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1 INTRODUCTION " ) 2

1 Introduction

The relationship between (:ognitivo.psychologists and rescarchers in artificial intelligonce, al-
though n(-('usi(m.;.lly touchy, carries substantial benefits for Lot The designer of expert systems
frequantly starts with a naive model of tha type of reasoning he is attempting to implement. Care-
ful roview of the psychological literature and analysis of verbatim protocols can reveal unexpected
properties of the reasoning he is investigating, In my cxpcrionc(; studying the reasoning methods
of expert physicians, carcful attention to human behavior can reveal distinetions between radically
different types of knowledge in what mitially appeared to be a single category. The distinct types
of knowledge need distinet representations in the design of an implementable systemn. In addition,
clues to the actual structure of the knowledge representation appear in the form of states of partial

knowledge.

The cognitive psychologist can learn from the Al rescarcher a vocabulary of knowledge represen-
tation and inference techniques tnat were developed for purely engineering purposes, but can scrve
as clements of deseriptive psychological theories. The concepts of forward and backward-chaining
inference rules provide examples of this. Implementation of a cognitive theory as a computer pro-
gram also provides the well-recognized advantages of enforcing a certain level of consistency and
completeness, and yields a computer program whose behavior can be considered a prediction, if
treated very carefully. We will look at some examples of these iuteractions in the context of knowl-
edge representations for reasoning about causal relations, specifically in medical problem-solving

gystems.

Causal reasoning is a phenomenon that has nt{.ract(-d much attention recently in both the
cognitive science community [Gentner & Steyens, 1983] and in the artificial intelligence/expert
systems community {de Kleer, 1977, de Kleer :md. Brown,  1984; Forbus, 1984; Kuipers, 1984,
1985]. Mudical problem-solving systems such as MYCIN and Internist-1 are fundamentally based

on weighted associations between findings and hypotheses.  In order to avoid a combinatorial
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explosion, such systems typically include assumptions about the independence of these associations,
which leaves them unable to handle non-t.riviul it vactions between diseases. Causal reasoning is
seen as a way to avoid some of the limitations of these systems by incorporating knowledge about
how the mechanisms of the body work. A causal model of a discase process and its evolution
over time provides additional constraints that allow incompatible combinations of hypotheses to be
excluded, and may permit the combined effects of two discases to be p‘rcdictcd.

Tn this paper we will trace a dialectic of sorts, in which different types of causal reasoning are
identified in verbatim protocols and simulated by computer programs. The first type of causal
desceription consists of “causal links” holding between states of the world. This type of causality
is the most conmonly discussed in the scientific literature in psychology, philosoply, and artificial
intelligence, The second type of cansal description is based on “qualitative simulation” of systems
of continuous parameters related by qualitative constraints. This is a qualitative abstraction of
differential equations as a descriptior of a physical system. The third type of description, the “one-
paramcter simulation”, 18 a hybrid of the first two types. We have rccéutly idohtiﬁcd xamples
of this third type of causal rcasoning in protocols, aud are now developing sp-cifications for a
computer simulation.

These three types of cansal descriptions are not alternative hypotheses, but apparently coexist
in the expert’s mind. Open problems include how they relate with cach other, and which problems
are tiost adequately handled by which type of knowledge. 1 present this discussion as an example

of an on-going investigation into causal reasoning combining the points of view of the cognitive

scieutist and the Al knowledge representation desiguer.
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2 . The Causal Link

The most common representation for causal reasoning is the Causal Link representation which

consists of states linked by relationships labeled Causes or Caused-Dy. The states, strictly speak- -

ing, are descriptions of aspects of the patient’s overall condition. This type of representation is -

usceful as a completeness and coherency criterion on explanations of the patient state. Ideally, the

complete description should consist of a network of states which are cither caused by other states

or are acceptable as primary causes. Similarly, causal links are useful for generating hypotheses by

specifying the possible canses of the states currently belicved true,

A fragment of a verbatimn transcript illustrates reasoning using the causal link representation.
4

The subject has been presented with a few observations about the patient, and is attempting to

construct a coherent explanation for her condition. The underlined words are the key phrases

corresponding to the subsequent analysis.

LO14
LO15
Lo16
L017
L.018
LO19
L020
L021
LO22
LU23
[.024

A: Well, they say that there’s,
that’s she’s clearly dchydrated

and with postural lnypotcnsion,\ ]

and so I'd be wondering the reasons why.

