AUTHOR
TITLE
PUB DATE
NOTE

PUB TYPE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Ferrell, Barbara G.
Computer Immersion Project: Evaluating the Impact of Computers on Learning.
Mar 85
2lp.; Paper presented at the Annual Meeting of the American Educational Research Association (69th, Chicago, :L, March 3l-April 4, 1985).
Chicago, :L, March
Reports - Evaluative/Feasibility (142) -Speeches/Conference Papers (150)

MFOl/PCOl Plus Postage.
Attendance; Attitude Charge; *Computer Assisted Instruction; *Elementary School Mathematics; Grade 6; Intermediate Grades; *Mathematics Achievement; Mathematics Education; *Mathematics Instruction; *Program Evaluation; Student Attitudes *Computer Uses in Education; *Mathematics Education Research

ABSTRACT
Sixth-grade middle sc ool students ($N=91$) in four mathematics classes served as subjects in a study designed to: (1) determine if the use of computers as an integral part of instrucrion would increase mathematics achievement; and (2) explore the impact of computers as an integrel part of instruction on other factors (such as student attitudes, attendance, and discipline). Students in experimental classes (computer immersion project) spent approximately 40 minutes of each class period engaged in computer assisted instruction while a teacher directed, group centered instructional mode was used in control classes. When decisions regarding implementation of a new program which is as expensive to replicate as the computor immersion project must be made, both statistical and practical significance must be weighed. Although statistically significant differences were found, the practical magnitude of these differences was small, and this, coupled with other methodological problems, resulted in the conclusion that the computer immersion project did not demonstrate an impact of computers, even when time is maximized, on any of the variables studied. School district officials concurred with this conclusion and the computer immersion model was dropped and the computers put to other uses. (JN)

[^0]U.s. department or education national institute of fducatinn

 - Minaturn 4

 posstoresor jollay

Computer Immersion Froject:
Evaluating the Impact of Computers on Learning
Earbara G. Ferrell
Teras Woman"s University

Ir examining the impact cif compluters in the chassroom, much of the enthusiasm for using this torl as a learning aide is based on reports by principals and teachers that computers produce achievement gains and that a child"s enthusiasm for learning is increased when computers are used. There have been a large number of studies which have empirically investigated these claims. Dating back to the Early 1970 " E , researchers have provided reviews of the effectiveness of Computer Aided Instruction (CAI) on achievement as well as other factors (Vinsonhaler \% Eass: 1974: Jamison: Suppes $\%$ Wells: 1974: Edwards et al., 1975).

Kulik, Bangert and Williams (198亏) applied meta-analysis to study the effects of CAI on students in grades 6-12. Unlike some Of the previous reviews, their analysis included only studies in which both a CAI and a control class were used. The 51 studies 1 ncluded soked at effects in final examination performance, attitude toward subject matter, and attitude toward instructiona Fiesults showed increased achievement for CAI in 39 of 48 studies. particularly for studies of short duration, more positive attitudes toward the subject in 8 out of 10 studies, and 4 studies which reported more favorable attitudes toward instruction. While effect on final e\%ain performance seemed to be substaritial, effect on attıtudes was somewhat weaker; only $\vec{\sim}$ of the 10 studies relating to attitude toward the subject reported statistically sagnificant findings, and none of the attitude toward instruction studies reported significant differences.

In a metamanalysis of the relationship between CAI and
mathematics achievement, Burns and Eozeman (1981) looked at studies in which CAI was used as drill/practice or tutorial as a supplement and its effect on student achievement. Results indicated that CAI was "significantly more effective in fostering student achievement than a program utilizing only traditional instructional methods (p. 37)."
 up with general "rules-of-thumb." Fisher (1983) reviewed articles with relation to three factors, subject area, achievement range and use in the curriculum. He concluded that in terms of impact on achievement, CAI is most effective for science and foreign language when used with either high or low achievers as a supplement to the regular curriculum. It was found to be only moderately effective when used for mathematics and middle achievers. Fisher also reported positive changes in student attitude, improved attendance, increased motivations and lengthened attention span.

For the most part, computers have been used in schools in a supplementary capacity, with the number of computers in a school 11 mited and the time-per-pupil on computer as little as seven to ten minutes per day. Additionally, most of the studies which have been done to document the effectiveness of CAI have been of short duration. fulik (198ふ) reported that only 18 of $\Xi 2$ studies 1π which the length of the study was given were langer than 8 weeks and the Effect Size, the difference between the means of the e:iperimental and control group divided by the standard deviation of the control groups dropped with duration of the study.

