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Early Addition Estimates:

Retrieval or Problem Solving?

How do young children estimate the sums of single-digit addition problems

before they learn the "basic addition facts"? Do they resort to guessing, recalling

stored association, or problem solving? Siegler (Siegler & Robinson, 1982; Siegler &

Shrager, 1984) has advanced a model that suggests that estimates are retrieved from

previously learned associations. In this paper, I delineate limitations of this model,

describe an alternative model, and report on two studies designed to test the

conjectures of these models.

It should be noted that this paper will deal with only one aspect of Siegler's

model: the retrieval strategy. That is, the paper will focus on Siegler's description of

children's responses to addition problems when they are asked not to count or use their

fingers but to state the first answer that comes to mind. The paper does not address

another important aspect of Siegler's model: the issue of strategy choice. More

specifically, the paper does not deal with what strategy ("counting fingers," "fingers,"

"counting," or "retrieval") the child 'would naturally select or why one strategy would

be preferred over another.

The Distributions-of-Associations Model et

According to Siegler's model, estimates are not random but are influenced by

prior knowledge. The probability of retrieving a particular answer is proportional to

the associative strength between that answer and the problem. The distributions of

associations describe the associative strengths among problems and various potential

answers (see Figure 1).

Insert Figure 1 about here

Even before they begin computing sums, children have some basis for making

estimates. More specifically, the formation of a distribution of associations is
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influenced by prior 1,- 'wledge of numbers and the counting string. One piece of prior

knowledge is that numbers as a general class are appropriate answers to addition

problems. A second kind of prior knowledge is number-after relationships in the

counting string. Thus, when a problem such as 2 + 4 is first presented to a child, it

triggers an association witi numbers with which 'a child has had previous exposure. If a

child was familiar with the numbers 1 to 10, the response to 2 + 4 would be sblected

from this set of numbers. A child would be especially likely to advance the number in

the count string that comes after the last addend. For 2 + 4, the child would most

frequently respond "5," because 4 and 5 already share a relatively high degree of

association.

Siegler describes an important exception to the straightforward, 'associative-

retrieval account. For "descending problems'? such as 4 + 2, the most prevalent

estimate was the number in the counting string after the el addend (i.e., "5" in the

case of 4 + 2). To account for these results, Siegler and Shrager (1984) hypothesize the

introduction of a reasoning process. "The last addend in an addition problem may

always activate its immediate successor as a potential answer. However, other

knowledge that preschoolers have, namely that answers to addition problems should be

at least as great as the larger addend, may prevent them from stating counting-string

associates as answers on descending-series problems" (p. 265). On 4 + 2, for instance,

the child would not say 3 as an answer because semantic knowledge disqualifies

numbers less than 4.

An important assumption of the distrbutions-of-associations model' is that

children learn the answers they state. Thus when a child responds with an estimate of

5 to 2 + 4, the association between 5 and 2 + 4 is strengthened. Moreover, children/s

initial computational efforts may be error prone and so associations between 2 + 4 and

various incorrect responses such as 3 or 4 are strengthened. Because an off-by-one

error is a common caleulational error, the incorrect response 5 is especially likely to

O
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be strengthened. In cases such as 2 + 4, where the counting-string associate is also a

frequent computational error, the number after the last addend is an extraordinary

likely response.

At some point; though, children learn to compute efficiently. As the :child

computes the correct sum more and more often, the association between a r .)blem

and its correct sum- is gradually strengthened. Eventually the correct answer is

produced so frequently that the association between the problem and the correct sum

becomes preemptively strong.

ue of Distributions-of-Associations Model

Theoretically and ""empirically, the distributions-of-associations model has a

number of weaknesses. First, what little evidence, there is of children's earliest

estimates is not consistent with the model's assumptiOng concerning the initial state of

the distributions of associations. To reflect the assumption that children know enough

to respond 'with a number,, the computer simulation of the model starts with a set of

minimal (absolute) qssociations.between each problem and each possible answer, which

are arbitrarily defined as the whole numbers '1 to 12. Each possible answer to a

problem is signed an absolute associative strength of .01 (a relative associative

'strength of about 1/12 or '.08). To reflect the assumption that counting-string'

associates are a factor with ascenditig problems and ties, the.associative value of the

number 'after the last addend is, in effect, increaged. _Thus, for ascending problems'

and ties, at least, the model implies that a child's initial estimates for any given

problem will include the whole range of known numbers and that, except foli the

counting-string associates, all the known numbers ere equally likely to be given as

initial estimates.

Currently no data have been collected that directly test these assumptions.

However, the cross-sectional data collected by Jig and Ames (1951) suggest that initial

estimates do not range more or less evenly over all known numbers. This research

A
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found that early estimation errors were "more an error of method than an errcr of

answer" (p. 10). More specifically, younger but not Polder subjects simply stated one of

the addends or added one to the larger addend.0 In other words, it appeared that the

younger subjects were not recalling an incorrect sum but were manufactupi an
O

answer based on how they interpreted the task.

Second, the model does not provide a fine-grained account of Siegler and

Shrager's (1984) estimation data summarized in Figute 1. For example, the model

specifies' why the eLtimate of 5 for 2 + 4 increases irfrelative frequency (5 is not only

a counting-string associate but a common calculation error for the problem). Unclear

is why an estimate of 4 is so infrequent (.02) in comparison to responses such as 3 or 8

(both .07). Because 4 is closer to the sum than 3 and because children tend to

undercompute rather than overcompute, it would seem that 4 would be a more 'likely

error than either 3 or 8.

Consider other specific aspects of the Figure 1 data that are inconsistent with

the prAictions of the model. For 5 + 5, the common off-brone computing error

should make 9 (.04) a much more probable response than 0 (.04) or 5 (.07). Moreover,

because computing errors tend to be asymmetrical around a sum (children tend to

undercount rather than orreount), 9 should have a somewhat higher -associative

strength than 11 ( 94). The same kinds of logic apply to the following cases:

3 + 5, 7(.14)4 5(.13);

4 + 3, 6(.09); 8(.09);

4 + 4, 7(.07), 6(.07);

4 + 5, 8(.11), 10(.11);

5 + 3, 7(.16), 5(.18);

5 + 4, 8(.11), 4(.11).

The discrepancy between prediction and data in :igure 1 is most striking in

several eases where the counting-string, associate and off-by-one computing error



-5-

1

should have produced a c.'amatic difference. For ,2 + 2, 3 has an associative strength
S

of only 0.5, while 2 has a nearly equal value of .04 and 7 has an equal strength of 0.5.

For 3 + 2, 4 (.11) should have an associative strength considerably higher than 2 (0.9).

(Because it is a counting-string associate and closer to the sum, 3's relative associative

value of .11 should alSo have been rusher greater than 2's.)

Third, the role of semantic knowledge is invoked inconsistently and in a manner

that does not agree with a significant portion of the empirical data. In the,case of

descending Problems, the counting-string associate is not usually the most 'common

estimation error. To account for this anomaly, the distributions-of-associations model

suggests that semantic knowledge of addition disallows estimates less than the larger

addend. For example, for 5 + 3, knowledge that addition implies incrementing would

override the choice of 4the counting-string associate. The model does not., explain

why semantic knowledge is not also used to check the estimates to ascending problems

and ties. Moreover, the hypothesis does not account for the fact that a significant

proportion of the responses to dEscending problems were "impossible sums" (rectangle-

enclosed responses in Figure 1). Note, for example, that responses-to 5 + 1 of 2, 4, and

5 had a cumulative frequency of .15; responses to 5 + 2 of 2, 3, 4, and 5 had a

cumulative frequency of .45; responses .to '5 + 3 of 2, 3, 4, and 5 had a cumulative

frequency of .40; and responses to 5 + 4 of 4 and 5 had a cumulative frequency of .32.

Indeed, for the 10 descending problems, nearly a quarter of the responses were not

greater than both addends (in Figure 1, the mean cumulative frequency of answers

equal to or less than the larger addend for these 10 problems was .23).

Fourth,' the distributions -of- associations model does not take into account

possible qualitative differences in estimation ability or allow for qualitative changes in

children's estimates. The errors of method lescribed by rig and Ames (1951), for

example, seem to be qualitatively different. A tendency to repeat an addend would

seem to be a very early estimation method --a response bias used by children whb know
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very little about arithmetic. More advanced children might rely on the qualitatively

different strategy of adding`one to the larger addend to honor their knowledge that

addition involves incrementing.

Baroody (1983) found that children of different levels of addition ability

appeared to make qualitatively different types of estimates. Children who had to be

shown a concrete counting -all procedure repeatedly simply stated the counting-string

associate of the larger addend. Children who knew one sums and mastered a concrete

procedure after only qne demonstration tended to use an add several strategy (e.g.,

estimating that 3 + 5 would-add up to 7). A few children in this longitudinal study *

appeared to develop quAlitatively different estimation strategies during the course of

the study.. Moreover, Baroody (1985) reports a case of a kindergartner who did not

know zero sums. After brief instruction, the girl was able to respond efficiently even

to novel zero problems. Thiscevidenee suggests that the girl learned a general zero

(identity) rule that could be used to generate sums to previously unpracticed

combinations.

