND PRACTICE

TUTORIALS

GAMES/PUZZLES

TOOLS

SIMULATIONS

MICROWORLDS

PROGRAMMING'
LANGUAGE

COMPUTER FACTUAL
CONTROL KNOWLEDGE

LEARNER
CONTROL

INFORMATION ACQUISITION

RULE LEARNING

CREATIVE SKILLS

ARTISTIC
VISUAL
AUDITORY

THINKING SKILLS

ANALYTIC
PROBLEM SOLVING

EPISTEMOLOGY
META-

COGNITION

Figure 1 SOFTWARE TYPES AND LEARNING SKILLS

2

5

learning rather than specific educational objectives.
Instead of focusing on what kinds of software should
be created, one can gain new perspectives and
insights by considering what kinds cd learning expe-
riences should be created. Much of the power of a
computer as an educational tool lies in its ability to
let the student interact individually with ideas and
information in ways that fazilitate learning. Sadly, a
large portion of existing computer-assisted instruc-
tion fails to meet this very basic goal!

For each type of software, we should expect the
rule, not the exception, to be that the product is
stimulating, challenging, and enjoyable in short,
intrinsically motivating. Educational software ihOuld
be designed to encourage creative and independent
exploration and acquisition of knowledge or skills.
In summary, the goals of using computers as educa
tional tools should be defined in terms of learners. Is
there interaction? Do the learners have control over
the material and the presentation? Are they moti-
vated? It is in these goals that we begin to identify the
source of real quality in educational software.

The Software Design Process
Where Is the Source of Quality?

It is not surprising that among the vast quantity
of educational software available for microcomput-
ers, there are few outstanding programs that utilize
the computer as an effective and innovative educa-
tional tool. Creating high-quality educational soft-
ware requires an unusual combination of expertise in
diverse areas, especially pedagogical design, software
design, subject content, and artistic abilities. The
programming wizard who sets out to create instruc-
tional software often fails to understand the impor-
tance of good instructional design. And the educator
who tries to implement a good idea often has little
understanding of how to use the computer effec-
tively as a tool.

It is only a partial solution to have instructional
designers and programmers working together in an.
attempt to apply each area of expertise to the prob-
lem of educational software design and development.
In fact, the development process cannot be effec-
tively divided into separate areas of understanding
without reducing the quality of the results. Rather,
our best educational software is going to be produced

'by software designers with multidisciplinary training
that includes instructional design, computer science,,
and cognitive psychology. The need for such com-
bined expertise will be evident from a review of the
educational software design process.

One expects the design of good educational
software to begin with an idea for certain concepts or
a kind of knowledge to be learned (see Figure 2,
"Educational Software Development"). It is amazing
that some educational software is designed without
starting with any educational objectives, let alone a
good idea. Sometimes the result will be software with
powerful learning possibilities, but more often the
software fails to promote any real educational objec-
tives.

Early on, a decision must be made as to the type
of software that would be most effective for the
learning to be achieved (see Figure I). This leads
directly to consideration of the software environ-
ment--the kirid of system with which the student
will interact ancd an explicit description or specifica-
tion of those interactions. It is at this point where a
wide range of skills and experience must come
together to produce the best results, and so it is here
where the lack of combined expertise is so costly to
the quality of design. In defining the enyironment,
one must understand what promotes and what hin-
ders the learning processin particular, the types of
interactions that should be created between the
computer and the student. The educational content
of the computer-assisted instruction and the techni-
cal capabilities of the system on which, the software is
to run also have to be considered.

Good idea

'Pedagogical and
educational soundness

IDEA

Concepts or
knowledge to
be learned

. PLAN

r

Interesting
content

Type of software for
realizing the idea*

ENVIRONMENT

Storyboard/Microworld

Student-computer
interactions

Computer capabilities,
special features/hardware

SOFTWARE
IMPLEMENTATION

Program design:
data structures,
procedures

1

Use of keyboard,
other peripherals

Graphics,
animation,
sound

Code routines

Finished program
(Version 1.0)

0

See Figure 1, "Software Types and Learning Skills,"

Figure 2 EDUCATIONALSOFTWARE DEVELOPMENT

7
4

All of this leads to the actual software imple-
mentation, which requires descriptions of: da6
structures and algorithms for creating the computer
world or desired effects, specification of hOw best to
use the keyboard or other input devices, and concep-
tualizatica of meaningful graphics, ariimation, or
sound. Even in this highly technical activity, the need
for combined expertise is clear. Finally one is ready
to write, test, and modify the program. Many revi-
sions are required before good educational software
can become greaceducational software.