It is difficult, therefore, to determine the impact of CAI on learning and related variables when timé on computer is so small and duration of the studies 50 short. As early as 19\%0, Grayson summed up this methodalogical problem: "While many studies have been conductud, very few have dealt with large numbers of students over a long period of time, even in a loosely controlled sithation. In many of them, the Hawthorne effect of novelty may be the Qverwhelming factor. (р. ご)"

The cost of computers is, of course, the reason for this. A large urban schoal district in the southwest reported that its Eomputer-to-pupil ratio was 1:235 at the end of the 1982-83 school year, in spite of an expenditure of $\boldsymbol{w}^{2} .5$ miliion for computers that same year (HISD, 198ذ). In 198ذ-84, this district piloted a program designed to study the impact of computers on learning and the school environment if provided in quantity, and if the time on 0 computer were maximized.

A middle school mathematics class was equipped with enough mıcrocomputers for a $1: 1$ computer-to-pupil ratio. Two of a sixth grade mathematics teacher"s classes were desidnated at random as "1mmersion" classes and two were used as controls. Students were "1mmersed" in an environment that would allow eixch to have access to a computer. The computer was then available as a major support system for the teacher: rather than a supplementary device.

Instruction in the experimental classes was comprised almost entirely of time spent on computers. Each student spent appro:imately forty minutes of each class periodin CAI. SFiA
software, CDI Mathematicty levels B, C and D were used as core material during the pilot time period. The teacher worked with individual students or small groups of students when a fomm an problem was identified. She only worked with the whole class when a new concent was introduced or when a problem affected a large number of students.

In the control classes, a teacher-directed: group-centered instructional mode was used. The model was tested at fhe end of the $1982-8$ gi school year, and fully implemented during thesentire 198.3-84 sinool year.

Evaluation for this study was designed to:

1. determine if the use of computers as an integral part of instruction would increase mathematics achievement.
2. explore the impact of computers as an integral part of instruction on other factors: such as student attitude, attendance, disEipline, etc.

Method

Subjects
The subjects for this study consisted of 91 sioth grade students in four mathematics classes at a middle school (grades b8) In a large urban schonl district in the southivest. The classes were regular classes, and studentr were, for che most part, scoring at or just below grade level in mathematics achievement as measured ty the Iowa Tests of Easic Stillis. The sample consisted of 4 ó
girls and 45 boys, with an equal representation of boys and girls in both the experimental and control groups. The school was ethnically mixed, with a predominantly Hispanic population.

Frocedure

The mathematics classroom was equipped with 26 Apple II compisters, enough to provide a $1: 1$ computer-to-pupil ratio. From the beginning of the scnool year until the administration of the Iowa fests of Easic Skills in early March, two classes used the computers as the primary means of instruction. These classes were selected at random from siy classes being taught by the mathematics teacher who participated in the study. Two of her other classes were designated as control classes. There were 50 students in the two experifmental classes and 41 students comprised the two control groups.

Instruction in the experimental classes consisted almost entirely of time spent on computers. Each student spent approximately forty minutes of each class period at a computer. The SRA software, CDI Math, Levels E, C and D, were used as core material. This material provided drill and practice as well as tutorial for the students.

Additional mathematics software was also utilized as supplementary material. SFiA core materials were used $30-35$ manutes each class perigd. Other materials, such as the DLM software were generally used for 5 to 10 manutes at the end of each $=1 a s s$ period fcr still building and as a motivator.

Insert Table 1 about here.

The teacher worked with i'fdividual students or small groups when a common problem was identified. whole class when a new concept was i, il affected a large number of students. In the control classesg a teacher-directed, group-cantered instructional mode was used.

The only computer literacy provided to the student was that which was necessary to operate the software. Two days were spent on terminology and explaining how to use the diskettes.

During the time period in which thé study took place a series of observational visits to the campus took place. Eoth experimental and contról classes were visited. Classroom patterns were noted as was student time-on-task. The teacher was interview at the end of the school year. Data relating to the implementation of the program, problems encountered and general impressions of the experience were gathered.

Student dat a collected at the end of the school year included: 1984 raw scores for the Mathematics Skills subtest of the Iowa Tests of Easic Skills, Conrepts, Computation and Froblem Solving: number of days absent from school; number of times tardy to math class, number of discipline cards filed cn each student, and scores on two measures of attitudes toward mathematics, Attıtudes Toward Arithmetic (Dutton $\&$ Elum, 1986) and the Fennema--Sherman Mathematics Attitudes Teacher Scale (Fennema \& Sherman, 1976).