The empirical basis for the distributions-of-associations model has two

weaknesses: Siegler and Shrager's (1984) study was not longitudinal in design and the

distributions of associations were tallied across subjects. Thus the study was not

designed to test the assumptions concernitzgophildren's earliest estimates (what Siegler

and Shrager refer to as the learning phase of the computer simulation of the model).-

Moreover, the study may tre lumped together children who were at developmentally

different levels and who were respgnding in qualitatively different manners. This

would help to account for the discrepencies between the predicted and the actual

relative associative strengths of some estimation errors, why, the counting-string

associates were not always the most common type of estimation error for descending

problems, and why so many responses to descending problems were t\ess than or equal

to the larger addend. The nature of Siegler's analysis fan als

8

account . for the
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discrepancy between the model and existing longitudinal and case study data:' Why

initial estimation errors may consist of Stating one of the addends, and why progress in

estimation ability appears to involve qualitatiye changes.

An Alternative Model

The problems of the distribUtions-of-associations model are avoided by an

alternative model that suggests that semantic and associative memory work together

to account for the development of mental arithmetic, including early estimation

performances with single-digit Problems. The alternative model shares some of the

same assumptions RS the distributiono-ofassociations model, but also differs from it in

some fundamental ways. The alternative modellike the distributions-of-associations

model--posits that a protracted computing experience is an important stage for

mastering the basic number combinations.

Computing experience may well help to build up associated responses to specific

arithmetic problems. However, unlike the distributions-of-associations, model, the
4

alternative model suggekts that the amount of practice may not be the determining

factor in mastering the basic number combinations. It may be that 'a sum is computed

repeatedly with little or no impact on long-term memory (LTM). Like Ln unimportant
, .

telephone number that is needed for only the moment, the problem. and computed sum
4 te,

are held in working rnemork but not entered into LTM. Sometimes though, as with a
4

telephone number that forms, an interesting and easily definable pattern, a

combination may make a mark on LTM without conscious effort. The ties may be,

particularly susceptible to incidental learning because of the abudance of readily

recognizable patterns. Common modelOare fingers, dice, and symmetrical -Objects

such as wheels on a car. As with important telephone numbers, children may

consciously make an effort to memorize some combinations. Interest, w;iich may be

motivated by a need for approval or fear of disapproval, may provide a powerful
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incentive to learnt combinations. Very few ,epetiiions:may be-required if a child hag a

great. interest in rwasfering a combination ((1; Thorndikei 1922).
Ss

I Y

The alternative model suggeits,, then, th'at practhie does not,automatically leave
14.

traces (build up ,,associative strengths) in WM. At some .juncture, a specific

association may e'. noted between a problem and a' sum and entered into LTM.

Thereafter, practice may serve to strengthen that association so that. gradually' that

tesponie becomes more and more automatic.

The alternative model posits another wily, in which computing may lead to

mastery of basic number combinations. 'Computing experience may be an important

.vehicle for discovering arithmetic relationships such as cOmmutativity, zero rules

(e.g., N + 0/0 + N = N), or one rules (e.g., N 1/1.+ N = the number after N in the

number sequence). These arithmetic zelationships may not only serve to check

retrieved responses (as is the case of descending. problem in the, listributions-of-

associations model), they .may play an integral part in constructing responses. For

example, a child who has learned a zerolrule can quickly reason out that 0 + 9 equals 9
o

and that 42 + 0 equals 42 without having previously practiced these combinations or

having stored a specific fact in LTM. Repeated practice may serve to automatize the
4

use of such relationships.

According to the alternative model then, the amount of computing may be less

important than how the child uses the computed 9sults. Computing can lead the child

to discover relationships and strengthen semantic knowledge that may underlie number

combination facility. Practice may serve to automatize such knowledge so that it ay
. ,

be applied to arithmetic problems efficiently. However, computing per se is of
4,

necessary for learning relationships and, in some eases, may actually interfere 'with

mastering the basic combinations. Given the readiness to learn, 'a teacher's comment

might help the child to notice and internalize a relationship. Esperoally where children

are just mastering a computing procedure, the process of computing may absorb so

1 0
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much Attention that important arithmetic regularities or relationship may g'o

unnoticed'.

, The alternative model is based on the (little) existing data on children's

estim9tion_15errormanee and has some important advantages over the distributions-of-
,.-

assoc :ationsmoael First alternative model avoids the issue of how to define th

,initiarstate of the distributi, of associations. The alternative model suggest hat

the nature of initial estimates will depend on the developmental sophistication of the

child's semantic

unknowledgeable
Ze.

knowledge and knowledge of the counting string. For an'
Child, the novel stimulus 2 + 4 = ? may mean little. Sqch a child

might well fall back on some kind of response bias to manufacture an answer' (e.g.,

17-repe4; one of the addends). More sophiAticated children may assimilate previously
.

unseen and uncalculated problems to their general coti elptual knbwledge of addition

and manufacture a 'more reasonable estilnate. 'For instance, given the novel problem(

+.4, a child -might realize that addition involves incrementing and that the surnNas

be greater than either addend. Because the child is very familiar with next-number

relationships, the child advances "5" as a response. Slob a model aVeide hypottiesiiing

ti

-' that all known numbers are initiallywith the exception sof' the counting- string

associates equally responses to Iscending problems and ties. .
Second, the alternative model posits a more 'parsimonious use of Cognitive

. .

resources. When presented a problem, the chi4 dra,wsjlport already existinvesourees.

The estimation strategy is ,based on extant lolowleuge of arithmetic and .can

manufacture an answer by operating on the stored number sequence. In brief, the

child can quickly manufacture an answer without building up And storing in LTM

numerouF, (incorrect) problem-sum associations.
,

Third, the alternative model explicitly invokes \us.e of semantic knowledge

regardless of problem type. According,to the alterltatlye model, a child will tend to

use the same strategy for ascending, problems and ties as well as well as descending

P
11



problems. That is, depending on the level of development, the child will seize on one

Of the addends, add one to the last addend, add one;lo the larger addend, or add

several to the larger addend for all three types of problems. Thus, the alternative

model predicts that some children will generally give impossible estimates r6gardless

of problem type, others may tend to give impossible sums for descending problems

only, and some will give very few or no unreasonable estimates.
8

Fourth, the alternative model can account for qualitatively different types of

estimates and hence, for variability among subjects. The relative frequencies of

estimation errors are not shaped by how frequently a child miscalculates a problem

and arrives at erroneous answers. In large part, estimation errors are the result of a

systematic stL.atgk based on existing knowledge. Estimation errors- arise because

the underlying knoWledge is not complete and accurate or because the strategy does

not reflect completely: and accurately theolcaerlying knowledge. Differences in

underlying knowledge or how it is applied account for the various kinds of systematic

errors different children make. This explains why some children may choose as an

estimate a number less than or equal to the larger addend but other children avoid

such a response.

Fifth, because estimates are tie result of a strategy based on children's

conceptual knowledge rather than something retrieved from a repertoire of specific

numerical associations stored in LTM, the alternative model can better account for

qualitative changes in dt.velopment. More specifically, their understanding of

addition evolv,,s, children should become capable of more sophisticated mental

estimates. That is, a child's most probably, response (estimate) might evolve in ways

that are independent of the child's previous response history ("distribution of

associations"). Thus, as they beconfe more sophisticated, a child's estimation

strategies might change frok naming one of the addends to incrementing by one the

first or second addend. 147e; the child might increment the larger addend by one.

12



Finally, more advanced knowledge would specify that N + 1/1 + N and N + M/M + N

(where N and M are greater than 1 and N is greater then or equal to M) would have to

be treated differently. As a result, a very sophisticated level of estimation ability

would entail responding to 'N + M/M + N problems with incrementing by several while

still responding to-N + 1/1 + N problems with incrementing by one. The ,evolution *of .

estimation errors, then, may have very little to do with the types of computational

errors children make.

The remainder of this 'paper reports on two studies that were designed to test

directly key assumptions* of the distributions-of-associations model and the alternative

model. A training study involved normal IQ children of 'indergarten age -before they

received ,ar4 formal arithmetic training. A second study involved mentally retarded

children. Because their arithmetic learning is often characterized as 'rote rather than

meaningful learning, mentally handicapped children's estimates_ might more readily be

explained by the distributions-of-associations model. To address the issue of

qualitative differences among children, the distributions of associations were gauged

for individual subjects. To address the issue of qualitative development, subjects in

both studies were then given computational training and were tested on estimation

tasks. This paper reports on the portions of the studies currently completed: the

pretest and posttest results of the kindergarten children and the pretest data of the

mentally handicapped children.