She apparently hasn’t been eating well,

and, and I'd be concerned of whether
she's had any g.i. losses,
any voriting,

or any diarrhea,

or any other things

to cause the significant volume depletion that she scems to have.

The conceptual content of this fragment can be analyzed naturally as references to a numnber

of state-deseriptions and cansal (=), equivalence (:2), ..ud specialization (—) relations between

the states.



2 THE CAUSAL LINK 5
dehydration = volume-depletion L015, L024
volume-deplelion => postural-hypotension Lo1s, LO16
anorezia => volume-depletion Lo18
gi-losses == volume-depletion L020, L024
gi-losses — vomiting, diarrhea, etc. L020-L023

The intermediate states, like volume-depletion and gi-losses, provide organization for the set of

pessitie causes of observed findings.

2.1 Al Research on Causal Links

Tle classic program based on causal links among states is CASNET [Weiss, et al, 1978] which
diagnoses glancoma at an expert level of performance. Iu CASNET, individual pathophysiological
states are confirmed based on clinical findings of various kinds linked to them with a spccified
strength of association. The states are connected to cach other with causal links wcightéd according
to the frequency with which that particular causal pathway holds. A disease process corresponds
to a path through the (non-cyclic) network of states. The current state of the discase process in
a particular patient corresponds to partial progress along that path. The degree of belief in a
particular state combines the support of direct observations for that particular state with support
propagated from causally related states.

Ricger and Grinberg (1977) developed a taxonomny of different types of causal relations among
nodes representing states, cvents, actions, apd tendencies. Their representation enabled them to
deseribe the behavior of mechanisins in t('ri%ls of propagating activation of ynodes in the causal
network. The network could often be (le('.ompl\l; sed into looscly coupled moduz;, but was basically
“flat”, in that there was no explicit separation t{f different levels of description.

The ABEL system for acid-base and (\lﬂ:t.r()iyt(z diagnosis [Patil, 1981] provides multiple lev-
els of state description, ranging from the clinical observation level down to a detailed description

of physiological processes. The different levels allow clinical observations such as vomiting and
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dehydration to be mapped to physiological assertions such as decreased sodium or inereased potas-
sinm concentrations in the blood. In ABEL, causal links are not weighted by frequency, but state
deseriptions have quantitative components representing the amount of the effect produced by the
cause. This allows the syatem to reason about whether the observed causes are suffictent to account
for the magnitude of the observed problem, or whether an additional factor should be sought. The
ability to reason-about the combination of reinforcing or compensating cffects helps ABEL handle
interactions among diseases.

Pople (1982) also incorporates a network of causal relations along with the taxonomic relations

in his design for Cadeuceus.,

2.2 U-Tube Example

Suppose we have two tanks of water connected by a pipe at the bottom of cach. This is often
described as a U-tube in elementary physics classes. The water in both tauks is at the same level,

and there is no flow through the pipe.

If we suddenly add some water to tank A, there is flow through the connecting pipe until the
system reaches a new equilibrinn, A causal link description of this process would look something

like the following.
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1 level(A) 1 pressure(A)

IRAY &

flow

| level(A), 1 level(B)

| pressure(A), 1 pressure(B)
LAP

{ flow , .
Jlow =0

EEEEEEN

Medical texts are full of similar diagrams consisting of terms connected with causal links,
typically in a non-lincar network. Our discussion is concerned with what formal reprosentation

these can correspond to.

2.3 Critique

There are several problems with the causal link representation that limit its ability to cxpress
relationships gencrally considered to be “cansal” or to make certain pragmatically important causal

inferences.

2.3.1 Semantics of the Causal Link

The causal chain presented above consists of terms of the form T X. Depending on the context
I p 4

of the particular diagram, such a term can be used to mnecan a varicty of different things:
¢ X is increasing (i.e. has a positive derivative),
e the value of X is greater than normal,

e the valiue of X is greater than the previous value of X we considered,
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o there is a tendency for X to increase which is combined with all other tendencies on X to

determine its actual direction of change.

Similarly, on examining the causal links in the system, we see that similar links, of the form

1 X ==>1Y, can be used to mean quite different things:
o | flow == flow = 0 takes place over an interval in time,

o T level(A) ==>1 pressure(A) takes place within the same instant in time.