Instrumentation
A measurement of achievement already in uge by the district during 198s-84 was used. The Iowa Tests of Elasic Skills, Level 12, Test M (Mathematics Skills) which comprised the regular testing program was utilized. This test yields scores for mathematics computation, concepts and problem solving. Faw score data were obtained.

Attitudes Ioward Arithmetic

The Attitudes Toward Arithmetic scale (ATA) was developed in 1968 by Dutton and Blum (1968). It. is a 25 item Likert-type scale designed to assess student's attitudes toward arithmetic. This scale was constructed by putting the strongest items from a previously constructed Thurstone-type scale into a Likert format. Half of the items were positive and half negative in commotation: Calculate 』 Spearman-Erown test-retest reliability was 0.84. Fenroema=Sherman Mathematics Attitudes Ieacher Scale

The Mathematics Attitudes Teacher Scale (MATS) was "designed to measure students' perceptions of their teacher's attitudes toward them as learners of mathematics. It includes the teacher"s interest, encouragement and confidence in the student's ability (Fennema \& Sherman, 1976, p. 4)."

The scale consists of $5 i \%$ positively stated and 51% megatively stated Lifert-type items with five response alternatives: strongly Agree, agree, undecided, disagree, strongly disagree. The person's score on the scale 15 the cumulative total: the higher the score,

Abstract

the more positive the attitude. Split-half reliabilities were reported to be 0.g8. A factor analytic technique was utilized to provide evidence of construct validity.

Data Analysis Because the major focus of the evaluation was to document increased levels of achievement in the computer immersion classes. an analysis of covariance was done, using the $198 \overline{3}$ mathematics raw score total from the ITES as a covariate and the 1984 mathematics raw score total as a dependent variable. To explore the relationship of CAI to other factors, a two-group stepwise discriminant analysis was also conducted, using Wilks lambda as a selection criteria (Hair et al., 1979). Scores on bath math attitude scales, the ATA and the MATS, number of times tardy to math class, number of days absent, number of discipline cards on file, and scores on each of the three mathematics subtests: computation, concepts and problem solving for each studerit were Lsed as predictor variables. Because the sample s:ae was not large enough to exclude some cases from the analysisy the fiscriminant function was calculated using all cases. The Statistical Fackage for the Social Sciences was used for all data analysis.

Fiesults

The analysis of covariance yoelded a significant main effect for aroup between the computer 1 mmersion students and the control group.

Insert Table 2 about here.

A significant discrimirıant fun=tion was found consisting of a reduced set of three variables: number of times tardy to math class: number of discipline cards filed and mathematics computation raw score. The canonical correlation squared, a measure of the proportion of variation in the discriminant function explained by the groups (kilecka, 1.980) was $.148 . \quad$ Box" 5 M was significant.

Insert Tables 3 \& 4 about here.

Classification of cases resulted in 68.13% of the cases correctly classified. A higher proportion of the computer group was correctly classified.

Insert Table 5 about here.

Discussion

The evaluation design employed in the computer inmersion project had two foci: to determine if the ,rioject had an impact on students" mathematics achievement and to explore the project's effect on other variables. The raw score mathematics totals for the computer grolip and che control group yielded statistically
significant differences. The discriminant analysis indentified tre part of that ồerall score which was contributing to group differences to be computation scores. When the magnitude of these differences was examined: howevers it was found that the mean raw score totaly for the computer immersion group differed from the control group by just over one item.

Insert Table 6 about here.

The discriminant analysis resulted in a reduced set of variabies which comprised the function. The number of times tardy to mathematics class: number of discipline cards filed and the mathematics computation raw score significantly differentiated between the groups. Wilks lambda values for the three variables were high, however (Table 4). Wilks lambda is an inverse measure (klecka, 1980). As lambda increases, there is less discrimination between the groups. Lambda values such as those obtained indicate low discrimination in spite of statistical significance. The canonical correlation squared indicated that less than $15 \%(14.8 \%)$ of the variance was accounted for by the groups.

An additional problem with the discriminant analysis ..s a significant Eox"s M. One of the assumptions of discriminant analysis is equality of the group covariance matrices, and this uata violates that assumption. While some authors consider discriminant analysis to be a robust technique with respect to these violations (Lachenbruch, 1775), the amount of error this has
introduced is unknown.
Interpretation of the ciata from this study, then, becomes very much a question of practical significance rather than statistical significance. The mean difference between the math computation raw scores for the two groups was less than two items (1.9). Similarly: a difference of only one time tardy to math class was folund between the two groups and no difference was found in the avereage number of discifline cards filed. The fact that this variable was included in the discriminant function was accounted for by the fact that one student in the control group was responsible for fo discipline cards.