Study 1

Method

Participants

Children for Study 1 were drawn from a kindergarten class in a school that

serves a working- to upper-class suburb of Rochester, NY. From a class of 21, four

children were excluded from the study because they persistently tried to compute

rather than estimate sums. The sample included in the study consisted of 7 boys and

10 girls (ages. 4 years and 9 months to 5 years and 11 months).
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Design

After a familiarization session, the children were screened on prearithmetic

skills to account for any deficiencies that might impede the addition training. The

children were also screened on basic addition ability to determine if a child had a

mental computing algorithm and if a child could compute sums using concrete objects.

The screening results provided an indication of the children's readiness, for arithmetic

or level of arithmetic ability. The children were pretested on a set of problems to

estimate their distr;butions of associations. The set of problems was administered 20

times over the course of 8 weeks. One addend of the test problems ranged from 6 to

9. Thus the test problems were of a type that a child was not likely to encounter

outside of the...experimental setting. The subjects were required to make mental

estimatescomputing was not allowed. The children were then given intensive

arithmetic training for a period of 8 weeks with a different set of problemsusing

problems with addends 0 to 5 only. The training was done in small groups of 3 or 4

about twice a week. Training focused on helping children to understand addition and

to compute accurately. The trainer avoided pointing out specific short-cuts such as a

zero rule. Afterward, the children were retested on the (nor practiced) test items. In

effect, the posttest gauged whether the children would or would not transfer the

learning promoted by the training sessions. Each problem of the test sec was

administered once on the posttest. Transfer of learning was also gauged on the

posttest by administering unfamiliar three-digit problems of the type 0 + 0 + N, N + 0

+ 0, 1 + 1 +NI and N + 1 + 1, where N ranged from 2 to 5. All testing was done on a

one-to-one basis and audiotaped.

Tasks

Familiarization Task. In groups of three or four, the children met with a tester

and played a car race game. On their turn, the lhildren would roll dice with 0 to 5

dots. If necessary, the tester prompted, "flow many dots are there altogether?" The
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child could then move his or her car a number of spaces equal to the sum. Children'

who did not know what to do were shown a concrete counting-fill procedure (count the

dots on the first die and then continue the count as the dots on the second die were

enumerated).

Screening, for _prearithmetic, skills. Prearithmetic skills tested were oral

counting to 15, enumerating counting sets of up to 15 objects, producing (counting out

sets of) 1 to 5 objectS, reading numerals, and applying the N + 1 >N rule.

For the oral-counting task, the child was asked to count a card with 15 stars. If

the child did not successfully generate the nufgber sequence to 15, the task was

readministered in a make-up session.. The child's best counting performance was

scored according to the following criteria: 3 points for a correct count to 15; 2 points

for a correct count to 10 and one error from 11 to 15; 1 point-for a correct count to 10

but more than one error in the teens; and 0 points if the child could not eount to 10

correctly.

For the object-counting task, the child was asked to enumerate 5, 7, and 15 stars

attached to cards in regular arrays. A trial was readministered in a make-up session if

the child was incorrect. The scoring criteria were: 3 points, if the child correctly

enumerated all the sets on the first try; 2 points, if the child was correct on the first

effort for two trials and, for the third, was correct on the make-up or used 1-1

pointing but made a tagging error; 1 point, if the child was unable to enumerate one

set; and 0 points, if the child was unable to enumerate two or thi4e sets.

The counting out sets task involved having the subject produce one to five pegs

from a disk of pegs. The criteria were: 3 points, 80% accuracy or better; 2 points 50-

79% accuracy, 1 point, 20-49% accuracy, and 0 points for 0-19% accuracy.

The N + 1>N rule was evaluated by asking the subjects, in random order, which

was more 1 or 0, 2 or 3, 5 or 4, 6 or 7, and 9 or 8. If the child was not correct, on all

five trials, the task was readministered in a make-up. The scoring criteria were: 3

15
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points for 5 correct responses on the intial test; 2 points for 5 correct responses on the

make up; 1 point if one error persisted on the make up; and 0 points if 2 or more errors

persisted.

In the reading numerals tasks, the children were asked, in random order, to read

the numerals 0 to 9. If a child was incorrect, a make up trial was administered later.

A correct response in the make up scored as one-half correct. The e:iteria were 3

points for no errors; 2 points for one-half to one error; 1 point for one and one half to

two errors; and 0 points for three or more errors.
IL

Sereening_kr addition ability. The tester administered five change-type word

problems involving the problems 1 + 2 + ?, 2 + 4 = ?, 3 + 5 = ?, 4 + 1 = ? and 5 + 3 = ?,

in random order.- The children were encouraged to solve the problem mentally first

and, if need be, by using concrete objects. Children who did not know how to use

objects to compute sums were taught a concrete-counting-all procedure: count out

the number of blocks that represents each addend and then' count all the blocks put

out. One point was scored for correct answers regardless of solution procedure. No

points were awarded for a trial on which the child had to be shown or helped with a

concrete counting-all procedure. Scores could range from 0 to 5.

The children were also evaluated on proficiency with basic number facts with

addends ranging from one to five. Using the estimation task described below, the

children were given the following problems in random order: 1 + 3, 1 + 4, 2 + 1,- 5 + 1,

2 + 3, 2 + 4, 3 + 5, 3 + 2, 4 + 3, and 5 + 2. The children were asked to respond to the

problems quickly, without calculating. One point was awarded for each correct and

automatic response. Scores could range from 0 to 10. (The number-fact screening

also served as a :amiliarization round for the estimation test administration in a latter

session.)

Estimation Task. The estimation task took the form of a "Quick Think" Game.

The tester explained, "Let's play the quick think game and give you a chance to win
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some prizes. I'm give you some adding problems, and you tell me quickly whet you

think the answers are. In this game you don't have to use blocks or fingers to figure

out the answersjust think what the answer is. If you answer all,the problems quickly

7-before the bell on the timer rings, you win a prize. [The child was shown the timer.]

Pll keep score and if you give good answerg, you'll win even more prizes. There's one

special rule in this game: You have to keep your hands folded. Remember, think hard

and answer quickly."

A trial was readministered at a later time if the child tried to compute the sum

or if the child answered correctly but took more than 3.0 second to respond. On 21

pretest trials, children responded with sums greater than 20 (e.g, "1 0 0") or with

unusual answers (e.g., "8 1/2"). These trials were readministered at a later time

because it was judged that the child was not making a genuine estimation effort.

Three posttest trials were readministered for the dmilar reasons. This procedure

basically worked in favor of the distributions-of-associations model and against the

predictions of the alternative model.

The. test problems included 'both ascending (small-addend-first) problems and

descending (large-addend-first) problems of three different types: zero, one, and large

problems. The ascending zero (0 + N) problems were 0 + 6 and 0 + 9; descending zero

(N + 0) problems were 7 + 0 and 8 + 0; ascending one (1 + N) problems were 1 + 7 and 1

+ 8; descending one (N + 1) problems were 6 + 1 and 9 + 1; ascending large (M + N)

problems were 5 + 6, 3 + 7, and 4 + 8, and descending large (N + M) problems were 7 +

4, 8 + 5, and 9 + 3. The problems were chosen so that the sums are evenly distributed

from 6 to 13. The three-digit transfer problems (0 + 0 + 2, 0 + 0 + 5, 3 + 0 + 0, 4 + 0 +

0, 1 + 1 + 3, 1 + 1 + 4, 2 + 1 + 1, and 5 + 1 + 1) were administered after the test

problems on the posttest. The test and transfer problems were presented in random

order. The speed of posttest test and transfer problems were rated as follows: a

reaction time (RT) of less than 1.00 second was scored as 0, a RT between 1.00 and

17
01



f

716-

1.99 was scored as 1, a RT between 2.00 and 2.99 was scored as 2, and a RT of 3

seconds or more was scored as 3.

Training

The training consisted of four phases, each phase lasting two weeks. In Cycle 1,

each addend of the addition prOblems was represented by dots within a 7.62 x 7.62 cm

box on a 5" x 8" card. The dots were arranged in a regular pattern as on a die. An

empty box represented zero. Below each box the cardinal value of the addend was

indicated by a numeral. A plus sign was positioned between the two numerals., The

deck of 36 cards was shuffled and used to play a variety of math games. On their turn,

the children would draw a card and asked the sum of the problem represented. If the

child did not respond or used her own strategy to generate an incorrect answer, the

trainer had the child count the two sits of dots.
1,

In Cycles 2 to 4, the problems were represented on 3" x 5" cards by numerals

only. In Cycle 2, blocks were provided and, if needed, the child was instructed or

helped to use a concrete counting-all procedure. In Cycle 3, an abacus-like device

with five red markers on one side and five green markers on other was provided. If

needed, the child could compute the sum of a problem by sliding up the appropriate

number of markers to represent each addend and then counting the number of markers

of both colors in the up position. In Cycle 4, nonresponders or incorrect responders

were encouraged or helped to use their fingers to compute the sums of problems.