The interpretation according to which causal relations take place over a temporal interval is
certainly the most common, and is necessary to avoid contradiction in equilibrinmn sitnations like
the above where 7 level(A) =3 ... = level(A). However, when compared with the physical
sithation, some causal relations can be seen to impose an ordering on events or changes that are
physically constrained to take place siun;ltauoonaly, as when 1 temperature =1 pressure in a
container of gas. |

Treating thiese “causal” relationships as identical means that events that are actually simuita-
neous are treated as though they were spread over time. (For example, char icters on the Saturday
morning cartoons frequently run off of cliffs, and yet have time for second thoughts beforg they start
falling.) This distortion may be characteristic of at least some human reasoning, as it resembles
the “Aristotelean physics™ observed by McCloskey, et al (1980) in naive physics students. Thus, a
psychologist interested in the cognitiv~ developnient of cansal reasoning might find such a collapse
of distinct relations descriptively u§eful. .

However, expert systems designers find such reasoning methods pragmatically undesirable, since
they ereate intermediate state (]('scri})fioxls that are not physically realizable. It is thus difficult to
validate the systen’s inferences or knowledge base against the scientific or technical literature in
the expert. domain. |

The fact that the same terms are used to express importantly distinet types of assertions and

relatiouships suggests that this tyne of causal deseription is less useful for predicting the bhehavior

-
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of an unknown mechanism than for explanation of predictions derived in somne other fashion.

2.3.2 Local vs Global States

Properly speaking, causal relations should hold only between global states of the world. How-
ever, as they are typically used in medical texts or causal-link-type problemn-solving systemns, they
hold between individual attributes. For exainple, in a model of the nephrotic syndrome we have

-

studied clsewhere [Kuipers and Kassirer, 1984], we saw the relation:
decreased serum protein = increased interstitial fluid.

This illustrates the point of the previous section, since the St;:lrlixlg cquilibrinm mechanisin requires
the patient to be simnultancously in the two states, decreased serum protein and increased interstitial
Sluid. The stated relationship is only somctimes true, and can be blocked if decreased serum sodium
15 also true. A physiological mechanisin depends on a richly structured set of relationships among
the different attributes. In order for a causal description of a mechanisin to be uscful for predicting

future states, it must be able to express that complex sct of relationships.

2.3.3 Predicting Behavior from Structure

-

In causal reasouing about i)lnysical mechanisms, a paradigmatic type of reasoning is predicting
the Lehavior of a mechanism from the behavior of its parts and the relationships between them.
Since the nodes of a causal network are states or cvents (i.e. fragments of potential behavior), there
is no representation for the structure of a mechanisin as distinct from its behavior. The z;étual
hehavior in response to a particular situation is some sclection of nodes and links in the network.
While the combinations of states that are activated under a particular sct of circumstances may be
novel, there is no natural way to express the discovery of previously unsuspected states or behavior,

such as the existance of an equilibrinm point between two landinark values.

10
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3 Qualitative Simulation

In scarch of a representation for causal reasoning that would be more adequate to explain the
ability of an expert to predict the behavior of a mechanism under unexpected circumst.;ﬁwcs, we
[Kuipers and Kassirer, 1983, 1984] examined transcripts of causal explanations. We found cvidence
suggesting that .he structure of a mechanismn is represented sceparately from its behavior, This,
along with a new line of Al rescarch, led us to focus on qualitative simulation as an alternative to

the causal link.

3

-t

The qualitative simulation apprgach to causal reasoning scparates the description of the struc-
ture of o mcch;}uism from the dcsgription of its behavior. The structure of a mechanism is described
in terms of continuously-variable paramecters and constraints among them. Bchavior is described
in terms of the ordinal rolations among the valucs of paramcters and limiting landmark values, and
their directions of change. The semantics of this representation can be made precise by creating a
correspoundence between the structural and behavioral descriptions and differential cquations and

the functions that satisfy them (figure 1).
? . ' o I & :

The a‘lvantage of this approach to causal reasoning is that p-~dictions of behavior can be made

from the structural description. It is capable of inferring unexpected types of behavior, can create

new landinark values where significant qualitative changes take place, and can handle feedback

phenomena. : .

The following protocol fragment (analyzed more completely in Kuipers and Kassirer (1984))
illustrates the difference between time-independent facts about the structural relationships between
values of two parameters (L162-178), and time-dependent. behavioral facts about the events at some

particular moment (L179-181).