When decisions regarding the implementation of a new program which is as expensive to replicate as the computer immersion project must be made, hot. statistical and practical significance must be weighed. The ev lation of the computer immersicn project did yield statistically significant differences. The practical magnitude of these differences was small, however, and this, coupled with other methodological problems, resulted in the conclusion that the computer immersion project did iot demonstrate an impact of computers even when time is maximized on any of the variables studied. School district officiads concurred with this conclusion. The computer 1 mmersion model was dropped and the computers were put to other uses.

Fieferences
Eurns, F.K. \& Eozeman, W.C. (1981). Computer-assisted instruction and matnematics achievement: Is there a relationship?

Educational Technglogy, 21 (10), 22-39.
Dutton, W.H. \& Elum, M.F. (1968). The measurement of attitudes toward arithmetic with a Likert-type test. Ine Elementary Scnool Journal , 68 (2), 259-264.

Edwards, J., Norton, S., Taylor, S., Weiss, M., \% Duseldorp, F. (1975). How effective is CAI? A review of the literature.

Fennema, E. \% Sherman, J.A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by males and females. E'ychological Documents , 6 (1). (Ms. No. 1225) Fisher, G. (1983). Where CAI is effective: A summary of the research. Electronic Learning, ड (3), 82-84. Grayson, L.F. (1970). A paradox:The promises and pitfalls of CAI. EELOMM E니IEtin, 1-3. Hatr, J.F., Anderson, F.E., Tatham, F.L., \& Grablowsky, E.J. (1979). Multivariate data analysis. Tulsa, Ok:FFC Eooks. Houston Independent Schoul District (198:) Computer supported 1mmersion school project: Concept paper. Unpublished manuscript, Houston Independent Sciool District, Houston, TX.

Jamison, D., Suppes, F. \& Wells, S. (1974). The effectiveness of alternative instructional media: A survey. E'eview of

rleata, W.R. (1980). Discriminant analysis . Eeverly Hills, CA: Sage Fublications, Inc.

トulif: J.A., Eangert, Fi.L. \& Williams, G.W. (198E゙). Effects of computer-based teaching on secondary school students.

 Hafner.

Vinsonhaler, J.Fi. \& Bass, R.kin (1972). A summary of ten major studies on CAI drill and practice. Educational Technologyı 12. 29-32.

Table 1
Sueplementafy Software

Fublisher Title

MECC	Volumes 8, 9, 10 (Geometry)
	Lemonade
DLM	Dragon Mis
	Demolition Division
	Meteor Multiplication
SFA	Estimation Tennis
	Eeano
White	Time Multiplication Test
-aES Test	Fifth Grade Level
	Addition, Subtraction,
	Multiplication, Division,
	Linear \& Solid Geometry,
	Identification of Folygons,
	Flace Value
Teacher	"Fink Fanther" (Linear
Developed	Geometry Terms)
	Fieview Frogram

Table 2

Analysis of Covariance: 19g4 IIES Math Skills Iotal Eicw Score

Source	Adjusted	Adjusted	F
	$d f$	145	
Eletween Groups	1	43.184	5. 5 57*
Within	83	8.061	
rotal	84		

*p<.05

Table 3

*2:01

Table 4

Standardizeg Digcriminant Eunction Cogfficients and Wilks. ㄴambda for

Variable	Standardized	Will:s' Lambda
Cofficients		
Tardies	-1.1371	0.9523
Discipline Cards	0.9707	0.8687
Computation Faw Score	0.3659	0.8516

Table 5
Classification Eesults
N Fredicted Group MembershipActual GroupComputerContral50

42
84.0%
21
51.2%

Control
Computer
Contral
θ
16.0%
20
48. 8%

Fercent of Cases Correctly Classified: 68. 13%

Table a
Group Means and Mean Differencess $\operatorname{Gl} 1$ Variables
-

Computer	Control	Difference	Overall
$N=48$	$N=40$		=88

ATA	88.3	86.8	1.5	87.6
MATS	43.9	43.9	0.0	43.9
Days Absent	5.7	6.8	1.1	6.2
Tardies	.6	1.6	1.0	1.0
Disc. Cards	.6	.6	0.0	.6
Math Total	67.9	66.6	1.3	67.4
Computation	30.9	29.0	1.9	30.0
Concepts	22.9	21.6	1.3	22.3
Frob. Solving	16.1	15.8	0.3	16.0

RHET COPR

[^0]:
 *
 Reproductions supplied by EDRS are the best that can be made

 * Reproductions supplied by edrs are the best that can be made *