Lesults

Pretest

There was little evidence of learning over the 20 repetitions of the test problems

that constituted the pretest. To check for learning, the number of correct responses

to a problem on the first 10 trials was compared to the success rate on the trials 11 to

20. For the Toro problems, 14 subjects exhibited great consistency: The difference in

success rates for each half of the pretest was 0 + .10. There was one case (S 04) in

18
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which a modicum of improvement was registered: The child, who had given no correct

zero-problem sums for trials 1 to 10, had success rates in trials 11-20 for 0 + 6,. 0 + 9,

7 + 0, and 8 + 0 of .20) .10, 0, and .10, respectively. Two subjects had moderate

improvement that was due to their systematic but erroneous estimation strategy. S

05's success rates went from .60 to .70, .60 to .50, .40 to .80, and .40 to .70, and S 21's

success rates went from .70 to 1.00, .70 to 1.00, .90 to 1.00 and .70 to 1.04:, In both

cases, the change could be attributed to the fact that the child used a state-the-

larger-addend strategy more consistenty with all types of problems.

For one problems, there was only one clear case of genuine general

improvement. S 14'g-success rates for 1 + 7, 1 + 8, and 6 + 1 went from .70 to 1.00, .80.

to .90, and .70 to .90. The, success rate for 9 + 1, remained constimt at .80., S 03

improved slightly on 1 + 8 (.80 to .90) and 6 + 1 (.80 to 1.00), while remOning

consistent on 1 + 7 and 9 + 1 (.90 and 1.00, respectively, on both halves). Two subjects

improved dramatically on a single one problem but not the other three. S 04's success

rate for 1 + 8 went from .30 to .80 but remained the same ,(at .80) for 1 + 7 and

actually dropped for 6 + 1 and 9 + 1 (.80 to 30 and .80 to .60, respectively). S 09's

improvement on 1 + 7 (.20 to .70) appeared to be due to the child's increased reliance

on the response bias of saying 8 for all one and large problems.

For large problems, five subjects showed some improvement on isolated

problems. S 03's success rate for 5 4 6 went from .30 to .90. S 04's success with 8 + 5

went from .2d to .40. S 07's success with 3 + 7 and 9 + 3 jumped from 0 to .30 and 0 to

.40, respectively. S 07 showed some gain on 8 + 5 (0 to .30), and S 20 had a modest

gain on 5 + 6 (0 to .20). In all, there appeared to be a minimum of learning on the

pretest. It appears that the pretest can be taken as a reasonable measure of the

children's distributions of associations at the beginning of school.

For combinations which they had not mastered, the kindergarten children did

respond with a range of answers but not in a manner that was consistent with the

19



-18-

predictions of .the distributions-of-associations model. Typically, a large portion of

their respotses could be accounted for by positing a general estimation strategy or

even a specific strategy (a strategy that involved choosing just one or a few numbers).

In Table 1, the most accurate estimator (S 03), who was generally correct on zero and

one problems, typically seemed to add several to the larger addend for larger

problems. For 3 + 7, for example, the child restionded "9," "10," or "11" 75% of the

time (.20, .50, and .05, respectively). Indeed, this hypothesized strategy would account

for nearly three quarters (.72) of all responses given for the six N+M/M+N problems.

This, in itself, is not inconsistent with the distributions-of-associations model.

Insert Table .1 about here

What is difficult to explain in terms of the distributions-of-associations model is

the fact that one answer accounts for nearly half (.46) of the child's responses. As can

be seen in Figure 2, 10 is the most frequent response for N+M/M+N problems, except

for 5 + 6. These results cannot be explained by hypothesizjng the mechanical

production of counting-string associates or answers whose associative strength has

been built up because of counting errors. In the case of this subject, it may be that

larger problems are associated with a known fact such as 5 + 5. This factual

knowledge can be the basis for quickly reasoning that 11 would be a good estimate for

5 + 6 and that 10 would be a good estimate for other large problems such as 4 + 8.

4Mi 1110/0110..1,

Insert Figure 2 about here

111=1 OMNI. =0 11

Consider another case (S 15) that cannot be (easily explained by the distributions-

of-associations model. It appears that, for all types of problems, the child's general

strategy was to add one to an addend. Moreover, she favored a specific 'version of this
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strategy: add one to the larger addend, (advance the' counting-string associate). As

Table 1 shows, the general or specific strategy could account for over half of the

child's responses. Further analysis indicated a secondary tendency. ,°Despite knowledge

of number-after r :lationships and magnitude (N + 1 > N) comparisons, this girl

responded with the number one less than the larger addend' on some. problems. For
0

example, as Figure 3 shows, she typically responded with seven to problems with an

addend of eight. Thus, it seems that three strategies (smaller plus one, larger plus

one, and larger minus one) accounted for an astounding 90% of her responses to zero

problems and 97% of her responses to one and large protilemi. It is not 'clear how the

distrihution§-of-associations model would account for the discontinuous, highly peaked

unimodal and bimodal plots in Figure 3.

Insert Figure 3 about here

0111. OW. IIIIIN

As Table 1 shows, six children (S 14, S 12, S 06, S 09, and S 07) apparently had a

specific response biasa particular number they favored. In three cases, a single

number accounted for at least one quarter of the subject's estimates. Some of these

children would favor a number 'with one type of problem but another for other types.

Three numbers accounted for three fifths of all S 06's responses, but the preferred

response shifted with problem type., Though he used 7 and 8 with some frequency (.10

and .11, respectively), he clearly favored 6 for zero problems (.40). For one problems,

he relied equally on his three favorite numbers': 6, 7, and 8 (.22, .21, and .20). For

larger problems, he favored seven (.25 of the time) and six Wand eight to a less extent

(.20 and .14, respectively). A shifting preference among three number accounted for

three eights of S 07's responses. For zero problems, she relied on 19 (.20) but used 12

and eleventeen with some frequency (.07 and .09, respectively). For one problems, she

shifted preference from 19 (.09) to 12 and eleventeen (.15 and .1.4, respectively). For

21
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large probiems, she. used the three favorite numbers with about equal frequency \1.14,

.12, and .14, respectively).

Another type of response biassimply stating an addendwas used with 'great

consisteiwy by two children. One child (k 21) typically chose the larger addend. Th,

second child (S 05) tended to' choosy the larger addend for zero problems, chose either

addend.half the time for one problems, end chose the smaller addend somewhat more

often on. the larger problems.

As Table l'shows, six subjectsincluding four of the best estimators (S. 01, S 02,

S 10, and S 04)typically responded to the estimation task with an answer in the teens

and typically not just any teen. Stating one of the addends as a teen appeared to be 'a
r

favorite way of manufacturing an answer. For instance, note that in Figure 4, S 10

nearly always responded with an answer greater than 10most usually with N or M

teen. For example, for. 7 + 4, the boy responded "17" 85% of the time and 14 10% of

the time. It is unlikely that such frequent teen responses are the result of computing,

errors. Most teen responsesand certainly those constructed from the addendsare

greater than the sum, even in the case of the larger problems.

Insert Figure 4 about here

Qualitative analyses indicates that the children sometimes responded with of

series of numbers from the standard sequence that were basically unrelated to the

problems presented. Consider the otherwise mysterious responses of S 05 on repention

1 to the following four problems:'

1 + 7 -- 5;

9 4 1 6;

0 + 9 7;

9 + 3 8.
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Seven children appeared to manufacture answers in this Way on only one or two

occasions. A handful of children (S 14, S 06, S 20, S 07, and S 17), however, apparently

used the strategy with some frequency. Indeed, as Table 1 reflects, it was S 20's most

frequently used strategyaccounting fbr about one third of her responses. If pairs of

numbers from the standard sequence are,,included in the tallies (e.g., 0 + 9"6", 9 + 3

"7"), a generate-a-number-sequence strategy would account for half of the girls'

responses (52%, 54%; and 47% of zero-, one-, and large-problem responses,

respectively).

. Posttest

According to the distributions-of-associations model, the distributions of

asscoeiations for the test problems should ham remained unchanged because of the

absence of computational practice. Thiis the distributions of associations gauged by

the pretest shouid be predicative of the posttest responses. However, the pretest

distributions of associations did not provide a good indication of how the children

responded on the posttest. Consider .f:rst the zero problems. There were-ten subjects

who were correct on less than 90% of the pretest zero trials. This includes one boy (S

05) who achieyed 57% accuracy on zero trials And one girl (S 21) who achieved 87%

accuracy by virtue of the estimation strategy they, used for all problems: choose the

larger addend.