11
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Physical ) Actual
~ System ) " DBchavior
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LEquation
v o
Structural qualitative simnlation Behavioral
»>
Description Description

Figure 1. Qualitative simulation and differential equations are both abstractions of actual behavior.

12
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L162
L163
L.164
L1865
L166
167
L.1G8
L169
L170
L171
172
L173
.174
L175
L176
L177
L178

L179
[.180
L1181

A: When there is a very low albumin in the serum,

there are two forces which canse edema in my thinking —
the hydrostatic and oncotic forces

and we have actnally opposed forces,

forces [...break...] formation is secondary to

the hydrostatic force of the blood going through the capillaries

and causing the transudation of fluid

as well as the osmotic force within the - "~od vessels,

*hat is secondary to the proteins in the p:asma

which tend to draw fluid

trom the interstitial spaces into the blood vessels
and also there is the forces in the extracellular space.

There are certain proteins which tend to pull water

out of the blood vessels

and there is a hydrostatic force I believe also in the interstitial spaces

which can counteract the forcee of the fluid

-

coming out from within the vessels

and if you have a very low albumin in the serum,

there will be a decreased ozmotic pressurc

and make it casier for the fluid to go out into the interstitial spaces.

The analysis can be deseribed as foliows.

12
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Descriptions of Structure

hydrostatic pressure(fluid, blood — interstitial spaces) L167
> flow([luid, blood — interstitial spaces) L168
concentration(protein, blood) _ - L1710
" => serum protein oncotic pressure(fluid, interstitial spaces — blood) L169

=» flow(fluid, interstitial spaces — blood) L171-172
concentration(protein, interstitial spuces) L1
= [flow([luid, blo d — interstitial spaces) ' L174-175
hydrostutic pressure(flutd, intersiitial spaces — blood) ' - L176
= [flow(flutd, interstitial spaces — blood) o ~ L177-178

Descriptions of Behavior

decreased concentration(protein, blood) : L179
= decreased serum protein oncolic pressure ([luid, interstitial spaces — blood) L180
=> tnereased flow([fluid, blood — interstitial spuces) L181

The detailed analysis demonstrates that there is a distinction in the representation between
structural and behavioral deser ptions of a mechanism. The explanation focuses on the relationships
aong and changes of continwous-valued paramecters. And the values of those paramcters are
deseribed in qualitative terms. As a psychological, theory, of course, each of these conclusions is
quite tentative, and is subject to further experimental exploration and cevaluation. Nonctheless,

they served as a valuable inspiration to a new and useful knowledge representation,

14
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3.1 Ai Research on Qualitative Simﬁlation

There has been a recent. surge of interest in qualitative simulation in Al with theories by de
Kleer, Forbus, Kuipers, Williams and others reported in a recent special issue of the Artificial
Intelligence Journal (1984). The structure of a mechanism is deseribed qualitatively in torms of a
set of continuously varying quantitics, linked by constraints representing the stenctural relations of
the mechanism, Some constraints specify familiar mathematical relationships: DERIV (vel, ace),
ADD(net,00:t.in), MU LT (mass, ace, force), MINUS (fwd, rev). Others assert qualitatively that
there is a functional relationship between two physical parameters, but only specify that the re-
lationship is monotonically increasing or decreasing: M™*(price, power) and M ‘(mph, mpg). The
value of a parameter at any point in time is describe qualitatively in terms of its ordinal relations
with a sct of landmark values, and its direction of change. The hehavior of the mechanism is
deseribed as the sequence of qualitative states taken on by the parameters.

Differences among Al approaches to qualitativ‘e simulation include the term of the constraints,
how the constraint scts are created, what landmarks are known, whether landmarks are lin arly
ordered, whether new landmarks can be created, and the algorithm used by the reasoning process,

In all cases, the qualitative simulation algorithin derives a set of possible behaviors from the
desceription of the structure of the mechanism. Ideally, the structural description will be well
cnough selected so that simulation yields a single behavior which describes the actual behavior
of the mechanism, though at a more abstract level than a real-valued function. These technigues
perform well at predicting the behavior of equilibrinm situations under a variety of perturbing

.
offects [Knipera, 1984). In more complex situations such as continuing or dissipating oscillation, it
is posxible for qualitative simulation to predict impossible behaviors [Kuipers 1985).