Designing good software is a very difficult pro-
cess, and it will probably remain-so for the foresee-
able future. But often it would have been no more
difficult to improve the quality of a piece of poorly
designed software if only the developer had been
more aware of sometimes subtle, but critically
important issues. These include providing orienta-
tion for the student, creating interactions between
the student and the computer that stimulate the
learning process, and presenting materials in ways
that enrich the student's understanding (see the box,
"Design ConSideradons for Educational Software").

Student Orientation

Orienting the student in the most simple sense is
extremely easy to do and yet is often neglected. Pro-
viding clear instructions is a beginning, but we
should expect the software to provide some help if
the user requests it, especially when the user does
something wrong Furthermore, if a student con-
tinues to have difficulty with a task, he or she should
be given an opportunity to work on a simpler task.
That is, there should be levels of difficulty, selected
either by or for the user. Finally, users should know
"where they are in the software. There should be
frames of reference that help guide students through
their interaction with the software. This becomes
especially important when there are different possi-
ble modes one can be in or when there are nested
menus of options.

5

DESIGN CONSIDERATIONS FOR
EDUCATIONAL SOFTWARE

STUDENT ORIENTATION

Clear instructions. On-Iine help.
Good error handling.

Levels of difficulty matched with skill

Recognizable frame of reference.

STUDENT INTERACTION

Clear presentation of choices, actions.

Easy and memorable selection of choices,
actions.,,

Feedback provided when user acts/
doesn't act,-

STUDENT UNDERSTANDING

Consistent presentation format, use of
§creen.

Appropriate graphics, sound, text:

Enhance ideas
Useful metaphors
Non-distracting.

Student Interaction

Much work has been directed at exploring
important principles of human-machine interaction,
and this takes on critical importance when designing
educational software. Yet it is not unusual to find
that more time is spent learning how to interact with a
program than learning from interacting with the pro-
gram. When the user has to make a choice, the
options should be clearly presented and the actions
that will result from choosing each option should be
clear. Furthermore, the ways to select and activate an

8

option should be obvious and easy (e.g., move a
cursor over the item or point to the item, press a
certain key or press a mouse button). Finally, when-
ever the user does something, there should be an
immediate indication that the computer recognized
the actionsomething should happen. Not only
that, but if the user is supposed to do something and
doesn't, after some period of time the software
should provide some suggestion, warning, reminder,
or other help.

Student Understanding

Such feedback must be done with care because it
must not get in the way of what is to be learned and
distract the learner: the student's understanding is
the ultimate goal. How information is presented on
the screenwhere, for how long, in what colors, and
in, what arrangementwill significantly affect the
student's learning of the material. In particular, con-
sistency leads to _understandability. If helpful hints
are. presented on the bottom of the screen, they
should always be on the bottom of the screen. If
graphic icons are used for a variety of purposes, their
location on the screen should help the user identify
their type of use. Screen location, color, and size can
all be used to convey significant meaning; too often
they appear to be selected randomly and used
inconsistently.

Manysoftware desig .s fail to consider how to
use graphics, sound, and text effectively to strength-
en the learning process. Fancy graphics, colors, and
other effects in themselves do not mean improved
learning. Graphics designed to reinforce the concepts
being taught are much more yaluable than spectacu-
lar effects that merely reward correct answers. Graph-
ics should be used to enhance the idea, to enliven it,
to make it more understandable. It is sad whensoft-
ware designers can do no better than create graphics
that are used as "a spoonful of sugar to help the
medicine go down."

6

p

1

Promising Directions to Pursue

The design criteria discussed above are all sug-
gestions that any developer could incorporate into a
softivare design process immediately to improve the
educational quality of software. If more emphasis
were given to the concerns raised in this paper, there
would be dramatic improvements in the quality of
available software. But this is only a first step; we
should expect much more in the future from com-
puter systems designed to help people learn.

The unique power of the computer is its poten-
tial for truly individualizing instruction, not simply
by providing different difficulty levels, but by "under-
standing" the user of the system. Different people
have different learning styles and learn more easily
under different circumstances. We,should expect in
the future software that adapts to these differences.
The computer should also respond "intelligently" to
a student's input, so that it is more a partner in
learning and less a mechanical device.