As Table 2 shows, on average, the most frequent responses to the zero ,problems

had an estimated associative strength of about .55. Because the zero problems were

not practiced, the mean associative strength of the posttest response,1 should be about

the same for subjects who did not know the zero comb' _ions at the time of the

pretest. Moreover, given associative strengths ranging from .54 to .59, the model

would predict that the most frequent pretest response would be given about 22 times

(.55 x 40 responses). Yet the mean associative strength of the posttest responses was

dramatically lower, and the subjects responded on the posttest with an answer with the
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greatest associative strength only eight times. In the, the children responded with

novel answers twice as often and with their third-most-frequent pretest answer more

often than thei' favorite pretest response.

Insert Table 2 about here

4111.1114=a4
J

Furthermore, the distributions-of-associations model predicts that the higher the

associative strength of an answer, the more likely it is that a child will respond with

that answer. Thus, favorite responses on the pretest that had relatively high

conditional probabilities should be more likely on the posttest than a favorite response

that had a relatively low associative strength. Thus the Glass rank-biserial, pretest-

posttest correlation should be moderate (.4 to .6), if not high. However, except for 7 +

0, the correlations were low for the ten subjects who initially did not know the zero

combinations. The correlations for the seven children who genuinely made progress

are overwhelmingly negative: -0.26, -1.00, -1.00, and -1.00, respectively.

The discrepancies between the pretest and posttest zero-problem data are due to

the fact that the subjects were considerably more accurate on the posttest than on the

pretest. The ten subjects responded correctly to 19% of the pretest zero trials and

95% of the posttest trials. Their mean absolute error for the zero trials fell from 2.9

on the pretest to 0.2 on the posttest. However, three subjects improved theiv

accuracy in zero problems by indiscriminantly using a state-the-larger addend with

consistency. S 05 and S 21 had used this strategy regularly on the' pretest;. S 18

apparently adopted this strategy for the posttest. If these three cases are excluded

from the analysis, the accuracy rates for the remaining seven children improved from.

6% correct on the pretest to 96% on the posttest.

Apparently, the seven subjects learned an N + 0/0 + N = N rule. As Tablet 3

shows, these subjects (S 04, S 06, S 07, S 12, S 15, S 17, and S 20) consistently
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responded to the zero problems incorrectly on the pretest. Without practicing these

problems, they were consistently accurate on the posttest. Moreover, unlike S 05, S

18, and S 21, these seven subjects used a "pick-the-larger-addend" strategy with only

zero problems. The results of the three addition transfer problems also depicted in

Table 3 support this analysis. The subjects in this study probably had never' been

exposed to written three-digit addition problems. Yet, the seven childen under

discussion responded quickly and accurately to these novel zero problems. Moreover,

they used a N + 0/0 + N = N rule selectively.

0

Insert Table 3 about. here

The results delineated in Table 2 for the 11 Subjects who initially did not know

the one combinations and the 16 children who initially did not know the larger

combinations were also difficult to reconcile with a distributions-of-associations

model. In both cases, the mean associative strengths of the posttest responses were

considerably lower than were those of the most frequent pretest responses. This is due

to the fact 'that, with the one problems, responses with very low or zero conditional

probability were nearly as frequent as those with the greatest conditional probability.

For larger problems, responses with the third greatest, very low, or no conditional

probability each outnumbered those with the second greatest associative strength.

Indeed, responses on the pretest estimated to have no associative strength were nearly

as frequent as those deemed to have the greatest. Finally, for bothone and large

problems, the generally low Glass rank-biserial correlations suggest, that the degrbe of

associative strength was not especially predictive of a child's posttest response.

a

The discrepency between pretest and posttest results for one and large problems

is not as easily explained as in the case of zero problems. For both one and large

problems, estimates were somewhat more accurate. For the 11 subjects who initially
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did not know the one combinations, the mean number of correct responses on the

pretest and posttest were .22 and .30, respectively. The pretest answers of these

subjects differed, from the correct answers, on average, by 2.9. On the posttest the

mean absolute error dropped to 1.8. For th, large problems, the mean, lumber of

cirrect responses on the pretest and posttest were .05 and .12, respectively. The

margin of error fell from 4.0 on pretest to, 3.2 on the posttest.

For one- and large-type problems, there was little evidence that supported the

alternati& model's contentiop that ,qualitative changes in strategy account for

improvement in estimation ability. Though specific estimation strategies did change,

the children's hypothesized general estimation strategy typically remained unchanged.

For example, the best estimatoon the pretest (S 03) not surprisingly continued to use

the general approach of adding several, to the la'rger addend (5 of 6 or 83% of the

large-problem posttest trials). However, she stopped favoring the specific number 10

(a new and more reasonable favorite, 11, was given 50% of the time). State a teen

remained a favorite approach for large problems for children on the posttest. For S

01, S 0.2, S 1(), and S 04, the strategy accbunted for 75%, 100%, 100% and 40% of their

incorrect responses, respectively. All four of these children, thowever, no longer relied
4 1

on'the specific and, somewhat mechanical strategy of changing one of the addends into

a teen. 'Stating a particular number apparently remained a favorite strategy for three

children. 14 responded with 9 on 4 of the 6 large problem trials, S 12 responded with

10 to large problems 50% of the time. Or, used 8 or 10 83% of the time with large

problems. S 14' and S 12 used the same particular numbers that they had used on the

pretest, and S 09 dropped 6 as'favorite, continued using 8, and also adopted the more

reasonable estimate 10. , State an addend remained the predominant strategy for two

subjects. S.21 used this approach for all types of problems with 100% consistency. S

05 used this strategy on all 141posttest trials but one. In terms of a specific strategy,

S 05 actually appeared to regress. Though on the p.ietest she relied on stating the

larger addend, on the posttest she always seized upon the last addends.

26
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Three subjects appeared to have switched the type of general strategy they used,

but only in one case 'might this be considered an improvement. S 09, who on the

pretest seemed to rely on stating particular numbers (6 and 8) for zero and one

problems, on the posttest rather consistently gave the larger addend. as an answer for

all eight zero and one trials. S 18, who had earlier relied almost exclusively on adding

one to an addendespecially the larger addendrelied exclusively on stating an addend

when she encountered one and large problems on the posttest. Indeed she nearly

always simply chose the first addend, (75% of the one trials and 83% of the large

trials). S 17, who had relied on a state-a-teen strategy on the pretest for all types of

problems, switched to an add-one-to-the-larger approach on the posttest for (3 of the

4) one problems and (3 'of the .6) large problems. an

Comparisons With Screening Results

Table 4 compares the quality of the subjects' pretest and posttest estimates with

the screening results: On the pretest, five subjects demonstrated consideFable

flexibility in their estimation response that is, Lhey differentiated among zero, one,

and large problems. Two children demonstrated some fleiFibility (S 04 responded in

qualitatively different way to larger problems, and S 09 differentiated between zero

and other types of problems). Most subjects tended to use a (hypothesized) strategy

that was reasonablethat generated answers greater than the larger addend (or in the

ease of zero problems, greater than or equal to the larger addend). As Tabl 4 shows,

most subjects responded with reasonable estimates on a- majority of the trials. A

handful of subjects appeared to rely on a strategy that violated the concepts that

addition involves incrementing and that the sum must be greater than the larger

addend. Though she tended to favor 12, 19, and the made-up number 11-teen, one

child (S 07) otherwise did not appear to respond systematically.

Insert Table 4 flbcut here
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As hypothesized by the alternative model, most children either did or did not

avoid impossible sums for both ascending and desCending problems. On the pretest,

five kindergartners (S 02, S 01, S 10, S 03, and S 13) almost never gave impossible

sums. Eight children gave a roughly equal number of impossible sums for ascending

and descending problems. Two subjects (S 12 and S 06) gave somewhat' more

impossible sums for descending problems than for ascending problems (.44 vs. .34 and

.64 vs. .51 respectively). Two participants (S 14 and S 18) responded with considerably

more impossible answers to descending problems than to ascending problems (.31 vs.

.14 and .94 vs. .14, respectively). In the case of S 18, at least, the discrepency could

be attributed to the estimation strategy the child seemed to be using: adding one to

the last addend.

As !Fable 4 shows, 'children who tended to be better estimators generally had

sound prearithmetic skills, whAle the poorest six estimators tended to have weaknesses.

Note especially that differences in the use of the N + 1>N rule. Furthermore, six of

the seven flexible estimators were quite successful (4 or the maximum 5 correct) on

the word problems. On the other hand, the poorest estimators tended to have

difficulty with the addition word problems. Four of these children could not solve a

majority of the trials on their owneven though they were shown or helped with a

concrete-counting-all procedure after each unsuccessful attempt. It should be pointed

out that the two children (S 21 and S 05) who mechanically stated an adend for most of

their estimates on the viel 1st and the posttest were among the children with the least

amount of pre-arithmetic and general arithmetic ability. This evidence is consistent

with the argument that a state -an- addend response bias is a very early estimation

strategy.