In the context of a diagnostic prablem-solver it scemns that the role of such a qualitative simu-
lation is to generate the possible consequences of a hypothesized primary discase. The diagnostic
system can then test whether the observed facts correspond to some possible scenario for the dis-

case. The mechanisi description both generates predictions to be tested, and elaborates a more

15
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Evoker o Evoker
% Hypotheses Observations
/
|
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\ - QSIM » QSIM QSIM
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\ ~
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Figure 2: The Interaction between QSIM and the Evoker

detailed deseription of the paticnt state than would be possible otherwise. We are currently in the
midst of creating a diagnostic program called RENAL which operates in this fashion (sce figure 2),
based on the interaction between a frame-based diagnostic program (the Evoker) and a qualitative

simulation program (QSIM).

3.2 U-Tube Example

In our example of the U-tube, the structural description is stated in terims of continuous pa-
rameters for the level, pressure, pressure-difference, and flow across the pipe. (Figure 3)

The behavioral deseription is constructed by finding sets of qualitative transitions for the pa-
rameters in the structure, consistent with the constraints. Figure 4 shows the qualitative behavior
as a sequence of qualitative states for each parameter. A qualitative state is a pair consisting of a
magnitude and a direction of change (tncreasing, decreasing, or steady). A magnitude 8 either

a landmark value (e.g. PAs is the initial value of pressure(A)) or an open interval bounded by

16
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?V‘ﬂm €))

Figure 3: Structural Description of the U-Tube

landmark values (e.g. (PA+,=0)). In this case, thex:c is only one counsistent beh:wibr, so we know
that it represents the actual behavior of the systein [Kuipers 1985].

We can also describe the behavior as a set of qualitative graphs of the individual parameters,
where only the ordinal relationships between the values on the axes and the points plotted are

significant. (Figure 5)

3.3 Critique

Qualitative simulation predicts the behavior of a system correctly and uniquely when given a
properly structured first-order description of the system (i.e. the correspondihg differential equation
includes only first derivatives). Modest branching takes place corresponding to genuine alternative
behaviors consistent with the given structure and initial state. Must second-order systems and
poorly constructed first-order systems yield widely branching behaviors that contain too many

alternatives to be useful. This could be evidence that qualitative simulation is too complex to be
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level (A) ((XAs,00),dec) P7— ((XAs,00),dec) 19— (XAl,std)
level(DB) (X D=*,inc) Ps — ((XDs,00),inc) I8 — (XBl,std)
prassure(A) ((PAs,00),dec) PT— ((PAs,00),dec) I9— -(PAl, std)

( )

pressure(B) (PDs,inc) P5 — ((PDBs,00),inc) I8 — (PDB1,std
AP ((0,00),dec) P7—  ((0,00),dec) I5— (0, std)
flow ((0,00),dec) P7—  ((0,00),dec) I5— (0, std)

Figure 4: Behavior of the U-Tube: Parameter Transitions

et ———
I EEE R L KT
. LRV my POPRE L FR1 -
*’ . ' Mo : S TTTTTF DL rPoe
. .
- : | o
NORMWL, ¢ * NORMIY, )
HA [ )
" . -
~
P m1
.o""“ ! o‘ """ ‘
L SEPER 77 o - Lo ]
. 5. 'y b § ¢
'm b ' . NORIL, o
K] AF
. " -
,4 """ ‘*..~ N
o' .~. Pﬂl -
hercaas 4
- PA® K
4" " .- .
R —— — PO + NORHL . M ]
NORMAL :
[ 7] R I

Figure §: Bchavior of the U-Tube: Qualitative Graphs




i

3 QUALITATIVE SIMULATION 18

a realistic model of human causal reasoning. On the other hand, it is consistent with the plausible
hypothesis that people can only use qualitative simulation on first-order models of mechanisins,
and even then, only when their model of the stracture has been debugged through training and
experience, '
Evidenee from verbatim protocols suggested cortain features of the knowledge representation
that led to the development of qualitative simnlation algorithins. However, the protocols do not
contain clear references to all of the stages of those algorithms. There are several possible expla-

nations, which require further empirical work to be distinguished.

e Only the initial propagation of inforination to create a complete initial state description
is accessible to verbal explanation; the actual simulation takes place “automatically” and

unconsciously.

o Propagation of the initial state description, simulation of subsequent states, and the de-
scription of the final state arg all accessible to verbal explanation, but these very different
compntational processes are verbalized with similar constructions, making the correspondence

diflicnlt. to determine.

e Qualitative simulation is only done at “learning time”, and a generic behavior is retrieved to
fit particular problems. An explanation sclects which features of the stored information to

verbalize, but has no correspondence to a trace of the computation.

e Qualitative simulation is a mathematical construct with a general resemblance to human

cansal reasoning, but does not, in fact, correspond to any cognitive process.