Some individuals will benefit more by highly
structured environments in which learning is vet y
directed, while others can learn much more through
discovery. Software needs to "know" when to pre-
sent material, when to interact, when to take control,
and when to give the learner control. It needs to show
tolerance for individual creativity and individual dif-
ferences in problem-solving approaches and other
high-level thinking tasks. And it should, as a good
teacher does whenever possible, recognize what the
user intended to mean, say, or do, rather than making
literal and inflexible interpretations.

Clearly we do not yet have a deep enough under-
standing of how people think, learn, And communi-
cate to fill these requests. Some of the current
research efforts in artificial intelligence and cognitive
psychology, however, will bring us closer to these
accomplishments. We need to learn how to model

Basic Functional
Software Design

Clear instructions.

Lesson mode for
on -tine help.

Go 6d error handling.

Levels of difficulty.

Reference points.

(COMPUTER)

Physical

Consistent presentation format.

Appropriate graphics, souTidi-text: .

Enhance ideas.
Useful metaphors.
Non-distracting.

Ease of selection.
Ease of control.

Feedback.

Psychological
Interface

Intrinsically motivating.

Engaging
promotes thinking.

Interactive versus
presentative.

Computer control versus
learner control

of

(PERSON)

Meta-Functional
Software Design

Match learner's
thinking process.

Tolerance for student
creativity,
alternative views,
individual learning style.

Recognize the user's intent.

Figure 3 FROM COMPUTER SCIENCE TO COGNITIVE ENGINEERING

7.1. 0

the student's understanding, attitudes, style, and
state of mind.

In the past (and too often in the present) we
have looked to computer scientists to focus their
attention on the computer and design quality into
software. Now, if we are to make full use of the
computer as an educational tool, we must focus on
the person, learn about the learner, and look to this
side of the computer-Student system to advance the
state of the art (see Figure 3, "From Computer
Science to Cognitive'Engineering").

Currently our expectations for acceptable edu-
cational software usually require only that it meet
basic functional design criteria, and even thOse caw-

ria are rarely met. Sometimes we will intuitively feel
that a piece of software is exceptional. Usually, this
impression is the result of quality designed into the
physical interface. This, however, is not enough! For
significant learning to result from student-computer
interactions, we must begin to explore and attend to
the psychological interface. And in the near future
we should expect even more. Today we can use our
understanding of how microcomputers store, manip-
ulate, and process information to help us design
high-quality software. Tomorrow we must use knowl-
edge of how people store, manipulate, and process
knowledge to design powerful learning tools.

a

ADVANCED INSTRUCTIONAL
TECHNOLOGY PROGRAM

SRI International

The Advanced Imtructional Technology Pro-
gram is a new multidisciplinary capability being devel-
oped at SRI International to address the management
and use of new techrwlogies in education and train-
ing. The program's missions are 1) to pursue research
efforts needed to understand how to effectively use
new toolsincluding microcomputers, videodiscs,
and telecommunicationsto enhance learning, 2) to
develop software and hardware technologies to dem-
onstrate the educational possibilits, and 3) to eval-
uate and,help integrate these learning tools into edu-
cational environments.

The new and more powerful electronic technol-
ogies being developed have the potential to revolu-
tionize instruction. Microcomputers are coming into
wide use as educational and training tools, and tele-
communications and videodisc technologies are also
finding their place in the instructional arena. Unfor-
tunately, the growing availability of the hardware

itself will not necessarily improve the education
process.

Technology has the potential to expand the
repertoire of traditional instructional presentations,"
but to achieve efficiency and effectiveness we must
develop a better understanding of how techn,logies
mediate learning. The promise for the future is the
development of integrated systems capable of inter-
acting intelligently and sensitively with learners and
capable of providing a responsive, structured environ-
ment in which various skills. and concepts can be
learned, developed, and practiced. The Advanced
Instructional Technology Program is bringing together
the multidisciplinary talents of educators, instruc-
tional designers, cognitive psychologists, computer
scientists, and engineers to further explore these
possibilities.

SRI International is an independent, nonprofit
corporation performing a broad spectrum of problem-
oriented resegrch under contract to government,
industry, and business. SRI serves clients in all parts
of the United States and throughout the world.

For more information about the Advanced Instructional Technology Program, contact:

Wayne Harvey
SRI International
333 Ravenswood Avenue, Room BS319
Menlo Park, CA 94025
(415) 859-4004

12