0 8
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Study 2

Method

Participants

Children for Study 2 were drawn from 11 classes in an upstate New York county-

wide special education service agency. Prom this subject pool, a total of 30 children

were identified for the study. Qualifying children passed a screening test that

indicated a readiness for arithmetic training but had not yet mastered the basic

number combinations. There were an equal number of males and females. The sample

consists largely of moderately retarded children: 24 children have IQs ranging

between 31 and 49. Mx children are#elassified as mildly retarded (IQs ranging from 52

to 66). The IQs were taken from school records and, for the most part, were scores on

the WISCR-R or Stanford-Binet test. Children ranged in chronological age from 6

years and 10 months to 20 years and 10 months.

Design

The children were screened on prearithmetic and basic addition to identify

children whose skill level was too low or too high for the study. The addition screening

also served to gauge the subjects' level of arithmetic ability. The subjects were then

tested on a set of problems to estimate their distributions of associations. A set of 16

basic additions combinations were administered 20 times in 7 or 8 sessions over a

period of a month.

Tasks

Screening for prearithmetic skills. To be included in the study, the subjects had

to demonstrate competence in using the N 1> N rule with numbers 1 to 5, reading

numerals to 10, producing sets of 1 to 5 objects, and enumerating 1 to 12 objects.

The N + 1>N rule was assessed by randomly presenting a child with eight number

pairs, such as 3 or 2, and 4 or 5, and requiring the child to pick the bigger number.

Criterion was seven of eight correct (p <.05; Sign test). If a child did not meet

criterion on the first try, the task was readministered at a latter time.
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) The children were presented numerals in random order and asked to read them.

The criterion for the numeral-reading task was 10 of 10 correct.

In the context of a ga e children were asked to count out 3 and 6 miniature

cowboys from a pile of cowb ys. If a child produced the incorrect number of objects,

the trial was readministered. Two points were scored for a correct initial response;

one point for correct response on a second try. Criterion was defined as 3 or 4 points.

Thrxe were two enumeration trials in which the child counted stars attached to a

5" x 8" card. One card had 6 stars; the other had 12. If a child incorrectly enumerated

a set, the trial was readministered. Two points were granted for a correct initial

response; one for a correct response on the second try. Competence was defined as 3

or 4 points.

Addition seeeninK. The addition screening consisted of four tasks: 8 combine-
)

type word problem, 8 change-type word problems, 12 concrete addition problems, and

16 commutativity questions; The addition screening was done over three 20 minute

sessions. The trials for a task were divided between two sessions. Session 1 consisted

of combine-type word problems (Trials 1 to 4), change-type word problems (Trials 1 to

4), and corn mutativity questions (Trials 10 to 8). Session 2 consisted of combine-type

word problems (Trials 5 to 8), change-type word problems (Trials 5 to 8), and concrete

addition problems (Trials 1 to 6). Session 3 entailed concrete addition (Trials 7 to 12)

and commutativity questions (Trials 9 to 16).

The combine-type word problems were embedded in a game in which the child

noncontingently won money. The tester placed a number of play dollars equal to the

first addend in his or her right hand (the child's left side) and said, "I have X dollars in

this hand. See?" Next the tester closed his or her right hand and repeated the process

for the second addend with the left hand. Then the tester clasped his or her hands

together and said: "Now I put the dollars together. How much are X and Y

altogether?" A trial was readministered if the child did not respond or could not
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remember the addends. A practice trial of 1 + 1 was administered before the test.

trials. If the child responded incorrectly on the pratice trial, the tester commented,

"No, I have two altogether. I started with one here 'and one here, so there are two in

my hands altogether." The subjects were allowed to mentally compute the sum or use

their fingers. The trials for Session 1 consisted of 1 + 2, 4 + 1, 2 + 4, and 5 + 3; for

Session 2, 2 + 1, 1 + 4, 4 + 2, and 3 + 5. Within a .session, trials were administered in

random order. Scores could range from 0 to 8 correct.

The change-type problems were presented as stories. The tester would read, for

example, "After school, Cookie Monster runs home for his snack. His morn gives him

four cool:les and he sneaks one more. How much is four and one more altogether?" A

problem was reread if the child did not respond or could not remember the addends.

The subjects were allowed to mentally compute the sum or use their fingers.r The

trials for Session 1 consisted of 2 .42 1, 1 + 4, 3 + 5, and 4 + 2; for Session 2, 1 + 2, 2 + 4,

4 + 1, and 5 + 3. Within a session, the trials were given in random order. Scores could

range from 0 to 8 correct.

Concrete addition was checked in the context of a game by asking the child to

compute the sums of problems presented verbally and in written form. The tester

showed the child a card with a arithmetic sentence and said: "This card says, 'X and

Y.' How much is X and Y altogether? You can figure this out any way you want: with

block, fingers, or in your head." If a child was not successful in using a mental

procedure, the child was asked to figure out the problem using fingers or blocks. If the

child was still unsuccessful, the tester demonstrated a concrete-counting-all

procedure: "What does this number [the first addend] say. X, O.K., let's put X blocks

under the number. What does this number [the second addend] aay. Y, O.K., let's put

Y blocks under the number. Now let's find out how much X and Y are altogether by

counting all the blocks." The trials for Session 2 were 1 + 2, 2 + 3, 3 + 5, 3 + 1, 4 + 2,

and 5 + 4; for Session 2, 2 + 1, 3 + 2, 5 + 3, 1 + 3, 2 + 4, and 4 + 5. Within a session,
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problems were presented in random order. Scores could range from 0 to 12 Computed

correctlyeither mentally or by using concrete objects. Trials on which a concrete-

counting-all procedure had to be demonstrated by the tester were scored as incorrect.

Cgmmutativity was assessed by asking the child to help a muppet Cookie

Monster with his arithmetic homework. The tester wrote an equation on a magic slate

board while saying, "Cookie Monster says that X cookies and Y cookies make Z cookies

altogether." Directly beneath the first arithmetic sentence, the tester wrote either a

commuted problem (or a different problem). The tester asked, "Does Y (A) cookies or

X (B) cookies make Z cookies or a different number of cookies?" The trials for Session

1 were 3 + 4 & 4 +' 3, 5 + 2 & 2 + 5, 9 + 3 & 3 + 9, + 12 & 12 + 6, 0 + 4 & 3 + 4, 5 + 3 ?k

5 + 0, 2 + 9 & 2.+ 12, and 10 + 5 & 9 + 5. The trials for Session 2 were 4 + 2 & 2 + 4, 4

+5 & 5 + 4, 12 +8 & 8 + 12, 14 +, 5 & 5 + 14, 1 + 5 & 1 + 0, 4 + 8 & 1 + 8, 4 + 3 & 5 + 3,

and 9 + 1 & 9 + 4. A correct response to commuted trials involved indicating that the

sum of the second problem was the same as the first either by saying, "The same," or

by stating that Z was the sum. Commuted trials were scored as incorrect if the child

had to compute the sum or indicated that the sums were different. Different-problem

trials were scored as correct if the child indicated that the sum would be different

from Z or specified a sum other than Z. Scores for each type of trial could range from

0 + 8. Success was defined as 7 or 8 points ( p <.05, Sign-test) for both types of

problems.

Estimation Task. Basically, the same estimation task procedures used in Study 1

were used in Study 2. Trials on which 'a child responded with an answer greater than

20 were not readministered because it was not safe to assume that such answers were

clearly performance failures. There were two descending zero problems (4 + 0 and 6 +

0) and two ascending zero problems (0 + 5 and 0 + 9), two one problems of each type (3

+ 1, 8 +1, 1 + 4, and 1 + 7), and four large problems of each type (4 + 2, 5 + 3, 8 + 6, 9

+3, 2 + 5, 3 + 4, 5 + 8, 7 + 9).
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Results

The results with the mentally handicapped children were similar to those of the

kindergarten children. Again there was little evidence of learning during the

estimation task. There were some improvements in the success on the last ten trials

in a number of isolated instances. (S 01 improved from .0 to .6 on 1 + 7; S 02, from 0

to .3 on 0 + 5; S 03, from (0 to .2 on 1 + 4; S 05, .3 to .5 on 1 + 7, S 06, .6 to .8 on 1 + 7;

S 10, .6 to .8 on 0 + 9; and S 21, 0 to .2 on both 1 + 7' and 2 + 5.) Small amounts of

improvement were registered by a number of children on particular types of problems

because of the estimation strategy they adopted. For example, S 09 appeared to

improve on the zero problems (.6 to .7, .5 to .7, .7 to 1.0 and .7 to .9) because the child

adopted a state-the-larger-addend strategy for all types of problems. Other cases are

even less dramatic (5 07 improved froin 1 to .4 on 4 + 0 because of a generally used

state-an-addend strategy; S 19 improved from .3 to .6 on 7 + 9 because of the response

bias of saying "16;" S 25 apparently improved from .3 to .7 and .1 to .6 on N + 1

problems the child fell into the habit of adding one to the larger addend; and S 27 went

from .6 to .9 on 4 + 0 because of a tendency to state an addend for all types of

problems). Two children appeared to show genuine improvement on the zero problems.