In the next section, 1 explore an alternative type of causal reasoning that combines some of the

desirable features of the cansal link model and the qualitative si'-nulation model.

19
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4 One-Parameter Simulation

4
ity

Qualitative reasoning systems have generally been oriented toward complete deseriptions of
complex systems with subtle behavior. In such cases, a complex qualitative simmulation algorithm is
necessary in order tnﬁorive adequate results from the given problem statement. However, protocol
analysis often reveals a simpler usage, focusing on the behavior of a single parameter as 1t moves

to and past various landmark values.,

Although the mechanisin being simulated consists of a single parameter, and is thus much
simpler than in the qualitative simulation case, the inference process may still involve sophisticated
reasoning methods. In the fragment below, there are implicit references to a “health status”
parameter that can be cither stable or deteriorating, and to an unspecified future event, presumably

when the patient reaches a point of no return, before which action is required.

L043 When I'm told that there is no improvement,

L044 and... when someone remains stable for forty cight hours,
1.045 I think you're in a position

L046 where you can buy a little bit more time.

L.047 If there's deterioration,

1.048 which I'm not told,

L049 then I'd feel a little more strongly abont moving ahead.

In order to capture the content of this fragment, the causal reasoner must be able to express
alternate hypothetical worlds, the gualitative magnitude and direction of change of continuous
parameters, the magnitudes of time-intervals as well as physical parameters, and the comparison

of magnitudes across hypotheses.

20
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Actual(Now) Lo44
Health-Status(Patient, Now) = (poor, stable) L043-L044
Iypothetical(Now2) LO48
HealtK-Status{ Patient, Now2) = (poor, deteriorating) Lo47
Lvent = last opportunity for treatment . smplicit
Time-Interval(Now2 Event) < Tinie-Interval{Now, Event) L045-L046, 1,049

This comparison between two hypothetical situations for a single patient is generalized and
abstracted to a monotonic relationship between health status and urgency of treatment. In the

following fragment from the same protocol, this consideration is tied to “he sclection of an invasive
<]

test.
L070 What I use to decide which to go to is really ...
L0O71 partly, how sick the patient is.
L072 ‘Cause I actually think
L073 the sicker a patient is the more rapidly the —--——
L074 (the) more likely I am
LO75 to go to an open lung biopsy.
M * (Health-Status(Patient,Now), Time-Interval(Now,Event)) L072-1078

M (Time-Interval(Now,Event), Preference{Open-Lung-Biopsy,Bronchoscopy)) L074-L0O75
In the one-parameter simulation, rather than using a network of constraints on a set of simul-

tancously ¢ anging paramcters to determnine which of many possible combinations of behaviors are
consistent, simulation projects the possiblfs futures of a single driving paramecter. The remaining
features of the current state description can then be iaferred, if needed, from the qualitative value
of the driving parameter. Prediction of the next state is done by mov.ng the driving parameter
in its direction of change and checking for the consistency of the resulting state. As we see in the
above protocol fragment, a particularly useful application of this reasoning method might be to

perform the same simulation in slightly varying contexts to determine an abstract relationship.
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NTT R

- | devel(A) = level(B) —  pressure(A) = pressure(DB)
AP =0

Slow =0

steady(AP)

Y ' 1 level(A)

level(A) > level(B) —  pressure(A) > pressure(D)
APl>0
flow > (
decreasing{AP)

Y AP -0

AP=0 —r [flow =0
pressure(A) = pressure(B)
level(A) = lcvel(B)
steady(AP)

Figure 6: One-Parameter Simulation of the U-Tube

4.1 U-Tube Example

In the one-parameter simulation, the U-tube has the same structural description as for quali-
tative simulation (figure 3), but the structure is used only for propagation to fill out the current
state deseription. Prediction of the next state is done by focusing on a single parameter, changing

it az cesired, and propagating to fill out the state.