S 12, who consistently got about 70% of the N + 0 (descending zero) problems correct,

improved from .4 to .6 and .6 to 1.0 on the 0 + N problems. S 24 appeared to

consolidate his knowledge of the zero combinations-improving from .7 to .9 on 0 +

(ascending zero) trials and from .6 to 1.0 and .7 to .8 on N + 0 problems.

Even more so than the kindergarteners, the mentally handicapped children

tended to use one strategy or two that accounted for a large proportion of their

responses (see Table 5). For five of the six subjects who typically responded correctly

to zero and one problems (S 28, S 12, S 20, S 05, and S 10), adding one to an addend

accounted for a substantial proportion of the large-problem estimates. Adding one to

either addend also accounted for a large portion of large-problem estimates for

subjects who were generally correct on the zero problems (S 24, S 13, and S 21).
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Insert Table 5 about here

Four subjects (S 19, S 23, S 15, and S 04), did not know the zero combinations but

systematically treated zero problems differently from other problems. The next seven

subjects listed in Table 5 used a variety of strategies, which included generating

number pairs or sequences of three or more numbers that were unrelated to the

problems presented.' The strategies identified were used with at least some

consistency and, in most cases, accounted 'for at least half a subject's responses to a

particular type of problem. Moreover, the last 10 subjects listed in Table 5

tenaciously used the response bias of stating an addend.

Table 6 summarizes the results of the arithmetic screening and lists data that

indicate the quality of the subjects' estimates. Note that children with a better

performance on the arithmetic screening tended to make estimates that were more

reasonable and more accurate. The commutativity results are not listed in Table 6

because only one child (S 05)one of the more accurate estimatorsmet criterion.

Note especially that the children who relied upon a state-an-addend strategy (the last

10 children listed in Table 6) were, as a group, among the ,weakest in arithmetic

ability.

Insert Table 6 about here

As in the ease of the kindergarten children, the mentally handicapped children

tended to respond to ascending and descending problems in a similar mannerexcept

when their estimation strategy favored one type of problem. There were eight

instances iv which the proportion of impossible sums were very discrepant (differed by

a factor of at least 6). Seven of these children (S 12, S 15, S 04, S 14, S 18, S 02, S 06)
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gave many more impossible sums to descending problems because of their tendency to

add one to the last addend. One child (S 19) gave many more impossible sums to

ascending problems because of the tendency to state the first addend when presented a

zero problem. .There were five instances (S 20, S 05, S 10, S 13, and S 03) in which the

proportion of impossible sums was somewhat to moderately different (differed by a

factor of 0.2-to 2.0). In three of these cases, the larger proportion of impossible sums

given for descending problems can be attributed to the tendency to add one to the last
!.

addend.

Discussion

The distributions-of-associations model does not adequately account for either

the kindergartners'` or the mentally handicapped children's estimates. Quite

frequently, when children's estimation performance isTeXamined individually, the range

of estimates is far narrower and the strength of certain incorrect responses' is far

greater than the model predicts.. In particular, the model does not explain why the

children with the lowest arithmetic ability in this study should seize upon one of the

addends as an estimate or otherwise responded mechanically (to ascending and

descending problems alike). Moreover, the model does not account fore the

qualitatively different responses among individuals or for the qualitative changes in

some of the kindergarteners' responses to the zero problems.

It does not appear that the distributions-of-associations model is applicable to

children's earliest estimation efforts and may only provide a partial account of later

developments. Though a longitudinal study is needed to examine directly preschoolers'

initial estimation efforts, the results of these studies suggest that children's earliest

estimates are not drawn randomly from all known numbers as Siegler and Shrager's

(1984) computer simulation model implies. Furthermore, the results of these studies

suggest that the amount computing experience is insufficient to account for the type

of estimation errors that occur before mastery of the basic number combinations (cf.
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Ilg & Ames, 1951; Olander, 1931; Thiele, 1938; Thorndike, 1922; Wheeler, 1939).

However, further research is needed to test directly the predictions of the

distribution-of-associations model concerning the role of response frequency in

establishing both incorrect and correct responses.

The limited range of responses and the nature of the responses suggest that the

kindergarten and mentally handicapped children tended to rely on a strategy or two to

manufacttire estimates. Presumably these estimation strategies were shaped by the

children's semantic and procedural knowledge of arithmetic. The ability of

kindergarten children to respond efficiently to unpracticed single-digit and unfamiliar

three-term zero problems is consistent with the hypothesis that these subjects learned

a general zero rule. Though training resulted in some improvement on nonpracticed

one and large problems, there was little evidence of qualitative changes in estimating

non-zero problem sums. However, the training was of limited duration and some

kindergartners already seemed to be using relatively sophisticated estimation

strategies. Needed is a long-term study that follows children from the time they

produce unsophisticated estimates to the time they produce good estimates. Further

research is also needed to determine what role general arithmetic knowledge plays in

the development of mental arithmetic. For example, whether or not knowledge of

corn mutativity plays a role in mastering the basic number combinations needs to be

examined directly.

In conclusion, the development of mental arithmeticeven that involving the

basic single-digit combinationscannot be understood entirely in terms of forming

specific numerical associations. No doubt computing experience plays a role in

mastering the basic number combinations, but it does not appear to be the only process

at work. The evidence of these studies is consistent with the view that children do not

simply recall estimates from a repertoire of specific associations. Rather they seem

to manufacture estimates by employing strategies that are based on their knowledge

36
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of arithmetic and which operate on their representation of the counting string. Just

how previous learning and practice interact to promote learning the basic number

combinations remains an open and important theoretical and educational question.
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Table I

Proportion of Pretest Trials In Which Kindergarten Subjects Used Their Most

Frequent Global and/or Specific Estimation Strategy for Three Problem Types

Problem Typec

N+0/0+N N+1/1+N

SO4 othesized Strete 80 trials 80 trials

03 Add several to the larger addend

(particular number: 10) NA

01 State a teen (N or N teen) NA

02 State a teen (N or N teen) NA NA

14 State a particular number: 9 NA NA .31

NA

NA

It+fl/K+N

120 trials

.72(.461

.97(.37)

.86(.37)

10 State a teen N'Or N teen)

04 i Add one to the larger addend

State a teen (N or N teen)

15 Add one to an addend (larger addend)

21 Statan addend (larger addend)

12 State a parti4 cular number: 10

06 State a particular number: 6

State particular numbers: 6, 7.

State particular number: 7

09 State particular cumbers: 6 and

20 Generate a number sequence

05 State an 'addend (larger addend)

State an addend (Smaller addend)

18 Add one to an addend (last addend)

and 8

8

NA NA .9,(2)(.8,

.65 .65

- - .68(.33)

.57(.57) .61(.51) .67(.55)

.94(.87) 1.00(.87 1.00(.84)

.34 .30 .31

40

.64d

.25

NA ,60d .53
d

.37 .35. .29

.84(.57) .84(.42)

.8 .44

.97(.90) .97(82) .97(.87)

07 State a particular number: 19 .20

State particular numovrs:

12 and 11-teen

State particular numbers:

19 and 11-teen

.29
d

.28
d

17 State toed (N or N tom)

13 State a teen

J111,51) .72(.49) .82(.55)

Subjects are listed from the most accurate estimato to the least accurate.

Accuracy was computed by summing the mean absolute error scores (correct sum

minus estimate) for the 14 ,problems.

b
in cases where a global strategy and a more specific version of the general

strategy are reported, the latter'is li.cluded In parenthesis.

cNA Indicates not applicable. That Is, the child was consistently correct on

that type of problem and an Incorrect procedure could be discounted (e.g. always

picking the larger term for one and larger problems as well as zero problems).

4
The frequency of each particular number used was equal or very nearly equal.
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Table 2

9Oretest and Posttest Responses In ims of Distributions of Associations ..

Pretest Posttest

Responded with

Mean associative Mean an answer with

strength of the associative the greatest

most frequent strength associative

Problem response of response strengtA

0+6 .54 .21 3

09 59 17
e

2

7+0 .57 .15 1-

8+0 '.58 .18 2

Total 8

1+7 .59 29 4

1 +8 .48 4 .34 4

6+1 .47 .27 4

,9+1 .55 .36 4

Total 16

3+7 .47 .21 6

'448 .48 .16 5

546 .49 .23 3

7+4 .51 .19 4

8+5 .44 .19 4

9+3 .51 .28 3

Total 2/

Responded with Responded with

an answer with an answer with Responded with Responded with

the second the third an answer with a novel answer

greatest greatest low but Rome (with condi-

Associative associative associative tional proba-,

strength strength billty - zero)

2

,

001/11+0

0

I

0

2

,

5

4

1 4 0 4
4

0 4 I 3

4 9 3 1,11

104/14+1

2 2 0 3

5 0 0 2 '

2 I 2 2

, I
I I 4

10 4 3 II

M+N/N+M

I 2 3 4

2 3 2 4

5 2 2 4

0 2 5 5

4 4 2 3
..

2 2 2 3

14 15 16 24

Total

Pretest-posttest

(Glass rank-

biserial)

correl:tion
a.

in .37

10 '
, .31

(0 1.00

10 .25

40

II .07

Ii :50

11

1
.39

11 .36

44

16
1

.03

16 -.02

16 .54

16 .44

16 .05

16 .08

'96

40
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Table 3

A Comparison of Pretest, Posttest, and

Transfer Task Performance

for Subjects Who Did and Did Not

Learn a Zero Rule,

S#

. Pretest

accuracy

rate

Accuracy

rate

Posttest

Mean Used zero

RT rule

rating discriminantly

Three -Digit Addition Transfer

Accuracy

rate

Children Who Appeared to Learn the Zero Rule

04 .05 1.00 0.25 Yes 1.00

06 .17 1.00 0.25 Yes 1.00

07 .02 1.00 0.25 Yes
".1

1.00

12 .01 .75 0.75 Yes 1.00

15 .01 1.00 0 Yes 1.00

17 .01 1.00 0.50
1

J Yes 1.00

20 .12 1.00 0 Yes 1.00

Children Who Did Not Appear to Learn Zero Rule

05 .57 .75 0.25' No .50

18 .00 1.00, 1.00 :

/

No 1.00

21 .87 1.00 0 Na 1.00

4

Mean

RT*.

rating discriminantly_

Used zero

rule

0

0

0

1.25

0

0.50

0.75

0.25

0

0.50

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No
11/11001Was

42
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Table 4

Indicators of Estimation Quality and Screening Results

Proportion of Mean

Type of Impossible absolute Counts Counts ROA Reads Hord Problems Automatic

Pretest
sums error Counts sets out sets rule numerals correct basic facts

Estimates SO Pretest Posttest Pretest Posttest to IS I to IS of I to 5 1 to 4.0 0 to 9 (0 to 5) (0 to 10)

Prearithmetic Skills Arithmetic Skills

02 .00 .00 1 6 0.9 3 3 3 3 3 5 3

Flexible 01 .01 .00 1,5 0.6 3 3 3 3 3 4 6

and 10 .01 .00 2.0 0.2 3 0 3 3 3 2 4

Reasonable 03 .02 .00 O./ 0.6 3 3 3 3 3 5 5

04 .11 .21 2.1 1.5 3 3 3 3 3 4 4

14 .23 .21 1.9 1.5 3 3 3 3 2 5 4

09 .42 .43 2.8 1.6 3 . 2 3 3 3 5 3

13 .02 - 6.2 2 2 3 1, 7 3 8

Reasonable 17 .16 .07 6.1 2.0 3 3 3 2 3 1 0

12 .39 .21 2.7 1.8 I 2 3 2 0 ha 4

15 .42 .14 2.5 1.0 3 3 3 3 3 4a
, .5

18 .54 .71 4.3 3.4 3 3 3 2 3 2 3

06 .57 .21 2.8 1.6 2 2 3 2 3 5 3

Mechanical 20 .57 .4; 3.1 2.1 2 2 3 0 1 3 4
_

21 .75 .71 2.7 2.0 1 2 3 1 0 I 0

05 .84 .79 4.3 4.3 3 2 3 0 3 2 2

Other 07 .24 .50 4.7 2.9 1 1 2 2 la 0

On an addltIon0 problem,
the child spontaennusly used a correct procedure but miscalculated the sum.\

43
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Table 5

Proportion of EstiMation Trials In Which Mentally Handicapped Subjects Used

Their Most Favored General and Specific Estimation Strategy for Three Problem Types

S#a Hypothesized Strategyb

Problem Typg

N+0/0+N

(80 trials)

--

-01 11+N

(80 trials)

N+M/M+N

(160 trials)

01 Add several to larger addend NA NA 71

28 Add one to either (the lar er) addend NA NA

12 Add one to either (the last) addend NA NA .61 1

20 Add one to either (the last) addend NA NA .46(.33)

05 Add one to either (the last) addend NA NA .98(.47

10 Add one to either the last) addend NA NA .72(.49)

24 Add several to larger addend

Add one to either (the larger) addend

NA

NA

.41

.57(.33)

13 Add one to either addend NA .6o .63

21 State a teen (addend + teen)

Add one to either (the last) addend

NA

NA

.51(.45)

-

-

.32(.21)

19 State (first) addend

State a particular number: 16

.99(.96) NA

NA .1414

4 45



23

15

04

14

25

18

State smaller addend

State a particular number: 10

.97

.29

I

.28

Add one to larger addend

Add one to last addend

.99

1.00 1.00

Add one to larger addend

Add one to last addend

1.00

.99 .99

Larger addend plus or minus one (add one to larger)

Add one to either (the larger) addend

Add one to either (the last) addend

.80(.69)

.94(.72)

.93(.91)

State a particular number: 8

Add one to either (the first) addend

.29

.57 .149

Larger addend plus or minus one (vdd one to larger) 1.00(.85)

Add one to the last addend

02 State a particular number: 10

Add one to either (the last) addend

Larger addend_plus or minus one (add one to last)

08 Generate number airs se uences)

06 Add one to either (the last) addend

03 Generate number pars (sequences)

11

30

State (larger) addend

State (larger) addend

46

1.00 .99

.61

.86(.81)

.89(.55)

.39(.07) .37(.15) .40(.17)'

.79(.75) .79(.69) .83(.74)

.39(.14) .40(.16) .42(.14)

(1.00) (.96) .97(.90)

(.95) (.94) .95( 81)

47



16 State (larger) addend

22 State (larger) addend

State (first) addend

27 State larger) addend

26 State (larger) addend

1.00(.95)

.95(.91)

29 State (larger) addend

State (last) addend

.96(.81)

1.00(.84)

.95(.79)

1.00(.90)

.97(.90)

.4

.99(.74)

. 97(.90)

1.00(.87)

.97(.81)

. 96(.51)

1.00(.56)

1-7 State (smaller) addend

09

07

St2I11(.1224121)AIJJEld

State

State

(larger) addend

(last) addeild

State (smaller) addend

State (smaller) addend

State laSt) addend

.97(.77)

.99(.95)

. 95(.92)

1.00(.55)

.96(.79)

.99(.73)

1.00(.64)

.99(.69)

1,00(.57)

. 99( 65)

1.00(.57)

aArranged in order of estimation strategy quality, as judged by appropriateness of sums

and discriminant application to problem types.

b in cases where a general strategy and a more specific version of the general strategy

are reported, the latter is included in parenthesis.

c .9NA indicates not applicable. That is, the most frequent strategy was to produce the correct sum,

4 9
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Table 6

Mentally Handicapped Subjects' ArIthmetIc Screening and Estimation Task Results

Arithmetic Screening

Word Concrete Addition Task

problems Spontaneously

correct used a correct

SP (0 to 16) procedure

Estimation Task

Number Proportion of Mean Overall rink:

of correct Impossible absolute Impossible s ms

answers sums error I absolute err

01 4 12 12 .04 1.1 I

28 15 12 12 .19 1.9 2

12 3 12 11 .25 2.2 3

20 11 12 12 .27 2.3 4

05 16 12 12 .31 2.4 5

10 6 8 7 .35 2.4 6

24 5 12 II .32 2.6 7

13 7 12 12 .44 2.8 15

21 8 II 11 .15 8.5 19.5

19 12 12 12 .14 3.4 8

23 I 6 6 .37 3.9 12.5

15 6 11 11 .37 3.0 12.5

04 6 11
8 .0 1

14 8 10 10 .33 2.9 9

25 3
10 7 .35 2.8 10

18 6 8 8 .42 3.0' 18

02 6 7 7 .h4 3.7 23

08 5 10 9 .05 8.0 16

06 6 II 9 .38 3.4 22

03 il II 72 4.8 26

11 1
10 9 .73 2.3 11

30 8 7 7 .74 2.4 14

16 2 11 11 .76 2.7 19.5

22 6 2 2 .75 2.8 21

27 5 II 10 .77 3.1 24

26 1
II 11 .79 3.1 25

29 0 4 I .80 3.8 27

17 0 0 0 .92 3.5 28

09 o r 10 10 .82 4.2 29

07 4 10 6 .91 4.4 30

5u



Figure 1: Siegler and Shrager's (1984) Distributions -of- Associations Data
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