In Figure 6, the top box is the initial state description, derived from the assumption that

level(A) = level(DB). The first causal link (§) corresponds te adding water to tank A, so that

22
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level(A) is increased; the remaining aspects of the state description follow by propagation. The
second link « aresponds to the selection of AP as driving paramcter, moving to the limiting value
0. Other selections of driving paramcter would have prodnced the same result.

Since the prediction phase focuses on a single parameter and doces not weteh the simultancous
evolution of all paraweters, it does not conclude whethor level(A) in the final state is greater or less
than level(A) in the initial state. This demonstrates a trade-off between the amounnt of information

deduced, and the robustness and comput. ional cost of the algorithm.,

4.2 Critique

The one-paracieter simulation is not as powerfui as the full qualitative simulation, since it
docs not capture interactions among parameters. It is not straight-forward for the one-parameter
sitnnlation to conclude, {or example, that a new cquilibrinm point exists between two landmark
values previonsly believed to be adjacent.

However, because it focuses attention on a single changing paramecter, it is computationally
sitnpler. Furthermore, based on preliminary study, it does correspond well with parts of the ver-
batitn protocol that have not matched the gualitative simulaticn algorithm. It also appears to
match certain less formal observations of physicians’ behavior and explanations collected by Harry
Paple [personal communication, 1983] in a review of open problems inspired by his research on the
Internist /Cadeuceus systern. *

Eoth the computational and the empirical implications of the one-parameter simnulation require
considerable further study. Based on the examples we have collected that suggest the existence
and properties of one-parameter siiulation, a more systematic analysis of protocols is needed to

establish those propertics more clearly. We have also designed and are beginning to implement a

working version of the once-parameter simulation.
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.o

5 Discussion
L3

These examples illustrate three distinct types of causal reasoning and explanation that can
be identified in verbatim transeripts.  The underlying conceptual frameworks for the causal link
representation and the qualitative simulation representation are alimost. completely distinet. The
third type, however, suggests that they represent the poles of a spectrum of representations, across
whicl) the advantages and disadvantages of the two approaches are combined in various propor-
tions. Thus, when we look at human behavior and hope to determine the reasoning technique in
a cortain area, we are likely to find, as in these examples, that a variety of techniques are used

opportunistically.

The methods we have used for collection and analysis of verbal protocols are much more thor-
nughly disenssed clsewhere [Ericsson and Simon, 1980; Kassirer, Kuipers, and Gorry, 1982; Kuipers
and Kassirer, 1984]. The examples used here are from “thinking aloud” interviews where physi-
ciang 2o presented with cases in small packets, and encouraged in non-directive ways to think
alond while analyzing the case. A fragment of protocol is likely to provide better insights into the
problem-solving $rocess if it represents a point where the subject is clearly in the midat of solving
the prebiem. A sumimarized conclusion is often in such a conventional formn as to lide any traces of
the actual problem-solving process. Although we interview physicians at several levels of expertise,
we have generally found it more fruitful to study those at a “journcyman” level of expertise (e.g.
second or third-year residents), than the “masters” who can leap directly from the problem to a

correct answer.

0

The «nalysis takes place in two stages. First, we find a underlying domain of conceptual objects
corresponiing to all of the reforring phrases found in a protocol fragment. Sccond, we attempt
to devise a knowledge representation and inference process corresponding to the nature and order
of the assertions we see in the fragment. Both the referring phrase analysis and the assertional

analysis are “analysis by synthesis” processes drawing heavily on the analyst's famniliarity with a

i
.
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range of knowledge representations and formal inference strategics. Therefore, although this type
of analysi- 1+ very fruitful in suggesting kxwwlodgc-ruprcsentn‘tion structures and their propertics,
it is dependent. both on the state of theoretical work on knéwledge representations and on the
idividual analyst. &

Although care can be taken to avoid many known methodological pitfalls, at the current state
of the cognitive sciences, there is %lwnys the problem of the observer being unable to recognize
& phenomenon which is not expressible in his or her conceptnal vocabulary. The benefit to the
cognitive scientist of familiarity with knowledge representation rescarch u artificial intelligence is
just that: it provides & larger vocabulary of concepts with which to look at the coguitive world.

[ offer these observations as a dcsigxl(rr of knowledge representations with a reading knowledge
of coguitive psychology, foeling that we Al rescarchers can use direction from psychologists about;

the actnal nature of the knowledge we are trying to express, and that psychologists can benefit

from familiarity with the range of representational tools we have available.

\
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